1
|
Boonkaewwan S, Chotpantarat S. Impact of ionic strength on goethite colloids co-transported with arsenite (As 3+) through a saturated sand column under anoxic condition: Experiment and mathematical modeling. ENVIRONMENTAL RESEARCH 2024; 260:119660. [PMID: 39048066 DOI: 10.1016/j.envres.2024.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The knowledge about co-transport of goethite and As3+ to investigate the effect of goethite colloids on As3+ transport under various degrees of seawater intrusion, particular extremely conditions, in groundwater environment is still limited. The main objective is to investigate the influence of seawater intrusion on the sorption, migration, and reaction of As3+and goethite colloids into sand aquifer media under anoxic conditions by using the bench-scale and reactive geochemical modeling. The research consisted of two parts as follows: 1) column transport experiments consisting of 8 columns, which were packed by using synthesis groundwater at IS of 0.5, 50, 200, and 400 mM referring to the saline of seawater system in the study area, and 2) reactive transport modeling, the mathematical model (HYDRUS-1D) was applied to describe the co-transport of As3+ and goethite. Finally, to explain the interaction of goethite and As3+, the Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation was considered to support the experimental results and HYDRUS-1D model. The results of column experiments showed goethite colloids can significantly inhibit the mobility of As3+ under high IS conditions (>200 mM). The Rf of As3+ bound to goethite grows to higher sizes (47.5 and 65.0 μm for 200 and 400 mM, respectively) of goethite colloid, inhibiting As3+ migration through the sand columns. In contrast, based on Rf value, goethite colloids transport As3+ more rapidly than a solution with a lower IS (0.5 and 50 mM). The knowledge gained from this study would help to better understand the mechanisms of As3+ contamination in urbanized coastal groundwater aquifers and to assess the transport of As3+ in groundwater, which is useful for groundwater management, including the optimum pumping rate and long-term monitoring of groundwater quality.
Collapse
Affiliation(s)
- Satika Boonkaewwan
- International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Environmental Innovation and Management of Metals (EnvIMM), Environmental Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Song J, Wang X, Wang X, Huang Q, Wei C, Wang B, Yang S, Liu Z, Cheng S, Guo X, Li J, Li Q, Wang J. Exposure to a mixture of metal(loid)s and sleep quality in pregnant women during early pregnancy: A cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116663. [PMID: 38964059 DOI: 10.1016/j.ecoenv.2024.116663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Biological characteristics of pregnant women during early pregnancy make them susceptible to both poor sleep quality and metal/metalloid exposure. However, the effects of metal(loid) exposure on sleep quality in pregnant women remain unknown and unexplored. We aimed to examine the relationship between exposure to a mixture of metal(loid)s and pregnant women's sleep quality during early pregnancy. We recruited 493 pregnant women in the first trimester from prenatal clinics in Jinan, Shandong Province, China, and collected their spot urine samples. All urine specimens were assessed for eight metal(loid)s: arsenic (As), cadmium (Cd), iron (Fe), zinc (Zn), molybdenum (Mo), lead (Pb), selenium (Se), and mercury (Hg). We used the Pittsburgh Sleep Quality Index (PSQI) to assess sleep quality. Linear regression, logistic regression, generalized additive models (GAMs), quantile g-computation, and Bayesian kernel machine regression (BKMR) were applied to investigate the relationships between metal(loid) exposure and sleep quality. The results from single metal(loid) models, quantile g-computation models, and BKMR models consistently suggested that Fe was positively related to women's sleep quality. Moreover, in the quantile g-computation models, As was the most critical contributor to the negative effects of the metal(loid) mixture on sleep quality. In addition, we found significant As by Fe interaction for scores of PSQI and habitual sleep efficiency, Pb by Fe interaction for PSQI and sleep latency, and Hg by Fe interaction for PSQI, suggesting the interactive effects of As and Fe, Pb and Fe, Hg and Fe on sleep quality and specific sleep components. Our study provided the first-hand evidence of the effects of metal(loid) exposure on pregnant women's sleep quality. The underlying mechanisms need to be explored in the future.
Collapse
Affiliation(s)
- Jiayi Song
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, China
| | - Xiaorong Wang
- Shandong First Medical University Jinan Central Hospital, Jinan, Shandong 250014, China
| | - Qichen Huang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Chuanling Wei
- Department of Gynecology, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, China
| | - Bufei Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, China
| | - Songbin Yang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, China
| | - Zhigang Liu
- Department of Pediatrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250001, China
| | - Shuang Cheng
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Guo
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Jiao Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Qi Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Ju Wang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Song J, Wang X, Huang Q, Wei C, Yang D, Wang C, Fan K, Cheng S, Guo X, Wang J. Predictors of urinary heavy metal concentrations among pregnant women in Jinan, China. J Trace Elem Med Biol 2024; 84:127444. [PMID: 38581744 DOI: 10.1016/j.jtemb.2024.127444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Toxic heavy metal exposure and insufficiency or excess of essential heavy metals may have negative effects on pregnant women's health and fetal growth. To date, the predictors of pregnant women's heavy metal exposure levels remain unclear and vary with different regions. The study intended to explore potential predictors of exposure to heavy metals individually and high co-exposure to heavy metal mixtures. METHODS We recruited 298 pregnant women in first trimester from prenatal clinics in Jinan, Shandong Province, China, and collected spot urine samples and questionnaire data on their demographic characteristics, lifestyle habits, consumption of food and dietary supplement, and residential environment. All urine samples were analyzed for seven heavy metals: cobalt (Co), molybdenum (Mo), strontium (Sr), arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg). RESULTS Factors associated with single heavy metal concentration were as follows: a) urinary As, Sr and Cd increased with women's age respectively; b) pregnant women with higher monthly household income per capita had lower Sr and Mo levels; c) pregnant women with intermittent folic acid supplementation and those not taking tap water as domestic drinking water had lower Sr concentrations; d) Cd was positively linked with consumption frequency of rice; e) Hg was adversely related to consumption frequency of egg and the women who took purified water as domestic drinking water had lower Hg exposure. In addition, pregnant women's age was positively associated with odds of high co-exposure to Co, As, Sr, Mo, Cd and Pb; while those with an educational level of college had lower odds of high exposure to such a metal mixture compared with those whose educational levels were lower than high school. CONCLUSION Predictors of single urinary heavy metal concentration included pregnant women's age (As, Sr and Cd), monthly household income per capita (Sr and Mo), folic acid supplementation (Sr), rice consumption frequency (Cd), egg consumption frequency (Hg) and the type of domestic drinking water (Sr and Hg). Pregnant women with older age, lower educational level tended to have high co-exposure to Co, As, Sr, Mo, Cd and Pb.
Collapse
Affiliation(s)
- Jiayi Song
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Qichen Huang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Chuanling Wei
- Department of Gynecology, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, China
| | - Dongxia Yang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Cuilan Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Kefeng Fan
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Shuang Cheng
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Guo
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Ju Wang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Demissie S, Mekonen S, Awoke T, Mengistie B. Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241257365. [PMID: 38828044 PMCID: PMC11141224 DOI: 10.1177/11786302241257365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
Background Arsenic, a widely recognized and highly toxic carcinogen, is regarded as one of the most hazardous metalloids globally. However, the precise assessment of acute and chronic human exposure to arsenic and its contributing factors remains unclear in Ethiopia. Objective The primary goal of this study was to assess the levels of acute and chronic arsenic exposure, as well as the contributing factors, using urine and nail biomarkers. Methods A community-based analytical cross-sectional study design was employed for this study. Agilent 7900 series inductively coupled plasma mass spectrometry was used to measure the concentrations of arsenic in urine and nail samples. We performed a multiple linear regression analysis to assess the relationships between multiple predictors and outcome variables. Results The concentration of arsenic in the urine samples ranged from undetectable (<0.01) to 126.13, with a mean and median concentration of 16.02 and 13.5 μg/L, respectively. However, the mean and median concentration of arsenic in the nails was 1.01, ranging from undetectable (<0.01 μg/g) to 2.54 μg/g. Furthermore, Pearson's correlation coefficient analysis showed a significant positive correlation between arsenic concentrations in urine and nail samples (r = 0.432, P < .001). Also, a positive correlation was observed between urinary (r = 0.21, P = .007) and nail (r = 0.14, P = .044) arsenic concentrations and the arsenic concentration in groundwater. Groundwater sources and smoking cigarettes were significantly associated with acute arsenic exposure. In contrast, groundwater sources, cigarette smoking, and the frequency of showers were significantly associated with chronic arsenic exposure. Conclusions The study's findings unveiled the widespread occurrence of both acute and chronic arsenic exposure in the study area. Consequently, it is crucial to prioritize the residents in the study area and take further measures to prevent both acute and chronic arsenic exposure.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| |
Collapse
|
5
|
Wang Y, Yuan S, Shi J, Ma T, Xie X, Deng Y, Du Y, Gan Y, Guo Z, Dong Y, Zheng C, Jiang G. Groundwater Quality and Health: Making the Invisible Visible. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5125-5136. [PMID: 36877892 DOI: 10.1021/acs.est.2c08061] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Linking groundwater quality to health will make the invisible groundwater visible, but there are knowledge gaps to understand the linkage which requires cross-disciplinary convergent research. The substances in groundwater that are critical to health can be classified into five types according to the sources and characteristics: geogenic substances, biogenic elements, anthropogenic contaminants, emerging contaminants, and pathogens. The most intriguing questions are related to quantitative assessment of human health and ecological risks of exposure to the critical substances via natural or induced artificial groundwater discharge: What is the list of critical substances released from discharging groundwater, and what are the pathways of the receptors' exposure to the critical substances? How to quantify the flux of critical substances during groundwater discharge? What procedures can we follow to assess human health and ecological risks of groundwater discharge? Answering these questions is fundamental for humans to deal with the challenges of water security and health risks related to groundwater quality. This perspective provides recent progresses, knowledge gaps, and future trends in understanding the linkage between groundwater quality and health.
Collapse
Affiliation(s)
- Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Teng Ma
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Yamin Deng
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Yao Du
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Yiqun Gan
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Zhilin Guo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiran Dong
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Sumdang N, Chotpantarat S, Cho KH, Thanh NN. The risk assessment of arsenic contamination in the urbanized coastal aquifer of Rayong groundwater basin, Thailand using the machine learning approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114665. [PMID: 36863158 DOI: 10.1016/j.ecoenv.2023.114665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/26/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The rapid expansion of urbanization has resulted in an insufficient of groundwater resource. In order to use groundwater more efficiently, a risk assessment of groundwater pollution should be proposed. The present study used machine learning with three algorithms consisting of Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) to locate risk areas of arsenic contamination in Rayong coastal aquifers, Thailand and selected the suitable model based on model performance and uncertainty for risk assessment. The parameters of 653 groundwater wells (Deep=236, Shallow=417) were selected based on the correlation of each hydrochemical parameters with arsenic concentration in deep and shallow aquifer environments. The models were validated with arsenic concentration collected from 27 well data in the field. The model's performance indicated that the RF algorithm has the highest performance as compared to those of SVM and ANN in both deep and shallow aquifers (Deep: AUC=0.72, Recall=0.61, F1 =0.69; Shallow: AUC=0.81, Recall=0.79, F1 =0.68). In addition, the uncertainty from the quantile regression of each model confirmed that the RF algorithm has the lowest uncertainty (Deep: PICP=0.20; Shallow: PICP=0.34). The result of the risk map obtained from the RF reveals that the deep aquifer, in the northern part of the Rayong basin has a higher risk for people to expose to As. In contrast, the shallow aquifer revealed that the southern part of the basin has a higher risk, which is also supported by the location of the landfill and industrial estates in the area. Therefore, health surveillance is important in monitoring the toxic effects on the residents who use groundwater from these contaminated wells. The outcome of this study can help policymakers in regions to manage the quality of groundwater resources and enhance the sustainable use of groundwater resources. The novelty process of this research can be used to further study other groundwater aquifers contaminated and increase the effectiveness of groundwater quality management.
Collapse
Affiliation(s)
- Narongpon Sumdang
- International Postgraduate Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Environmental Innovation and Management of Metals (EnvIMM), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Kyung Hwa Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Nguyen Ngoc Thanh
- University of Agriculture and Forestry, Hue University, 102 Phung Hung Str, Hue City, Viet Nam
| |
Collapse
|
7
|
Liu Y, Wei L, Wu Q, Luo D, Xiao T, Wu Q, Huang X, Liu J, Wang J, Zhang P. Impact of acid mine drainage on groundwater hydrogeochemistry at a pyrite mine (South China): a study using stable isotopes and multivariate statistical analyses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:771-785. [PMID: 35312930 DOI: 10.1007/s10653-022-01242-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Combining environmental isotope analysis with principal component analysis can be an effective method to discriminate the inflows and sources of contamination in mining-affected watersheds. This paper presents a field-scale study conducted at an acid mine drainage (AMD)-contaminated site adjacent to a pyrite mine in South China. Samples of surface water and groundwater were collected to investigate transport in the vadose zone using stable isotopes of oxygen (δ18O) and hydrogen (δD) as environmental tracers. Principal component analysis of hydrogeochemical data was used to identify the probable sources of heavy metals in the AMD. The heavy metal pollution index (HPI) was applied to evaluate the pollution status of heavy metals in the groundwater. The groundwater associated with the Datai reservoir was recharged by atmospheric precipitation and surface water. On the side near the AMD pond, the groundwater was significantly affected by the soluble metals produced by pyrite oxidation. The concentrations of some metals (Al, Mn, and Pb) in all of the samples exceed the desirable limits prescribed by the World Health Organization (Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, 2011). Among them, the concentration of Al is more than 30,000 times higher than the desirable limits prescribed by the World Health Organization (2011), and the concentration of Mn is more than 3000 times higher. The HPI values based on these heavy metal concentrations were found to be 10-1000 times higher than the critical pollution index value of 100. These findings provide a reference and guidance for research on the migration and evolution of heavy metals in vadose zone water in AMD-contaminated areas.
Collapse
Affiliation(s)
- Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linkoping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linkoping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qinghua Wu
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qihang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ping Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Nilkarnjanakul W, Watchalayann P, Chotpantarat S. Urinary arsenic and health risk of the residents association in contaminated-groundwater area of the urbanized coastal aquifer, Thailand. CHEMOSPHERE 2023; 313:137313. [PMID: 36414032 DOI: 10.1016/j.chemosphere.2022.137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Determining of arsenic (As) exposure was conducted in 110 residents which divided into two groups using the WHO guidelines for As in drinking water of 10 μg/L. Moreover, questionnaires with face-to-face interviews were used to make a health risk assessment and to determine the associated factors. The median of As in urine was 61.33 μg/L (5.38-600.86 μg/L), accounting for 68.18% of participants who exposed to the contaminated groundwater had obviously high urinary As levels, exceeded the normal value of 50 μg/L of As, as set by the National Health and Nutrition Examination Survey (NHANES). The major factor affecting As in urine was the As contaminated groundwater. Pearson's chi-squared test showed that the urinary As level was influenced on the different groups of As level in groundwater (p-value <0.001). Multiple linear regression confirmed that the actual risk factors of As in urine were the As level in groundwater and the oral exposure route but not the dermal contact. Meanwhile binary logistic regression revealed that all socio-demographic factors were not influenced. Approximately 45.45% of the area had the HI above the risk level of 1, mostly via groundwater drinking pathway. The estimated total cancer risk values, 5.11 × 10-6 to 2.08 × 10-3, were higher than the safe level of 10-6. For long-term exposure, the As concentration and exposure duration were the most variables influencing health risk level. This finding suggests that chronic As exposure should be monitored and also the groundwater should be improved to provide the safe drinking water for the residents.
Collapse
Affiliation(s)
- Wiyada Nilkarnjanakul
- Faculty of Public Health, Thammasat University, Rangsit Campus, Pathum Thani, 12121, Thailand.
| | - Pensri Watchalayann
- Faculty of Public Health, Thammasat University, Rangsit Campus, Pathum Thani, 12121, Thailand.
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, 10330, Thailand.
| |
Collapse
|
9
|
Kusanagi E, Takamura H, Hoshi N, Chen SJ, Adachi M. Levels of Toxic and Essential Elements and Associated Factors in the Hair of Japanese Young Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1186. [PMID: 36673943 PMCID: PMC9859141 DOI: 10.3390/ijerph20021186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
There is growing concern regarding the effects of toxic element exposure on the development of children. However, little is known about the level of toxic elements exposure in Japanese children. The purpose of this study was to assess the concentrations of multiple elements (aluminum, cadmium, lead, calcium, copper, iron, magnesium, sodium, zinc) in the hair of 118 Japanese young children and to explore the factors associated with their element levels. The element concentration was analyzed by ICP-MS, and children's food and water intake were assessed by the questionnaire. Results showed that there were no large differences between the level of elements in the hair of Japanese children and those of children in other developed countries. Girls had significantly higher levels of aluminum, copper, and iron (p = 0.000, 0.014, and 0.013, respectively), and boys had a higher level of sodium (p = 0.006). The levels of calcium, iron, magnesium, and sodium in nursery school children were significantly higher than those in kindergarten children (p = 0.024, 0.001, 0.046, and 0.029, respectively). Multiple regression analyses with controlling the confounding variables showed significant negative associations of frequency of yogurt intake with aluminum and lead levels (p = 0.015 and 0.037, respectively). When the children were divided into three groups based on the frequency of yoghurt consumption, viz. L (≤once a week), M (2 or 3 times a week), and H (≥4 to 6 times a week) group, the mean aluminum concentration (µg/g) in the L, M, and H groups was 11.06, 10.13, and 6.85, while the mean lead concentration (µg/g) was 1.76, 1.70, and 0.87, respectively. Our results suggested the validity of hair element concentrations as an exposure measure of essential elements and frequent yogurt intake as a viable measure for protecting children from toxic elements. However, these findings will need to be confirmed in more detailed studies with larger sample sizes in the future.
Collapse
Affiliation(s)
- Emiko Kusanagi
- Department of Childhood Education, Kokugakuin University Hokkaido Junior College, Takikawa 073-0014, Japan
| | - Hitoshi Takamura
- Department of Food Science and Nutrition, Faculty of Human Life and Environmental Sciences, Nara Women’s University, Nara 630-8506, Japan
| | - Nobuko Hoshi
- Department of Early Childhood Education, Junior College of Sapporo Otani University, Sapporo 065-8567, Japan
| | - Shing-Jen Chen
- Centers for Early Childhood Education and Care, Koen Gakuen Women’s Junior College, Sapporo 005-0012, Japan
| | - Mayumi Adachi
- Research Group of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Wang Y, Cao D, Qin J, Zhao S, Lin J, Zhang X, Wang J, Zhu M. Deterministic and Probabilistic Health Risk Assessment of Toxic Metals in the Daily Diets of Residents in Industrial Regions of Northern Ningxia, China. Biol Trace Elem Res 2023:10.1007/s12011-022-03538-3. [PMID: 36622522 DOI: 10.1007/s12011-022-03538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/18/2022] [Indexed: 01/10/2023]
Abstract
This study was designed to investigate the toxic metal (aluminum (Al), arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn)) concentrations in drinking water and different foodstuffs meat (pork, beef, and mutton), cereals (rice, flour, corn, millet), beans (cowpeas, tofu), potatoes (potato, sweet potato), solanaceous fruits (pepper, eggplant, bitter gourd, cucumber), vegetables (cabbage, cauliflower, spinach), and fruits (apples, watermelons, pears, grapes)) and then estimate the potential health risks of toxic metal consumption to local residents in industrial regions of northern Ningxia, China. As in drinking water, Cr in meat, Pb in cereals, Pb in beans, As and Pb in potatoes, Pb in solanaceous fruits, Cr and Ni in vegetables, and Ni and Pb in fruits were the most contaminated heavy metals in the corresponding food with over-standard rates of 16.7%, 12.5%, 5.1%, 60%, 50%, 50%, 38.2%, 44.4%, 44.4%, 31.8%, and 31.8%, respectively.The results of the deterministic assessment of health risks showed that the total noncarcinogenic risk value of dietary intake of toxic metals by the local population was 5.6106, indicating that toxic metals pose a high noncarcinogenic risk. The order of the non-carcinogenic risk is HIcereal (1.2104) > HIsolanaceous fruit (0.9134) > HIVegetables (0.8726) > HIFruit (0.8170) > HIMeat (0.7269) > HIDrinking water (0.6139) > HIBeans (0.2991) > HIPotatoes (0.1573). The total carcinogenic health risk from exposure to toxic metals through dietary intake was 9.98 × 10-4, indicating that the total cancer risk value of residents is beyond the acceptable range (10-4) under the current daily dietary exposure and implies a high risk of cancer. The order of the carcinogenic risk is RDrinking water (2.34 × 10-4) > RMeat (2.11 × 10-4) > Rsolanaceous fruit (1.89 × 10-4) > RFruit (1.88 × 10-4) > Rcereal (1.36 × 10-4) > RPotatoes (2.44 × 10-5) > RVegetables (1.51 × 10-5) > RBeans (0). The probabilistic assessment results showed that 98.83% of the population is exposed to severe noncarcinogenic risk and 87.02% is exposed to unacceptable carcinogenic risk. The sensitivity analysis showed that drinking water, local cereals, vegetables, and fruits were the major contributors to health risks. Our results indicated that the daily dietary exposure of residents in industrial regions of northern Ningxia poses a serious threat to human health, and it is suggested that relevant departments should strengthen monitoring and control of the current situation of toxic metal pollution in the environment and continue to pay attention and take measures to reduce the exposure of toxic metals in the diets of residents in this area.
Collapse
Affiliation(s)
- Yan Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, China
| | - Deyan Cao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiaqi Qin
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, China
| | - Siyuan Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianzai Lin
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, China
| | - Xi Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
- College of Basic Medical Sciences, Ningxia medical University, Yinchuan, 750004, China
| | - Junji Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, China
| | - Meilin Zhu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China.
- College of Basic Medical Sciences, Ningxia medical University, Yinchuan, 750004, China.
| |
Collapse
|
11
|
Rokonuzzaman MD, Li WC, Wu C, Ye ZH. Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119712. [PMID: 35798190 DOI: 10.1016/j.envpol.2022.119712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Rice and vegetables cultivated in naturally arsenic (As) endemic areas are the substantial source of As body loading for persons using safe drinking water. However, tracing As intake, particularly from rice and vegetables by biomarker analysis, has been poorly addressed. This field investigation was conducted to trace the As transfer pathway and measure health risk associated with consuming As enriched rice and vegetables. Purposively selected 100 farmers from five sub-districts of Chandpur, Bangladesh fulfilling specific requirements constituted the subjects of this study. A total of 100 Irrigation water, soils, rice, and vegetable samples were collected from those farmers' who donated scalp hair. Socio-demographic and food consumption data were collected face to face through questionnaire administration. The mean As level in irrigation water, soils, rice, vegetables, and scalp hairs exceeded the acceptable limit, while As content was significant at 0.1%, 5%, 0.1%, 1%, and 0.1% probability levels, respectively, in all five locations. Arsenic in scalp hair is significantly (p ≤ 0.01) correlated with that in rice and vegetables. The bioconcentration factor (BCF) for rice and vegetables is less than one and significant at a 1% probability level. The average daily intake (ADI) is higher than the RfD limit for As. Both grains and vegetables have an HQ (hazard quotient) > 1. Maximum incremental lifetime cancer risk (ILCR) showed 2.8 per 100 people and 1.6 per 1000 people are at considerable and threshold risk, respectively. However, proteinaceous and nutritious food consumption might have kept the participants asymptomatic. The PCA analysis showed that the first principle component (PC1) explains 91.1% of the total variance dominated by As in irrigation water, grain, and vegetables. The dendrogram shows greater variations in similarity in rice and vegetables As, while the latter has been found to contribute more to human body loading compared to grain As.
Collapse
Affiliation(s)
- M D Rokonuzzaman
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, PR China
| | - W C Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, PR China.
| | - C Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, 999077, PR China; School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Z H Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| |
Collapse
|
12
|
Nilkarnjanakul W, Watchalayann P, Chotpantarat S. Spatial distribution and health risk assessment of As and Pb contamination in the groundwater of Rayong Province, Thailand. ENVIRONMENTAL RESEARCH 2022; 204:111838. [PMID: 34425115 DOI: 10.1016/j.envres.2021.111838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the presence of arsenic (As) and lead (Pb) in groundwater and their spatial distribution in Ban Khai District, Rayong Province, Thailand. Forty groundwater samples were collected at different locations in the dry and wet seasons during March and August of 2019, respectively. The hydrochemical facies illustrate that the major groundwater types in both seasons mainly consisted of Ca-Na-HCO3, Ca-HCO3-Cl and Na-HCO3 types. The concentration of As ranged from <0.300 to 183.00 μg/L, accounting for 22% (18 of 80 samples), exceeding the WHO guidelines of 10 μg/L. The spatial distribution of As was distinctly predominant as a hot spot in some areas during the wet season. The wells may have been contaminated from human activity and thus constituted a point source in the adjacent area. For Pb, its concentration in all the wells were not exceeded 10 μg/L of the WHO guidelines, appearing as a background concentration in this area. Most of the wells were shown to be in an oxidation state, supporting AsV mobility. Moreover, the area also had a nearly neutral pH that promoted AsV desorption, while the presence of undissolved Pb in the aquifers tended to increase. Furthermore, chemical applications to agricultural processes could release the As composition into the groundwater. The health risk resulting from oral consumption was at a higher risk level than dermal contact. The non-carcinogenic risk affecting the adult population exceeded the threshold level by approximately 27.5% of the wells, while for the children group, the risk level was within the limit. Total cancer risk (TCR) of adult residents exceeded the acceptable risk level (1 × 10-6) in all wells, causing carcinogenic health effects. Therefore, health surveillance is important in monitoring the toxic effects on the local residents who use groundwater from these contaminated wells. Furthermore, a sanitation service and an alternative treatment of the water supply will be needed, especially in wells with high As levels.
Collapse
Affiliation(s)
- Wiyada Nilkarnjanakul
- Faculty of Public Health, Thammasat University, Rangsit Campus, Pathum Thani, 12121, Thailand.
| | - Pensri Watchalayann
- Faculty of Public Health, Thammasat University, Rangsit Campus, Pathum Thani, 12121, Thailand.
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Thailand; Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, 10330, Thailand.
| |
Collapse
|
13
|
Nguyen VT, Vo TDH, Tran TD, Nguyen TNK, Nguyen TB, Dang BT, Bui XT. Arsenic-contaminated groundwater and its potential health risk: A case study in Long An and Tien Giang provinces of the Mekong Delta, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63558-63571. [PMID: 32954450 DOI: 10.1007/s11356-020-10837-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of arsenic (As) in groundwater (drilled well water) that were used for drinking, cooking, and personal hygiene and its risks to human health in Long An and Tien Giang provinces (Mekong delta, Vietnam) were evaluated in this study. The average As concentrations were 15.92 ± 11.4 μg/L (n = 24, Long An) and 4.95 ± 4.7 μg/L (n = 24, Tien Giang). The average concentrations of As in Long An had not reached the WHO and QCVN 01: 2009/BYT healthy drinking water standard (10 μg/L). When used as a source of water for drinking and daily activities, arsenic-contaminated groundwater may have a direct impact on human health. The risk assessment from groundwater established by the US Environmental Protection Agency (USEPA) was conducted. The risk assessment showed that the average cancer risk (CR) values were 8.68 × 10-4 (adults) and 2.39 × 10-3 (children) for Long An, and 2.70 × 10-4 (adults) and 7.43 × 10-4 (children) for Tien Giang. These results were significantly higher than the CR (1 × 10-4) proposed by the USEPA. The adverse health effect was therefore specifically warned by the use of arsenic-contaminated groundwater. This research offers valuable knowledge for efficient water management approaches to guarantee local communities' health protection.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| | - Thanh-Dai Tran
- Faculty of Applied Sciences-Health, Dong Nai Technology University, Bien Hoa, Dong Nai, Vietnam
| | - Thi-Nhu-Khanh Nguyen
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Bao-Trong Dang
- Ho Chi Minh City University of Technology - HUTECH, 475 A Dien Bien Phu, Binh Thanh district, Ho Chi Minh City, Vietnam
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam.
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Thu Duc district, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
14
|
Wongsasuluk P, Tun AZ, Chotpantarat S, Siriwong W. Related health risk assessment of exposure to arsenic and some heavy metals in gold mines in Banmauk Township, Myanmar. Sci Rep 2021; 11:22843. [PMID: 34819590 PMCID: PMC8613182 DOI: 10.1038/s41598-021-02171-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
Exposure to heavy metals in mining activities is a health issue among miners. This study was carried out at three small-scale gold mining sites situated in Banmauk Township, Myanmar and aims to assess the occupational health risks of small-scale gold miners who are exposed to arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) in the soil through the dermal route. Soil samples were analyzed through atomic absorption spectroscopy (AAS). The concentrations of the heavy metals in soils found As, ranged 1.04 mg/kg to 22.17 mg/kg, 0.13 mg/kg to 3.07 mg/kg for Cd, 0.15 mg/kg to 77.44 mg/kg for Hg, and 7.67 mg/kg to 210.00 mg/kg for Pb. In this study, 79% of the participants did not use any form of personal protective equipment (PPE) while working in gold mining processes. Regarding noncancer risk assessment, the results found all hazard quotient were lower than acceptable level (HQ < 1). In addition, all hazard index (HI) was lover than 1, the highest HI was found as 5.66 × 10−1 in the amalgamation process. On the other hand, the result found cancer risk ranged from 8.02 × 10−8 to 1.75 × 10−6, and the estimated cancer risks for 9 years ranged from 4.78 × 10−7 to 1.04 × 10−5. Therefore, the cancer risks of the miners were greater than the United State Environmental Protection Agency (U.S. EPA) acceptable cancer risk level, 1 × 10−6, and the miners may be at risk of developing carcinogenic diseases. The suggestion is to educate miners about the health risks of heavy metals and to encourage the use of proper PPE all the time while working in gold mine.
Collapse
Affiliation(s)
- Pokkate Wongsasuluk
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Health and Social Sciences and Addiction Research Unit (HSSRU), Chulalongkorn University, Bangkok, Thailand.
| | - Aung Zaw Tun
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand.,Environmental Conservation Department, Office No. 58, Nay Pyi Taw, 15011, Myanmar
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand
| | - Wattasit Siriwong
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
15
|
Aekplakorn W, Chariyalertsak S, Kessomboon P, Assanangkornchai S, Taneepanichskul S, Neelapaichit N, Chittamma A, Kitiyakara C. Women and other risk factors for chronic kidney disease of unknown etiology in Thailand: National Health Examination V Survey. Sci Rep 2021; 11:21366. [PMID: 34725395 PMCID: PMC8560950 DOI: 10.1038/s41598-021-00694-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022] Open
Abstract
There are limited data on chronic kidney disease of unknown etiology (CKDu) from Southeast Asia. Initially described in working age men, a common approach to detect CKDu that includes all adults has recently been proposed. We determined the prevalence, and risk factors for CKDu using data from a cross-sectional, nationally representative survey of the adult population of Thailand. We used a proxy for CKDu as age < 70 with impaired kidney function (eGFR < 60) in the absence of diabetes and hypertension (CKDu1) and heavy proteinuria (CKDu2). Prevalence estimates were probability-weighted for the Thai population. The associations between risk factors and CKDu or elderly subjects with eGFR < 60 without traditional causes were assessed by multivariable logistic regression. Of 17,329 subjects, the prevalence were: eGFR < 60, 5.3%; CKDu1 0.78%; CKDu2, 0.75%. CKDu differed by 4.3-folds between regions. Women, farmers/laborers, older age, gout, painkillers, rural area, and stones were independent risk factors for CKDu. Women, age, rural, gout, painkillers were significant risk factors for both CKDu and elderly subjects. These data collected using standardized methodology showed that the prevalence of CKDu in Thailand was low overall, although some regions had higher risk. Unlike other countries, Thai women had a two-fold higher risk of CKDu.
Collapse
Affiliation(s)
- Wichai Aekplakorn
- Department of Community Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Pattapong Kessomboon
- Department of Community Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Nareemarn Neelapaichit
- Ramathibodi School of Nursing, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Anchalee Chittamma
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chagriya Kitiyakara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
16
|
Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M. Human biomarkers associated with low concentrations of arsenic (As) and lead (Pb) in groundwater in agricultural areas of Thailand. Sci Rep 2021; 11:13896. [PMID: 34230564 PMCID: PMC8260595 DOI: 10.1038/s41598-021-93337-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/23/2021] [Indexed: 11/08/2022] Open
Abstract
Human biomarkers were used to evaluate the lead (Pb) and arsenic (As) exposure of local people who lived in an agricultural area with intense agrochemical usage and who consumed groundwater. Although the heavy metals/metalloids in the groundwater were at low concentrations, they could cause adverse effects due to a high daily water intake rate over the long term. Biomarkers (hair, fingernails and urine) were collected from 100 subjects along with the local shallow groundwater and tap water, which is the treated deep groundwater, and investigated for the concentrations of As and Pb. Shallow groundwater had an average pH of 5.21 ± 1.90, ranging from 3.77 to 8.34, with average concentrations of As and Pb of 1.311 µg/L and 6.882 µg/L, respectively. Tap water had an average pH of 5.24 ± 1.63, ranging from 3.86 to 8.89, with the average concentrations of As and Pb of 0.77 µg/L and 0.004 µg/L, respectively. The levels of both As and Pb in the hair, fingernails and urine of shallow groundwater-consuming residents were greater than those in the hair, fingernails and urine of tap water-consuming residents. Interestingly, the As level in urine showed a linear relationship with the As concentration in groundwater (R2 = 0.91). The average water consumption rate was approximately two-fold higher than the standard; thus, its consumption posed a health risk even at the low As and Pb levels in the groundwater. The hazard index (HI) ranged from 0.01 to 16.34 (average of 1.20 ± 2.50), which was higher than the acceptable level. Finally, the concomitant factors for As and Pb in the urine, hair and nails from both binary logistic regression and odds ratio (OR) analysis indicated that groundwater consumption was the major concomitant risk factor. This study suggested that direct consumption of this groundwater should be avoided and that the groundwater should be treated, especially before consumption. In conclusion, urine is suggested to be a biomarker of daily exposure to As and Pb, while for long-term exposure to these metals, fingernails are suggested as a better biomarker than hair.
Collapse
Affiliation(s)
- Pokkate Wongsasuluk
- International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Srilert Chotpantarat
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok, Thailand.
| | - Wattasit Siriwong
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Thai Fogarty ITREOH Center, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mark Robson
- Thai Fogarty ITREOH Center, Chulalongkorn University, Bangkok, 10330, Thailand
- New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, NJ, USA
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
17
|
Sonthiphand P, Rattanaroongrot P, Mek-Yong K, Kusonmano K, Rangsiwutisak C, Uthaipaisanwong P, Chotpantarat S, Termsaithong T. Microbial community structure in aquifers associated with arsenic: analysis of 16S rRNA and arsenite oxidase genes. PeerJ 2021; 9:e10653. [PMID: 33510973 PMCID: PMC7798605 DOI: 10.7717/peerj.10653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022] Open
Abstract
The microbiomes of deep and shallow aquifers located in an agricultural area, impacted by an old tin mine, were explored to understand spatial variation in microbial community structures and identify environmental factors influencing microbial distribution patterns through the analysis of 16S rRNA and aioA genes. Although Proteobacteria, Cyanobacteria, Actinobacteria, Patescibacteria, Bacteroidetes, and Epsilonbacteraeota were widespread across the analyzed aquifers, the dominant taxa found in each aquifer were unique. The co-dominance of Burkholderiaceae and Gallionellaceae potentially controlled arsenic immobilization in the aquifers. Analysis of the aioA gene suggested that arsenite-oxidizing bacteria phylogenetically associated with Alpha-, Beta-, and Gamma proteobacteria were present at low abundance (0.85 to 37.13%) and were more prevalent in shallow aquifers and surface water. The concentrations of dissolved oxygen and total phosphorus significantly governed the microbiomes analyzed in this study, while the combination of NO3 --N concentration and oxidation-reduction potential significantly influenced the diversity and abundance of arsenite-oxidizing bacteria in the aquifers. The knowledge of microbial community structures and functions in relation to deep and shallow aquifers is required for further development of sustainable aquifer management.
Collapse
Affiliation(s)
- Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Kasarnchon Mek-Yong
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kanthida Kusonmano
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Systems Biology and Bioinformatics Research Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Chalida Rangsiwutisak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.,Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand
| | - Teerasit Termsaithong
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Theoretical and Computational Science Center (TaCS), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
18
|
Boonkaewwan S, Sonthiphand P, Chotpantarat S. Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: a case study in Rayong province, eastern Thailand. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:537-566. [PMID: 33044731 DOI: 10.1007/s10653-020-00728-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The rapid development of Rayong Province has resulted in increased demands on groundwater usage. This has potentially induced the release of contaminants such as arsenic (As), among others (i.e., NO3-, PO43-) from various land use types-especially in intensive agricultural areas and heavy industrial areas, including landfill sites. The objectives of this research are to investigate the As speciation and groundwater chemistry occurring due to different hydrogeological settings and the influence of human activities and to explain the mechanism of As release in the coastal alluvial aquifers in Rayong Province using multivariate statistical techniques and hydrogeochemical modeling (PHREEQC). Six major water facies, mainly consisting of Ca-Na-HCO3-Cl and Ca-Na-Cl, were included in the hydrochemical analysis. Arsenic levels were inversely correlated with NO3-, SO42-, DO, and ORP, confirming the reducing environment in the groundwater system. The results from the PHREEQC model show that most wells were strongly under-supersaturated with respect to arsenorite, scorodite, and arsenic pentoxide. Arsenic (As) is probably derived from the dissolution of Fe oxide and hydroxide (i.e., Fe(OH)3, goethite, maghemite, and magnetite). The multivariate statistical techniques revealed that the As species mainly consisted of As(III), governed by the reducing environment, while As(V) may be desorbed from Fe oxide and hydroxide as the pH increases. Anthropogenic inputs and intensive pumping may enhance the reducing environment, facilitating the release of As(III) into the groundwater. The knowledge gained from this study helps to better understand the mechanisms of As contamination in coastal groundwater aquifers, which is useful for groundwater management, including the optimum pumping rate and long-term monitoring of groundwater quality.
Collapse
Affiliation(s)
- Satika Boonkaewwan
- International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road Rachadhavi, Bangkok, 10400, Thailand
| | - Srilert Chotpantarat
- Center of Excellence On Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Program On Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence On Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.
- Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
19
|
Mansouri B, Błaszczyk M, Binkowski LJ, Sayadi MH, Azadi NA, Amirabadizadeh AR, Mehrpour O. Urinary Metal Levels with Relation to Age, Occupation, and Smoking Habits of Male Inhabitants of Eastern Iran. Biol Trace Elem Res 2020; 195:63-70. [PMID: 31388878 DOI: 10.1007/s12011-019-01848-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022]
Abstract
In low-income and middle-income countries such as Iran, smoking is becoming increasingly popular, especially among young people. This has led to additional exposure to a variety of substances, including metals which may exert a toxic influence and lead to severe diseases. In order to evaluate the influence of smoking on metal concentrations, a case-control study of levels of metal in urine was carried out in smokers (n = 64) and non-smokers (n = 35) from the city of Birjand (Iran). They were divided according to their age and socioeconomic status. Concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn) were measured using ET-AAS. We found higher concentrations of Cd (0.03 vs. 0.12 μg/L), Co (0.6 vs. 1.22 μg/L), and Cr (14.00 vs. 18.17 μg/L) in the urine of smokers. Age and occupation are factors that also influence the levels of metals. Young smokers demonstrate higher Cd and Pb levels than other age groups. It would also appear that public sector workers and self-employed are the sectors most susceptible to high levels of metals.
Collapse
Affiliation(s)
- Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Martyna Błaszczyk
- Institute of Biology, Pedagogical University of Cracow, Krakow, Poland
| | | | - Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and EnvironmentUniversity of Birjand, Birjand, Iran
| | - Nammam Ali Azadi
- Biostatistics Department, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Amirabadizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA.
| |
Collapse
|
20
|
Nakaona L, Maseka KK, Hamilton EM, Watts MJ. Using human hair and nails as biomarkers to assess exposure of potentially harmful elements to populations living near mine waste dumps. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1197-1209. [PMID: 31317372 DOI: 10.1007/s10653-019-00376-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/09/2019] [Indexed: 05/21/2023]
Abstract
Potentially harmful elements (PHEs) manganese (Mn), cobalt (Co), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) were measured in human hair/nails, staple crops and drinking water to ascertain the level of exposure to dust transference via wind and rain erosion for members of the Mugala community living near a mine waste dump in the Zambian Copperbelt. The mean PHE concentrations of hair in decreasing order were Zn (137 ± 21 mg/kg), Cu (38 ± 7 mg/kg), Mn (16 ± 2 mg/kg), Pb (4.3 ± 1.9 mg/kg), Ni (1.3 ± 0.2 mg/kg) and Cr (1.2 ± 0.2 mg/kg), Co (0.9 ± 0.2 mg/kg) and Cd (0.30 ± 0.02 mg/kg). Whilst for toenails the decreasing order of mean concentrations was Zn (172 ± 27 mg/kg), Cu (30 ± 5 mg/kg), Mn (12 ± 2 mg/kg), Pb (4.8 ± 0.5 mg/kg), Ni (1.7 ± 0.14 mg/kg) and Co (1.0 ± 0.02 mg/kg), Cr (0.6 ± 0.1 mg/kg) and Cd (0.1 ± 0.002 mg/kg). The concentration of these potentially harmful elements (PHEs) varied greatly among different age groups. The results showed that Mn, Co, Pb, Cd and Zn were above the interval values (Biolab in Nutritional and environmental medicine, Hair Mineral Analysis, London, 2012) at 0.2-2.0 mg/kg for Mn, 0.01-0.20 mg/kg for Co, < 2.00 mg/kg for Pb, < 0.10 mg/kg for Cd and 0.2-2.00 mg/kg for Zn, whilst Ni, Cu and Cr concentrations were within the normal range concentrations of < 1.40 mg/kg, 10-100 mg/kg and 0.1-1.5 mg/kg, respectively. Dietary intake of PHEs was assessed from the ingestion of vegetables grown in Mugala village, with estimated PHE intakes expressed on a daily basis calculated for Mn (255), Pb (48), Ni (149) and Cd (33) µg/kg bw/day. For these metals, DI via vegetables was above the proposed limits of the provisional tolerable daily intakes (PTDIs) (WHO in Evaluation of certain food additive and contaminants, Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives, 2011) for Mn at 70 µg/kg bw/day, Pb at 3 µg/kg bw/day, Ni and Cd 5 µg/kg bw/day and 1 µg/kg bw/day, respectively. The rest of the PHEs listed were within the PTDIs limits. Therefore, Mugala inhabitants are at imminent health risk due to lead, nickel and cadmium ingestion of vegetables and drinking water at this location.
Collapse
Affiliation(s)
- Lukundo Nakaona
- School of Natural Sciences, Copperbelt University, Kitwe, Zambia
| | - Kakoma K Maseka
- School of Natural Sciences, Copperbelt University, Kitwe, Zambia
| | - Elliott M Hamilton
- Inorganic Geochemistry, Centre for Environment Geochemistry, British Geological Survey, Nottingham, UK
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environment Geochemistry, British Geological Survey, Nottingham, UK.
| |
Collapse
|
21
|
Gwenzi W. Occurrence, behaviour, and human exposure pathways and health risks of toxic geogenic contaminants in serpentinitic ultramafic geological environments (SUGEs): A medical geology perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134622. [PMID: 31693951 DOI: 10.1016/j.scitotenv.2019.134622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Serpentinitic ultramafic geological environments (SUGEs) contain toxic geogenic contaminants (TGCs). Yet comprehensive reviews on the medical geology of SUGEs are still lacking. The current paper posits that TGCs occur widely in SUGEs, and pose human health risks. The objectives of the review are to: (1) highlight the nature, occurrence and behaviour of TGCs associated with SUGEs; (2) discuss the human intake pathways and health risks of TGCs; (4) identify the key risk factors predisposing human health to TGCs particularly in Africa; and (5) highlight key knowledge gaps and future research directions. TGCs of human health concern in SUGEs include chrysotile asbestos, toxic metals (Fe, Cr, Ni, Mn, Zn, Co), and rare earth elements. Human intake of TGCs occur via inhalation, and ingestion of contaminated drinking water, wild foods, medicinal plants, animal foods, and geophagic earths. Occupational exposure may occur in the mining, milling, sculpturing, engraving, and carving industries. African populations are particularly at high risk due to: (1) widespread consumption of wild foods, medicinal plants, untreated drinking water, and geophagic earths; (2) weak and poorly enforced environmental, occupational, and public health regulations; and (3) lack of human health surveillance systems. Human health risks of chrysotile include asbestosis, cancers, and mesothelioma. Toxic metals are redox active, thus generate reactive oxygen species causing oxidative stress. Dietary intake of iron and geophagy may increase the iron overload among native Africans who are genetically predisposed to such health risks. Synergistic interactions among TGCs particularly chrysotile and toxic metals may have adverse human health effects. The occurrence of SUGEs, coupled with the several risk factors in Africa, provides a unique and ideal setting for investigating the relationships between TGCs and human health risks. A conceptual framework for human health risk assessment and mitigation, and future research direction are highlighted.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
22
|
Moya PM, Arce GJ, Leiva C, Vega AS, Gutiérrez S, Adaros H, Muñoz L, Pastén PA, Cortés S. An integrated study of health, environmental and socioeconomic indicators in a mining-impacted community exposed to metal enrichment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2505-2519. [PMID: 31049755 DOI: 10.1007/s10653-019-00308-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of toxic metals and metalloids associated with mine tailings is a serious public health concern for communities living in mining areas. This work explores the relationship between metal occurrence (e.g., spatial distribution in street dusts), human health indicators (e.g., metals in urine samples, lifestyle and self-reported diseases) and socioeconomic status (SES) using Chañaral city (in northern Chile) as study site, where a copper mine tailing was disposed in the periurban area. This study model may shed light on the development of environmental and health surveillance plans on arid cities where legacy mining is a sustainability challenge. High concentrations of metals were found in street dust, with arsenic and copper concentrations of 24 ± 13 and 607 ± 911 mg/kg, respectively. The arsenic concentration in street dust correlated with distance to the mine tailing (r = - 0.32, p-value = 0.009), suggesting that arsenic is dispersed from this source toward the city. Despite these high environmental concentrations, urinary levels of metals were low, while 90% of the population had concentrations of inorganic arsenic and its metabolites in urine below 33.2 µg/L, copper was detected in few urine samples (< 6%). Our results detected statistically significant differences in environmental exposures across SES, but, surprisingly, there was no significant correlation between urinary levels of metals and SES. Despite this, future assessment and control strategies in follow-up research or surveillance programs should consider environmental and urinary concentrations and SES as indicators of environmental exposure to metals in mining communities.
Collapse
Affiliation(s)
- Pablo M Moya
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
| | - Guillermo J Arce
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
| | - Cinthya Leiva
- Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 2, Santiago, Santiago, Chile
| | - Alejandra S Vega
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
| | - Santiago Gutiérrez
- Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 2, Santiago, Santiago, Chile
| | - Héctor Adaros
- Hospital Jerónimo Méndez Arancibia, Arturo Prat 1000, Chañaral, Chañaral, Chile
| | - Luis Muñoz
- Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, Las Condes, Santiago, Chile
| | - Pablo A Pastén
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Sandra Cortés
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile.
- Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Piso 2, Santiago, Santiago, Chile.
- Centro Avanzado de Enfermedades Crónicas (ACCDiS), Sergio Livingstone 1007, Independencia, Santiago, Chile.
| |
Collapse
|
23
|
Sonthiphand P, Ruangroengkulrith S, Mhuantong W, Charoensawan V, Chotpantarat S, Boonkaewwan S. Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26765-26781. [PMID: 31300992 DOI: 10.1007/s11356-019-05905-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Microbial communities in groundwater are diverse and each may respond differently to environmental change. The goal of this study was to investigate the diversity, abundance, and dynamics of microbial communities in impacted groundwater and correlate them to the corresponding land use and groundwater geochemistry, using an Illumina MiSeq platform targeting the V3 and V4 regions of the 16S rRNA gene. The resulting MiSeq sequencing revealed the co-occurrence patterns of both abundant and rare microbial taxa within an impacted groundwater basin. Proteobacteria were the most common groundwater-associated bacterial phylum, mainly composed of the classes Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria. The phyla detected at less abundances were the Firmicutes, Bacteroidetes, Planctomycetes, Actinobacteria, OD1, and Nitrospirae. The members of detected groundwater microorganisms involved in natural biogeochemical processes such as nitrification, anammox, methane oxidation, sulfate reduction, and arsenic transformation. Some of the detected microorganisms were able to perform anaerobic degradation of organic pollutants. The resulting PCA indicates that major land usage within the sampling area seemed to be significantly linked to the groundwater microbial distributions. The distinct microbial pattern was observed in the groundwater collected from a landfill area. This study suggests that the combinations of anthropogenic and natural effects possibly led to a unique pattern of microbial diversity across different locations at the impacted groundwater basin.
Collapse
Affiliation(s)
- Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Siwat Ruangroengkulrith
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Phahonyothin Road, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
- Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand
| | - Satika Boonkaewwan
- Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, 9th Floor, CU Research Building, Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
24
|
Francisco LFV, do Amaral Crispim B, Spósito JCV, Solórzano JCJ, Maran NH, Kummrow F, do Nascimento VA, Montagner CC, De Oliveira KMP, Barufatti A. Metals and emerging contaminants in groundwater and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24581-24594. [PMID: 31236862 DOI: 10.1007/s11356-019-05662-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Groundwaters are normally consumed without previous treatment and therefore the monitoring of contaminants in order to guarantee its safety is necessary. Thus, we aimed to evaluate the groundwater contamination by metals and emerging contaminants, seeking to understand the relationship between their presence in the groundwater and the use and land cover profile of Itaporã and Caarapó. In addition, the contaminant concentrations observed were compared with maximum permitted values (MPV) and/or with calculated water quality criteria (WQC) for human consumption to investigate possible human health risks due to the groundwater intake. We collected one groundwater sample from each of the 12 wells located in Itaporã and 11 wells located in Caarapó. The metals were analyzed using ICP-OES and the emerging contaminants using LC-MS/MS. At least 1 of the 9 metals analyzed was found in each of the samples. In 12 samples, the metal concentrations verified exceeded the MPV or calculated WQC. A risk to human health has been observed for metals Co, Mn, Cr, and Ni. The emerging contaminant concentrations found in some samples were low (ng/L) and probably did not pose health risks, but their presence in the groundwater showed the impact of agriculture and the inadequate disposal of domestic sewage in the wells of both cities.
Collapse
Affiliation(s)
| | - Bruno do Amaral Crispim
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rua João Rosa Góes, 1761 - Vila Progresso, PO Box 322, Dourados, MS, 79.825-070, Brazil
| | | | | | - Nayara Halimy Maran
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | | | | | - Kelly Mari Pires De Oliveira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rua João Rosa Góes, 1761 - Vila Progresso, PO Box 322, Dourados, MS, 79.825-070, Brazil
| | - Alexeia Barufatti
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rua João Rosa Góes, 1761 - Vila Progresso, PO Box 322, Dourados, MS, 79.825-070, Brazil.
| |
Collapse
|
25
|
Dippong T, Mihali C, Hoaghia MA, Cical E, Cosma A. Chemical modeling of groundwater quality in the aquifer of Seini town - Someș Plain, Northwestern Romania. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:88-101. [PMID: 30384171 DOI: 10.1016/j.ecoenv.2018.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/16/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
This paper presented a groundwater quality monitoring in Seini town, North-West of Romania, by assessing 18 physicochemical parameters (pH, EC, COD, turbidity, ht, NH4+, NO2-, NO3-, Cl-, Al, Fe, Mn, Pb, Zn, Cd, Cr, Ni and As) from 12 private dug wells and 5 private drilled wells, each with unique characteristics and used as a drinking water source. The pollution, quality status and risk assessment of drinking water sources were assessed, by pollution, quality and risk indices. Statistical methodology and cluster analysis were applied in order to elaborate and improve upon a mathematical model. 2 D and 3 D mathematical models were elaborated to show the functions that better describe the dependence between a set of physicochemical parameters. Heavy metal pollution index (HPI) and heavy metal evaluation index (HEI) results indicated that the studied drinking water sources presented no heavy metal contamination. Human health risk assessment indices showed that the consumption of studied waters presented no non-carcinogenic risk at heavy metals, but potential non-carcinogenic risk at NO3-. The water quality index (WQI) classifies the majority of samples as waters with excellent quality and the minority of samples in waters with poor and very poor quality. By geostatistical techniques, the spatial patterns of the main physicochemical indicators were established for both the surface of the aquifer and its depth. The aim of the water quality study was to establish the toxicity degree of water, its influence on human health and to inform the population regarding the use of individual water sources.
Collapse
Affiliation(s)
- Thomas Dippong
- Technical University of Cluj Napoca, North University Center at Baia Mare, Faculty of Science, 76 Victoriei Street, 430122 Baia Mare, Romania.
| | - Cristina Mihali
- Technical University of Cluj Napoca, North University Center at Baia Mare, Faculty of Science, 76 Victoriei Street, 430122 Baia Mare, Romania
| | - Maria-Alexandra Hoaghia
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Elena Cical
- Technical University of Cluj Napoca, North University Center at Baia Mare, Faculty of Science, 76 Victoriei Street, 430122 Baia Mare, Romania
| | - Adrian Cosma
- Technical University of Cluj Napoca, North University Center at Baia Mare, Faculty of Science, 76 Victoriei Street, 430122 Baia Mare, Romania
| |
Collapse
|
26
|
Chotpantarat S, Kiatvarangkul N. Facilitated transport of cadmium with montmorillonite KSF colloids under different pH conditions in water-saturated sand columns: Experiment and transport modeling. WATER RESEARCH 2018; 146:216-231. [PMID: 30268883 DOI: 10.1016/j.watres.2018.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the impact of pH on the migration of cadmium(II) ions (Cd2+) in relation to montmorillonite KSF colloids through a water-saturated sand column (WSSC). The sorption isotherms of Cd2+ on colloids and sand at pH values of 3, 6, and 8 were characterized by batch experiments. Cd2+ sorption by colloids and sand fit well with the Freundlich model. In the column experiments, increasing the pH increased the retardation factors and KF values of Cd2+ both with and without the presence of the colloids. The amount of Cd2+ sorbed onto the montmorillonite KSF colloids in the column effluent increased from 0.29 to 0.97 mg as the pH increased. The colloid increased Cd2+ mobility and acted as a carrier at a high solution pH. The increasing level of Cd2+ sorbed on colloids as the pH increased resulted in a long tailing of the breakthrough curve (BTC) of the total Cd, indicating that the total Cd was controlled by rate-limited reactions. These findings indicate that when the solution pH was greater than the point of zero charge (PZC) of the colloids (pH > 6), the system tended to follow a nonequilibrium two-site (TSM) model rather than an equilibrium (CDeq) model. This implies that the PZC of the colloids in the groundwater system is the main factor in predicting facilitated Cd2+ transport.
Collapse
Affiliation(s)
- Srilert Chotpantarat
- Center of Excellence for Environmental and Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand; Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Program of Toxic Substance Management in the Mining Industry, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand; Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand.
| | - Niruch Kiatvarangkul
- Center of Excellence for Environmental and Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand; International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
Henríquez-Hernández LA, Luzardo OP, Boada LD, Carranza C, Pérez Arellano JL, González-Antuña A, Almeida-González M, Barry-Rodríguez C, Zumbado M, Camacho M. Study of the influencing factors of the blood levels of toxic elements in Africans from 16 countries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:817-828. [PMID: 28734263 DOI: 10.1016/j.envpol.2017.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Africa's economy is growing faster than any other continent and it has been estimated that the middle class in Africa now exceeds 350 million people. This has meant a parallel increase in the importation of consumer goods and in the implementation of communication and information technologies (ICT), but also in the generation of large quantities of e-waste. However, inadequate infrastructure development remains a major constraint to the continent's economic growth and these highly toxic residues are not always adequately managed. Few studies have been conducted to date assessing the possible association between socioeconomic development factors, including e-waste generation, and blood levels of inorganic elements in African population. To disclose the role of geographical, anthropogenic, and socioeconomic development determinants on the blood levels of Ag, Al, As, Be, Cd, Co, Cr, Hg, Ni, Pb, Sb, and V -all of them frequently found in e-waste-, an immigrant population-based study was made including a total of 245 subjects from 16 countries recently arrived to the Canary Islands (Spain). Women presented higher levels of blood elements than men, and Northern Africans (Moroccans) were the most contaminated. People from low-income countries exhibited significantly lower blood levels of inorganic elements than those from middle-income countries. We found a significant association between the use of motor vehicles and the implementation of information and communication technologies (ICT) and the level of contamination. Immigrants from the countries with a high volume of imports of second-hand electronic equipment, telephone and internet use had higher levels of inorganic elements. In general terms, the higher level of economic development the higher the blood levels of inorganic pollutants, suggesting that the economic development of Africa, in parallel to e-waste generation and the existence of informal recycling sites, have directly affected the level of contamination of the population of the continent.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain.
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Cristina Carranza
- Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Sciences and Surgery Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José Luis Pérez Arellano
- Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Sciences and Surgery Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana González-Antuña
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Maira Almeida-González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Carlos Barry-Rodríguez
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| |
Collapse
|