1
|
Arnold PA, Wang S, Notarnicola RF, Nicotra AB, Kruuk LEB. Testing the evolutionary potential of an alpine plant: phenotypic plasticity in response to growth temperature outweighs parental environmental effects and other genetic causes of variation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5971-5988. [PMID: 38946283 PMCID: PMC11427842 DOI: 10.1093/jxb/erae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Phenotypic plasticity and rapid evolution are fundamental processes by which organisms can maintain their function and fitness in the face of environmental changes. Here we quantified the plasticity and evolutionary potential of an alpine herb Wahlenbergia ceracea. Utilizing its mixed-mating system, we generated outcrossed and self-pollinated families that were grown in either cool or warm environments, and that had parents that had also been grown in either cool or warm environments. We then analysed the contribution of environmental and genetic factors to variation in a range of phenotypic traits including phenology, leaf mass per area, photosynthetic function, thermal tolerance, and reproductive fitness. The strongest effect was that of current growth temperature, indicating strong phenotypic plasticity. All traits except thermal tolerance were plastic, whereby warm-grown plants flowered earlier, grew larger, and produced more reproductive stems compared with cool-grown plants. Flowering onset and biomass were heritable and under selection, with early flowering and larger plants having higher relative fitness. There was little evidence for transgenerational plasticity, maternal effects, or genotype×environment interactions. Inbreeding delayed flowering and reduced reproductive fitness and biomass. Overall, we found that W. ceracea has the capacity to respond rapidly to climate warming via plasticity, and the potential for evolutionary change.
Collapse
Affiliation(s)
- Pieter A Arnold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Shuo Wang
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China
| | - Rocco F Notarnicola
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adrienne B Nicotra
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Loeske E B Kruuk
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
2
|
Beveridge FC, Williams A, Cave R, Kalaipandian S, Haque MM, Adkins SW. Environmental Effects during Early Life-History Stages and Seed Development on Seed Functional Traits of an Australian Native Legume Species. BIOLOGY 2024; 13:148. [PMID: 38534418 DOI: 10.3390/biology13030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Understanding how seed functional traits interact with environmental factors to determine seedling recruitment is critical to assess the impact of climate change on ecosystem restoration. This study focused on the effects of environmental factors on the mother plant during early plant life history stages and during seed development. Desmodium brachypodum A. Gray (large tick trefoil, Fabaceae) was used as a model species. Firstly, this study analyzed seed germination traits in response to temperature and moisture stress. Secondly, it investigated how seed burial depth interacts with temperature and soil moisture to influence seedling emergence traits. Finally, it determined if contrasting levels of post-anthesis soil moisture could result in changes in D. brachypodum reproductive biology and seed and seedling functional traits. The results showed that elevated temperature and moisture stress interacted to significantly reduce the seed germination and seedling emergence (each by >50%), while the seed burial improved the seedling emergence. Post-anthesis soil moisture stress negatively impacted the plant traits, reducing the duration of the reproductive phenology stage (by 9 days) and seed production (by almost 50%). Unexpectedly, soil moisture stress did not affect most seed or seedling traits. In conclusion, elevated temperatures combined with low soil moisture caused significant declines in seed germination and seedling emergence. On the other hand, the reproductive output of D. brachypodum had low seed variability under soil moisture stress, which might be useful when sourcing seeds from climates with high variability. Even so, a reduction in seed quantity under maternal moisture stress can impact the long-term survival of restored plant populations.
Collapse
Affiliation(s)
- Fernanda C Beveridge
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Alwyn Williams
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Robyn Cave
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Sundaravelpandian Kalaipandian
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
- Department of Bioengineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602105, India
| | - Mirza M Haque
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| | - Steve W Adkins
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
3
|
Rondinel-Mendoza KV, Lorite J, Marín-Rodulfo M, Cañadas EM. Tracking Phenological Changes over 183 Years in Endemic Species of a Mediterranean Mountain (Sierra Nevada, SE Spain) Using Herbarium Specimens. PLANTS (BASEL, SWITZERLAND) 2024; 13:522. [PMID: 38498521 PMCID: PMC10892450 DOI: 10.3390/plants13040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Phenological studies have a crucial role in the global change context. The Mediterranean basin constitutes a key study site since strong climate change impacts are expected, particularly in mountain areas such as Sierra Nevada, where we focus. Specifically, we delve into phenological changes in endemic vascular plants over time by analysing data at three scales: entire massif, altitudinal ranges, and particular species, seeking to contribute to stopping biodiversity loss. For this, we analysed 5262 samples of 2129 herbarium sheets from Sierra Nevada, dated from 1837 to 2019, including reproductive structure, complete collection date, and precise location. We found a generalized advancement in phenology at all scales, and particularly in flowering onset and flowering peak. Thus, plants flower on average 11 days earlier now than before the 1970s. Although similar trends have been confirmed for many territories and species, we address plants that have been studied little in the past regarding biotypes and distribution, and which are relevant for conservation. Thus, we analysed phenological changes in endemic plants, mostly threatened, from a crucial hotspot within the Mediterranean hotspot, which is particularly vulnerable to global warming. Our results highlight the urgency of phenological studies by species and of including ecological interactions and effects on their life cycles.
Collapse
Affiliation(s)
- Katy V. Rondinel-Mendoza
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| | - Juan Lorite
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
- Interuniversity Institute for Earth System Research, University of Granada, 18071 Granada, Spain
| | - Macarena Marín-Rodulfo
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| | - Eva M. Cañadas
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| |
Collapse
|
4
|
MacTavish R, Anderson JT. Water and nutrient availability exert selection on reproductive phenology. AMERICAN JOURNAL OF BOTANY 2022; 109:1702-1716. [PMID: 36031862 DOI: 10.1002/ajb2.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Global change has changed resource availability to plants, which could shift the adaptive landscape. We hypothesize that novel water and nutrient availability combinations alter patterns of natural selection on reproductive phenology in Boechera stricta (Brassicaceae) and influence the evolution of local adaptation. METHODS We conducted a multifactorial greenhouse study using 35 accessions of B. stricta sourced from a broad elevational gradient in the Rocky Mountains. We exposed full siblings to three soil water and two nutrient availability treatment levels, reflecting current and projected future conditions. In addition, we quantified fitness (seed count) and four phenological traits: the timing of first flowering, the duration of flowering, and height and leaf number at flowering. RESULTS Selection favored early flowering and longer duration of flowering, and the genetic correlation between these traits accorded with the direction of selection. In most treatments, we found selection for increased height, but selection on leaf number depended on water availability, with selection favoring more leaves in well-watered conditions and fewer leaves under severe drought. Low-elevation genotypes had the greatest fitness under drought stress, consistent with local adaptation. CONCLUSIONS We found evidence of strong selection on these heritable traits. Furthermore, the direction and strength of selection on size at flowering depended on the variable measured (height vs. leaf number). Finally, selection often favored both early flowering and a longer duration of flowering. Selection on these two components of phenology can be difficult to disentangle due to tight genetic correlations.
Collapse
Affiliation(s)
- Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
Morente‐López J, Kass JM, Lara‐Romero C, Serra‐Diaz JM, Soto‐Correa JC, Anderson RP, Iriondo JM. Linking ecological niche models and common garden experiments to predict phenotypic differentiation in stressful environments: Assessing the adaptive value of marginal populations in an alpine plant. GLOBAL CHANGE BIOLOGY 2022; 28:4143-4162. [PMID: 35359032 PMCID: PMC9325479 DOI: 10.1111/gcb.16181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 05/10/2023]
Abstract
Environmental variation within a species' range can create contrasting selective pressures, leading to divergent selection and novel adaptations. The conservation value of populations inhabiting environmentally marginal areas remains in debate and is closely related to the adaptive potential in changing environments. Strong selection caused by stressful conditions may generate novel adaptations, conferring these populations distinct evolutionary potential and high conservation value under climate change. On the other hand, environmentally marginal populations may be genetically depauperate, with little potential for new adaptations to emerge. Here, we explored the use of ecological niche models (ENMs) linked with common garden experiments to predict and test for genetically determined phenotypic differentiation related to contrasting environmental conditions. To do so, we built an ENM for the alpine plant Silene ciliata in central Spain and conducted common garden experiments, assessing flowering phenology changes and differences in leaf cell resistance to extreme temperatures. The suitability patterns and response curves of the ENM led to the predictions that: (1) the environmentally marginal populations experiencing less snowpack and higher minimum temperatures would have delayed flowering to avoid risks of late-spring frosts and (2) those with higher minimum temperatures and greater potential evapotranspiration would show enhanced cell resistance to high temperatures to deal with physiological stress related to desiccation and heat. The common garden experiments revealed the expected genetically based phenotypic differentiation in flowering phenology. In contrast, they did not show the expected differentiation for cell resistance, but these latter experiments had high variance and hence lower statistical power. The results highlight ENMs as useful tools to identify contrasting putative selective pressures across species ranges. Linking ENMs with common garden experiments provides a theoretically justified and practical way to study adaptive processes, including insights regarding the conservation value of populations inhabiting environmentally marginal areas under ongoing climate change.
Collapse
Affiliation(s)
- Javier Morente‐López
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
- Island Ecology and Evolution Research GroupInstitute of Natural Products and Agrobiology, Consejo Superior de Investigaciones Científicas (IPNA‐CSIC)San Cristóbal de La Laguna, TenerifeSpain
| | - Jamie M. Kass
- Department of BiologyCity College of New YorkCity University of New YorkNew YorkNew YorkUSA
- Ph.D. Program in BiologyGraduate CenterCity University of New YorkNew YorkNew YorkUSA
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami‐gunOkinawaJapan
| | - Carlos Lara‐Romero
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
| | | | - José Carmen Soto‐Correa
- Facultad de Ciencias NaturalesUniversidad Autónoma de Querétaro (FCN‐UAQ)Santa Rosa Jáuregui, QuerétaroMexico
| | - Robert P. Anderson
- Department of BiologyCity College of New YorkCity University of New YorkNew YorkNew YorkUSA
- Ph.D. Program in BiologyGraduate CenterCity University of New YorkNew YorkNew YorkUSA
- Division of Vertebrate Zoology (Mammalogy)American Museum of Natural HistoryNew YorkNew YorkUSA
| | - José M. Iriondo
- Área de Biodiversidad y ConservaciónDepto. de Biología, GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos (URJC)MadridMóstolesSpain
| |
Collapse
|
6
|
Sandor ME, Aslan CE, Pejchar L, Bronstein JL. A Mechanistic Framework for Understanding the Effects of Climate Change on the Link Between Flowering and Fruiting Phenology. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.752110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenological shifts are a widely studied consequence of climate change. Little is known, however, about certain critical phenological events, nor about mechanistic links between shifts in different life-history stages of the same organism. Among angiosperms, flowering times have been observed to advance with climate change, but, whether fruiting times shift as a direct consequence of shifting flowering times, or respond differently or not at all to climate change, is poorly understood. Yet, shifts in fruiting could alter species interactions, including by disrupting seed dispersal mutualisms. In the absence of long-term data on fruiting phenology, but given extensive data on flowering, we argue that an understanding of whether flowering and fruiting are tightly linked or respond independently to environmental change can significantly advance our understanding of how fruiting phenologies will respond to warming climates. Through a case study of biotically and abiotically dispersed plants, we present evidence for a potential functional link between the timing of flowering and fruiting. We then propose general mechanisms for how flowering and fruiting life history stages could be functionally linked or independently driven by external factors, and we use our case study species and phenological responses to distinguish among proposed mechanisms in a real-world framework. Finally, we identify research directions that could elucidate which of these mechanisms drive the timing between subsequent life stages. Understanding how fruiting phenology is altered by climate change is essential for all plant species but is particularly critical to sustaining the large numbers of plant species that rely on animal-mediated dispersal, as well as the animals that rely on fruit for sustenance.
Collapse
|
7
|
Garnier S, Giordanengo E, Saatkamp A, Santonja M, Reiter IM, Orts JP, Gauquelin T, Meineri E. Amplified drought induced by climate change reduces seedling emergence and increases seedling mortality for two Mediterranean perennial herbs. Ecol Evol 2021; 11:16143-16152. [PMID: 34824817 PMCID: PMC8601912 DOI: 10.1002/ece3.8295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
Seedling recruitment is a bottleneck for population dynamics and range shift. The vital rates linked to recruitment by seed are impacted by amplified drought induced by climate change. In the Mediterranean region, autumn and winter seedling emergence and mortality may have strong impact on the overall seedling recruitment. However, studies focusing on the temporal dynamic of recruitment during these seasons are rare. This study was performed in a deciduous Mediterranean oak forest located in southern France and quantifies the impact of amplified drought conditions on autumn and winter seedling emergence and seedling mortality rates of two herbaceous plant species with meso-Mediterranean and supra-Mediterranean distribution (respectively, Silene italica and Silene nutans). Seedlings were followed from October 2019 to May 2020 in both undisturbed and disturbed plots where the litter and the aboveground biomass have been removed to create open microsites. Amplified drought conditions reduced seedling emergence and increased seedling mortality for both Silene species but these negative effects were dependent on soil disturbance conditions. Emergence of S. italica decreased only in undisturbed plots (-7%) whereas emergence of S. nutans decreased only in disturbed plots (-10%) under amplified drought conditions. The seedling mortality rate of S. italica was 51% higher under amplified drought conditions in undisturbed plots while that of S. nutans was 38% higher in disturbed plots. Aridification due to lower precipitation in the Mediterranean region will negatively impact the seedling recruitment of these two Silene species. Climate change effects on early vital rates may likely have major negative impacts on the overall population dynamic.
Collapse
Affiliation(s)
- Suzon Garnier
- Aix Marseille Univ, Avignon Univ CNRS, IRD, IMBE Marseille France
| | - Emma Giordanengo
- Aix Marseille Univ, Avignon Univ CNRS, IRD, IMBE Marseille France
| | - Arne Saatkamp
- Aix Marseille Univ, Avignon Univ CNRS, IRD, IMBE Marseille France
| | - Mathieu Santonja
- Aix Marseille Univ, Avignon Univ CNRS, IRD, IMBE Marseille France
| | | | | | | | - Eric Meineri
- Aix Marseille Univ, Avignon Univ CNRS, IRD, IMBE Marseille France
| |
Collapse
|
8
|
Prieto-Benítez S, Morente-López J, Rubio Teso ML, Lara-Romero C, García-Fernández A, Torres E, Iriondo JM. Evaluating Assisted Gene Flow in Marginal Populations of a High Mountain Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.638837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many species cannot either migrate or adapt at the rate of temperature increases due to climate warming. Therefore, they need active conservation strategies to avoid extinction. Facilitated adaptation actions, such assisted gene flow, aim at the increase of the evolutionary resilience of species affected by global change. In elevational gradients, marginal populations at the lower elevation edges are experiencing earlier snowmelt and higher temperatures, which force them to adapt to the new conditions by modifying their phenology. In this context, advancing the onset of flowering and seed germination times are crucial to ensure reproductive success and increase seedling survival prior to summer drought. Assisted gene flow may bring adaptive alleles and increase genetic diversity that can help throughout ontogeny. The main aim of this work is to assess the effects that different gene flow treatments could have on the desired trait changes in marginal populations. Accordingly, we established a common garden experiment in which we assayed four different gene flow treatments between Silene ciliata Pourr. (Caryophyllaceae) populations located in similar and different elevation edges, belonging to the same and different mountains. As a control treatment, within-population crosses of low elevation edge populations were performed. The resulting seeds were sown and the germination and flowering onset dates of the resulting plants recorded, as well as the seedling survival. Gene flow between populations falling on the same mountain and same elevation and gene flow from high-elevation populations from a different mountain to low-elevation populations advanced seed germination time with respect to control crosses. No significant effects of gene flow on seedling survival were found. All the gene flow treatments delayed the onset of flowering with respect to control crosses and this effect was more pronounced in among-mountain gene flows. The results of this study highlight two important issues that should be thoroughly studied before attempting to apply assisted gene flow in practical conservation situations. Firstly, among-populations gene flow can trigger different responses in crucial traits throughout the ontogeny of plant species. Secondly, the population provenance of gene flow is determinant and plays a significant role on the effects of gene flow.
Collapse
|
9
|
Ensing DJ, Sora DMDH, Eckert CG. Chronic selection for early reproductive phenology in an annual plant across a steep, elevational gradient of growing season length. Evolution 2021; 75:1681-1698. [PMID: 34048598 DOI: 10.1111/evo.14274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 01/02/2023]
Abstract
Colonization along ubiquitous gradients of growing season length should require adaptation of phenological traits, driven by natural selection. Although phenology often varies with season length and genetic differentiation in phenological traits sometimes seems adaptive, few studies test whether natural selection is responsible for these patterns. The annual plant Rhinanthus minor is genetically differentiated for phenology across a 1000-m elevational gradient of growing season length in the Canadian Rocky Mountains. We estimated phenotypic selection on five phenological traits for three generations of naturally occurring individuals at 12 sites (n = 10,112), and two generations of genetically and phenotypically more variable transplanted populations at nine of these sites (n = 24,611). Selection was weak for most traits, but consistently favored early flowering across the gradient rather than only under short seasons. There was no evidence that apparent selection favoring early reproduction arose from failure to consider all components of fitness, or variation in other correlated phenological traits. Instead, selection for earlier flowering may be balanced by selection for strong cogradient phenological plasticity that indirectly favors later flowering. However, this probably does not explain the consistency of selection on flowering time across this steep, elevational gradient of growing season length.
Collapse
Affiliation(s)
- David J Ensing
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Dylan M D H Sora
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | |
Collapse
|
10
|
Magaña Ugarte R, Escudero A, Gavilán RG. Assessing the Role of Selected Osmolytes in Mediterranean High-Mountain Specialists. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.576122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the constraining weight of summer drought over plant life which distinguishes Mediterranean high-mountains, and its anticipated exacerbation under the current climate crisis, there is still little knowledge of the underlying drought-endurance mechanisms in Mediterranean high-mountain species, such as osmolyte accumulation. To fill this gap, we studied the role of two of the most frequent osmoregulators in plants, proline and osmotically active carbohydrates (OAC), as pointers of the drought-stress response in seven high-mountain plant species representative of the high-mountain plant communities in Central Spain, along an elevation gradient. Overall, our results are consistent with the escalation of summer drought and suggest the involvement of osmolytes to sustain plant activity in these specialists during the growing season. Proline content showed a steadily increasing pattern in line with the seasonal aggravation of summer drought. The significant rise in mean proline in most species, coinciding with the periods with the greatest decline in soil water content, suggests the recurrent role of proline in the drought-stress response in the studied specialists. The lack of significant differences between elevations and the minimal seasonal variations in the OAC content suggest a fixed OAC content independent of functional type to sustain metabolic functions under summer drought. Moreover, these findings allow inferring the action of both OAC and proline as osmoregulators, allowing to support plant functions in these specialists under atypically dry conditions. Overall, our findings are consistent with proline as a major osmoprotectant strategy over OAC buildup in these specialists, which may be related to an adaptation strategy associated with the briefness of the growing season and the incidence of less favorable conditions in Mediterranean high-mountains.
Collapse
|
11
|
Zacchello G, Vinyeta M, Ågren J. Strong stabilizing selection on timing of germination in a Mediterranean population of Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2020; 107:1518-1526. [PMID: 33058187 PMCID: PMC7756891 DOI: 10.1002/ajb2.1549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/30/2020] [Indexed: 06/01/2023]
Abstract
PREMISE Timing of germination can strongly influence plant fitness by affecting seedling survival and by having cascading effects on later life-history traits. In seasonal environments, the period favorable for seedling establishment and growth is limited, and timing of germination is likely to be under stabilizing selection because of conflicting selection through survival and fecundity. Moreover, optimal germination time may vary among genotypes because of inherent differences in later life-history traits. METHODS To examine how germination time affects survival, fecundity, and the relative fitness of two genotypes differing in time to first flower, we conducted a field experiment in an Italian population of the winter annual Arabidopsis thaliana, in which seedling establishment occurs mainly in November. We transplanted seedlings of the local genotype and of a Swedish genotype monthly from August to December and monitored survival and fecundity. RESULTS Only seedlings transplanted in November and December survived until reproduction, and fitness of the November cohort was 35 times higher than that of the December cohort, indicating strong stabilizing selection on timing of germination. There was no evidence of conflicting selection: seedling survival, adult survival, and fecundity were all highest in the November cohort. Moreover, the relative fitness of the two genotypes did not differ significantly between cohorts. CONCLUSIONS The very narrow window of opportunity for seedling establishment was related to rapid seasonal changes in soil moisture and temperature, suggesting that rate of seasonal change is an important aspect to consider for understanding spatiotemporal variation in selection on phenological traits.
Collapse
Affiliation(s)
- Giulia Zacchello
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEBCUppsala UniversityNorbyvägen 18 DSE‐752 36UppsalaSweden
| | - Mariona Vinyeta
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEBCUppsala UniversityNorbyvägen 18 DSE‐752 36UppsalaSweden
| | - Jon Ågren
- Plant Ecology and EvolutionDepartment of Ecology and GeneticsEBCUppsala UniversityNorbyvägen 18 DSE‐752 36UppsalaSweden
| |
Collapse
|
12
|
Eisen KE, Wruck AC, Geber MA. Floral density and co‐occurring congeners alter patterns of selection in annual plant communities*. Evolution 2020; 74:1682-1698. [DOI: 10.1111/evo.13960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 02/13/2020] [Accepted: 03/01/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine E. Eisen
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Amy C. Wruck
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| | - Monica A. Geber
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853
| |
Collapse
|
13
|
Friedman J, Middleton TE, Rubin MJ. Environmental heterogeneity generates intrapopulation variation in life-history traits in an annual plant. THE NEW PHYTOLOGIST 2019; 224:1171-1183. [PMID: 31400159 DOI: 10.1111/nph.16099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Environmental variation affects a plant's life cycle by influencing the timing of germination and flowering, and the duration of the growing season. Yet we know little information about how environmental heterogeneity generates variation in germination schedules and the consequences for growth and fecundity through genetic and plastic responses. We use an annual population of Mimulus guttatus in which, in nature, seeds germinate in both fall and spring. We investigate whether there is a genetic basis to the timing of germination, the effect of germination timing on fecundity, and if growth and flowering respond plastically to compensate for different season lengths. Using sibling families grown in simulated seasonal conditions, we find that families do not differ in their propensity to germinate between seasons. However, the germination season affects subsequent growth and flowering time, with significant genotype-by-environment interactions (G × E). Most G × E is due to unequal variance between seasons, because the spring cohort harbours little genetic variance. Despite their different season lengths, the cohorts do not differ in flower number (fecundity). Heterogeneous environments with unpredictable risks may maintain promiscuous germination, which then affects flowering time. Therefore, if selection at particular life stages changes with climate change, there may be consequences for the entire life cycle.
Collapse
Affiliation(s)
- Jannice Friedman
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Matthew J Rubin
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
14
|
Rocha OJ, Gómez C, Hamrick JL, Trapnell DW, Smouse PE, Macaya G. Reproductive consequences of variation in flowering phenology in the dry forest tree Enterolobium cyclocarpum in Guanacaste, Costa Rica. AMERICAN JOURNAL OF BOTANY 2018; 105:2037-2050. [PMID: 30548976 DOI: 10.1002/ajb2.1205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/06/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Flowering initiation, duration and magnitude, and degree of flowering synchrony within a population can affect the reproductive fitness of individuals. We examined the flowering phenology within a population of the tropical dry forest Guanacaste tree (Enterolobium cyclocarpum) to gauge the impact of phenological variation among trees on fruit production and progeny vigor. METHODS We monitored the flowering phenology of 93 trees weekly during 2005, 2006, and 2007, using a scale based on the percentage of the crown with open flowers. We also monitored fruit production for each tree in 2005, 2006, 2007, and 2008. Finally, we evaluated the relationship between phenological variation and progeny performance. KEY RESULTS Ten measures of flowering phenology and synchrony among flowering trees, based on the number of weeks when anthesis of the crown exceeded 50%, were used to develop four phenological profiles. These profiles were correlated with significant differences in fruit production and progeny vigor. Trees with flowers in >50% of their crown for at least 2 weeks produced more fruits and more vigorous progeny than trees with other profiles. Trees also tended to produce the same phenological profile among years than predicted by chance. CONCLUSIONS Guanacaste trees vary significantly in the initiation of anthesis, duration and magnitude of flowering, and degree of synchrony among trees. Trees also tend to maintain the same flowering profile among years. Finally, the flowering behavior of E. cyclocarpum leads to significant differences in fruit and seed production, germination, and early progeny growth.
Collapse
Affiliation(s)
- Oscar J Rocha
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
- Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria "Rodrigo Facio", San Pedro de Montes de Oca, San José, Costa Rica
| | - Carlos Gómez
- Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria "Rodrigo Facio", San Pedro de Montes de Oca, San José, Costa Rica
| | - James L Hamrick
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dorset W Trapnell
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Peter E Smouse
- DEENR, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901-8551, USA
| | - Gabriel Macaya
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, Ciudad Universitaria "Rodrigo Facio", San Pedro de Montes de Oca, San José, Costa Rica
| |
Collapse
|
15
|
Valdés A, Ehrlén J. Caterpillar seed predators mediate shifts in selection on flowering phenology in their host plant. Ecology 2018; 98:228-238. [PMID: 28052392 DOI: 10.1002/ecy.1633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
Variation in selection among populations and years has important implications for evolutionary trajectories of populations. Yet, the agents of selection causing this variation have rarely been identified. Selection on the time of reproduction within a season in plants might differ both among populations and among years, and selection can be mediated by both mutualists and antagonists. We investigated if differences in the direction of phenotypic selection on flowering phenology among 20 populations of Gentiana pneumonanthe during 2 yr were related to the presence of the butterfly seed predator Phengaris alcon, and if butterfly incidence was associated with the abundance of the butterfly's second host, Myrmica ants. In plant populations without the butterfly, phenotypic selection favored earlier flowering. In populations where the butterfly was present, caterpillars preferentially attacked early-flowering individuals, shifting the direction of selection to favoring later flowering. Butterfly incidence in plant populations increased with ant abundance. Our results demonstrate that antagonistic interactions can shift the direction of selection on flowering phenology, and suggest that such shifts might be associated with differences in the community context.
Collapse
Affiliation(s)
- Alicia Valdés
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
16
|
Phenology drives species interactions and modularity in a plant - flower visitor network. Sci Rep 2018; 8:9386. [PMID: 29925965 PMCID: PMC6010405 DOI: 10.1038/s41598-018-27725-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/08/2018] [Indexed: 11/17/2022] Open
Abstract
Phenology is often identified as one of the main structural driving forces of plant – flower visitor networks. Nevertheless, we do not yet have a full understanding of the effects of phenology in basic network build up mechanisms such as ecological modularity. In this study, we aimed to identify the effect of within-season temporal variation of plant and flower visitor activity on the network structural conformation. Thus, we analysed the temporal dynamics of a plant – flower visitor network in two Mediterranean alpine communities during one complete flowering season. In our approach, we built quantitative interaction networks and studied the dynamics through temporal beta diversity of species, interaction changes and modularity analysis. Within-season dissimilarity in the identity of interactions was mainly caused by species replacement through time (species turnover). Temporal replacement of species and interactions clearly impacted modularity, to the extent that species phenology emerged as a strong determinant of modularity in our networks. From an applied perspective, our results highlight the importance of considering the temporal variation of species interactions throughout the flowering season and the requirement of making comprehensive temporal sampling when aiming to build functionally consistent interaction networks.
Collapse
|
17
|
Flores-Rentería L, Whipple AV, Benally GJ, Patterson A, Canyon B, Gehring CA. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:536. [PMID: 29760715 PMCID: PMC5936790 DOI: 10.3389/fpls.2018.00536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/06/2018] [Indexed: 05/27/2023]
Abstract
High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1) higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2) high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3) pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis, a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that even high pollen production may not result in successful fertilization due to low germination. Acquired thermotolerance might not limit these impacts, but pinyon could avoid heat stress by phenological adjustment of pollen development. Higher pollen viability at the core of the distribution could be explained by an optimal combination of biotic and abiotic environmental factors. The disconnect between measures of growth and pollen production suggests that vigor metrics may not accurately estimate reproduction.
Collapse
Affiliation(s)
| | - Amy V. Whipple
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Gilbert J. Benally
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Adair Patterson
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Brandon Canyon
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Catherine A. Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
18
|
Morente-López J, García C, Lara-Romero C, García-Fernández A, Draper D, Iriondo JM. Geography and Environment Shape Landscape Genetics of Mediterranean Alpine Species Silene ciliata Poiret. (Caryophyllaceae). FRONTIERS IN PLANT SCIENCE 2018; 9:1698. [PMID: 30538712 PMCID: PMC6277476 DOI: 10.3389/fpls.2018.01698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/31/2018] [Indexed: 05/22/2023]
Abstract
The study of the drivers that shape spatial genetic structure across heterogeneous landscapes is one of the main approaches used to understand population dynamics and responses in changing environments. While the Isolation-by-Distance model (IBD) assumes that genetic differentiation increases among populations with geographical distance, the Isolation-by-Resistance model (IBR) also considers geographical barriers and other landscape features that impede gene flow. On the other hand, the Isolation-by-Environment model (IBE) explains genetic differentiation through environmental differences between populations. Although spatial genetic studies have increased significantly in recent years, plants from alpine ecosystems are highly underrepresented, even though they are great suitable systems to disentangle the role of the different factors that structure genetic variation across environmental gradients. Here, we studied the spatial genetic structure of the Mediterranean alpine specialist Silene ciliata across its southernmost distribution limit. We sampled three populations across an altitudinal gradient from 1850 to 2400 m, and we replicated this sample over three mountain ranges aligned across an E-W axis in the central part of the Iberian Peninsula. We genotyped 20 individuals per population based on eight microsatellite markers and used different landscape genetic tools to infer the role of topographic and environmental factors in shaping observed patterns along the altitudinal gradient. We found a significant genetic structure among the studied Silene ciliata populations which was related to the orography and E-W configuration of the mountain ranges. IBD pattern arose as the main factor shaping population genetic differentiation. Geographical barriers between mountain ranges also affected the spatial genetic structure (IBR pattern). Although environmental variables had a significant effect on population genetic diversity parameters, no IBE pattern was found on genetic structure. Our study reveals that IBD was the driver that best explained the genetic structure, whereas environmental factors also played a role in determining genetic diversity values of this dominant plant of Mediterranean alpine environments.
Collapse
Affiliation(s)
- Javier Morente-López
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
- *Correspondence: Javier Morente-López, José María Iriondo,
| | - Cristina García
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Plant Biology Group, CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Porto, Portugal
| | - Carlos Lara-Romero
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA), Consejo Superior de Investigaciones Científicas (CSIC), Esporles, Spain
| | - Alfredo García-Fernández
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
| | - David Draper
- Natural History and Systematics Research Group, cE3c, Centro de Ecologia, Evolução e Alterações Ambientais, Universidade de Lisboa, Lisbon, Portugal
- UBC Botanical Garden and Centre for Plant Research, Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - José María Iriondo
- Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
- *Correspondence: Javier Morente-López, José María Iriondo,
| |
Collapse
|
19
|
Giménez-Benavides L, Escudero A, García-Camacho R, García-Fernández A, Iriondo JM, Lara-Romero C, Morente-López J. How does climate change affect regeneration of Mediterranean high-mountain plants? An integration and synthesis of current knowledge. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:50-62. [PMID: 28985449 DOI: 10.1111/plb.12643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/30/2017] [Indexed: 05/25/2023]
Abstract
Mediterranean mountains are extraordinarily diverse and hold a high proportion of endemic plants, but they are particularly vulnerable to climate change, and most species distribution models project drastic changes in community composition. Retrospective studies and long-term monitoring also highlight that Mediterranean high-mountain plants are suffering severe range contractions. The aim of this work is to review the current knowledge of climate change impacts on the process of plant regeneration by seed in Mediterranean high-mountain plants, by combining available information from observational and experimental studies. We also discuss some processes that may provide resilience against changing environmental conditions and suggest some research priorities for the future. With some exceptions, there is still little evidence of the direct effects of climate change on pollination and reproductive success of Mediterranean high-mountain plants, and most works are observational and/or centred only in the post-dispersal stages (germination and establishment). The great majority of studies agree that the characteristic summer drought and the extreme heatwaves, which are projected to be more intense in the future, are the most limiting factors for the regeneration process. However, there is an urgent need for studies combining elevational gradient approaches with experimental manipulations of temperature and drought to confirm the magnitude and variability of species' responses. There is also limited knowledge about the ability of Mediterranean high-mountain plants to cope with climate change through phenotypic plasticity and local adaptation processes. This could be achieved by performing common garden and reciprocal translocation experiments with species differing in life history traits.
Collapse
Affiliation(s)
- L Giménez-Benavides
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - A Escudero
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - R García-Camacho
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - A García-Fernández
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - J M Iriondo
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| | - C Lara-Romero
- Global Change Research Department, Mediterranean Institute of Advanced Studies (CSIC-UIB), Esporles, Mallorca, Balearic Islands, Spain
| | - J Morente-López
- Department Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, Móstoles, Madrid, Spain
| |
Collapse
|
20
|
Flores-Rentería L, Whipple AV, Benally GJ, Patterson A, Canyon B, Gehring CA. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 29760715 DOI: 10.3389/fpls.2018.00536/full] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1) higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2) high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3) pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis, a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that even high pollen production may not result in successful fertilization due to low germination. Acquired thermotolerance might not limit these impacts, but pinyon could avoid heat stress by phenological adjustment of pollen development. Higher pollen viability at the core of the distribution could be explained by an optimal combination of biotic and abiotic environmental factors. The disconnect between measures of growth and pollen production suggests that vigor metrics may not accurately estimate reproduction.
Collapse
Affiliation(s)
| | - Amy V Whipple
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Gilbert J Benally
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Adair Patterson
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Brandon Canyon
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Catherine A Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
21
|
Cvetkovic J, Müller K, Baier M. The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions. Sci Rep 2017; 7:44055. [PMID: 28276450 PMCID: PMC5343467 DOI: 10.1038/srep44055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/02/2017] [Indexed: 12/14/2022] Open
Abstract
Priming improves an organism's performance upon a future stress. To test whether cold priming supports protection in spring and how it is affected by cold acclimation, we compared seven Arabidopsis accessions with different cold acclimation potentials in the field and in the greenhouse for growth, photosynthetic performance and reproductive fitness in March and May after a 14 day long cold-pretreatment at 4 °C. In the plants transferred to the field in May, the effect of the cold pretreatment on the seed yield correlated with the cold acclimation potential of the accessions. In the March transferred plants, the reproductive fitness was most supported by the cold pretreatment in the accessions with the weakest cold acclimation potential. The fitness effect was linked to long-term effects of the cold pretreatment on photosystem II activity stabilization and leaf blade expansion. The study demonstrated that cold priming stronger impacts on plant fitness than cold acclimation in spring in accessions with intermediate and low cold acclimation potential.
Collapse
Affiliation(s)
- Jelena Cvetkovic
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Klaus Müller
- Meterology, Freie Universität Berlin, 12165 Berlin, Germany
| | - Margarete Baier
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
22
|
Cao Y, Xiao Y, Huang H, Xu J, Hu W, Wang N. Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities. Sci Rep 2016; 6:27835. [PMID: 27296893 PMCID: PMC4906517 DOI: 10.1038/srep27835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 11/17/2022] Open
Abstract
Climate warming can shift the reproductive phenology of plant, and hence dramatically reduced the reproductive capacity both of density-dependent and -independent plant species. But it is still unclear how climate warming affects flowering phenology and reproductive allocation of plant under different planting densities. Here, we assessed the impact of simulated warming on flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta under four densities. We found that simulated warming delayed the onset of flowering averagely for 3.6 days but preceded the end of flowering for about 1 day, which indicated climate warming shortened the duration of the flowering. And the flowering amplitude in the peak flowering day also dramatically increased in the simulated warming treatment, which caused a mass-flowering pattern. Climate warming significantly increased the weights of the fruits, seeds and seed, but reduced fruit length and sexual reproductive allocation under all the four densities. The duration of flowering was shortened and the weights of the fruits, seeds and seed, and sexual reproductive allocation were reduced under The highest density.
Collapse
Affiliation(s)
- YuSong Cao
- School of Life sciences, Jinggangshan University, Ji'an, Jiangxi Province, 343009, People's Republic of China.,Key Laboratory for Biodiversity Science and Ecological Engineering, Ji'an, Jiangxi Province, 343009, People's Republic of China
| | - Yian Xiao
- School of Life sciences, Jinggangshan University, Ji'an, Jiangxi Province, 343009, People's Republic of China.,Key Laboratory for Biodiversity Science and Ecological Engineering, Ji'an, Jiangxi Province, 343009, People's Republic of China
| | - Haiqun Huang
- School of Life sciences, Jinggangshan University, Ji'an, Jiangxi Province, 343009, People's Republic of China
| | - Jiancheng Xu
- School of Life sciences, Jinggangshan University, Ji'an, Jiangxi Province, 343009, People's Republic of China
| | - Wenhai Hu
- School of Life sciences, Jinggangshan University, Ji'an, Jiangxi Province, 343009, People's Republic of China.,Key Laboratory for Biodiversity Science and Ecological Engineering, Ji'an, Jiangxi Province, 343009, People's Republic of China
| | - Ning Wang
- School of Life sciences, Jinggangshan University, Ji'an, Jiangxi Province, 343009, People's Republic of China.,Key Laboratory for Biodiversity Science and Ecological Engineering, Ji'an, Jiangxi Province, 343009, People's Republic of China
| |
Collapse
|
23
|
Pérez-Collazos E, Segarra-Moragues JG, Villar L, Catalán P. Ant pollination promotes spatial genetic structure in the long-lived plantBorderea pyrenaica(Dioscoreaceae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ernesto Pérez-Collazos
- Departamento de Ciencias Agrarias y del Medio Natural; Escuela Politécnica Superior de Huesca; Universidad de Zaragoza; Carretera de Cuarte Km 1 E-22071 Huesca Spain
| | - José Gabriel Segarra-Moragues
- Centro de Investigaciones sobre Desertificación (CIDE-CSIC-UV-GV); Carretera de Moncada-Náquera Km 4.5; Apartado Oficial E-46113 Moncada (Valencia) Spain
| | - Luis Villar
- Instituto Pirenaico de Ecología (IPE-CSIC); Avda, Nuestra Señora de la Victoria s.n.; E-22700 Jaca (Huesca) Spain
| | - Pilar Catalán
- Departamento de Ciencias Agrarias y del Medio Natural; Escuela Politécnica Superior de Huesca; Universidad de Zaragoza; Carretera de Cuarte Km 1 E-22071 Huesca Spain
- Department of Botany; Institute of Biology; Tomsk State University; Lenin Av. 36 Tomsk 634050 Russia
| |
Collapse
|
24
|
Aronne G, Buonanno M, De Micco V. Reproducing under a warming climate: long winter flowering and extended flower longevity in the only Mediterranean and maritime Primula. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:535-544. [PMID: 25294217 DOI: 10.1111/plb.12239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
Under the pressure of global warming, general expectations of species migration and evolution of adaptive traits should always be confirmed with species-specific studies. Within this framework, some species can be used as study systems to predict possible consequences of global warming also on other relatives. Unlike its mountain congeneric, Primula palinuri Petagn. has endured all the climatic fluctuations since the Pleistocene, while surviving on Mediterranean coastal cliffs. The aim of this work was to investigate the possible evolution of reproductive biological and ecological traits in P. palinuri adaptation to a warmer environment. Data showed that flowering starts in mid-winter; single flowers remain open for over a month, changing from pendulous to erect. The number of insects visiting flowers of P. palinuri increases during the flowering season, and pollination reduces flower longevity. Overall, the best pollen performances, in terms of viability and germinability, occur at winter temperatures, while pollinator activity prolongs flowering until spring. Moreover, extended longevity of single flowers optimises reproductive success. Both phenotypic plasticity and selective processes might have occurred in P. palinuri. However, we found that reproductive traits of the only Mediterranean Primula remain more associated with cold mountain habitats than warm coastal cliffs. Given the rapid trend of climate warming, migration and new adaptive processes in P. palinuri are unlikely. Response to past climate warming of P. palinuri provides useful indications for future scenarios in other Primula species.
Collapse
Affiliation(s)
- G Aronne
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | | |
Collapse
|
25
|
Lara-Romero C, Robledo-Arnuncio JJ, García-Fernández A, Iriondo JM. Assessing intraspecific variation in effective dispersal along an altitudinal gradient: a test in two Mediterranean high-mountain plants. PLoS One 2014; 9:e87189. [PMID: 24489867 PMCID: PMC3906119 DOI: 10.1371/journal.pone.0087189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 12/21/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Plant recruitment depends among other factors on environmental conditions and their variation at different spatial scales. Characterizing dispersal in contrasting environments may thus be necessary to understand natural intraspecific variation in the processes underlying recruitment. Silene ciliata and Armeria caespitosa are two representative species of cryophilic pastures above the tree line in Mediterranean high mountains. No explicit estimations of dispersal kernels have been made so far for these or other high-mountain plants. Such data could help to predict their dispersal and recruitment patterns in a context of changing environments under ongoing global warming. METHODS We used an inverse modelling approach to analyse effective seed dispersal patterns in five populations of both Silene ciliata and Armeria caespitosa along an altitudinal gradient in Sierra de Guadarrama (Madrid, Spain). We considered four commonly employed two-dimensional seedling dispersal kernels exponential-power, 2Dt, WALD and log-normal. KEY RESULTS No single kernel function provided the best fit across all populations, although estimated mean dispersal distances were short (<1 m) in all cases. S. ciliata did not exhibit significant among-population variation in mean dispersal distance, whereas significant differences in mean dispersal distance were found in A. caespitosa. Both S. ciliata and A. caespitosa exhibited among-population variation in the fecundity parameter and lacked significant variation in kernel shape. CONCLUSIONS This study illustrates the complexity of intraspecific variation in the processes underlying recruitment, showing that effective dispersal kernels can remain relatively invariant across populations within particular species, even if there are strong variations in demographic structure and/or physical environment among populations, while the invariant dispersal assumption may not hold for other species in the same environment. Our results call for a case-by-case analysis in a wider range of plant taxa and environments to assess the prevalence and magnitude of intraspecific dispersal variation.
Collapse
Affiliation(s)
- Carlos Lara-Romero
- Departamento de Biología y Geología, Universidad Rey Juan Carlos, Madrid, Spain
| | | | - Alfredo García-Fernández
- Departamento de Biología y Geología, Universidad Rey Juan Carlos, Madrid, Spain
- Institut Botanic de Barcelona, IBB-CSIC-IQUB, Barcelona, Spain
| | - Jose M. Iriondo
- Departamento de Biología y Geología, Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
26
|
Minuto L, Guerrina M, Roccotiello E, Roccatagliata N, Mariotti MG, Casazza G. Pollination ecology in the narrow endemic winter-flowering Primula allionii (Primulaceae). JOURNAL OF PLANT RESEARCH 2013; 127:141-150. [PMID: 23963860 DOI: 10.1007/s10265-013-0588-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/23/2013] [Indexed: 06/02/2023]
Abstract
Reduction of pollen flow can affect plant abundance and population viability and cause selection on plant mating system and floral traits. Little is known on the effect of this phenomenon in species naturally restricted to small and isolated habitats, that may have developed strategies to cope with long-term isolation and small population size. We investigated the pollination ecology of the endemic distylous winter-flowering P. allionii to verify the possible limitation of female fitness due to reduced pollinator visits. We recorded a higher production of pollen grains in long-styled morph, and a higher seed set in short-styled morph. The high intra-morph variability of sexual organ position may explain the hybridization phenomena allowing and easier intra-morph pollination. The fruit set is constant, although its winter-flowering period might decrease pollen transfer. Nevertheless, the lower competition for pollinators with neighbouring plants and the long-lasting anthesis may offset its reproductive success. Even if our results show no evidence of imminent threats, changes in plant-pollinator interactions might increase inbreeding, resulting in an increased extinction risk.
Collapse
Affiliation(s)
- Luigi Minuto
- DISTAV, Polo Botanico Hanbury, Università degli Studi di Genova, C.so Dogali 1M, 16136, Genoa, Italy,
| | | | | | | | | | | |
Collapse
|
27
|
Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusià J, Garbulsky M, Filella I, Jump AS. Evidence of current impact of climate change on life: a walk from genes to the biosphere. GLOBAL CHANGE BIOLOGY 2013; 19:2303-38. [PMID: 23505157 DOI: 10.1111/gcb.12143] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/31/2012] [Accepted: 01/14/2013] [Indexed: 05/19/2023]
Abstract
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.
Collapse
Affiliation(s)
- Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Olano JM, Almería I, Eugenio M, von Arx G. Under pressure: how a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12144] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jose Miguel Olano
- Departamento de Ciencias Agroforestales; EU de Ingenierías Agrarias; Universidad de Valladolid; Los Pajaritos s/n Soria E-42004 Spain
| | - Iván Almería
- Departamento de Ciencias Agroforestales; EU de Ingenierías Agrarias; Universidad de Valladolid; Los Pajaritos s/n Soria E-42004 Spain
| | - Màrcia Eugenio
- Departamento de Ciencias Agroforestales; EU de Ingenierías Agrarias; Universidad de Valladolid; Los Pajaritos s/n Soria E-42004 Spain
| | - Georg von Arx
- Swiss Federal Institute for Forest; Snow and Landscape Research WSL; Zuercherstrasse 111 CH-8903 Birmensdorf Switzerland
| |
Collapse
|
29
|
García-Fernández A, Iriondo JM, Bartels D, Escudero A. Response to artificial drying until drought-induced death in different elevation populations of a high-mountain plant. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:93-100. [PMID: 22776400 DOI: 10.1111/j.1438-8677.2012.00638.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Climate change is imposing warmer and more arid conditions on high-mountain Mediterranean pastures. The severity of these conditions is more intense in lower elevation populations and may be critical for their survival. In this context, we asked whether local adaptation plays an important role in the response of these populations to climate change, and if so, what mechanisms are involved. Previous works, involving reciprocal sowings suggested the existence of local adaptation in lower elevation populations of Silene ciliata, a perennial representative of high-mountain Mediterranean pastures. To determine if this local advantage is due to better adaptation to more intense water stress conditions, an experiment was conducted in which S. ciliata plants from three populations located at different elevations (Low, Intermediate and High) were subjected to severe artificial water stress. Results showed that plants from the Low population had greater tolerance to water stress than plants from the High population in the earliest stages of water shortage. Furthermore, responses of proteins to specific antibodies related to drought were evaluated. Two representative late-embryogenesis abundant (LEA) proteins known to play a role in water stress tolerance were expressed throughout the drought treatment in plants from the three populations, with some pattern differences among individuals within populations. This study detected slight evidence of local adaptation to water stress in populations from different elevations.
Collapse
|
30
|
García-Fernández A, Segarra-Moragues JG, Widmer A, Escudero A, Iriondo JM. Unravelling genetics at the top: mountain islands or isolated belts? ANNALS OF BOTANY 2012; 110:1221-32. [PMID: 23002271 PMCID: PMC3478054 DOI: 10.1093/aob/mcs195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/13/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS In mountain plant populations, local adaptation has been described as one of the main responses to climate warming, allowing plants to persist under stressful conditions. This is especially the case for marginal populations at their lowest elevation, as they are highly vulnerable. Adequate levels of genetic diversity are required for selection to take place, while high levels of altitudinal gene flow are seen as a major limiting factor potentially precluding local adaptation processes. Thus, a compromise between genetic diversity and gene flow seems necessary to guarantee persistence under oncoming conditions. It is therefore critical to determine if gene flow occurs preferentially between mountains at similar altitudinal belts, promoting local adaptation at the lowest populations, or conversely along altitude within each mountain. METHODS Microsatellite markers were used to unravel genetic diversity and population structure, inbreeding and gene flow of populations at two nearby altitudinal gradients of Silene ciliata, a Mediterranean high-mountain cushion plant. KEY RESULTS Genetic diversity and inbreeding coefficients were similar in all populations. Substantial gene flow was found both along altitudinal gradients and horizontally within each elevation belt, although greater values were obtained along altitudinal gradients. Gene flow may be responsible for the homogeneous levels of genetic diversity found among populations. Bayesian cluster analyses also suggested that shifts along altitudinal gradients are the most plausible scenario. CONCLUSIONS Past population shifts associated with glaciations and interglacial periods in temperate mountains may partially explain current distributions of genetic diversity and population structure. In spite of the predominance of gene flow along the altitudinal gradients, local genetic differentiation of one of the lower populations together with the detection of one outlier locus might support the existence of different selection forces at low altitudes.
Collapse
Affiliation(s)
- Alfredo García-Fernández
- Universidad Rey Juan Carlos, Departamento de Biología y Geología, Calle Tulipan s.n., 28933, Móstoles, Spain.
| | | | | | | | | |
Collapse
|