1
|
Tajadod S, Roumi Z, Abbas Torki S, Mousavi Shalmani SH, Moradi M, Saeedirad Z, Abbasi Mobarakeh K, Mohammadi S, Shekari S, Mirzaee P, Bahmani P, Houshyar‐Rad A, Doaei S. The Association Between Autism Spectrum Disorders and Dietary Intake of Carbohydrates in School-Aged Children in Iran: A Case-Control Study. Neuropsychopharmacol Rep 2025; 45:e12521. [PMID: 39838540 PMCID: PMC11750687 DOI: 10.1002/npr2.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with both genetic and environmental risk factors. Imbalanced dietary Intake has recently been proposed as a possible environmental risk factor for ASD. The purpose of this study was to investigate the possible connection between ASD and intake of various carbohydrate types. METHODS 110 patients with autism from 5 to 15 years of age have been included as the case group and 110 neurotypical children who are part of a similar age category have been chosen as controls for this case-control study. To estimate the dietary intake of carbohydrates, a validated food frequency questionnaire (FFQ) was used. RESULTS Positive connections were found between ASD and the intake of sugar (OR = 1.03, CI 95%: 1.02-1.06, p = 0.001), and maltose (OR = 2.09, CI 95%: 1.37-3.20, p = 0.001). A reverse correlation was found between ASD and dietary intake of carbohydrates (OR = 0.97, CI 95%: 0.96-0.98, p = 0.001), fructose (OR = 0.85, CI 95%: 0.77-0.94, p = 0.002), and lactose (OR = 0.89, CI 95%: 0.83-0.96, p = 0.002). CONCLUSION This study showed a direct link between autism and the intake of sugar and maltose and an inverse connection between autism and the dietary intake of total carbohydrate, fructose, and lactose. There is a need to carry out additional long-term studies.
Collapse
Affiliation(s)
- Shirin Tajadod
- Department of Nutrition, School of Public Health, International CampusIran University of Medical SciencesTehranIran
| | - Zahra Roumi
- Department of NutritionScience and Research Branch, Islamic Azad UniversityTehranIran
| | - Saheb Abbas Torki
- Department of Nutrition, Faculty of Nutrition SciencesShiraz University of Medical SciencesShirazIran
| | | | - Mahdi Moradi
- Department of Clinical PsychologyPayame Noor University (PNU)TehranIran
| | - Zahra Saeedirad
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Khadijeh Abbasi Mobarakeh
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | | | - Soheila Shekari
- Department of NutritionScience and Research Branch, Islamic Azad UniversityTehranIran
| | - Pouya Mirzaee
- Department of Medicine, Faculty of MedicineSemnan University of Medical SciencesSemnanIran
| | - Parsa Bahmani
- Department of Clinical Nutrition, School of Nutrition and Food SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Anahita Houshyar‐Rad
- Department of Nutrition Research, Faculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical SciencesTehranIran
| | - Saeid Doaei
- Department of Community Nutrition, School of Nutrition and Food SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Barba-Vila O, García-Mieres H, Ramos B. Probiotics in autism spectrum disorders: a systematic review of clinical studies and future directions. Nutr Rev 2025; 83:329-343. [PMID: 38497979 DOI: 10.1093/nutrit/nuae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
CONTEXT It is hypothesized that gut dysbiosis, a typical feature of patients with autism spectrum disorder (ASD), could be involved in the origin of this neurodevelopmental disorder. Therefore, the use of probiotics to restore gastrointestinal (GI) equilibrium might be a promising therapeutic strategy due to its capacity to balance the gut-brain axis and behavioral responses. OBJECTIVE To summarize current knowledge on the use of probiotics to treat core clinical ASD symptoms and concomitant GI signs, compare the design of published studies with those of ongoing trials, assess the near future of this field, and provide recommendations for improving novel studies. DATA SOURCES The literature search was conducted in February 2020 and updated in March 2021, using a broad range of bibliographic and clinical trial-specific databases. DATA EXTRACTION Data were extracted using a standardized form, and articles reporting on 28 clinical studies (already published or still ongoing) were included. The risk of bias in clinical studies was evaluated using the Cochrane Collaboration Risk of Bias Assessment tool for randomized trials and the Risk of Bias in Nonrandomized Studies-Interventions tool for nonrandomized trials. RESULTS The results suggest that probiotics improve ASD-like social deficits, GI symptoms, and gut microbiota profile. However, inconsistencies among studies and their methodological limitations make it difficult to draw any conclusions regarding the efficacy of probiotics in ASD. This review provides specific suggestions for future research to improve the quality of the studies. CONCLUSIONS Although ongoing studies have improved designs, the available knowledge does not permit solid conclusions to be made regarding the efficacy of probiotics in ameliorating the symptoms (psychiatric and/or GI) associated with ASD. Thus, more high-quality research and new approaches are needed to design effective probiotic strategies for ASD.
Collapse
Affiliation(s)
- Olga Barba-Vila
- Department de Bioquímica i Biología Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain
| | - Helena García-Mieres
- Etiopathogenesis and Treatment of Severe Mental Disorders, Teaching, Research, and Innovation Unit, Institut de Recerca Sant Joan de Déu, Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona, Spain
- Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
- Health Services Research Unit, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Medicine and Health Sciences, Pompeu Fabra University, Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, Vic, Spain
| | - Belén Ramos
- Department de Bioquímica i Biología Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain
- Etiopathogenesis and Treatment of Severe Mental Disorders, Teaching, Research, and Innovation Unit, Institut de Recerca Sant Joan de Déu, Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona, Spain
- Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain
| |
Collapse
|
3
|
Mamun AA, Geng P, Wang S, Shao C, Xiao J. IUPHAR review: Targeted therapies of signaling pathways based on the gut microbiome in autism spectrum disorders: Mechanistic and therapeutic applications. Pharmacol Res 2025; 211:107559. [PMID: 39733842 DOI: 10.1016/j.phrs.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by impairments in social interaction, communication and repetitive activities. Gut microbiota significantly influences behavior and neurodevelopment by regulating the gut-brain axis. This review explores gut microbiota-influenced treatments for ASD, focusing on their therapeutic applications and mechanistic insights. In addition, this review discusses the interactions between gut microbiota and the immune, metabolic and neuroendocrine systems, focusing on crucial microbial metabolites including short-chain fatty acids (SCFAs) and several neurotransmitters. Furthermore, the review explores various therapy methods including fecal microbiota transplantation, dietary modifications, probiotics and prebiotics and evaluates their safety and efficacy in reducing ASD symptoms. The discussion shows the potential of customized microbiome-based therapeutics and the integration of multi-omics methods to understand the underlying mechanisms. Moreover, the review explores the intricate relationship between gut microbiota and ASD, aiming to develop innovative therapies that utilize the gut microbiome to improve the clinical outcomes of ASD patients. Microbial metabolites such as neurotransmitter precursors, tryptophan metabolites and SCFAs affect brain development and behavior. Symptoms of ASD are linked to changes in these metabolites. Dysbiosis in the gut microbiome may impact neuroinflammatory processes linked to autism, negatively affecting immune signaling pathways. Research indicates that probiotics and prebiotics can improve gut microbiota and alleviate symptoms in ASD patients. Fecal microbiota transplantation may also improve behavioral symptoms and restore gut microbiota balance. The review emphasizes the need for further research on gut microbiota modification as a potential therapeutic approach for ASD, highlighting its potential in clinical settings.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
4
|
Lin CH, Zeng T, Lu CW, Li DY, Liu YY, Li BM, Chen SQ, Deng YH. Efficacy and safety of Bacteroides fragilis BF839 for pediatric autism spectrum disorder: a randomized clinical trial. Front Nutr 2024; 11:1447059. [PMID: 39290561 PMCID: PMC11407114 DOI: 10.3389/fnut.2024.1447059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background The clinical utility of Bacteroides fragilis in treating autism spectrum disorder (ASD) remains unclear. Therefore, this randomized, double-blind, placebo-controlled study aimed to explore the therapeutic effects and safety of B. fragilis BF839 in the treatment of pediatric ASD. Methods We examined 60 children aged 2-10 years diagnosed with ASD, and participants received either BF839 powder (10 g/bar with ≥106 CFU/bar of viable bacteria, two bars/day) or placebo for 16 weeks. The primary outcomes was Autism Behavior Checklist (ABC) score. The secondary outcomes were Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), Normal Development of Social Skills from Infants to Junior High School Children (S-M), Gastrointestinal Symptom Rating Scale (GSRS) scores, and fecal microbiome composition. Assessments were performed on day 0 and at weeks 8 and 16. Results Compared with the placebo group, the BF839 group showed significant improvement in the ABC body and object use scores at week 16, which was more pronounced in children with ASD aged <4 years. Among children with a baseline CARS score ≥30, the BF839 group showed significant improvements at week 16 in the ABC total score, ABC body and object use score, CARS score, and GSRS score compared to the placebo group. Only two patients (6.67%) in the BF839 group experienced mild diarrhea. Compared with baseline and placebo group levels, the BF839 group showed a significant post-intervention increase in abundance of bifidobacteria and change in the metabolic function of neuroactive compounds encoded by intestinal microorganisms. Conclusion BF839 significantly and safely improved abnormal behavior and gastrointestinal symptoms in children with ASD.
Collapse
Affiliation(s)
- Chu-Hui Lin
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Zeng
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cui-Wei Lu
- Medical Administration College, Guangzhou Medical University, Guangzhou, China
| | - De-Yang Li
- Medical Administration College, Guangzhou Medical University, Guangzhou, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Ying Liu
- Weierkang Specialist Outpatient Department, Guangzhou, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Sheng-Qiang Chen
- Medical Administration College, Guangzhou Medical University, Guangzhou, China
| | - Yu-Hong Deng
- Department of Clinical Nutrition, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
5
|
Borrego-Ruiz A, Borrego JJ. Neurodevelopmental Disorders Associated with Gut Microbiome Dysbiosis in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:796. [PMID: 39062245 PMCID: PMC11275248 DOI: 10.3390/children11070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The formation of the human gut microbiome initiates in utero, and its maturation is established during the first 2-3 years of life. Numerous factors alter the composition of the gut microbiome and its functions, including mode of delivery, early onset of breastfeeding, exposure to antibiotics and chemicals, and maternal stress, among others. The gut microbiome-brain axis refers to the interconnection of biological networks that allow bidirectional communication between the gut microbiome and the brain, involving the nervous, endocrine, and immune systems. Evidence suggests that the gut microbiome and its metabolic byproducts are actively implicated in the regulation of the early brain development. Any disturbance during this stage may adversely affect brain functions, resulting in a variety of neurodevelopmental disorders (NDDs). In the present study, we reviewed recent evidence regarding the impact of the gut microbiome on early brain development, alongside its correlation with significant NDDs, such as autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, cerebral palsy, fetal alcohol spectrum disorders, and genetic NDDs (Rett, Down, Angelman, and Turner syndromes). Understanding changes in the gut microbiome in NDDs may provide new chances for their treatment in the future.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, 29010 Málaga, Spain
| |
Collapse
|
6
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
7
|
Fu Z, Yang X, Jiang Y, Mao X, Liu H, Yang Y, Chen J, Chen Z, Li H, Zhang XS, Mao X, Li N, Wang D, Jiang J. Microbiota profiling reveals alteration of gut microbial neurotransmitters in a mouse model of autism-associated 16p11.2 microduplication. Front Microbiol 2024; 15:1331130. [PMID: 38596370 PMCID: PMC11002229 DOI: 10.3389/fmicb.2024.1331130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
The gut-brain axis is evident in modulating neuropsychiatric diseases including autism spectrum disorder (ASD). Chromosomal 16p11.2 microduplication 16p11.2dp/+ is among the most prevalent genetic copy number variations (CNV) linked with ASD. However, the implications of gut microbiota status underlying the development of ASD-like impairments induced by 16p11.2dp/+ remains unclear. To address this, we initially investigated a mouse model of 16p11.2dp/+, which exhibits social novelty deficit and repetitive behavior characteristic of ASD. Subsequently, we conducted a comparative analysis of the gut microbial community and metabolomic profiles between 16p11.2dp/+ and their wild-type counterparts using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS). Our microbiota analysis revealed structural dysbiosis in 16p11.2dp/+ mice, characterized by reduced biodiversity and alterations in species abundance, as indicated by α/β-diversity analysis. Specifically, we observed reduced relative abundances of Faecalibaculum and Romboutsia, accompanied by an increase in Turicibacter and Prevotellaceae UCG_001 in 16p11.2dp/+ group. Metabolomic analysis identified 19 significantly altered metabolites and unveiled enriched amino acid metabolism pathways. Notably, a disruption in the predominantly histamine-centered neurotransmitter network was observed in 16p11.2dp/+ mice. Collectively, our findings delineate potential alterations and correlations among the gut microbiota and microbial neurotransmitters in 16p11.2dp/+ mice, providing new insights into the pathogenesis of and treatment for 16p11.2 CNV-associated ASD.
Collapse
Affiliation(s)
- Zhang Fu
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Youheng Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xinliang Mao
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Hualin Liu
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Yanming Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jia Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhumei Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, Guangdong, China
| | - Huiliang Li
- Division of Medicine, Wolfson Institute for Biomedical Research, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ningning Li
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Dilong Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Basson MA. Neurodevelopmental functions of CHD8: new insights and questions. Biochem Soc Trans 2024; 52:15-27. [PMID: 38288845 PMCID: PMC10903457 DOI: 10.1042/bst20220926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Heterozygous, de novo, loss-of-function variants of the CHD8 gene are associated with a high penetrance of autism and other neurodevelopmental phenotypes. Identifying the neurodevelopmental functions of high-confidence autism risk genes like CHD8 may improve our understanding of the neurodevelopmental mechanisms that underlie autism spectrum disorders. Over the last decade, a complex picture of pleiotropic CHD8 functions and mechanisms of action has emerged. Multiple brain and non-brain cell types and progenitors appear to be affected by CHD8 haploinsufficiency. Behavioural, cellular and synaptic phenotypes are dependent on the nature of the gene mutation and are modified by sex and genetic background. Here, I review some of the CHD8-interacting proteins and molecular mechanisms identified to date, as well as the impacts of CHD8 deficiency on cellular processes relevant to neurodevelopment. I endeavour to highlight some of the critical questions that still require careful and concerted attention over the next decade to bring us closer to the goal of understanding the salient mechanisms whereby CHD8 deficiency causes neurodevelopmental disorders.
Collapse
Affiliation(s)
- M. Albert Basson
- Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, U.K
- Centre for Craniofacial and Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 9RT, U.K
| |
Collapse
|
9
|
Feng P, Zhang Y, Zhao Y, Zhao P, Li E. Combined repetitive transcranial magnetic stimulation and gut microbiota modulation through the gut-brain axis for prevention and treatment of autism spectrum disorder. Front Immunol 2024; 15:1341404. [PMID: 38455067 PMCID: PMC10918007 DOI: 10.3389/fimmu.2024.1341404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions characterized by enduring impairments in social communication and interaction together with restricted repetitive behaviors, interests, and activities. No targeted pharmacological or physical interventions are currently available for ASD. However, emerging evidence has indicated a potential association between the development of ASD and dysregulation of the gut-brain axis. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive diagnostic and therapeutic approach, has demonstrated positive outcomes in diverse psychiatric disorders; however, its efficacy in treating ASD and its accompanying gastrointestinal effects, particularly the effects on the gut-brain axis, remain unclear. Hence, this review aimed to thoroughly examine the existing research on the application of rTMS in the treatment of ASD. Additionally, the review explored the interplay between rTMS and the gut microbiota in children with ASD, focusing on the gut-brain axis. Furthermore, the review delved into the integration of rTMS and gut microbiota modulation as a targeted approach for ASD treatment based on recent literature. This review emphasizes the potential synergistic effects of rTMS and gut microbiota interventions, describes the underlying mechanisms, and proposes a potential therapeutic strategy for specific subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The American Psychiatric Association, Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghong Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
11
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
12
|
da Silva RV, Gomes DL. Eating Behavior and Nutritional Profile of Children with Autism Spectrum Disorder in a Reference Center in the Amazon. Nutrients 2024; 16:452. [PMID: 38337736 PMCID: PMC10857090 DOI: 10.3390/nu16030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024] Open
Abstract
There is no single pattern for the evolution of the nutritional status of children with autism spectrum disorder (ASD). Previous studies have found a tendency towards food selectivity with food monotony and difficulties with food texture in children with ASD, but studies in this area, especially in Brazil, are still scarce. The nutritional profile and changes in eating behavior were analyzed in patients with autism spectrum disorder assisted at a reference center in Belém. Eating behavior was assessed using the Labyrinth Scale, nutritional status assessment through weight and height (to calculate body mass index-BMI), and consumption food through the 24 h reminder. A total of 80 children of both sexes participated in the study, the majority of whom were male (80%), 47.5% eutrophic, while for the food consumption of the children evaluated, there was an average energy consumption of 1911 kcal daily, with 57.3%, 15.4%, and 27.3% of carbohydrates, proteins, and lipids, respectively. In relation to eating behavior, the highest averages were demonstrated in the domains of food selectivity, behavioral aspects, and mealtime skills. Masticatory motor scores showed a positive correlation with weight, BMI, and the amount of energy consumed by the child. The gastrointestinal symptoms score showed a negative correlation with the child's age. Regarding mealtime skills, a negative correlation was observed with the proportion of carbohydrates in the diet and a positive correlation with the proportion of lipids consumed in the children's diet. Therefore, knowing the main changes in eating behavior is important to ensure a complete and safe approach for each patient.
Collapse
Affiliation(s)
| | - Daniela Lopes Gomes
- Nucleus of Behavior Theory Research, Federal University of Pará, Belém 66087-110, Brazil;
| |
Collapse
|
13
|
Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110861. [PMID: 37690584 DOI: 10.1016/j.pnpbp.2023.110861] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
There is a lot of evidence establishing that nervous system development is related to the composition and functions of the gut microbiome. In addition, the central nervous system (CNS) controls the imbalance of the intestinal microbiota, constituting a bidirectional communication system. At present, various gut-brain crosstalk routes have been described, including immune, endocrine and neural circuits via the vagal pathway. Several empirical data have associated gut microbiota alterations (dysbiosis) with neuropsychiatric diseases, such as Alzheimer's disease, autism and Parkinson's disease, and with other psychological disorders, like anxiety and depression. Fecal microbiota transplantation (FMT) therapy has shown that the gut microbiota can transfer behavioral features to recipient animals, which provides strong evidence to establish a causal-effect relationship. Interventions, based on prebiotics, probiotics or synbiotics, have demonstrated an important influence of microbiota on neurological disorders by the synthesis of neuroactive compounds that interact with the nervous system and by the regulation of inflammatory and endocrine processes. Further research is needed to demonstrate the influence of gut microbiota dysbiosis on psychiatric and psychological disorders, and how microbiota-based interventions may be used as potential therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, UNED, Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
14
|
Mazzone L, Dooling SW, Volpe E, Uljarević M, Waters JL, Sabatini A, Arturi L, Abate R, Riccioni A, Siracusano M, Pereira M, Engstrand L, Cristofori F, Adduce D, Francavilla R, Costa-Mattioli M, Hardan AY. Precision microbial intervention improves social behavior but not autism severity: A pilot double-blind randomized placebo-controlled trial. Cell Host Microbe 2024; 32:106-116.e6. [PMID: 38113884 DOI: 10.1016/j.chom.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by the presence of restricted/repetitive behaviors and social communication deficits. Because effective treatments for ASD remain elusive, novel therapeutic strategies are necessary. Preclinical studies show that L. reuteri selectively reversed social deficits in several models for ASD. Here, in a double-blind, randomized, placebo-controlled trial, we tested the effect of L. reuteri (a product containing a combination of strains ATCC-PTA-6475 and DSM-17938) in children with ASD. The treatment does not alter overall autism severity, restricted/repetitive behaviors, the microbiome composition, or the immune profile. However, L. reuteri combination yields significant improvements in social functioning that generalized across different measures. Interestingly, ATCC-PTA-6475, but not the parental strain of DSM-17938, reverses the social deficits in a preclinical mouse model for ASD. Collectively, our findings show that L. reuteri enhances social behavior in children with ASD, thereby warranting larger trials in which strain-specific effects should also be investigated.
Collapse
Affiliation(s)
- Luigi Mazzone
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy.
| | - Sean W Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Altos Labs, Inc, Bay Area Institute of Science, Redwood City, CA 94065, USA
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Mirko Uljarević
- Melbourne School of Psychological Sciences, University of Melbourne, Tin Alley, Carlton, Melbourne, VIC 3010, Australia
| | - Jillian L Waters
- Altos Labs, Inc, Bay Area Institute of Science, Redwood City, CA 94065, USA
| | - Andrea Sabatini
- Molecular Neuroimmunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Lucrezia Arturi
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| | - Roberta Abate
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Assia Riccioni
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Systems Medicine Department, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| | - Martina Siracusano
- Child Neurology and Psychiatry Unit, Department of Neurosciences, Policlinico Tor Vergata Foundation Hospital, Viale Oxford 81, 00133 Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Montpellier Street 1, 00133 Rome, Italy
| | - Marcela Pereira
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumour and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Fernanda Cristofori
- Pediatric Gastroenterology and Hepatology Unit, Department of Interdisciplinary Medicine, Children's Hospital-Giovanni XXIII, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Domenico Adduce
- Pediatric Gastroenterology and Hepatology Unit, Department of Interdisciplinary Medicine, Children's Hospital-Giovanni XXIII, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Ruggiero Francavilla
- Pediatric Gastroenterology and Hepatology Unit, Department of Interdisciplinary Medicine, Children's Hospital-Giovanni XXIII, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Altos Labs, Inc, Bay Area Institute of Science, Redwood City, CA 94065, USA.
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Peralta-Marzal LN, Rojas-Velazquez D, Rigters D, Prince N, Garssen J, Kraneveld AD, Perez-Pardo P, Lopez-Rincon A. A robust microbiome signature for autism spectrum disorder across different studies using machine learning. Sci Rep 2024; 14:814. [PMID: 38191575 PMCID: PMC10774349 DOI: 10.1038/s41598-023-50601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder characterized by deficits in sociability and repetitive behaviour, however there is a great heterogeneity within other comorbidities that accompany ASD. Recently, gut microbiome has been pointed out as a plausible contributing factor for ASD development as individuals diagnosed with ASD often suffer from intestinal problems and show a differentiated intestinal microbial composition. Nevertheless, gut microbiome studies in ASD rarely agree on the specific bacterial taxa involved in this disorder. Regarding the potential role of gut microbiome in ASD pathophysiology, our aim is to investigate whether there is a set of bacterial taxa relevant for ASD classification by using a sibling-controlled dataset. Additionally, we aim to validate these results across two independent cohorts as several confounding factors, such as lifestyle, influence both ASD and gut microbiome studies. A machine learning approach, recursive ensemble feature selection (REFS), was applied to 16S rRNA gene sequencing data from 117 subjects (60 ASD cases and 57 siblings) identifying 26 bacterial taxa that discriminate ASD cases from controls. The average area under the curve (AUC) of this specific set of bacteria in the sibling-controlled dataset was 81.6%. Moreover, we applied the selected bacterial taxa in a tenfold cross-validation scheme using two independent cohorts (a total of 223 samples-125 ASD cases and 98 controls). We obtained average AUCs of 74.8% and 74%, respectively. Analysis of the gut microbiome using REFS identified a set of bacterial taxa that can be used to predict the ASD status of children in three distinct cohorts with AUC over 80% for the best-performing classifiers. Our results indicate that the gut microbiome has a strong association with ASD and should not be disregarded as a potential target for therapeutic interventions. Furthermore, our work can contribute to use the proposed approach for identifying microbiome signatures across other 16S rRNA gene sequencing datasets.
Collapse
Affiliation(s)
- Lucia N Peralta-Marzal
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - David Rojas-Velazquez
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Douwe Rigters
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Naika Prince
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Department of Neuroscience, Faculty of Science, VU University, Amsterdam, The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Alejandro Lopez-Rincon
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Jha P, Dangi N, Sharma S. Probiotics Show Promise as a Novel Natural Treatment for Neurological Disorders. Curr Pharm Biotechnol 2024; 25:799-806. [PMID: 37877144 DOI: 10.2174/0113892010261604230919170143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/26/2023]
Abstract
Probiotics are beneficial microorganisms shown to improve human health when consumed regularly and in sufficient quantities. Numerous health benefits can be attained by possessing important metabolites with nutritional and medicinal qualities. It has been shown through scientific research that these living microbial consortiums can influence a variety of mental health outcomes, including but not limited to anxiety, depression, cognitive processes, stress responses, and behavioral patterns. Selected strains of bacteria and yeasts control how the central nervous system (CNS) communicates with the gut-brain axis (GBA) through neuronal, humoral, and metabolic pathways to ease mood. Psychobiotics are substances that can affect the digestive system as well as mood and anxiety. There is scant evidence to validate the beneficial effects of psychiatric drugs in treating neurological diseases or disorders. The therapeutic method of research into psychobiotics opens exciting prospects for the future of the field of development. This review compiles the current evidence available in the scientific literature on the use of probiotics to influence neurological disorders.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Biotechnology, Amity Institute of Biotechnology, Amity University, Jaipur, 303002, Rajasthan, India
| | - Neha Dangi
- Department of Pharmaceutical Sciences, Alwar Pharmacy College, M.I.A., Alwar, 301030, Rajasthan, India
| | - Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar, 301028, Rajasthan, India
| |
Collapse
|
17
|
Chen CM, Wu CC, Kim Y, Hsu WY, Tsai YC, Chiu SL. Enhancing social behavior in an autism spectrum disorder mouse model: investigating the underlying mechanisms of Lactiplantibacillus plantarum intervention. Gut Microbes 2024; 16:2359501. [PMID: 38841895 PMCID: PMC11164232 DOI: 10.1080/19490976.2024.2359501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting over 1% of the global population. Individuals with ASD often exhibit complex behavioral conditions, including significant social difficulties and repetitive behaviors. Moreover, ASD often co-occurs with several other conditions, including intellectual disabilities and anxiety disorders. The etiology of ASD remains largely unknown owing to its complex genetic variations and associated environmental risks. Ultimately, this poses a fundamental challenge for the development of effective ASD treatment strategies. Previously, we demonstrated that daily supplementation with the probiotic Lactiplantibacillus plantarum PS128 (PS128) alleviates ASD symptoms in children. However, the mechanism underlying this improvement in ASD-associated behaviors remains unclear. Here, we used a well-established ASD mouse model, induced by prenatal exposure to valproic acid (VPA), to study the physiological roles of PS128 in vivo. Overall, we showed that PS128 selectively ameliorates behavioral abnormalities in social and spatial memory in VPA-induced ASD mice. Morphological examination of dendritic architecture further revealed that PS128 facilitated the restoration of dendritic arborization and spine density in the hippocampus and prefrontal cortex of ASD mice. Notably, PS128 was crucial for restoring oxytocin levels in the paraventricular nucleus and oxytocin receptor signaling in the hippocampus. Moreover, PS128 alters the gut microbiota composition and increases the abundance of Bifidobacterium spp. and PS128-induced changes in Bifidobacterium abundance positively correlated with PS128-induced behavioral improvements. Together, our results show that PS128 treatment can effectively ameliorate ASD-associated behaviors and reinstate oxytocin levels in VPA-induced mice, thereby providing a promising strategy for the future development of ASD therapeutics.
Collapse
Affiliation(s)
- Chih-Ming Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Research and Development Department, Bened Biomedical Co. Ltd, Taipei, Taiwan
| | - Chien-Chen Wu
- Research and Development Department, Bened Biomedical Co. Ltd, Taipei, Taiwan
| | - Yebeen Kim
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Wei-Yu Hsu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Ling Chiu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Mussap M, Beretta P, Esposito E, Fanos V. Once upon a Time Oral Microbiota: A Cinderella or a Protagonist in Autism Spectrum Disorder? Metabolites 2023; 13:1183. [PMID: 38132865 PMCID: PMC10745349 DOI: 10.3390/metabo13121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder evolving over the lifetime of individuals. The oral and gut microbial ecosystems are closely connected to each other and the brain and are potentially involved in neurodevelopmental diseases. This narrative review aims to identify all the available evidence emerging from observational studies focused on the role of the oral microbiome in ASD. A literature search was conducted using PubMed and the Cochrane Library for relevant studies published over the last ten years. Overall, in autistic children, the oral microbiota is marked by the abundance of several microbial species belonging to the Proteobacteria phylum and by the depletion of species belonging to the Bacteroidetes phylum. In mouse models, the oral microbiota is marked by the abundance of the Bacteroidetes phylum. Oral dysbiosis in ASD induces changes in the human metabolome, with the overexpression of metabolites closely related to the pathogenesis of ASD, such as acetate, propionate, and indoles, together with the underexpression of butyrate, confirming the central role of tryptophan metabolism. The analysis of the literature evidences the close relationship between oral dysbiosis and autistic core symptoms; the rebuilding of the oral and gut ecosystems by probiotics may significantly contribute to mitigating the severity of ASD symptoms.
Collapse
Affiliation(s)
- Michele Mussap
- Laboratory Unit, Department of Surgical Sciences, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy;
| | - Paola Beretta
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (E.E.); (V.F.)
| | - Elena Esposito
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (E.E.); (V.F.)
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (E.E.); (V.F.)
| |
Collapse
|
19
|
Lee CC, Yang HW, Liu CJ, Lee F, Ko WC, Chang YC, Yang PS. Unraveling the connections between gut microbiota, stress, and quality of life for holistic care in newly diagnosed breast cancer patients. Sci Rep 2023; 13:17916. [PMID: 37864098 PMCID: PMC10589294 DOI: 10.1038/s41598-023-45123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
There is little research about the stress, quality of life (QOL) and gut microbiota in newly diagnosed breast cancer patients. In this study addressing the dearth of research on stress, quality of life (QOL), and gut microbiota in newly diagnosed breast cancer patients, 82 individuals were prospectively observed. Utilizing the Functional Assessment of Chronic Illness Therapy (FACT)-Breast questionnaire to assess health-related quality of life (HRQOL) and the Distress Thermometer (DT) to gauge distress levels, the findings revealed a mean FACT-B score of 104.5, underscoring HRQOL's varied impact. Significantly, 53.7% reported moderate to severe distress, with a mean DT score of 4.43. Further exploration uncovered compelling links between distress levels, FACT-B domains, and microbial composition. Notably, Alcaligenaceae and Sutterella were more abundant in individuals with higher DT scores at the family and genus levels (p = 0.017), while Streptococcaceae at the family level and Streptococcus at the genus level were prevalent in those with lower DT scores (p = 0.028 and p = 0.023, respectively). This study illuminates the intricate interplay of stress, QOL, and gut microbiota in newly diagnosed breast cancer patients, offering valuable insights for potential interventions of biomarker or probiotics aimed at alleviating stress and enhancing QOL in this patient cohort.
Collapse
Affiliation(s)
- Chi-Chan Lee
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Horng-Woei Yang
- Division of Molecular Medicine, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chih-Ju Liu
- Department of Nursing, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Nursing, MacKay Medical College, New Taipei, Taiwan
| | - Fang Lee
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Ching Ko
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| |
Collapse
|
20
|
Fujishiro S, Tsuji S, Akagawa S, Akagawa Y, Yamanouchi S, Ishizaki Y, Hashiyada M, Akane A, Kaneko K. Dysbiosis in Gut Microbiota in Children Born Preterm Who Developed Autism Spectrum Disorder: A Pilot Study. J Autism Dev Disord 2023; 53:4012-4020. [PMID: 35909184 DOI: 10.1007/s10803-022-05682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 10/16/2022]
Abstract
The gut microbiota was reported to differ between children with autism spectrum disorder (ASD) and typically developing (TD) children, and dysbiosis of the gut microbiota in preterm infants is common. Here, we explored the characteristics of gut microbiota in children born preterm with ASD. We performed 16S rRNA gene sequencing using stool samples from ASD children born preterm and TD children born preterm. Alpha diversity was significantly greater in the ASD group. A comparison of beta diversity showed different clusters. Linear discriminant analysis effect size analysis revealed significantly more Firmicutes in the ASD group compared with the TD group. In conclusion, the gut microbiota in children born preterm differs between children with ASD and TD.
Collapse
Affiliation(s)
- Sadayuki Fujishiro
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Shohei Akagawa
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Yuko Akagawa
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Sohsaku Yamanouchi
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Yuko Ishizaki
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Masaki Hashiyada
- Department of Legal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Atsushi Akane
- Department of Legal Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
21
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
22
|
Vaccari F, Zhang L, Giuberti G, Grasso A, Bandini F, García-Pérez P, Copat C, Lucini L, Dall'Asta M, Ferrante M, Puglisi E. The impact of metallic nanoparticles on gut fermentation processes: An integrated metabolomics and metagenomics approach following an in vitro digestion and fecal fermentation model. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131331. [PMID: 37060751 DOI: 10.1016/j.jhazmat.2023.131331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Metallic nanoparticles (MNPs) are becoming widespread environmental contaminants. They are currently added to several food preparations and cause a fast-growing concern for human health. The present work aims to assess the impact of zinc oxide (ZnO), titanium dioxide (TiO2), and silver (Ag) nanoparticles (NPs) on the human gut metabolome and microbiome. Water samples spiked with two different concentrations of each MNPs were subjected to in-vitro gastrointestinal digestion and in-vitro large intestine fermentation. The effects of the treatments were determined through 16 S amplicon sequencing and untargeted metabolomics. Multi-omics data integration was then applied to correlate the two datasets. MNPs treatments modulated the microbial genera Bifidobacterium, Sutterella, Escherichia and Bacteroides. The treatments, especially the lower concentrations of Ag and ZnO, caused modulation of indole derivatives, peptides, and metabolites related to protein metabolism in the large intestine. Notably, these metabolites are implicated in ulcerative colitis and inflammatory bowel disease. TiO2 NPs treatment in all concentrations increased E.coli relative abundance and decreased the abundance of B. longum. Moreover, for TiO2, an enrichment in proinflammatory lipid mediators of arachidonic acid metabolites, such as prostaglandin E2 and leukotrienes B4, was detected. For all metals except TiO2, low NP concentrations promoted differentiated profiles, thus suggesting that MNPs aggregation can limit adverse effects on living cells.
Collapse
Affiliation(s)
- Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Alfina Grasso
- Department of Medical, Surgical Sciences and Advanced Tehnologies Università degli studi di Catania, Piazza dell'Università 2, 95131 Catania, Italy
| | - Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy; Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Univesidade de Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Chiara Copat
- Department of Medical, Surgical Sciences and Advanced Tehnologies Università degli studi di Catania, Piazza dell'Università 2, 95131 Catania, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Dall'Asta
- Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Tehnologies Università degli studi di Catania, Piazza dell'Università 2, 95131 Catania, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
23
|
Liao X, Chen M, Li Y. The glial perspective of autism spectrum disorder convergent evidence from postmortem brain and PET studies. Front Neuroendocrinol 2023; 70:101064. [PMID: 36889545 DOI: 10.1016/j.yfrne.2023.101064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
OBJECTIVE The present study aimed to systematically and quantitatively review evidence derived from both postmortem brain and PET studies to explore the pathological role of glia induced neuroinflammation in the pathogenesis of ASD, and discuss the implications of these findings in relation to disease pathogenesis and therapeutic strategies. METHOD An online databases search was performed to collate postmortem studies and PET studies regarding glia induced neuroinflammation in ASD as compared to controls. Two authors independently conducted the literature search, study selection and data extraction. The discrepancies generated in these processes was resolved through robust discussions among all authors. RESULT The literature search yielded the identification of 619 records, from which 22 postmortem studies and 3 PET studies were identified as eligible for the qualitative synthesis. Meta-analysis of postmortem studies reported increased microglial number and microglia density as well as increased GFAP protein expression and GFAP mRNA expression in ASD subjects as compared to controls. Three PET studies produced different outcomes and emphasized different details, with one reported increased and two reported decreased TSPO expression in ASD subjects as compared to controls. CONCLUSION Both postmortem evidences and PET studies converged to support the involvement of glia induced neuroinflammation in the pathogenesis of ASD. The limited number of included studies along with the considerable heterogeneity of these studies prevented the development of firm conclusions and challenged the explanation of variability. Future research should prioritize the replication of current studies and the validation of current observations.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China; Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Sabit H, Kassab A, Alaa D, Mohamed S, Abdel-Ghany S, Mansy M, Said OA, Khalifa MA, Hafiz H, Abushady AM. The Effect of Probiotic Supplementation on the Gut-Brain Axis in Psychiatric Patients. Curr Issues Mol Biol 2023; 45:4080-4099. [PMID: 37232729 DOI: 10.3390/cimb45050260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
The pathophysiology of several psychiatric diseases may entail disturbances in the hypothalamic-pituitary-adrenal (HPA) axis and metabolic pathways. Variations in how these effects present themselves may be connected to individual variances in clinical symptoms and treatment responses, such as the observation that a significant fraction of participants do not respond to current antipsychotic drugs. A bidirectional signaling pathway between the central nervous system and the gastrointestinal tract is known as the microbiota-gut-brain axis. The large and small intestines contain more than 100 trillion microbial cells, contributing to the intestinal ecosystem's incredible complexity. Interactions between the microbiota and intestinal epithelium can alter brain physiology and affect mood and behavior. There has recently been a focus on how these relationships impact mental health. According to evidence, intestinal microbiota may play a role in neurological and mental illnesses. Intestinal metabolites of microbial origin, such as short-chain fatty acids, tryptophan metabolites, and bacterial components that might stimulate the host's immune system, are mentioned in this review. We aim to shed some on the growing role of gut microbiota in inducing/manipulating several psychiatric disorders, which may pave the way for novel microbiota-based therapies.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Areej Kassab
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Donia Alaa
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaza Mohamed
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Mohamed Mansy
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A Said
- Department of Agricultural Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Mona A Khalifa
- Faculty of Art and Science, Samtah, Jazan University, Jazan 45142, Saudi Arabia
| | - Halah Hafiz
- Clinical Nutrition Department, Factually of Applied Medical Science, Umm Alqura University, Mecca 24382, Saudi Arabia
| | - Asmaa M Abushady
- School of Biotechnology, Nile University, Giza 41516, Egypt
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
25
|
Feng P, Zhao S, Zhang Y, Li E. A review of probiotics in the treatment of autism spectrum disorders: Perspectives from the gut–brain axis. Front Microbiol 2023; 14:1123462. [PMID: 37007501 PMCID: PMC10060862 DOI: 10.3389/fmicb.2023.1123462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions with a large societal impact. Despite existing evidence suggesting a link between ASD pathogenesis and gut–brain axis dysregulation, there is no systematic review of the treatment of probiotics on ASD and its associated gastrointestinal abnormalities based on the gut–brain axis. Therefore, we performed an analysis for ASD based on preclinical and clinical research to give a comprehensive synthesis of published evidence of a potential mechanism for ASD. On the one hand, this review aims to elucidate the link between gastrointestinal abnormalities and ASD. Accordingly, we discuss gut microbiota dysbiosis regarding gut–brain axis dysfunction. On the other hand, this review suggests that probiotic administration to regulate the gut–brain axis might improve gastrointestinal symptoms, restore ASD-related behavioral symptoms, restore gut microbiota composition, reduce inflammation, and restore intestinal barrier function in human and animal models. This review suggests that targeting the microbiota through agents such as probiotics may represent an approach for treating subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Enyao Li,
| |
Collapse
|
26
|
Gupta R, Raghuvanshi S. Human Microbiome and Autism-Spectrum Disorders. PROBIOTICS, PREBIOTICS, SYNBIOTICS, AND POSTBIOTICS 2023:347-360. [DOI: 10.1007/978-981-99-1463-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Nagai Y, Mizutani Y, Nomura K, Uemura O, Saitoh S, Iwata O. Autistic traits of children born very preterm assessed using Autism Diagnostic Observation Schedule, Second Edition. Early Hum Dev 2023; 176:105716. [PMID: 36708635 DOI: 10.1016/j.earlhumdev.2023.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Preterm birth has been linked with increased incidence of autism spectrum disorder (ASD). Despite the remarkable difference in the clinical backgrounds between ASD children born preterm and term, cross-sectional studies have found no striking difference in their autistic traits. To highlight autistic traits related with preterm birth, children born very preterm (prospective birth cohort, n = 50) and term (case cohort, n = 16), who were diagnosed as "Autism" by the Autism Diagnostic Observation Schedule (ADOS), 2nd edition, were compared using the calibrated severity scores of ADOS-2 and T-scores of the Social Responsiveness Scale, 2nd edition. No significant difference was found in the calibrated severity scores between ASD children born preterm and term. There was a trend that T-scores were smaller for the preterm cohort, which did not reach a statistical significance. Even when detailed cross-sectional information was obtained using ADOS-2, no difference in autistic traits was observed between children born very preterm and term. Our findings were consistent with a previous study, which assessed the entire prospective cohort of children born very preterm and found no difference in original ADOS scores. Further studies are warranted to delineate how preterm birth affects the autistic traits and their parental perception in a large prospective cohort.
Collapse
Affiliation(s)
- Yukiyo Nagai
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Aichi, Japan.
| | - Yuko Mizutani
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Kayo Nomura
- Department of Education, Gifu Shotoku Gakuen University, Gifu, Japan
| | - Osamu Uemura
- Department of Pediatrics, Ichinomiya Medical Treatment & Habilitation Center, Aichi, Japan
| | - Shinji Saitoh
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Osuke Iwata
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| |
Collapse
|
28
|
Dooling SW, Sgritta M, Wang IC, Duque ALRF, Costa-Mattioli M. The Effect of Limosilactobacillus reuteri on Social Behavior Is Independent of the Adaptive Immune System. mSystems 2022; 7:e0035822. [PMID: 36286493 PMCID: PMC9765170 DOI: 10.1128/msystems.00358-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/22/2022] [Indexed: 12/25/2022] Open
Abstract
Gut microbes can modulate almost all aspects of host physiology throughout life. As a result, specific microbial interventions are attracting considerable attention as potential therapeutic strategies for treating a variety of conditions. Nonetheless, little is known about the mechanisms through which many of these microbes work. Recently, we and others have found that the commensal bacterium Limosilactobacillus reuteri (formerly Lactobacillus reuteri) reverses social deficits in several mouse models (genetic, environmental, and idiopathic) for neurodevelopmental disorders in a vagus nerve-, oxytocin-, and biopterin-dependent manner. Given that gut microbes can signal to the brain through the immune system and L. reuteri promotes wound healing via the adaptive immune response, we sought to determine whether the prosocial effect mediated by L. reuteri also depends on adaptive immunity. Here, we found that the effects of L. reuteri on social behavior and related changes in synaptic function are independent of the mature adaptive immune system. Interestingly, these findings indicate that the same microbe (L. reuteri) can affect different host phenotypes through distinct mechanisms. IMPORTANCE Because preclinical animal studies support the idea that gut microbes could represent novel therapeutics for brain disorders, it is essential to fully understand the mechanisms by which gut microbes affect their host's physiology. Previously, we discovered that treatment with Limosilactobacillus reuteri selectively improves social behavior in different mouse models for autism spectrum disorder through the vagus nerve, oxytocin reward signaling in the brain, and biopterin metabolites (BH4) in the gut. However, given that (i) the immune system remains a key pathway for host-microbe interactions and that (ii) L. reuteri has been shown to facilitate wound healing through the adaptive immune system, we examined here whether the prosocial effects of L. reuteri require immune signaling. Unexpectedly, we found that the mature adaptive immune system (i.e., conventional B and T cells) is not required for L. reuteri to reverse social deficits and related changes in synaptic function. Overall, these findings add new insight into the mechanism through which L. reuteri modulates brain function and behavior. More importantly, they highlight that a given bacterial species can modulate different phenotypes (e.g., wound healing versus social behavior) through separate mechanisms.
Collapse
Affiliation(s)
- Sean W. Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - I-Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ana Luiza Rocha Faria Duque
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
29
|
Yu R, Zhang M, Ahmed T, Wu Z, Lv L, Zhou G, Li B. Metabolic and Proteomic Profiles Reveal the Response of the ASD-Associated Resistant Strain 6-1 of Lactobacillus plantarum to Propionic Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17020. [PMID: 36554909 PMCID: PMC9779356 DOI: 10.3390/ijerph192417020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Autism spectrum disorder (ASD) seriously affects children's health. In our previous study, we isolated and identified a bacterium (Lactobacillus plantarum strain 6-1) that is resistant to propionic acid (PA), which has been reported to play a significant role in the formation of ASD. In order to elucidate the mechanism of the resistance to PA, this study investigated the change in the metabolic and proteomic profile of L. plantarum strain 6-1 in the presence and absence of PA. The results show that 967 and 1078 proteins were specifically identified in the absence and the presence of PA, respectively, while 616 proteins were found under both conditions. Gene ontology enrichment analysis of 130 differentially expressed proteins accumulated in the presence and absence of PA indicated that most of the proteins belong to biological processes, cellular components, and molecular functions. Pathway enrichment analysis showed a great reduction in the metabolic pathway-related proteins when this resistant bacterium was exposed to PA compared to the control. Furthermore, there was an obvious difference in protein-protein interaction networks in the presence and the absence of propionic acid. In addition, there was a change in the metabolic profile of L. plantarum strain 6-1 when this bacterium was exposed to PA compared to the control, while six peaks at 696.46, 1543.022, 1905.241, 2004.277, 2037.374, and 2069.348 m/z disappeared. Overall, the results could help us to understand the mechanism of the resistance of gut bacteria to PA, which will provide a new insight for us to use PA-resistant bacteria to prevent the development of ASD in children.
Collapse
Affiliation(s)
- Rongrong Yu
- College of Education, Zhejiang University of Technology, Hangzhou 310032, China
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhifeng Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqiong Lv
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoling Zhou
- Hangzhou Seventh People’s Hospital (HSPH), Hangzhou 310013, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Chen YC, Lin HY, Chien Y, Tung YH, Ni YH, Gau SSF. Altered gut microbiota correlates with behavioral problems but not gastrointestinal symptoms in individuals with autism. Brain Behav Immun 2022; 106:161-178. [PMID: 36058421 DOI: 10.1016/j.bbi.2022.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite inconsistent results across studies, emerging evidence suggests that the microbial micro-environment may be associated with autism spectrum disorder (ASD). Geographical and cultural factors highly impact microbial profiles, and there is a shortage of data from East Asian populations. This study aimed to comprehensively characterize microbial profiles in an East Asian sample and explore whether gut microbiota contributes to clinical symptoms, emotional/behavioral problems, and GI symptoms in ASD. METHODS We assessed 82 boys and young men with ASD and 31 typically developing controls (TDC), aged 6-25 years. We analyzed the stool sample of all participants with 16S V3-V4 rRNA sequencing and correlated its profile with GI symptoms, autistic symptoms, and emotional/behavioral problems. RESULTS Autistic individuals, compared to TDC, had worse GI symptoms. There were no group differences in alpha diversity of species richness estimates (Shannon-wiener and Simpson diversity indices). Participants with ASD had an increased relative abundance of Fusobacterium, Ruminococcus torques group (at the genus level), and Bacteroides plebeius DSM 17135 (at the species level), while a decreased relative abundance of Ruminococcaceae UCG 013, Ervsipelotrichaceae UCG 003, Parasutterella, Clostridium sensu stricto 1, Turicibacter (at the genus level), and Clostridium spiroforme DSM 1552 and Intestinimonas butyriciproducens (at the species level). Altered taxonomic diversity in ASD significantly correlated with autistic symptoms, thought problems, delinquent behaviors, self dysregulation, and somatic complaints. We did not find an association between gut symptoms and gut microbial dysbiosis. CONCLUSIONS Our findings suggest that altered microbiota are associated with behavioral phenotypes but not GI symptoms in ASD. The function of the identified microbial profiles mainly involves the immune pathway, supporting the hypothesis of a complex relationship between altered microbiome, immune dysregulation, and ASD that may advance the discovery of molecular biomarkers for ASD.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yiling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Hung Tung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
31
|
Delgadillo DR, Pressman SD, Christian LM, Galley JD, Bailey MT. Associations Between Gut Microbes and Social Behavior in Healthy 2-Year-Old Children. Psychosom Med 2022; 84:749-756. [PMID: 35797533 PMCID: PMC9437120 DOI: 10.1097/psy.0000000000001103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Emerging research has connected abundances of specific bacteria to differences in psychosocial behaviors in animals and adult humans. However, research assessing mind-microbiome associations in children is sparse with extant work primarily focused on populations with autism, making it unclear whether links are also present in typically developing children. The current study fills this gap by examining associations between prosocial-self-regulating temperaments (effortful control; EC) and the gut microbiome in typically developing children. METHODS Maternal ratings of temperament were assessed in 77 toddlers 18 to 27 months of age (46.7% female, mean age = 23.14 months). Next-generation pyrosequencing of the V1-V3 region of the 16S rRNA gene was used to classify children's gut microbial composition from fecal samples. EC included the following subcategories: cuddliness, attentional focusing, attentional shifting, inhibitory control, and low-intensity pleasure. RESULTS After adjusting for covariates, EC was positively associated with relative abundances of Akkermansia (Δ R2 = 0.117, b = 0.022, SE = 0.007, p = .002), with cuddliness (i.e., joy and ease of being held) driving the relation. Furthermore, attentional focusing was negatively associated with Alistipes (Δ R2 = 0.062, b = -0.011, SE = 0.005, p = .028). Permutational analysis of variance revealed no significant differences in community structure between high and low EC groups on the phylum level ( R2 = 0.00372, p = .745) or the genus level ( R2 = 0.01559, p = .276). CONCLUSIONS Findings suggest that certain microbes may be linked to prosocial behaviors used to regulate emotion in typically developing children. Further research is needed to test whether these observations replicate in larger samples.
Collapse
Affiliation(s)
| | - Sarah D. Pressman
- Department of Psychological Science, University of
California, Irvine, USA
| | | | - Jeffrey D. Galley
- Institute for Behavioral Medicine Research, The Ohio State
University, College of Medicine
| | - Michael T. Bailey
- Department of Psychiatry, The Ohio State University,
Columbus, USA
- Abigail Wexner Research Institute at Nationwide
Children’s Hospital, Columbus, USA
| |
Collapse
|
32
|
Park JC, Im SH. The gut-immune-brain axis in neurodevelopment and neurological disorders. MICROBIOME RESEARCH REPORTS 2022; 1:23. [PMID: 38046904 PMCID: PMC10688819 DOI: 10.20517/mrr.2022.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The gut-brain axis is gaining momentum as an interdisciplinary field addressing how intestinal microbes influence the central nervous system (CNS). Studies using powerful tools, including germ-free, antibiotic-fed, and fecal microbiota transplanted mice, demonstrate how gut microbiota perturbations alter the fate of neurodevelopment. Probiotics are also becoming more recognized as potentially effective therapeutic agents in alleviating symptoms of neurological disorders. While gut microbes may directly communicate with the CNS through their effector molecules, including metabolites, their influence on neuroimmune populations, including newly discovered brain-resident T cells, underscore the host immunity as a potent mediator of the gut-brain axis. In this review, we examine the unique immune populations within the brain, the effects of the gut microbiota on the CNS, and the efficacy of specific probiotic strains to propose the novel concept of the gut-immune-brain axis.
Collapse
Affiliation(s)
- John Chulhoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
- Institute for Convergence Research and Education, Yonsei University, Seoul 03722, Republic of Korea
- ImmunoBiome Inc., POSTECH Biotech Center, Pohang 37673, Republic of Korea
| |
Collapse
|
33
|
Taniya MA, Chung HJ, Al Mamun A, Alam S, Aziz MA, Emon NU, Islam MM, Hong STS, Podder BR, Ara Mimi A, Aktar Suchi S, Xiao J. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front Cell Infect Microbiol 2022; 12:915701. [PMID: 35937689 PMCID: PMC9355470 DOI: 10.3389/fcimb.2022.915701] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disorder that affects normal brain development. The recent finding of the microbiota-gut-brain axis indicates the bidirectional connection between our gut and brain, demonstrating that gut microbiota can influence many neurological disorders such as autism. Most autistic patients suffer from gastrointestinal (GI) symptoms. Many studies have shown that early colonization, mode of delivery, and antibiotic usage significantly affect the gut microbiome and the onset of autism. Microbial fermentation of plant-based fiber can produce different types of short-chain fatty acid (SCFA) that may have a beneficial or detrimental effect on the gut and neurological development of autistic patients. Several comprehensive studies of the gut microbiome and microbiota-gut-brain axis help to understand the mechanism that leads to the onset of neurological disorders and find possible treatments for autism. This review integrates the findings of recent years on the gut microbiota and ASD association, mainly focusing on the characterization of specific microbiota that leads to ASD and addressing potential therapeutic interventions to restore a healthy balance of gut microbiome composition that can treat autism-associated symptoms.
Collapse
Affiliation(s)
- Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Science, Independent University, Dhaka, Bangladesh
| | - Hea-Jong Chung
- Gwanju Center, Korea Basic Science Institute, Gwanju, South Korea
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Safaet Alam
- Drugs and Toxins Research Division, BCSIR Laboratories, Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi, Bangladesh
| | - Md. Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chattogram, Bangladesh
| | - Md. Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Seong-T shool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Bristy Rani Podder
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Anjuman Ara Mimi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Varela-Trinidad GU, Domínguez-Díaz C, Solórzano-Castanedo K, Íñiguez-Gutiérrez L, Hernández-Flores TDJ, Fafutis-Morris M. Probiotics: Protecting Our Health from the Gut. Microorganisms 2022; 10:1428. [PMID: 35889147 PMCID: PMC9316266 DOI: 10.3390/microorganisms10071428] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota (GM) comprises billions of microorganisms in the human gastrointestinal tract. This microbial community exerts numerous physiological functions. Prominent among these functions is the effect on host immunity through the uptake of nutrients that strengthen intestinal cells and cells involved in the immune response. The physiological functions of the GM are not limited to the gut, but bidirectional interactions between the gut microbiota and various extraintestinal organs have been identified. These interactions have been termed interorganic axes by several authors, among which the gut-brain, gut-skin, gut-lung, gut-heart, and gut-metabolism axes stand out. It has been shown that an organism is healthy or in homeostasis when the GM is in balance. However, altered GM or dysbiosis represents a critical factor in the pathogenesis of many local and systemic diseases. Therefore, probiotics intervene in this context, which, according to various published studies, allows balance to be maintained in the GM, leading to an individual's good health.
Collapse
Affiliation(s)
- Gael Urait Varela-Trinidad
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Carolina Domínguez-Díaz
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Karla Solórzano-Castanedo
- Doctorado en Ciencias de la Nutrición Traslacional, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
| | - Teresita de Jesús Hernández-Flores
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
- Departamento de Disciplinas Filosóficas Metodológicas e Intrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| |
Collapse
|
35
|
Avolio E, Olivito I, Rosina E, Romano L, Angelone T, Bartolo Anna D, Scimeca M, Bellizzi D, D'Aquila P, Passarino G, Alò R, Maria Facciolo R, Bagni C, De Lorenzo A, Canonaco M. Modifications of behavior and inflammation in mice following transplant with fecal microbiota from children with autism. Neuroscience 2022; 498:174-189. [DOI: 10.1016/j.neuroscience.2022.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
36
|
Zhang Y, Liang H, Wang Y, Cheng R, Pu F, Yang Y, Li J, Wu S, Shen X, He F. Heat-inactivated Lacticaseibacillus paracasei N1115 alleviates the damage due to brain function caused by long-term antibiotic cocktail exposure in mice. BMC Neurosci 2022; 23:38. [PMID: 35754018 PMCID: PMC9233843 DOI: 10.1186/s12868-022-00724-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Critical development period of intestinal microbiota occurs concurrently with brain development, and their interaction is influenced by the microbiota–gut–brain axis. This study examined how antibiotics exposure affected gut microbiota and brain development and analyzed the possible benefits of heat-inactivated Lacticaseibacillus paracasei N1115 (N1115). Thirty neonatal male mice were randomly divided into three groups and treated with sterilized water (control), an antibiotic cocktail (Abx), or antibiotics plus heat-inactivated N1115 (Abx + N1115) for 84 days. We found that while the mRNA levels of GABAAα1, GABAb1, and glucocorticoid receptor (GR) in the hippocampus and brain-derived neurotrophic factor (BDNF), GABAAα1, GABAb1, and nerve growth factor (NGF) in the prefrontal cortex were higher, the mRNA levels of 5-HT1A were lower in the Abx group. The Abx + N1115 group had lower mRNA levels of GABAAα1, GABAb1, and GR in the hippocampus and BDNF, GABAb1, and NGF in the prefrontal cortex than the Abx group. The latency period was longer in the Morris water maze test while longer rest time was seen in tail suspension test in the Abx group than the control and Abx + N1115 groups. In the open field test, the moving time and distance of the Abx group were reduced. Further, the alpha-diversity indexes of the Abx and Abx + N1115 groups were significantly lower than the control. Further, long-term exposure to antibiotics disrupted the intestinal microbiota as evidenced by decreased Bacteroides, Firmicutes, and Lactobacillus, and increased Proteobacteria and Citrobacter. However, N1115 significantly decreased the abundance of Citrobacter when compared with those in the Abx group. These results indicate that antibiotics can substantially damage the intestinal microbiota and cognitive function, causing anxiety and depression, which can be alleviated by heat-inactivated N1115 via modulation of the microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huijing Liang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yimie Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fangfang Pu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yang Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3rd section, South Renmin Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
37
|
Alfawaz HA, El-Ansary A, Al-Ayadhi L, Bhat RS, Hassan WM. Protective Effects of Bee Pollen on Multiple Propionic Acid-Induced Biochemical Autistic Features in a Rat Model. Metabolites 2022; 12:metabo12070571. [PMID: 35888695 PMCID: PMC9323335 DOI: 10.3390/metabo12070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that clinically presented as impaired social interaction, repetitive behaviors, and weakened communication. The use of bee pollen as a supplement rich in amino acids amino acids, vitamins, lipids, and countless bioactive substances may lead to the relief of oxidative stress, neuroinflammation, glutamate excitotoxicity, and impaired neurochemistry as etiological mechanisms autism. Thirty young male Western albino rats were randomly divided as: Group I-control; Group II, in which autism was induced by the oral administration of 250 mg propionic acid/kg body weight/day for three days followed by orally administered saline until the end of experiment and Group III, the bee pollen-treated group, in which the rats were treated with 250 mg/kg body weight of bee pollen for four weeks before autism was induced as described for Group II. Markers related to oxidative stress, apoptosis, inflammation, glutamate excitotoxicity, and neurochemistry were measured in the brain tissue. Our results indicated that while glutathione serotonin, dopamine, gamma-aminobutyric acid (GABA), GABA/Glutamate ratio, and vitamin C were significantly reduced in propionic acid-treated group (p < 0.05), glutamate, IFN-γ, IL-1A, IL-6, caspase-3, and lipid peroxide levels were significantly elevated (p < 0.05). Bee pollen supplementation demonstrates protective potency presented as amelioration of most of the measured variables with significance range between (p < 0.05)−(p < 0.001).
Collapse
Affiliation(s)
- Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: ; Tel.: +966-508462529; Fax: +966-11-4682184
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Wail M. Hassan
- Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA;
| |
Collapse
|
38
|
Viciani E, Barone M, Bongiovanni T, Quercia S, Di Gesu R, Pasta G, Manetti P, Iaia FM, Trecroci A, Rampelli S, Candela M, Biagi E, Castagnetti A. Fecal microbiota monitoring in elite soccer players along the 2019-2020 competitive season. Int J Sports Med 2022; 43:1137-1147. [PMID: 35595508 DOI: 10.1055/a-1858-1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Physical exercise affects the human gut microbiota that, in turn, influences athletes' performance. The current understanding of how the microbiota of professional athletes changes along with different phases of training is sparse. We aim to characterize the fecal microbiota in elite soccer players along with different phases of a competitive season using 16S rRNA gene sequencing. Fecal samples were collected after the summer off-season period, the pre-season retreat, the first half of the competitive season, and the 8 weeks COVID-19 lockdown that interrupted the season 2019-2020. According to our results, the gut microbiota of professional athletes changes along with the phases of the season, characterized by different training, diet, nutritional surveillance, and environment sharing. Pre-season retreat, during which nutritional surveillance and exercise intensity were at their peak, caused a decrease in bacterial groups related to unhealthy lifestyle and an increase in health-promoting symbionts. The competitive season and forced interruption affected other features of the athletes' microbiota, i.e. bacterial groups that respond to dietary fibers load and stress levels. Our longitudinal study, focusing on one of the most followed sports worldwide, provides baseline data for future comparisons and microbiome-targeting interventions aimed at developing personalized training and nutrition plans for performances maximization.
Collapse
Affiliation(s)
| | - Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Tindaro Bongiovanni
- Department of Health, Nutrition and Exercise Physiology, Parma Calcio 1913, Parma, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | | | | | - Giulio Pasta
- Medical Department, Parma Calcio 1913, Parma, Italy
| | | | - F Marcello Iaia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Athos Trecroci
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, BOLOGNA, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | |
Collapse
|
39
|
Rentería I, García-Suárez PC, Moncada-Jiménez J, Machado-Parra JP, Antunes BM, Lira FS, Jiménez-Maldonado A. Unhealthy Dieting During the COVID-19 Pandemic: An Opinion Regarding the Harmful Effects on Brain Health. Front Nutr 2022; 9:876112. [PMID: 35571935 PMCID: PMC9097874 DOI: 10.3389/fnut.2022.876112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Since 2020, the world has been suffering from a pandemic that has affected thousands of people regardless of socio-economic conditions, forcing the population to adopt different strategies to prevent and control the advance of the disease, one of which is social distancing. Even though social distancing is a safe strategy to reduce the spread of COVID-19, it is also the cause of a rising sedentary behavior. This behavior develops an excess of fat tissue that leads to metabolic and inflammatory disruption related to chronic diseases and mental health disorders, such as anxiety, depression, and sleep issues. Furthermore, the adoption of dietary patterns involving the consumption of ultra-processed foods, higher in fats and sugars, and the reduction of fresh and healthy foods may play a role in the progress of the disease. In this perspective, we will discuss how an unhealthy diet can affect brain function and, consequently, be a risk factor for mental health diseases.
Collapse
Affiliation(s)
- Iván Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Patricia Concepción García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - José Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | | | | | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University, UNESP, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
40
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
41
|
Xie X, Li L, Wu X, Hou F, Chen Y, Shi L, Liu Q, Zhu K, Jiang Q, Feng Y, Xiao P, Zhang J, Gong J, Song R. Alteration of the fecal microbiota in Chinese children with autism spectrum disorder. Autism Res 2022; 15:996-1007. [PMID: 35403356 DOI: 10.1002/aur.2718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is associated with altered gut microbiota. However, there has been little consensus on the altered bacterial species and studies have had small sample sizes. We aimed to identify the taxonomic composition and evaluate the changes in the fecal microbiota in Chinese children with ASD by using a relatively large sample size. We conducted a case-control study of 101 children with ASD and 103 healthy controls in China. Demographic information and fecal samples were collected, and the V3-V4 hypervariable regions of the bacterial 16S ribosomal RNA (rRNA) gene were sequenced. The alpha and beta diversities between the two groups were significantly different. After correcting for multiple comparisons, at the phylum level the relative abundances of Actinobacteria and Proteobacteria in the case group were significantly higher than those in the control group. The relative abundance of the Escherichia-Shigella genus in the case group was significantly higher than that of the control group, and the relative abundance of Blautia and unclassified_f__Lachnospiraceae in the control group were higher than that of the case group. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis showed that children with ASD may have disturbed functional pathways, such as amino acid metabolism, cofactor and vitamin metabolism, and the AMP-activated protein kinase signaling pathway. This study revealed the characteristics of the intestinal flora of Chinese children with ASD and provided further evidence of gut microbial dysbiosis in ASD. LAY SUMMARY: This study characterized the gut microbiota composition of 101 children with ASD and 103 healthy controls in China. The altered gut microbiota may contribute significantly to the risk of ASD, including significant increases in the relative abundances of Actinobacteria, Proteobacteria and Escherichia-Shigella and significant decrease of Blautia and unclassified_f__Lachnospiraceae. This study provided further evidence of gut microbial dysbiosis in ASD.
Collapse
Affiliation(s)
- Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Xiaoqian Wu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Yanlin Chen
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Liuwei Shi
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Xiao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Jianhua Gong
- Maternity and Children Health Care Hospital of Luohu District, Shenzhen, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Mohammad FK, Palukuri MV, Shivakumar S, Rengaswamy R, Sahoo S. A Computational Framework for Studying Gut-Brain Axis in Autism Spectrum Disorder. Front Physiol 2022; 13:760753. [PMID: 35330929 PMCID: PMC8940246 DOI: 10.3389/fphys.2022.760753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022] Open
Abstract
Introduction The integrity of the intestinal epithelium is crucial for human health and is harmed in autism spectrum disorder (ASD). An aberrant gut microbial composition resulting in gut-derived metabolic toxins was found to damage the intestinal epithelium, jeopardizing tissue integrity. These toxins further reach the brain via the gut-brain axis, disrupting the normal function of the brain. A mechanistic understanding of metabolic disturbances in the brain and gut is essential to design effective therapeutics and early intervention to block disease progression. Herein, we present a novel computational framework integrating constraint based tissue specific metabolic (CBM) model and whole-body physiological pharmacokinetics (PBPK) modeling for ASD. Furthermore, the role of gut microbiota, diet, and oxidative stress is analyzed in ASD. Methods A representative gut model capturing host-bacteria and bacteria-bacteria interaction was developed using CBM techniques and patient data. Simultaneously, a PBPK model of toxin metabolism was assembled, incorporating multi-scale metabolic information. Furthermore, dynamic flux balance analysis was performed to integrate CBM and PBPK. The effectiveness of a probiotic and dietary intervention to improve autism symptoms was tested on the integrated model. Results The model accurately highlighted critical metabolic pathways of the gut and brain that are associated with ASD. These include central carbon, nucleotide, and vitamin metabolism in the host gut, and mitochondrial energy and amino acid metabolisms in the brain. The proposed dietary intervention revealed that a high-fiber diet is more effective than a western diet in reducing toxins produced inside the gut. The addition of probiotic bacteria Lactobacillus acidophilus, Bifidobacterium longum longum, Akkermansia muciniphila, and Prevotella ruminicola to the diet restores gut microbiota balance, thereby lowering oxidative stress in the gut and brain. Conclusion The proposed computational framework is novel in its applicability, as demonstrated by the determination of the whole-body distribution of ROS toxins and metabolic association in ASD. In addition, it emphasized the potential for developing novel therapeutic strategies to alleviate autism symptoms. Notably, the presented integrated model validates the importance of combining PBPK modeling with COBRA -specific tissue details for understanding disease pathogenesis.
Collapse
Affiliation(s)
- Faiz Khan Mohammad
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Meghana Venkata Palukuri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Shruti Shivakumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Raghunathan Rengaswamy
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Swagatika Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
43
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
44
|
Vellingiri B, Aishwarya SY, Benita Jancy S, Sriram Abhishek G, Winster Suresh Babu H, Vijayakumar P, Narayanasamy A, Mariappan S, Sangeetha R, Valsala Gopalakrishnan A, Parthasarathi R, Iyer M. An anxious relationship between Autism Spectrum Disorder and Gut Microbiota: A tangled chemistry? J Clin Neurosci 2022; 99:169-189. [PMID: 35286970 DOI: 10.1016/j.jocn.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a serious multifactorial neurodevelopmental disorder often accompanied by strained social communication, repetitive behaviour, immune dysregulation, and gastrointestinal (GI) issues. Recent studies have recorded a link between dysbiosis in the gut microbiota (gm) and the primary stages of ASD. A bidirectional connection (also called microbiota-gut-brain-axis) exchanges information between the gut bacteria and central nervous system. When the homeostasis of the microenvironment of the gut is dysregulated, it causes oxidative stress, affecting neuronal cells and neurotransmitters, thereby causing neurodevelopmental disorders. Studies have confirmed a difference in the constitution of gut bacteria among ASD cases and their controls. Numerous studies on animal models of ASD have shown altered gm and its association with abnormal metabolite profile and altered behaviour phenotype. This process happens due to an abnormal metabolite production in gm, leading to changes in the immune system, especially in ASD. Hence, this review aims to question the current knowledge on gm dysbiosis and its related GI discomforts and ASD behavioural symptoms and shed light on the possible therapeutic approaches available to deal with this situation. Thereby, though it is understood that more research might be needed to prove an association or causal relationship between gm and ASD, therapy with the microbiome may also be considered as an effective strategy to combat this issue.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - S Y Aishwarya
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - S Benita Jancy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - G Sriram Abhishek
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Padmavathi Vijayakumar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sujitha Mariappan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - R Sangeetha
- Department of Zoology and Wild Life Biology, Government Arts College, Udhagamandalam 643002, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Centre for Innovation and Translational Research, Environmental Monitoring and Intervention Hub (DSIR-CRTDH), CSIR-Indian Institute of Toxicology Research, Lucknow 226001 Uttar Pradesh, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India.
| |
Collapse
|
45
|
Mehra A, Arora G, Gaurav, Kaur M, Singh H, Singh B, Kaur S. Gut microbiota and Autism Spectrum Disorder: From pathogenesis to potential therapeutic perspectives. J Tradit Complement Med 2022; 13:135-149. [PMID: 36970459 PMCID: PMC10037072 DOI: 10.1016/j.jtcme.2022.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Autism is a complex neurodevelopmental disorder which disrupts communication, social and interactive skills followed by appearance of repetitive behavior. The underlying etiology remains incomprehensible but genetic and environmental factors play a key role. Accumulated evidence shows that alteration in level of gut microbes and their metabolites are not only linked to gastrointestinal problems but also to autism. So far the mix of microbes that is present in the gut affects human health in numerous ways through extensive bacterial-mammalian cometabolism and has a marked influence over health via gut-brain-microbial interactions. Healthy microbiota may even ease the symptoms of autism, as microbial balance influences brain development through the neuroendocrine, neuroimmune, and autonomic nervous systems. In this article, we focused on reviewing the correlation between gut microbiota and their metabolites on symptoms of autism by utilizing prebiotics, probiotics and herbal remedies to target gut microflora hence autism.
Collapse
|
46
|
Kushak RI, Sengupta A, Winter HS. Interactions between the intestinal microbiota and epigenome in individuals with autism spectrum disorder. Dev Med Child Neurol 2022; 64:296-304. [PMID: 34523735 DOI: 10.1111/dmcn.15052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by variable impairment of cognitive function and interpersonal relationships. Furthermore, some individuals with ASD have gastrointestinal disorders that have been correlated with impairments in intestinal microbiota. Gut microbiota are important not only for intestinal health, but also for many other functions including food digestion, energy production, immune system regulation, and, according to current data, behavior. Disruption of the indigenous microbiota, microbial dysbiosis (imbalance between microorganisms present in the gut), overgrowth of potentially pathogenic microorganisms, a less diverse microbiome, or lower levels of beneficial bacteria in children with ASD can affect behavior. Metabolome analysis in children with ASD has identified perturbations in multiple metabolic pathways that might be associated with cognitive functions. Recent studies have shown that the intestinal microbiome provides environmental signals that can modify host response to stimuli by modifying the host epigenome, which affects DNA methylation, histone modification, and non-coding RNAs. The most studied microbiota-produced epigenetic modifiers are short-chain fatty acids, although other products of intestinal microbiota might also cause epigenetic modifications in the host's DNA. Here we review evidence suggesting that epigenetic alterations caused by modification of gene expression play an important role in understanding ASD.
Collapse
Affiliation(s)
- Rafail I Kushak
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashok Sengupta
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harland S Winter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Panisi C, Marini M. Dynamic and Systemic Perspective in Autism Spectrum Disorders: A Change of Gaze in Research Opens to A New Landscape of Needs and Solutions. Brain Sci 2022; 12:250. [PMID: 35204013 PMCID: PMC8870276 DOI: 10.3390/brainsci12020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
The first step for a harmonious bio-psycho-social framework in approaching autism spectrum disorders (ASD) is overcoming the conflict between the biological and the psychosocial perspective. Biological research can provide clues for a correct approach to clinical practice, assuming that it would lead to the conceptualization of a pathogenetic paradigm able to account for epidemiologic and clinical findings. The upward trajectory in ASD prevalence and the systemic involvement of other organs besides the brain suggest that the epigenetic paradigm is the most plausible one. The embryo-fetal period is the crucial window of opportunity for keeping neurodevelopment on the right tracks, suggesting that women's health in pregnancy should be a priority. Maladaptive molecular pathways beginning in utero, in particular, a vicious circle between the immune response, oxidative stress/mitochondrial dysfunction, and dysbiosis-impact neurodevelopment and brain functioning across the lifespan and are the basis for progressive multisystemic disorders that account for the substantial health loss and the increased mortality in ASD. Therefore, the biological complexity of ASD and its implications for health requires the enhancement of clinical skills on these topics, to achieve an effective multi-disciplinary healthcare model. Well-balanced training courses could be a promising starting point to make a change.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
48
|
Deutsch SI, Luyo ZNM, Burket JA. Targeted NMDA Receptor Interventions for Autism: Developmentally Determined Expression of GluN2B and GluN2A-Containing Receptors and Balanced Allosteric Modulatory Approaches. Biomolecules 2022; 12:biom12020181. [PMID: 35204682 PMCID: PMC8961601 DOI: 10.3390/biom12020181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/27/2022] Open
Abstract
Various ASD risk alleles have been associated with impairment of NMDA receptor activation (i.e., NMDA Receptor Hypofunction) and/or disturbance of the careful balance between activation mediated by GluN2B-subtype and GluN2A-subtype-containing NMDA receptors. Importantly, although these various risk alleles affect NMDA receptor activation through different mechanisms, they share the pathogenic consequences of causing disturbance of highly regulated NMDA receptor activation. Disturbances of NMDA receptor activation due to sequence variants, protein termination variants and copy number variants are often cell-specific and regionally selective. Thus, translational therapeutic NMDA receptor agonist interventions, which may require chronic administration, must have specificity, selectivity and facilitate NMDA receptor activation in a manner that is physiologic (i.e., mimicking that of endogenously released glutamate and glycine/D-serine released in response to salient and relevant socio-cognitive provocations within discrete neural circuits). Importantly, knockout mice with absent expression and mice with haploinsufficient expression of the deleterious genes often serve as good models to test the potential efficacy of promising pharmacotherapeutic strategies. The Review considers diverse examples of “illness” genes, their pathogenic effects on NMDA receptor activation and, when available, results of studies of impaired sociability in mouse models, including “proof of principle/proof of concept” experiments exploring NMDA receptor agonist interventions and the development of promising positive allosteric modulators (PAMs), which serve as support and models for developing an inventory of PAMs and negative allosteric modulators (NAMs) for translational therapeutic intervention. Conceivably, selective PAMs and NAMs either alone or in combination will be administered to patients guided by their genotype in order to potentiate and/or restore disrupted balance between activation mediated by GluN2B-subtype and GluN2A-subtype containing NMDA receptors.
Collapse
Affiliation(s)
- Stephen I. Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507, USA;
| | - Zachary N. M. Luyo
- Program in Neuroscience, Christopher Newport University, Newport News, VA 23606, USA;
| | - Jessica A. Burket
- Program in Neuroscience, Christopher Newport University, Newport News, VA 23606, USA;
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA 23606, USA
- Correspondence: ; Tel.: +1-757-594-8743
| |
Collapse
|
49
|
Shah F, Dwivedi M. Pathophysiological Role of Gut Microbiota Affecting Gut–Brain Axis and Intervention of Probiotics and Prebiotics in Autism Spectrum Disorder. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:69-115. [DOI: 10.1007/978-981-16-6760-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Jendraszak M, Gałęcka M, Kotwicka M, Regdos A, Pazgrat-Patan M, Andrusiewicz M. Commercial microbiota test revealed differences in the composition of intestinal microorganisms between children with autism spectrum disorders and neurotypical peers. Sci Rep 2021; 11:24274. [PMID: 34931007 PMCID: PMC8688445 DOI: 10.1038/s41598-021-03794-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022] Open
Abstract
The early-life modifications of intestinal microbiota may impact children's subsequent emotional and cognitive development. Studies show that some bacteria species in gut microbiota, and the lack of others, may play a key role in autism spectrum disorders (ASD) development. Fecal samples were obtained from three groups of children: 16 healthy, 24 with allergies (ALG), and 33 with ASD (probiotics and non-probiotics users). The analysis was carried out according to the KyberKompakt Pro protocol. We observed a significantly higher level of Klebsiella spp. in the healthy children from the non-probiotics group, considering three groups. In the same group, Bifidobacterium spp. the level was lower in ASD compared to neurotypical individuals. In healthy children who did not use probiotics, strong positive correlations were observed in E. coli and Enterococcus spp. and Bacteroides and Klebsiella spp., and a negative correlation for Akkermansia muciniphila with both Klebsiella spp. and Bacteroides spp. In the ASD group who take probiotics, a strongly negative correlation was observed in Lactobacillus spp., and both Faecalibacterium prausnitzii and Akkermansia muciniphila levels. In the ALG group, the strongest, negative correlation was found between Enterococcus spp. and Lactobacillus spp. as in Akkermansia muciniphila and Bifidobacterium spp. The simple commercial test revealed minor differences in the composition of intestinal microorganisms between children with autism spectrum disorders and neurotypical peers.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznan, Poland
| | | | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznan, Poland
| | | | | | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznan, Poland.
| |
Collapse
|