1
|
Wang P, Hu J, Chen C, Jiang Z, Zhang Y, Lin K, Liao L, Wang X. The immune regulatory mechanism of ketamine-induced psychiatric disorders: A new perspective on drug-induced psychiatric symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111194. [PMID: 39542202 DOI: 10.1016/j.pnpbp.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Ketamine, a psychoactive substance strictly regulated by international drug conventions, is classified as a "new type drug" due to its excitatory, hallucinogenic, or inhibitory effects. The etiology of ketamine-induced psychiatric symptoms is multifaceted, with the immune regulatory mechanism being the most prominent among several explanatory theories. In recent years, the interaction between the immune system and nervous system have garnered significant attention in neuropsychiatric disorder research. Notably, the infiltration of peripheral lymphocytes into the central nervous system has emerged as an early hallmark of certain neuropsychiatric disorders. However, a notable gap exists in the current literature, regarding the immune regulatory mechanisms, specifically the peripheral immune alterations, associated with ketamine-induced psychiatric symptoms. To address this void, this article endeavors to provide a comprehensive overview of the pathophysiological processes implicated in psychiatric disorders or symptoms, encompassing those elicited by ketamine. This analysis delves into aspects such as nerve damage, alterations within the central immune system, and the regulation of the peripheral immune system. By emphasizing the intricate crosstalk between the peripheral immune system and the central nervous system, this study sheds light on their collaborative role in the onset and progression of psychiatric diseases or symptoms. This insight offers fresh perspectives on the underlying mechanisms, diagnosis and therapeutic strategies for mental disorders stemming from drug abuse.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junmei Hu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Congliang Chen
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihan Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yu Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Kexin Lin
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Samoud S, Mtiraoui A, Zamali I, Galai Y, Hannachi N, Manoubi W, Nakhli J, Louzir H, Kissi YE. Comparative Analysis of Serum BAFF and IL-17 Levels Pre- and Post-Antipsychotic Treatment for Acute Schizophrenia. Int J Mol Sci 2025; 26:385. [PMID: 39796241 PMCID: PMC11720193 DOI: 10.3390/ijms26010385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The interplay between the cytokine network and antipsychotic treatment in schizophrenia remains poorly understood. This study aimed to investigate the impact of psychotropic medications on serum levels of IFN-γ, IL-4, TGF-β1, IL-17, and BAFF, and to explore their relationship with psychopathological features. We recruited 63 patients diagnosed with schizophrenia in the acute phase, all of whom were either drug-naïve or had been drug-free for at least three months. Serum levels of IL-4, IFN-γ, TGF-β1, IL-17, and BAFF were measured at baseline and after six months of antipsychotic treatment. The severity of symptoms was assessed using the Brief Psychiatric Rating Scale (BPRS), the Scale for the Assessment of Positive Symptoms (SAPS), and the Scale for the Assessment of Negative Symptoms (SANS). Fifty-two patients completed the six-month follow-up for immunoassay analysis. Antipsychotic treatment led to a significant decrease in serum levels of IFN-γ, TGF-β1, and IL-17, alongside a significant increase in BAFF levels. Changes in IFN-γ were positively correlated with SANS scores and negatively correlated with Global Assessment of Functioning (GAF) scores. Changes in TGF-β1 were negatively correlated with GAF scores. Changes in BAFF were negatively correlated with SAPS scores. Multivariable regression models were used to explore the association between cytokine level changes (IL-17, BAFF, IFN-γ, and TGF-β1) and independent variables, including demographic (gender, age), behavioral (tobacco use), clinical (schizophrenia type, disease course, date of onset, prior treatment), and biological (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR)) factors, as well as standardized assessment scores. No significant associations were found, except for a significant negative correlation between TGF-β1 changes and GAF scores, as well as a positive correlation with age. Interestingly, advanced statistical analyses revealed that only changes in IL-17 and BAFF levels were significantly associated with antipsychotic treatment. Our findings suggest that antipsychotic drugs exert both pro- and anti-inflammatory effects on the cytokine network. The observed modulation of IL-17 and BAFF highlights their potential as future therapeutic targets in schizophrenia.
Collapse
Affiliation(s)
- Samar Samoud
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (I.Z.); (Y.G.)
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.M.); (N.H.); (J.N.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia;
| | - Ahlem Mtiraoui
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.M.); (N.H.); (J.N.)
- Department of Psychiatry, Farhat Hached University Hospital, Sousse 4000, Tunisia
- Research Laboratory LR12ES04, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia;
| | - Imen Zamali
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (I.Z.); (Y.G.)
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia;
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Yousr Galai
- Department of Clinical Immunology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (I.Z.); (Y.G.)
- Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Naila Hannachi
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.M.); (N.H.); (J.N.)
| | - Wiem Manoubi
- Department of Neuroscience, Erasmus University Medical Centre, 3000 GD Rotterdam, The Netherlands;
- Research Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology LR03SP02, Farhat Hached University Hospital, Sousse 4000, Tunisia
| | - Jaafar Nakhli
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.M.); (N.H.); (J.N.)
- Department of Psychiatry, Farhat Hached University Hospital, Sousse 4000, Tunisia
- Research Laboratory LR12ES04, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia;
| | - Hechmi Louzir
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, Tunis 1002, Tunisia;
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Yousri El Kissi
- Research Laboratory LR12ES04, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia;
| |
Collapse
|
3
|
Loiodice S, D'Acquisto F, Drinkenburg P, Suojanen C, Llorca PM, Manji HK. Neuropsychiatric drug development: Perspectives on the current landscape, opportunities and potential future directions. Drug Discov Today 2025; 30:104255. [PMID: 39615745 DOI: 10.1016/j.drudis.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Mental health represents a major challenge to our societies. One key difficulty associated with neuropsychiatric drug development is the lack of connection between the underlying biology and the disease. Nevertheless, there is growing optimism in this field with recent drug approvals (the first in decades) and renewed interest from pharmaceutical companies and investors. Here we review some of the most promising drug discovery and development endeavors currently deployed by industry. We also present elements illustrating the renewed interest from key stakeholders in neuropsychiatric drug development and provide potential future directions in this field.
Collapse
Affiliation(s)
| | - Fulvio D'Acquisto
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK; School of Life and Health Science, University of Roehampton, London, UK
| | - Pim Drinkenburg
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Christian Suojanen
- Broadreach Global LLC, Miami, FL, USA; European Brain Council, Brussels, Belgium
| | - Pierre-Michel Llorca
- Department of Psychiatry, CHU Clermont-Ferrand, University of Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France; Fondation FondaMental, Créteil, France
| | - Husseini K Manji
- Oxford University, Oxford, UK; Yale University, New Haven, CT, USA; UK Government Mental Health Mission, London, UK
| |
Collapse
|
4
|
Wang J, Luo GY, Tian T, Zhao YQ, Meng SY, Wu JH, Han WX, Deng B, Ni J. Shared genetic basis and causality between schizophrenia and inflammatory bowel disease: evidence from a comprehensive genetic analysis. Psychol Med 2024; 54:2658-2668. [PMID: 38563283 DOI: 10.1017/s0033291724000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND The comorbidity between schizophrenia (SCZ) and inflammatory bowel disease (IBD) observed in epidemiological studies is partially attributed to genetic overlap, but the magnitude of shared genetic components and the causality relationship between them remains unclear. METHODS By leveraging large-scale genome-wide association study (GWAS) summary statistics for SCZ, IBD, ulcerative colitis (UC), and Crohn's disease (CD), we conducted a comprehensive genetic pleiotropic analysis to uncover shared loci, genes, or biological processes between SCZ and each of IBD, UC, and CD, independently. Univariable and multivariable Mendelian randomization (MR) analyses were applied to assess the causality across these two disorders. RESULTS SCZ genetically correlated with IBD (rg = 0.14, p = 3.65 × 10−9), UC (rg = 0.15, p = 4.88 × 10−8), and CD (rg = 0.12, p = 2.27 × 10−6), all surpassed the Bonferroni correction. Cross-trait meta-analysis identified 64, 52, and 66 significantly independent loci associated with SCZ and IBD, UC, and CD, respectively. Follow-up gene-based analysis found 11 novel pleiotropic genes (KAT5, RABEP1, ELP5, CSNK1G1, etc) in all joint phenotypes. Co-expression and pathway enrichment analysis illustrated those novel genes were mainly involved in core immune-related signal transduction and cerebral disorder-related pathways. In univariable MR, genetic predisposition to SCZ was associated with an increased risk of IBD (OR 1.11, 95% CI 1.07–1.15, p = 1.85 × 10−6). Multivariable MR indicated a causal effect of genetic liability to SCZ on IBD risk independent of Actinobacteria (OR 1.11, 95% CI 1.06–1.16, p = 1.34 × 10−6) or BMI (OR 1.11, 95% CI 1.04–1.18, p = 1.84 × 10−3). CONCLUSIONS We confirmed a shared genetic basis, pleiotropic loci/genes, and causal relationship between SCZ and IBD, providing novel insights into the biological mechanism and therapeutic targets underlying these two disorders.
Collapse
Affiliation(s)
- Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Guang-Yu Luo
- Department of Gastroenterology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Qiang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shi-Yin Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jun-Hua Wu
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Wen-Xiu Han
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Deng
- Department of Gastroenterology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Benjamin KJM, Chen Q, Eagles NJ, Huuki-Myers LA, Collado-Torres L, Stolz JM, Pertea G, Shin JH, Paquola ACM, Hyde TM, Kleinman JE, Jaffe AE, Han S, Weinberger DR. Analysis of gene expression in the postmortem brain of neurotypical Black Americans reveals contributions of genetic ancestry. Nat Neurosci 2024; 27:1064-1074. [PMID: 38769152 PMCID: PMC11156587 DOI: 10.1038/s41593-024-01636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/29/2024] [Indexed: 05/22/2024]
Abstract
Ancestral differences in genomic variation affect the regulation of gene expression; however, most gene expression studies have been limited to European ancestry samples or adjusted to identify ancestry-independent associations. Here, we instead examined the impact of genetic ancestry on gene expression and DNA methylation in the postmortem brain tissue of admixed Black American neurotypical individuals to identify ancestry-dependent and ancestry-independent contributions. Ancestry-associated differentially expressed genes (DEGs), transcripts and gene networks, while notably not implicating neurons, are enriched for genes related to the immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson disease and 30% of heritability for Alzheimer's disease. Ancestry-associated DEGs also show general enrichment for the heritability of diverse immune-related traits but depletion for psychiatric-related traits. We also compared Black and non-Hispanic white Americans, confirming most ancestry-associated DEGs. Our results delineate the extent to which genetic ancestry affects differences in gene expression in the human brain and the implications for brain illness risk.
Collapse
Affiliation(s)
- Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Geo Pertea
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Apuã C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neumora Therapeutics, Watertown, MA, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Lashgari NA, Roudsari NM, Shamsnia HS, Shayan M, Momtaz S, Abdolghaffari AH. TLR/mTOR inflammatory signaling pathway: novel insight for the treatment of schizophrenia. Can J Physiol Pharmacol 2024; 102:150-160. [PMID: 37955633 DOI: 10.1139/cjpp-2023-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The Toll-like receptor (TLR)/mammalian target of rapamycin (mTOR) signaling pathway is involved in the intracellular regulation of protein synthesis, specifically the ones that mediate neuronal morphology and facilitate synaptic plasticity. The activity of TLR/mTOR signaling has been disrupted, leading to neurodevelopment and deficient synaptic plasticity, which are the main symptoms of schizophrenia. The TLR receptor activates the mTOR signaling pathway and increases the elevation of inflammatory cytokines. Interleukin (IL)-6 is the most commonly altered cytokine, while IL-1, tumor necrosis factor, and interferon (IFN) also lead to SCZ. Anti-inflammatory and anti-oxidative agents such as celecoxib, aspirin, minocycline, and omega-3 fatty acids have shown efficiency against SCZ. As a result, inhibition of the inflammatory process could be suggested for the treatment of SCZ. So mTOR/TLR blockers represent the treatment of SCZ due to their inflammatory consequences. The objective of the present work was to find a novel anti-inflammatory agent that may block the mTOR/TLR inflammatory signaling pathways and might pave the way for the treatment of neuroinflammatory SCZ. Data were collected from experimental and clinical studies published in English between 1998 and October 2022 from Google Scholar, PubMed, Scopus, and the Cochrane library.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, The Academic Center for Education, Culture and Research (ACECR), Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
7
|
Wang Y, Zhang X. The role of immune inflammation in electroconvulsive therapy for schizophrenia: Treatment mechanism, and relationship with clinical efficacy: Immune-inflammation in ECT for schizophrenia. Psychiatry Res 2024; 332:115708. [PMID: 38171169 DOI: 10.1016/j.psychres.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Schizophrenia is a devastating psychiatric disorder that has detrimental effects on a significant portion of the global population. Electroconvulsive therapy (ECT), as a safe and effective physical therapy for schizophrenia, has demonstrated the ability to rapidly improve both positive and negative symptoms. Despite being used to treat schizophrenia for over 80 years, the therapeutic mechanisms of ECT are still in the early stages of exploration. Evidence has suggested that immune inflammation contributes to the pathogenesis of schizophrenia by interacting with neurotransmitters, neurodevelopment, and neurodegeneration. Given the importance of ECT as a fast-acting physical therapy for schizophrenia, gaining a deeper understanding of the role of immune inflammation may lead to developing innovative therapeutic approaches. This review summarized existing research that examined changes in peripheral inflammation following ECT in schizophrenia patients, and the effects of electroconvulsive stimulation (ECS) on neuroinflammation in animal studies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Zheng Y, Zhang Q, Zhou X, Yao L, Zhu Q, Fu Z. Altered levels of cytokine, T- and B-lymphocytes, and PD-1 expression rates in drug-naïve schizophrenia patients with acute phase. Sci Rep 2023; 13:21711. [PMID: 38066312 PMCID: PMC10709554 DOI: 10.1038/s41598-023-49206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Many studies have investigated the changes of immune cells and proinflammatory cytokines in patients with acute schizophrenia, but few studies have investigated the functional phenotypes of immune cells and the expression rate of programmed cell death protein 1 (PD-1)/ programmed cell death-Ligand 1 (PD-L1). The aim of this study was to investigate the extent of immune cells activation, PD-1/PD-L1 expressions, and altered cytokine levels in drug-naïve schizophrenia patients with acute-phase. 23 drug-naïve schizophrenia patients in acute-phase and 23 healthy individuals were enrolled in this study as experimental and control groups, separately. Socio-demographic information including gender, age, duration of illness, and smoking status was collected for each subject. Beckman DXFLEX triple laser thirteen-color flow cytometer and self-contained software CytoFLEX flow cytometric analysis software were used to detect the expressions of PD-1/PD-L1 on CD4+/CD8+ T lymphocytes, B lymphocytes, monocytes and NK cells. BD Bioscience was used to examine the levels of cytokines including interferon (IFN)-γ, tumor necrosis factor (TNF)-α, Interleukin (IL)-2, IL-4, IL-6, and IL-10. Drug-naïve schizophrenia patients in acute-phase had higher levels of peripheral blood CD4+ T lymphocytes and B lymphocytes, higher PD-1 expression in B lymphocytes, and lower levels of CD8+ T lymphocytes. In addition, IL-6 levels of peripheral blood were higher in schizophrenia patients (all P < 0.05). Significant immune stress was present in schizophrenia patients with acute-phase.
Collapse
Affiliation(s)
- Yali Zheng
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Qi Zhang
- Hangzhou Normal University, Hangzhou, China
| | - Xianqin Zhou
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Linjuan Yao
- Hangzhou Di'an Medical Laboratory Center Co., Ltd, Hangzhou, China
| | | | | |
Collapse
|
9
|
Mukhopadhyay A, Deshpande SN, Bhatia T, Thelma BK. Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case-control association study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1677-1691. [PMID: 37009928 DOI: 10.1007/s00406-023-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Genetic etiology of schizophrenia is poorly understood despite large genome-wide association data. Long non-coding RNAs (lncRNAs) with a probable regulatory role are emerging as important players in neuro-psychiatric disorders including schizophrenia. Prioritising important lncRNAs and analyses of their holistic interaction with their target genes may provide insights into disease biology/etiology. Of the 3843 lncRNA SNPs reported in schizophrenia GWASs extracted using lincSNP 2.0, we prioritised n = 247 based on association strength, minor allele frequency and regulatory potential and mapped them to lncRNAs. lncRNAs were then prioritised based on their expression in brain using lncRBase, epigenetic role using 3D SNP and functional relevance to schizophrenia etiology. 18 SNPs were finally tested for association with schizophrenia (n = 930) and its endophenotypes-tardive dyskinesia (n = 176) and cognition (n = 565) using a case-control approach. Associated SNPs were characterised by ChIP seq, eQTL, and transcription factor binding site (TFBS) data using FeatSNP. Of the eight SNPs significantly associated, rs2072806 in lncRNA hsaLB_IO39983 with regulatory effect on BTN3A2 was associated with schizophrenia (p = 0.006); rs2710323 in hsaLB_IO_2331 with role in dysregulation of ITIH1 with tardive dyskinesia (p < 0.05); and four SNPs with significant cognition score reduction (p < 0.05) in cases. Two of these with two additional variants in eQTL were observed among controls (p < 0.05), acting likely as enhancer SNPs and/or altering TFBS of eQTL mapped downstream genes. This study highlights important lncRNAs in schizophrenia and provides a proof of concept of novel interactions of lncRNAs with protein-coding genes to elicit alterations in immune/inflammatory pathways of schizophrenia.
Collapse
Affiliation(s)
- Anirban Mukhopadhyay
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Smita N Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
10
|
Benjamin KJM, Chen Q, Eagles NJ, Huuki-Myers LA, Collado-Torres L, Stolz JM, Pertea G, Shin JH, Paquola ACM, Hyde TM, Kleinman JE, Jaffe AE, Han S, Weinberger DR. Genetic and environmental contributions to ancestry differences in gene expression in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534458. [PMID: 37034760 PMCID: PMC10081196 DOI: 10.1101/2023.03.28.534458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ancestral differences in genomic variation are determining factors in gene regulation; however, most gene expression studies have been limited to European ancestry samples or adjusted for ancestry to identify ancestry-independent associations. We instead examined the impact of genetic ancestry on gene expression and DNA methylation (DNAm) in admixed African/Black American neurotypical individuals to untangle effects of genetic and environmental factors. Ancestry-associated differentially expressed genes (DEGs), transcripts, and gene networks, while notably not implicating neurons, are enriched for genes related to immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson's disease, and 30% of heritability for Alzhemier's disease. Ancestry-associated DEGs also show general enrichment for heritability of diverse immune-related traits but depletion for psychiatric-related traits. The cell-type enrichments and direction of effects vary by brain region. These DEGs are less evolutionarily constrained and are largely explained by genetic variations; roughly 15% are predicted by DNAm variation implicating environmental exposures. We also compared Black and White Americans, confirming most of these ancestry-associated DEGs. Our results highlight how environment and genetic background affect genetic ancestry differences in gene expression in the human brain and affect risk for brain illness.
Collapse
Affiliation(s)
- Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Geo Pertea
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Apuã C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neumora Therapeutics, Watertown, MA, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Steen NE, Rahman Z, Szabo A, Hindley GFL, Parker N, Cheng W, Lin A, O’Connell KS, Sheikh MA, Shadrin A, Bahrami S, Karthikeyan S, Hoseth EZ, Dale AM, Aukrust P, Smeland OB, Ueland T, Frei O, Djurovic S, Andreassen OA. Shared Genetic Loci Between Schizophrenia and White Blood Cell Counts Suggest Genetically Determined Systemic Immune Abnormalities. Schizophr Bull 2023; 49:1345-1354. [PMID: 37319439 PMCID: PMC10483470 DOI: 10.1093/schbul/sbad082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Immune mechanisms are indicated in schizophrenia (SCZ). Recent genome-wide association studies (GWAS) have identified genetic variants associated with SCZ and immune-related phenotypes. Here, we use cutting edge statistical tools to identify shared genetic variants between SCZ and white blood cell (WBC) counts and further understand the role of the immune system in SCZ. STUDY DESIGN GWAS results from SCZ (patients, n = 53 386; controls, n = 77 258) and WBC counts (n = 56 3085) were analyzed. We applied linkage disequilibrium score regression, the conditional false discovery rate method and the bivariate causal mixture model for analyses of genetic associations and overlap, and 2 sample Mendelian randomization to estimate causal effects. STUDY RESULTS The polygenicity for SCZ was 7.5 times higher than for WBC count and constituted 32%-59% of WBC count genetic loci. While there was a significant but weak positive genetic correlation between SCZ and lymphocytes (rg = 0.05), the conditional false discovery rate method identified 383 shared genetic loci (53% concordant effect directions), with shared variants encompassing all investigated WBC subtypes: lymphocytes, n = 215 (56% concordant); neutrophils, n = 158 (49% concordant); monocytes, n = 146 (47% concordant); eosinophils, n = 135 (56% concordant); and basophils, n = 64 (53% concordant). A few causal effects were suggested, but consensus was lacking across different Mendelian randomization methods. Functional analyses indicated cellular functioning and regulation of translation as overlapping mechanisms. CONCLUSIONS Our results suggest that genetic factors involved in WBC counts are associated with the risk of SCZ, indicating a role of immune mechanisms in subgroups of SCZ with potential for stratification of patients for immune targeted treatment.
Collapse
Affiliation(s)
- Nils Eiel Steen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Zillur Rahman
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Nadine Parker
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sandeep Karthikeyan
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eva Z Hoseth
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen—Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Juckel G, Freund N. Microglia and microbiome in schizophrenia: can immunomodulation improve symptoms? J Neural Transm (Vienna) 2023; 130:1187-1193. [PMID: 36810627 PMCID: PMC10460707 DOI: 10.1007/s00702-023-02605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
In this overview, influences of microglia activation and disturbances of the microbiome in the devastating disorder schizophrenia are discussed. Despite previous assumptions of a primary neurodegenerative character of this disorder, current research underlines the important autoimmunological and inflammatory processes here. Early disturbances of microglial cells as well as cytokines could lead to weakness of the immunological system in the prodromal phase and then fully manifest in patients with schizophrenia. Measurements of microbiome features might allow identifying the prodromal phase. In conclusion, such thinking would imply several new therapeutic options regulating immune processes by old or new anti-inflammatory agents in patients.
Collapse
Affiliation(s)
- Georg Juckel
- Department of Psychiatry, Ruhr-University Bochum, LWL-University Hospital, Alexandrinenstr.1, 44791, Bochum, Germany.
| | - Nadja Freund
- Department of Psychiatry, Ruhr-University Bochum, LWL-University Hospital, Alexandrinenstr.1, 44791, Bochum, Germany
| |
Collapse
|
13
|
Bejerot S, Sigra Stein S, Welin E, Eklund D, Hylén U, Humble MB. Rituximab as an adjunctive treatment for schizophrenia spectrum disorder or obsessive-compulsive disorder: Two open-label pilot studies on treatment-resistant patients. J Psychiatr Res 2023; 158:319-329. [PMID: 36638622 DOI: 10.1016/j.jpsychires.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/04/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
In this explorative study, we investigated if an adjunctive treatment with one single dose of the monoclonal antibody rituximab would improve symptoms and function in treatment-resistant patients with schizophrenia spectrum disorder (SSD, n = 9) or obsessive-compulsive disorder (OCD, n = 10), based on the inflammatory hypothesis for mental disorders. Patients were followed for one year. Disability was measured with the Personal and Social Performance score (PSP). At baseline, the mean PANSS score in the SSD group was 99 ± 32 and the mean Y-BOCS score in the OCD group was 27.5 ± 7. Mean PSP scores were 32 ± 10.2 and 42.5 ± 9.9 in the SSD and OCD groups, respectively. Seven had Paediatric Acute-Onset Neuropsychiatric Syndrome (PANS) in retrospect, and 3 SSD patients had schizo-obsessive subtype. 4/8 SSD patients showed a ≥40% reduction in PANSS at endpoint I week 20, however, 7/9 were similarly improved already at week 12. Among the OCD patients, 2/10 showed a ≥35% reduction in Y-BOCS at week 20. Disability was significantly improved only in the SSD group. The percentual decrease of PANSS scores in SSD patients was associated with the increase in immunoglobulin levels week 20 (n = 8: IgG r = 0.85, p = .007; IgA r = 0.79, p = .019; IgM r = 0.73, p = .038). Rituximab was generally well tolerated in these patients. Self-rated improvements since baseline were reported for psychic (p = .021), neurological (p = .059), and autonomic (p < .001) side effects (UKU-SERS-Pat side-effect scale). Anxiety was commonly reported by OCD patients, while an initial increase in psychotic symptoms was seen in a few SSD patients. An RCT is underway to evaluate rituximab in SSD.
Collapse
Affiliation(s)
- Susanne Bejerot
- School of Medical Sciences, Örebro University, Örebro, Sweden; University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Sweden; Inflammatory Response and Infection Susceptibility Centre, (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Sofia Sigra Stein
- School of Medical Sciences, Örebro University, Örebro, Sweden; University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Sweden.
| | - Elisabet Welin
- School of Health Sciences, Örebro University, Örebro, Sweden.
| | - Daniel Eklund
- School of Medical Sciences, Örebro University, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre, (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Ulrika Hylén
- School of Medical Sciences, Örebro University, Örebro, Sweden; University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Sweden; Inflammatory Response and Infection Susceptibility Centre, (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Mats B Humble
- School of Medical Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
14
|
Al-Hakeim HK, Al-Musawi AF, Al-Mulla A, Al-Dujaili AH, Debnath M, Maes M. The interleukin-6/interleukin-23/T helper 17-axis as a driver of neuro-immune toxicity in the major neurocognitive psychosis or deficit schizophrenia: A precision nomothetic psychiatry analysis. PLoS One 2022; 17:e0275839. [PMID: 36256663 PMCID: PMC9578624 DOI: 10.1371/journal.pone.0275839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/24/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Schizophrenia and especially deficit schizophrenia (DSCZ) are characterized by increased activity of neuroimmunotoxic pathways and a generalized cognitive decline (G-CoDe). There is no data on whether the interleukin (IL)-6/IL-23/T helper 17 (IL-6/IL-23/Th17)-axis is more associated with DSCZ than with non-deficit schizophrenia (NDSCZ) and whether changes in this axis are associated with the G-CoDe and the phenome (a factor extracted from all symptom domains) of schizophrenia. METHODS This study included 45 DSCZ and 45 NDSCZ patients and 40 controls and delineated whether the IL-6/IL-23/Th17 axis, trace elements (copper, zinc) and ions (magnesium, calcium) are associated with DSCZ, the G-CoDe and the schizophrenia phenome. RESULTS Increased plasma IL-23 and IL-6 levels were associated with Th17 upregulation, assessed as a latent vector (LV) extracted from IL-17, IL-21, IL-22, and TNF-α. The IL-6/IL-23/Th17-axis score, as assessed by an LV extracted from IL-23, IL-6, and the Th17 LV, was significantly higher in DSCZ than in NDSCZ and controls. We discovered that 70.7% of the variance in the phenome was explained by the IL-6/IL-23/Th17-axis (positively) and the G-CoDe and IL-10 (both inversely); and that 54.6% of the variance in the G-CoDe was explained by the IL-6/IL-23/Th17 scores (inversely) and magnesium, copper, calcium, and zinc (all positively). CONCLUSION The pathogenic IL-6/IL-23/Th17-axis contributes to the generalized neurocognitive deficit and the phenome of schizophrenia, especially that of DSCZ, due to its key role in peripheral inflammation and neuroinflammation and its consequent immunotoxic effects on neuronal circuits. These clinical impairments are more prominent in subjects with lowered IL-10, magnesium, calcium, and zinc.
Collapse
Affiliation(s)
| | - Ali Fattah Al-Musawi
- Department of Clinical Pharmacy and Laboratory Sciences, College of Pharmacy, University of Al-Kafeel, Kufa, Iraq
| | - Abbas Al-Mulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
15
|
Du Y, Gao Y, Wu G, Li Z, Du X, Li J, Li X, Liu Z, Xu Y, Liu S. Exploration of the relationship between hippocampus and immune system in schizophrenia based on immune infiltration analysis. Front Immunol 2022; 13:878997. [PMID: 35983039 PMCID: PMC9380889 DOI: 10.3389/fimmu.2022.878997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Immune dysfunction has been implicated in the pathogenesis of schizophrenia (SZ). Despite previous studies showing a broad link between immune dysregulation and the central nervous system of SZ, the exact relationship has not been completely elucidated. With immune infiltration analysis as an entry point, this study aimed to explore the relationship between schizophrenia and the immune system in more detail from brain regions, immune cells, genes, and pathways. Here, we comprehensively analyzed the hippocampus (HPC), prefrontal cortex (PFC), and striatum (STR) between SZ and control groups. Differentially expressed genes (DEGs) and functional enrichment analysis showed that three brain regions were closely related to the immune system. Compared with PFC and STR, there were 20 immune-related genes (IRGs) and 42 immune pathways in HPC. The results of immune infiltration analysis showed that the differential immune cells in HPC were effector memory T (Tem) cells. The correlation of immune-related DEGs (IDEGs) and immune cells further analysis showed that NPY, BLNK, OXTR, and FGF12, were moderately correlated with Tem cells. Functional pathway analysis indicated that these four genes might affect Tem by regulating the PI3K-AKT pathway and the neuroactive ligand-receptor interaction pathway. The receiver operating characteristic curve (ROC) analysis results indicated that these four genes had a high diagnostic ability (AUC=95.19%). Finally, the disease animal model was successfully replicated, and further validation was conducted using the real-time PCR and the western blot. These results showed that these gene expression changes were consistent with our previous expression profiling. In conclusion, our findings suggested that HPC in SZ may be more closely related to immune disorders and modulate immune function through Tem, PI3K-Akt pathway, and neuroactive ligand-binding receptor interactions. To the best of our knowledge, the Immucell AI tool has been applied for the first time to analyze immune infiltration in SZ, contributing to a better understanding of the role of immune dysfunction in SZ from a new perspective.
Collapse
Affiliation(s)
- Yanhong Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Guangxian Wu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Junxia Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- *Correspondence: Sha Liu, ; Yong Xu,
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Sha Liu, ; Yong Xu,
| |
Collapse
|
16
|
Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune System Abnormalities in Schizophrenia: An Integrative View and Translational Perspectives. Front Psychiatry 2022; 13:880568. [PMID: 35546942 PMCID: PMC9082498 DOI: 10.3389/fpsyt.2022.880568] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system is generally known to be the primary defense mechanism against pathogens. Any pathological conditions are reflected in anomalies in the immune system parameters. Increasing evidence suggests the involvement of immune dysregulation and neuroinflammation in the pathogenesis of schizophrenia. In this systematic review, we summarized the available evidence of abnormalities in the immune system in schizophrenia. We analyzed impairments in all immune system components and assessed the level of bias in the available evidence. It has been shown that schizophrenia is associated with abnormalities in all immune system components: from innate to adaptive immunity and from humoral to cellular immunity. Abnormalities in the immune organs have also been observed in schizophrenia. Evidence of increased C-reactive protein, dysregulation of cytokines and chemokines, elevated levels of neutrophils and autoantibodies, and microbiota dysregulation in schizophrenia have the lowest risk of bias. Peripheral immune abnormalities contribute to neuroinflammation, which is associated with cognitive and neuroanatomical alterations and contributes to the pathogenesis of schizophrenia. However, signs of severe inflammation are observed in only about 1/3 of patients with schizophrenia. Immunological parameters may help identify subgroups of individuals with signs of inflammation who well respond to anti-inflammatory therapy. Our integrative approach also identified gaps in knowledge about immune abnormalities in schizophrenia, and new horizons for the research are proposed.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Mark M. Melamud
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N. Buneva
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
17
|
Subtypes of schizophrenia identified by multi-omic measures associated with dysregulated immune function. Mol Psychiatry 2021; 26:6926-6936. [PMID: 34588622 DOI: 10.1038/s41380-021-01308-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
Epigenetic modifications are plausible molecular sources of phenotypic heterogeneity across schizophrenia patients. The current study investigated biological heterogeneity in schizophrenia using peripheral epigenetic profiles to delineate illness subtypes independent of their phenomenological manifestations. We applied epigenome-wide profiling with a DNA methylation array from blood samples of 63 schizophrenia patients and 59 healthy controls. Non-negative matrix factorization (NMF) and k-means clustering were performed to identify DNA methylation-related patient subtypes. The validity of the partition was tested by assessing the profile of the T cell receptor (TCR) repertoires. The uniqueness of the identified subtypes in relation to brain structural and clinical measures were evaluated. Two distinct patterns of DNA methylation profiles were identified in patients. One subtype (60.3% of patients) showed relatively limited changes in methylation levels and cell composition compared to controls, while a second subtype (39.7% of patients) exhibited widespread methylation level alterations among genes enriched in immune cell activity, as well as a higher proportion of neutrophils and lower proportion of lymphocytes. Differentiation of the two patient subtypes was validated by TCR repertoires, which paralleled the partition based on DNA methylation profiles. The subtype with widespread methylation modifications had higher symptom severity, performed worse on cognitive measures, and displayed greater reductions in fractional anisotropy of white matter tracts and evidence of gray matter thickening compared to the other subtype. Identification of a distinct subtype of schizophrenia with unique molecular, cerebral, and clinical features provide a novel parcellation of the schizophrenia syndrome with potential to guide development of individualized therapeutics.
Collapse
|
18
|
Chauhan P, Kaur G, Prasad R, Singh H. Pharmacotherapy of schizophrenia: immunological aspects and potential role of immunotherapy. Expert Rev Neurother 2021; 21:1441-1453. [PMID: 34654348 DOI: 10.1080/14737175.2021.1994857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Schizophrenia is a complex disorder owing to diversity in clinical phenotypes, overlapping symptoms, and heterogeneous clinical presentation. Even after decades of research, the exact causative mechanisms of schizophrenia are not completely known. Recent evidence indicates the role of immune dysfunction in schizophrenia pathogenesis as observed from alteration in immune cells, increased activity of complement cascade, and development of autoantibodies against neurotransmitter receptors. Immunotherapy involving immunosuppressants and cytokine-targeting drugs, have shown promising results in several clinical studies and it demands further research in this area. AREAS COVERED Here, the authors review the immunopathogenesis of schizophrenia, limitations of conventional, and atypical antipsychotic drugs and the potential role and limitations of immunotherapeutic drugs in schizophrenia management. EXPERT OPINION Schizophrenia is a complex disorder and poses a challenge to the currently available treatment approaches. Nearly 30% schizophrenia patients exhibit minimal response toward conventional and atypical antipsychotic drugs. Immune system dysfunction plays an important part of schizophrenia pathophysiology and existing monoclonal antibody (mAb) drugs targeting specific components of the immune system are being repositioned in schizophrenia. The authors call upon public and private funders to facilitate urgent and rigorous research efforts in exploring potential role of immunotherapy in schizophrenia.
Collapse
Affiliation(s)
- Prerna Chauhan
- Multidisciplinary Research Unit, Government Medical College & Hospital, Chandigarh, India
| | - Gurjit Kaur
- Department of Physiology, Government Medical College & Hospital, Chandigarh, India
| | - Rajendra Prasad
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Ambala, Haryana, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College & Hospital, Chandigarh, India
| |
Collapse
|
19
|
Engh JA, Ueland T, Agartz I, Andreou D, Aukrust P, Boye B, Bøen E, Drange OK, Elvsåshagen T, Hope S, Høegh MC, Joa I, Johnsen E, Kroken RA, Lagerberg TV, Lekva T, Malt UF, Melle I, Morken G, Nærland T, Steen VM, Wedervang-Resell K, Weibell MA, Westlye LT, Djurovic S, Steen NE, Andreassen OA. Plasma Levels of the Cytokines B Cell-Activating Factor (BAFF) and A Proliferation-Inducing Ligand (APRIL) in Schizophrenia, Bipolar, and Major Depressive Disorder: A Cross Sectional, Multisite Study. Schizophr Bull 2021; 48:37-46. [PMID: 34499169 PMCID: PMC8781325 DOI: 10.1093/schbul/sbab106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Immune dysfunction has been implicated in the pathogenesis of schizophrenia and other nonaffective psychosis (SCZ), bipolar spectrum disorder (BIP) and major depressive disorder (MDD). The cytokines B cell-activating factor (BAFF) and A proliferation-inducing ligand (APRIL) belong to the tumor necrosis factor (TNF) super family and are essential in orchestrating immune responses. Abnormal levels of BAFF and APRIL have been found in autoimmune diseases with CNS affection. METHODS We investigated if plasma levels of BAFF and APRIL differed between patients with SCZ, BIP, and MDD with psychotic symptoms (n = 2009) and healthy control subjects (HC, n = 1212), and tested for associations with psychotic symptom load, controlling for sociodemographic status, antipsychotic and other psychotropic medication, smoking, body-mass-index, and high sensitivity CRP. RESULTS Plasma APRIL level was significantly lower across all patient groups compared to HC (P < .001; Cohen's d = 0.33), and in SCZ compared to HC (P < .001; d = 0.28) and in BIP compared to HC (P < .001; d = 0.37). Lower plasma APRIL was associated with higher psychotic symptom load with nominal significance (P = .017), but not with any other clinical characteristics. Plasma BAFF was not significantly different across patient groups vs HC, but significantly higher in BIP compared to HC (P = .040; d = 0.12) and SCZ (P = .027; d = 0.10). CONCLUSIONS These results show aberrant levels of BAFF and APRIL and association with psychotic symptoms in patients with SCZ and BIP. This suggest that dysregulation of the TNF system, mediated by BAFF and APRIL, is involved in the pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- John Abel Engh
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Vestfold Hospital Trust, Division of Mental health and Addiction, Tønsberg, Norway,To whom correspondence should be addressed; Norwegian Centre for Mental Disorders Research, NORMENT, Oslo, Norway; tel: 023-02-73-50 (022-11-78-43 dir), fax: 023-02-73-33,
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,K.G. Jebsen Thrombosis Research and Expertise Center, University of Troms, Tromsø, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Birgitte Boye
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway,Psychosomatic and Consultation-liason Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erlend Bøen
- Psychosomatic and Consultation-liason Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole Kristian Drange
- Department of Mental Health, Norwegian University of Science and Technology, NTNU, Trondheim, Norway,Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway,Department of Psychiatry, St Olav University Hospital, Trondheim, Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sigrun Hope
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway
| | - Margrethe Collier Høegh
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Inge Joa
- TIPS, Network for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway,Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway,University of Bergen, Bergen, Norway,Norwegian Centre for Mental Disorders Research, NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rune Andreas Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway,University of Bergen, Bergen, Norway,Norwegian Centre for Mental Disorders Research, NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trine Vik Lagerberg
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology, NTNU, Trondheim, Norway,Department of Psychiatry, St Olav University Hospital, Trondheim, Norway
| | - Terje Nærland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,K.G. Jebsen Center for Neurodevelopmental Disorders, Oslo, Norway,Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway
| | - Vidar Martin Steen
- University of Bergen, Bergen, Norway,Norwegian Centre for Mental Disorders Research, NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway,Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Kirsten Wedervang-Resell
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Melissa Auten Weibell
- TIPS, Network for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway,Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Lars Tjelta Westlye
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Andreas Andreassen
- Norwegian Centre for Mental Disorders Research, NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Juckel G, Manitz MP, Freund N, Gatermann S. Impact of Poly I:C induced maternal immune activation on offspring's gut microbiome diversity - Implications for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110306. [PMID: 33745977 DOI: 10.1016/j.pnpbp.2021.110306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Background Immunopathological concepts have been intensively discussed for schizophrenia. The polyriboinosinic-polyribocytidylic (PolyI:C) mouse model has been well validated to invasively study this disease. The intestinal microbiome exhibits broad immunological and neuronal activities. The relevance of microbiome alterations in the PolyI:C model to human schizophrenia should be explored. Methods Feces of offspring from mice mothers, who were administered to PolyI:C or NaCl (controls) at ED 9, were collected at PND 30 and 180 (PolyI:C and control mice (N = 32 each; half males and females). This was analyzed for bacterial 16S ribosomal DNA (rDNA) using a gut microbiome polymerase chain reaction (PCR) microarray tool. Results Differences were found in species richness of microbiome between animals of different ages (PND 30 and 180), but also between offspring from PolyI:C vs. NaCl treated mothers. In female mice at PND 30, the abundance of Prevotellaceae and Porphyromonadaceae was lower and that of Lactobacillales was higher, whereas in male mice at the same time point the abundance of four families of the Firmicutes phylum (Clostridia vadinBB60 group, Clostridiales Family XIII, Ruminococcaceae and Erysipelotrichaceae) was increased relative to the control group. Limitations No further analyses of cell types or cytokines involved in autoimmune gut and brain processes. Conclusions These finding seem to be similar to microbiome disturbances in patients with schizophrenia. The differential bacterial findings at day 30 (i.e., similar to the prodromal phase in patients with schizophrenia) correspond to the tremendous activation of the immune system with a strong increase in microglial cells which might be responsible for neuroplasticity reduction in cortical areas in patients with schizophrenia.
Collapse
Affiliation(s)
- Georg Juckel
- Dept. of Psychiatry, LWL University Hospital, Ruhr University, Bochum, Germany.
| | - Marie-Pierre Manitz
- Dept. of Psychiatry, LWL University Hospital, Ruhr University, Bochum, Germany
| | - Nadja Freund
- Dept. of Psychiatry, LWL University Hospital, Ruhr University, Bochum, Germany
| | - Sören Gatermann
- Dept. of Psychiatry, LWL University Hospital, Ruhr University, Bochum, Germany
| |
Collapse
|
21
|
Rodrigues-Amorim D, Iglesias-Martínez-Almeida M, Rivera-Baltanás T, Fernández-Palleiro P, Freiría-Martínez L, Rodríguez-Jamardo C, Comís-Tuche M, Vallejo-Curto MDC, Álvarez-Ariza M, López-García M, de las Heras E, García-Caballero A, Olivares JM, Spuch C. The Role of the Second Extracellular Loop of Norepinephrine Transporter, Neurotrophin-3 and Tropomyosin Receptor Kinase C in T Cells: A Peripheral Biomarker in the Etiology of Schizophrenia. Int J Mol Sci 2021; 22:ijms22168499. [PMID: 34445205 PMCID: PMC8395201 DOI: 10.3390/ijms22168499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022] Open
Abstract
The neurobiology of schizophrenia is multifactorial, comprising the dysregulation of several biochemical pathways and molecules. This research proposes a peripheral biomarker for schizophrenia that involves the second extracellular loop of norepinephrine transporter (NEText), the tropomyosin receptor kinase C (TrkC), and the neurotrophin-3 (NT-3) in T cells. The study of NEText, NT-3, and TrkC was performed in T cells and plasma extracted from peripheral blood of 54 patients with schizophrenia and 54 healthy controls. Levels of NT-3, TrkC, and NET were significantly lower in plasma and T cells of patients compared to healthy controls. Co-immunoprecipitation (co-IPs) showed protein interactions with Co-IP NEText–NT-3 and Co-IP NEText–TrkC. Computational modelling of protein–peptide docking by CABS-dock provided a medium–high accuracy model for NT-3–NEText (4.6935 Å) and TrkC–NEText (2.1365 Å). In summary, immunocomplexes reached statistical relevance in the T cells of the control group contrary to the results obtained with schizophrenia. The reduced expression of NT-3, TrkC, and NET, and the lack of molecular complexes in T cells of patients with schizophrenia may lead to a peripheral dysregulation of intracellular signaling pathways and an abnormal reuptake of norepinephrine (NE) by NET. This peripheral molecular biomarker underlying schizophrenia reinforces the role of neurotrophins, and noradrenergic and immune systems in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - Luis Freiría-Martínez
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - María Comís-Tuche
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - María del Carmen Vallejo-Curto
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - María Álvarez-Ariza
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Marta López-García
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Elena de las Heras
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Alejandro García-Caballero
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Jose Manuel Olivares
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Department of Psychiatry, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
- Correspondence: (J.M.O.); (C.S.)
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Correspondence: (J.M.O.); (C.S.)
| |
Collapse
|
22
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
23
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
24
|
Mekori-Domachevsky E, Taler M, Weinberger R, Guri Y, Dar S, Shani S, Dekel I, Weizman A, Gothelf D. Neutrophils to lymphocytes ratio and psychosis in 22q11.2 deletion syndrome - Clinical and scientific implications. Schizophr Res 2021; 231:164-169. [PMID: 33866261 DOI: 10.1016/j.schres.2021.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Individuals with 22q11.2 deletion syndrome (22q11.2DS) are at risk for having both psychotic and immune disorders, thus, implying a possible link between the two. The aim of the current study was to evaluate the usefulness of the neutrophiles to leukocytes ratio (NLR), an inflammatory marker, as a bio-marker for overt and prodromal psychotic symptoms in 22q11.2DS. METHODS Forty-nine individuals with 22q11.2DS (13 with psychotic disorders and 36 without psychotic disorders) and 30 age- and sex-matched healthy controls underwent psychiatric evaluation using a structured psychiatric interview, the Scale of Prodromal Symptoms (SOPS) and the Global Assessment of Functioning (GAF) scale. Blood samples were collected from all participants on the day of assessment. NLR was calculated, compared among the study groups and correlated with SOPS and GAF scores. The non-psychotic 22q11.2DS group was further divided into high- and low-inflammation groups by NLR values and the analyses were done again. RESULTS NLR was higher in the psychotic- and the high-inflammation non-psychotic 22q11.2DS groups compared to the low-inflammation non-psychotic 22q11.2DS group and controls. In the high-inflammation non-psychotic 22q11.2DS group NLR increase was associated with an increase of total negative symptoms scores on SOPS and a decrease in GAF scores. CONCLUSION Our results suggest the potential utility of NLR as a bio-marker for psychotic disorders and subthreshold prodromal symptoms in 22q11.2DS. Furthermore, they imply that a disequilibrium between the innate and adaptive arms of the immune system facilitates the progression of psychosis in at risk populations. Further longitudinal studies are warranted to validate our findings, as this was a cross sectional observation.
Collapse
Affiliation(s)
- Ehud Mekori-Domachevsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Child and Adolescent Psychiatry Division, Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.
| | - Michal Taler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Yael Guri
- Eitanim Mental Health Center, Jerusalem, Israel
| | - Shira Dar
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Shachar Shani
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Idit Dekel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Child and Adolescent Psychiatry Division, Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petach Tikva, Israel
| | - Doron Gothelf
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Child and Adolescent Psychiatry Division, Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Linnaranta O, Trontti KT, Honkanen J, Hovatta I, Keinänen J, Suvisaari J. Peripheral metabolic state and immune system in first-episode psychosis - A gene expression study with a prospective one-year follow-up. J Psychiatr Res 2021; 137:383-392. [PMID: 33765450 DOI: 10.1016/j.jpsychires.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022]
Abstract
he excess availability of glucose and lipids can also have an impact on the dynamics of activation and regulation of peripheral immune cellsWe aimed at understanding the correlations between peripheral metabolic state and immune system during the first year in first-episode psychosis (FEP). Patients with FEP (n = 67) and matched controls (n = 38), aged 18-40 years, were met at baseline, 2 and 12 months. Fasting peripheral blood samples were collected. We applied the NanoString nCounter in-solution hybridization technology to determine gene expression levels of 178 candidate genes reflecting activation of the immune system. Serum triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL) cholesterol and insulin and plasma glucose (fP-Gluc) were measured. We applied Ingenuity Pathway Analysis (IPA) to visualize enrichment of genes to functional classes. Strength of positive or negative regulation of the disease and functional pathways was deduced from IPA activation Z-score at the three evaluation points. We correlated gene expression with plasma glucose, triglycerids and HDL and LDL, and used hierarchical clustering of the pairwise correlations to identify groups of genes with similar correlation patterns with metabolic markers. In patients, initially, genes associated with the innate immune system response pathways were upregulated, which decreased by 12 months. Furthermore, genes associated with apoptosis and T cell death were downregulated, and genes associated with lipid metabolism were increasingly downregulated by 12 months. The immune activation was thus an acute phase during illness onset. At baseline, after controlling for multiple testing, 31/178 genes correlated positively with fasting glucose levels, and 54/178 genes negatively with triglycerides in patients only. The gene clusters showed patterns of correlations with metabolic markers over time. The results suggest a functional link between peripheral immune system and metabolic state in FEP. Metabolic factors may have had an influence on the initial activation of the innate immune system. Future work is necessary to understand the role of metabolic state in the regulation of immune response in the early phases of psychosis.
Collapse
Affiliation(s)
- Outi Linnaranta
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Centre for Sleep and Biological Rhythms, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, H4H 1R3, Montreal, QC, Canada; Department of Public Health Solutions, Mental Health Unit, Finnish Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland.
| | - Kalevi T Trontti
- Sleep Well Research Program, Faculty of Medicine, P.O. Box 21, FI-00014, University of Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science HiLIFE, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, P.O. Box 63, FI-00014, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- Sleep Well Research Program, Faculty of Medicine, P.O. Box 21, FI-00014, University of Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science HiLIFE, P.O. Box 21, FI-00014, University of Helsinki, Finland; Department of Psychology and Logopedics, Medicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Jaakko Keinänen
- Department of Public Health Solutions, Mental Health Unit, Finnish Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland; Department of Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 590, FI-00029, Helsinki, Finland
| | - Jaana Suvisaari
- Department of Public Health Solutions, Mental Health Unit, Finnish Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
26
|
Malashenkova IK, Krynskiy SA, Ogurtsov DP, Hailov NA, Zakharova NV, Bravve LV, Kaydan MA, Chekulaeva EI, Andreyuk DS, Ushakov VL, Didkovsky NA, Kostyuk GP. Immunoinflammatory Profile in Patients with Episodic and Continuous Paranoid Schizophrenia. CONSORTIUM PSYCHIATRICUM 2021; 2:19-31. [PMID: 38601098 PMCID: PMC11003350 DOI: 10.17816/cp66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/08/2022] Open
Abstract
Introduction Associations of disturbances in innate and adaptive immunity during the clinical course of schizophrenia have been found in a number of studies. Yet, the relationship of immune parameters and systemic inflammation in relation to the clinical course of the disease and its prognosis, remains poorly understood, which highlights an interesting topic for further research. The goal of this study was to research the immuno-inflammatory changes in patients with clinical continuous and episodic paranoid schizophrenia, to assess the pathogenetic significance of these changes. Methods Thirty-six patients with paranoid schizophrenia, of which 20 had episodic symptoms and 16 had continuous symptoms, consented to participate in the study, together with 30 healthy volunteers. In the study we assessed the parameters of innate immune response (serum levels of key pro-inflammatory and anti-inflammatory cytokines, C-reactive protein) and the adaptive immune response, including humoral-mediated immunity (serum immunoglobulins IgA, IgM, IgG, circulating immune complexes), as well as the cell link of adaptive immunity (key lymphocyte subpopulations). Positive and negative symptoms were assessed with the positive and negative symptoms scale; frontal dysfunction was assessed by Frontal Assessment Battery (FAB). Results Both patient groups had higher than normal levels of C-reactive protein and IL-8. There was a significant elevation of circulating immune complexes among patients with continuous symptoms of schizophrenia, compared to patients with episodic symptoms and healthy controls. Levels of CD45+CD3+ lymphocytes (T-cells) differed between clinical groups, with higher values identified among patients with episodic symptoms and lower values among those with continuous symptoms. In addition, patients with episodic symptoms had significantly increased levels of CD45+CD3+CD4+CD25+CD127- regulatory T-cells. Finally, the level of CD45+CD3-CD19+ B-cells was significantly higher among patients with continuous symptoms vs. patients with episodic symptoms and the control groups. Markers of activation of humoral immunity were associated with the severity of frontal disorders in these patients. Discussion Comprehensive data on the serum level of cytokines and the parameters of adaptive immunity among individuals with continuous schizophrenia, by comparison with patients with episodic schizophrenia, are practically absent in the literature. We have shown that among those with continuous schizophrenia, there are signs of systemic inflammation and chronic activation of the adaptive humoral immune response, while among patients with episodic symptoms of the disease, there are signs of systemic inflammation and certain activation of cell-mediated immunity, without significant changes in the humoral link of adaptive immunity. Conclusion More studies are needed, but the data obtained in this study are important for subsequent clinical studies of new treatment methods, based on various immunophenotypes of schizophrenia.
Collapse
Affiliation(s)
- Irina K. Malashenkova
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical Biological Agency of Russia
| | - Sergey A. Krynskiy
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
| | - Daniil P. Ogurtsov
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical Biological Agency of Russia
| | - Nikita A. Hailov
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
| | | | | | | | - Ekaterina I. Chekulaeva
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
| | | | - Vadim L. Ushakov
- Laboratory of Molecular Immunology and Virology at the National Research Center, Kurchatov Institute
- Mental-health Clinic No. 1, named after N.A. Alekseev
| | - Nikolay A. Didkovsky
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical Biological Agency of Russia
| | | |
Collapse
|
27
|
Cathomas F, Klaus F, Guetter K, Chung HK, Raja Beharelle A, Spiller TR, Schlegel R, Seifritz E, Hartmann-Riemer MN, Tobler PN, Kaiser S. Increased random exploration in schizophrenia is associated with inflammation. NPJ SCHIZOPHRENIA 2021; 7:6. [PMID: 33536449 PMCID: PMC7859392 DOI: 10.1038/s41537-020-00133-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/24/2020] [Indexed: 01/30/2023]
Abstract
One aspect of goal-directed behavior, which is known to be impaired in patients with schizophrenia (SZ), is balancing between exploiting a familiar choice with known reward value and exploring a lesser known, but potentially more rewarding option. Despite its relevance to several symptom domains of SZ, this has received little attention in SZ research. In addition, while there is increasing evidence that SZ is associated with chronic low-grade inflammation, few studies have investigated how this relates to specific behaviors, such as balancing exploration and exploitation. We therefore assessed behaviors underlying the exploration-exploitation trade-off using a three-armed bandit task in 45 patients with SZ and 19 healthy controls (HC). This task allowed us to dissociate goal-unrelated (random) from goal-related (directed) exploration and correlate them with psychopathological symptoms. Moreover, we assessed a broad range of inflammatory proteins in the blood and related them to bandit task behavior. We found that, compared to HC, patients with SZ showed reduced task performance. This impairment was due to a shift from exploitation to random exploration, which was associated with symptoms of disorganization. Relative to HC, patients with SZ showed a pro-inflammatory blood profile. Furthermore, high-sensitivity C-reactive protein (hsCRP) positively correlated with random exploration, but not with directed exploration or exploitation. In conclusion, we show that low-grade inflammation in patients with SZ is associated with random exploration, which can be considered a behavioral marker for disorganization. hsCRP may constitute a marker for severity of, and a potential treatment target for maladaptive exploratory behaviors.
Collapse
Affiliation(s)
- Flurin Cathomas
- grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland ,grid.59734.3c0000 0001 0670 2351Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Federica Klaus
- grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland ,grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Karoline Guetter
- grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland
| | - Hui-Kuan Chung
- grid.7400.30000 0004 1937 0650Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Anjali Raja Beharelle
- grid.7400.30000 0004 1937 0650Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Tobias R. Spiller
- University of Zurich, University Hospital Zurich, Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Rebecca Schlegel
- grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland
| | - Erich Seifritz
- grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Matthias N. Hartmann-Riemer
- grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland
| | - Philippe N. Tobler
- grid.7400.30000 0004 1937 0650Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Stefan Kaiser
- grid.150338.c0000 0001 0721 9812Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Chemin du Petit-Bel-Air, 1225 Chêne-Bourg, Switzerland
| |
Collapse
|
28
|
Reale M, Costantini E, Greig NH. Cytokine Imbalance in Schizophrenia. From Research to Clinic: Potential Implications for Treatment. Front Psychiatry 2021; 12:536257. [PMID: 33746786 PMCID: PMC7973221 DOI: 10.3389/fpsyt.2021.536257] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cytokines are one of the most important components of the immune system. They orchestrate the brain's response to infectious and other exogenous insults and are crucial mediators of the cross-talk between the nervous and immune systems. Epidemiological studies have demonstrated that severe infections and autoimmune disorders, in addition to genetic predisposition, are risk factors for schizophrenia. Furthermore, maternal infection during pregnancy appears to increase the risk of schizophrenia, and proinflammatory cytokines may be negatively involved in the neurodevelopmental process. A cytokine imbalance has been described in the blood and cerebrospinal fluid of schizophrenia patients, particularly in the T helper type 1 [Th1] and type 2 [Th2] cytokines, albeit the results of such studies appear to be contradictory. Chronic stress, likewise, appears to contribute to a lasting proinflammatory state and likely also promotes the disorder. The aim of this mini-review is to investigate the roles of different cytokines in the pathophysiology of schizophrenia and define how cytokines may represent key molecular targets to regulate for the prevention and treatment of schizophrenia. How current antipsychotic drugs impact cytokine networks is also evaluated. In this context, we propose to change the focus of schizophrenia from a traditionally defined brain disorder, to one that is substantially impacted by the periphery and immune system.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Erica Costantini
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
29
|
Dinesh AA, Islam J, Khan J, Turkheimer F, Vernon AC. Effects of Antipsychotic Drugs: Cross Talk Between the Nervous and Innate Immune System. CNS Drugs 2020; 34:1229-1251. [PMID: 32975758 DOI: 10.1007/s40263-020-00765-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Converging lines of evidence suggest that activation of microglia (innate immune cells in the central nervous system [CNS]) is present in a subset of patients with schizophrenia. The extent to which antipsychotic drug treatment contributes to or combats this effect remains unclear. To address this question, we reviewed the literature for evidence that antipsychotic exposure influences brain microglia as indexed by in vivo neuroimaging and post-mortem studies in patients with schizophrenia and experimental animal models. We found no clear evidence from clinical studies for an effect of antipsychotics on either translocator protein (TSPO) radioligand binding (an in vivo neuroimaging measure of putative gliosis) or markers of brain microglia in post-mortem studies. In experimental animals, where drug and illness effects may be differentiated, we also found no clear evidence for consistent effects of antipsychotic drugs on TSPO radioligand binding. By contrast, we found evidence that chronic antipsychotic exposure may influence central microglia density and morphology. However, these effects were dependent on the dose and duration of drug exposure and whether an immune stimulus was present or not. In the latter case, antipsychotics were generally reported to suppress expression of inflammatory cytokines and inducible inflammatory enzymes such as cyclooxygenase and microglia activation. No clear conclusions could be drawn with regard to any effect of antipsychotics on brain microglia from current clinical data. There is evidence to suggest that antipsychotic drugs influence brain microglia in experimental animals, including possible anti-inflammatory actions. However, we lack detailed information on how these drugs influence brain microglia function at the molecular level. The clinical relevance of the animal data with regard to beneficial treatment effects and detrimental side effects of antipsychotic drugs also remains unknown, and further studies are warranted.
Collapse
Affiliation(s)
- Ayushi Anna Dinesh
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Juned Islam
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Javad Khan
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Centre for Neuroimaging Sciences, De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RT, United Kingdom.
| |
Collapse
|
30
|
Association of the soluble CTLA4 with schizophrenia: an observational study. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Increased densities of T and B lymphocytes indicate neuroinflammation in subgroups of schizophrenia and mood disorder patients. Brain Behav Immun 2020; 88:497-506. [PMID: 32283292 DOI: 10.1016/j.bbi.2020.04.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
An increasing number of clinical, epidemiological and genetic studies as well as investigations of CSF and blood suggests that neuroinflammation plays an essential role in the etiology of schizophrenia and mood disorders. However, direct neuropathological evidence of inflammation within the brain tissue remains sparse and the regional distribution of lymphocytes as surrogate markers of blood-brain barrier (BBB) impairment has not yet been investigated in this context. Densities of T and B lymphocytes were assessed in coronal whole brain sections of 22 patients with schizophrenia and 20 patients suffering from major depression or bipolar disorder, compared to 20 individuals without neuropsychiatric disorders from the Magdeburg Brain Collection. Cell densities were determined by immunohistochemical staining (anti-CD3 for T cells, anti-CD20 for B cells), followed by automated microscopic image acquisition and analysis. Hierarchical clustering and detailed cluster analysis were performed to detect possible subgroups of patients. Regional distribution was assessed by analysis of color coded mappings based on microsopic scans. Elevated lymphocyte density was found in 7 out of 20 mood disorder patients (adj. p = 0.022; Fisher's exact test, FET), 9 out of 22 schizophrenic patients (adj. p = 0.014; FET) and in 1 of 20 controls (p < 0.005; FET). Several cases showed different patterns of infiltration affecting cortical regions or subcortical white matter, while some presented diffuse infiltration. In two thirds of patients, no increased lymphocyte density could be found. The current findings indicate that lymphocyte infiltration occurs in a greater proportion of schizophrenia and mood disorder patients as compared to healthy controls. Under healthy conditions lymphocytes rarely cross the BBB. Thus, higher densities are considered indicators of neuroinflammation associated with an impairment of the BBB.
Collapse
|
32
|
Maskalenko N, Nath S, Ramakrishnan A, Anikeeva N, Sykulev Y, Poenie M. The DISC1-Girdin complex - a missing link in signaling to the T cell cytoskeleton. J Cell Sci 2020; 133:jcs242875. [PMID: 32482796 PMCID: PMC7358132 DOI: 10.1242/jcs.242875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/26/2020] [Indexed: 11/20/2022] Open
Abstract
In this study, using Jurkat cells, we show that DISC1 (disrupted in schizophrenia 1) and Girdin (girders of actin filament) are essential for typical actin accumulation at the immunological synapse. Furthermore, DISC1, Girdin and dynein are bound in a complex. Although this complex initially forms as a central patch at the synapse, it relocates to a peripheral ring corresponding to the peripheral supramolecular activation cluster (pSMAC). In the absence of DISC1, the classic actin ring does not form, cell spreading is blocked, and the dynein complex fails to relocate to the pSMAC. A similar effect is seen when Girdin is deleted. When cells are treated with inhibitors of actin polymerization, the dynein-NDE1 complex is lost from the synapse and the microtubule-organizing center fails to translocate, suggesting that actin and dynein might be linked. Upon stimulation of T cell receptors, DISC1 becomes associated with talin, which likely explains why the dynein complex colocalizes with the pSMAC. These results show that the DISC1-Girdin complex regulates actin accumulation, cell spreading and distribution of the dynein complex at the synapse.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nicholas Maskalenko
- Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Adarsh Ramakrishnan
- Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nadia Anikeeva
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yuri Sykulev
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Martin Poenie
- Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
33
|
Subbanna M, Shivakumar V, Venugopal D, Narayanaswamy JC, Berk M, Varambally S, Venkatasubramanian G, Debnath M. Impact of antipsychotic medication on IL-6/STAT3 signaling axis in peripheral blood mononuclear cells of drug-naive schizophrenia patients. Psychiatry Clin Neurosci 2020; 74:64-69. [PMID: 31587436 DOI: 10.1111/pcn.12938] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
AIM Immunopathogenesis remains a widely appreciated etiopathological model of schizophrenia. Persistent efforts have aimed to identify schizophrenia biomarkers indexing immune system abnormalities and also immuno-dampening effects of antipsychotic medications. Although data arising from published reports are encouraging, such studies are limited to a few immune parameters and not focused on a specific pathway. Th17 cells-mediated immuno-inflammatory responses have emerged as a potential mechanism in various neuropsychiatric conditions, including schizophrenia. The Th17 pathway is distinctly regulated through a coordinated action of multiple cytokines and transcription factors. In this study, we explored whether antipsychotic medication has any effect on the cytokines and transcription factors of the Th17 pathway. METHODS A total of 27 drug-naive schizophrenia patients were recruited and followed up for 3 months after initiation of antipsychotic medication. Lymphocyte gene expression levels of two transcription factors (STAT3 and RORC) and one of their upstream regulators, IL6, were quantified before and after treatment. Plasma levels of cytokines, such as interleukin (IL)-1β, IL-6, IL-17A, IL-23, and IL-33, were also analyzed before and after treatment. RESULTS Treatment with antipsychotic medication for 3 months resulted in significant downregulation of STAT3 gene expression as well as reduction in plasma levels of IL-1β, IL-6, and IL-17A. Significant reduction in total scores for the Scale for Assessment of Positive Symptoms and the Scale for Assessment of Negative Symptoms was also observed in schizophrenia patients after 3 months of antipsychotic treatment. CONCLUSION Our findings suggest possible immuno-modulatory effects of antipsychotic medication on the critical regulators, such as IL-6 and STAT3, of the Th17 pathway in schizophrenia patients. The IL-6/STAT3 signaling axis involved in the transcriptional regulation of Th17 cells might appear as an important target of antipsychotic treatment in schizophrenia patients. Alternatively, irrespective of the effect of antipsychotic drugs, the IL-6/STAT3 signaling axis might be crucially involved in ameliorating psychotic symptoms.
Collapse
Affiliation(s)
- Manjula Subbanna
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India.,Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Deepthi Venugopal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India.,Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Geelong, Australia.,Orygen, Centre of Excellence in Youth Mental Health, Department of Psychiatry and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Shivarama Varambally
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
34
|
Th17 and MAIT cell mediated inflammation in antipsychotic free schizophrenia patients. Schizophr Res 2019; 212:47-53. [PMID: 31439420 DOI: 10.1016/j.schres.2019.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
The immune hypothesis of schizophrenia has gained significant popularity in recent years in schizophrenia research. Evidence suggests that the peripheral immune system communicates with central nervous system and the effect propagates through microglial and lymphocyte crosstalk, especially during neuro-inflammation. Although, there is previous literature indicating changes in lymphocyte population in schizophrenia, detailed studies with respect to T and B cells are scarce. Mucosal associated invariant T (MAIT) cells are functionally associated with the gut microbiome. The gut microbiome has been implicated in the pathogenesis of schizophrenia. However, there is no information on the frequency of MAIT cells in schizophrenia. Hence, we investigated changes in proportions of T cells, B cells and MAIT cells in peripheral blood mononuclear cells derived from antipsychotic-free patients with schizophrenia in comparison to healthy controls. In line with earlier reports, we noted perturbations in Th17 cells. This study for the first time reports changes in frequencies of MAIT cells in a homogenous population of antipsychotic-free patients with schizophrenia. These changes, though not common across all patients nevertheless point to the fact that inflammation is prevalent in a significant subset of schizophrenia cases.
Collapse
|
35
|
A five-year follow-up study of antioxidants, oxidative stress and polyunsaturated fatty acids in schizophrenia. Acta Neuropsychiatr 2019; 31:202-212. [PMID: 31178002 DOI: 10.1017/neu.2019.14] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Oxidative stress and dysregulated antioxidant defence may be involved in the pathophysiology of schizophrenia. In the present study, we investigated changes in antioxidants and oxidative stress from an acute to a later stable phase. We hypothesised that the levels of oxidative markers are increased in schizophrenia compared with healthy controls; change from the acute to the stable phase; and are associated with the levels of membrane polyunsaturated fatty acids (PUFAs) and symptom severity. METHODS Fifty-five patients with schizophrenia spectrum disorders, assessed during an acute phase and 5 years later during a stable phase, and 51 healthy controls were included. We measured antioxidants (α-tocopherol, uric acid, albumin and bilirubin), markers of oxidative stress (F2-isoprostane and reactive oxygen metabolites) and membrane fatty acids. Antioxidants and oxidative stress markers were compared in schizophrenia versus healthy controls, adjusting for differences in sex, age and smoking, and changes over time. Associations between symptoms and PUFA were also investigated. RESULTS In the acute phase, α-tocopherol was significantly higher (p < 0.001), while albumin was lower (p < 0.001) compared with the stable phase. Changes in α-tocopherol were associated with PUFA levels in the acute phase. In the stable phase, schizophrenia patients had higher uric acid (p = 0.009) and lower bilirubin (p = 0.046) than healthy controls. CRP was higher in patients in the stable phase (p < 0.001), and there was no significant change from the acute phase. CONCLUSION The present findings of change in antioxidant levels in the acute versus stable phase of schizophrenia the present findings suggest that redox regulation is dynamic and changes during different phases of the disorder.
Collapse
|
36
|
Malashenkova IK, Krynskiy SA, Ogurtsov DP, Mamoshina MV, Zakharova NV, Ushakov VL, Velichkovsky BM, Didkovsky NA. [A role of the immune system in the pathogenesis of schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:72-80. [PMID: 30698566 DOI: 10.17116/jnevro201811812172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review addresses immunological aspects of schizophrenia, a multifactor disease caused by genetic factors, innate disorders of the central nervous system (CNS), including the consequences of perinatal hypoxia and infections, and adverse environmental influences. Neuroinflammation as a part of the pathophysiology of schizophrenia is characterized by the higher transcription of CNS inflammatory mediators, excessive activation of microglia, inhibition of glutamatergic receptors that leads to the decrease in the number of cortical synapses and neuronal apoptosis. The authors discuss a role of genetic polymorphisms of cytokine genes, complement system components etc. The literature data on the changes in systemic immune response and imbalance in Th1/Th2 adaptive immune responses are analyzed as well. Some papers showed higher levels of proinflammatory mediators in CSF and blood of patients with schizophrenia that indicated the involvement of blood brain barrier (BBB) dysfunction. The authors present the recent data on BBB dysfunction in schizophrenia and its role in the pathogenesis of the disease, autoimmunity in patients comparing it with immune activation and genetic predisposition. An important and arguable issues about a role of parasite and viral infections in the pathogenesis of schizophrenia, initiation of immune responses and direct impacts on the brain, an influence of antipsychotic treatment on immunity are discussed. In author's opinion, conflicting results of genetic and immunological studies of schizophrenia may be explained by different methodological approaches to selection of patients and healthy controls and the differences in schizophrenia classification.
Collapse
Affiliation(s)
- I K Malashenkova
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - S A Krynskiy
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - D P Ogurtsov
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - M V Mamoshina
- Research Center 'Kurchatov Institute', Moscow, Russia
| | - N V Zakharova
- Russia; Alekseev Psychiatric Clinical Hospital #1, Moscow, Russia ,Pirogov Russian National Research Medical University, Moscow, Russia
| | - V L Ushakov
- Research Center 'Kurchatov Institute', Moscow, Russia
| | | | - N A Didkovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| |
Collapse
|
37
|
Kogan S, Ospina LH, Kimhy D. Inflammation in individuals with schizophrenia - Implications for neurocognition and daily function. Brain Behav Immun 2018; 74:296-299. [PMID: 30218782 PMCID: PMC6805148 DOI: 10.1016/j.bbi.2018.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/08/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
Individuals with schizophrenia display substantial deficits in neurocognition, resulting in poor daily functioning and disability. Recent reports have suggested that neurocognitive dysfunction in this population is linked to increased inflammation. However, there is paucity of evidence supporting this link, as well as lack of information about the putative link of inflammation to daily functioning. We examined neurocognition (MCCB) and daily functioning (SLOF), as well as inflammatory markers (TNF-α, IL-6, IL-1β, and IL-12p70) in 41 individuals with schizophrenia. Poor neurocognition was significantly associated with increased peripheral TNF-α and IL-12p70 (r = -0.44 and r = -0.38, respectively, controlling for BMI, depression and antipsychotic medication). Notably, difficulties with daily functioning were significantly associated with increased peripheral TNF-α (r = -0.51) and a trend with increased IL-12p70. Our findings support previous hypotheses linking neurocognitive impairment to increased inflammation in individuals with schizophrenia. Our results extend these associations in this population, linking inflammation to poor daily functioning in this population.
Collapse
Affiliation(s)
- Sophia Kogan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luz H. Ospina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David Kimhy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
38
|
Subbanna M, Shivakumar V, Talukdar PM, Narayanaswamy JC, Venugopal D, Berk M, Varambally S, Venkatasubramanian G, Debnath M. Role of IL-6/RORC/IL-22 axis in driving Th17 pathway mediated immunopathogenesis of schizophrenia. Cytokine 2018; 111:112-118. [PMID: 30138899 DOI: 10.1016/j.cyto.2018.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
The immuno-inflammatory origin of schizophrenia in a subset of patients is viewed as a key element of an overarching etiological construct. Despite substantial research, the immune components exerting major effect are yet to be fully clarified. Disrupted T cell networks have consistently been linked to the pathogenesis of schizophrenia. Amongst the Th cell subsets, the Th17 cells have emerged as a paradigmatic lineage with significant functional implications in a vast number of immune mediated diseases including brain disorders such as schizophrenia. The present study was aimed at examining the functional role of the Th17 pathway in schizophrenia. To address this, genotyping of IL17A (rs2275913; G197A) Single Nucleotide Polymorphism was carried out by the PCR-RFLP method in 221 schizophrenia patients and 223 healthy control subjects. Gene expression of two transcription factors STAT3 and RORC was quantified in a subset of drug naïve schizophrenia patients (n = 56) and healthy controls (n = 52) by TaqMan assay. The plasma levels of fifteen cytokines belonging to Th17 pathway were estimated in a subset of drug naïve schizophrenia patients (n = 61) and healthy controls (n = 50) by using Bio-Plex Pro Human Th17 cytokine assays. The AA genotype was associated with higher total score of bizarre behaviour and apathy in female schizophrenia patients. A high gene expression level of RORC was observed in drug naïve schizophrenia patients. In addition, significantly elevated plasma levels of IL-6 and IL-22, and reduced levels of IL-1β and IL-17F were noted in schizophrenia patients. Taken together, these findings indicate a dysregulated Th17 pathway in schizophrenia patients.
Collapse
Affiliation(s)
- Manjula Subbanna
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Pinku Mani Talukdar
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Deepthi Venugopal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT Strategic Research Centre, Geelong, Victoria, Australia; Orygen, The Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Shivarama Varambally
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| |
Collapse
|
39
|
Attenuated Notch signaling in schizophrenia and bipolar disorder. Sci Rep 2018; 8:5349. [PMID: 29593239 PMCID: PMC5871764 DOI: 10.1038/s41598-018-23703-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway plays a crucial role in neurodevelopment and in adult brain homeostasis. We aimed to further investigate Notch pathway activity in bipolar disorder (BD) and schizophrenia (SCZ) by conducting a pathway analysis. We measured plasma levels of Notch ligands (DLL1 and DLK1) using enzyme immunoassays in a large sample of patients (SCZ n = 551, BD n = 246) and healthy controls (HC n = 639). We also determined Notch pathway related gene expression levels by microarray analyses from whole blood in a subsample (SCZ n = 338, BD n = 241 and HC n = 263). We found significantly elevated Notch ligand levels in plasma in both SCZ and BD compared to HC. Significant gene expression findings included increased levels of RFNG and KAT2B (p < 0.001), and decreased levels of PSEN1 and CREBBP in both patient groups (p < 0.001). RBPJ was significantly lower in SCZ vs HC (p < 0.001), and patients using lithium had higher levels of RBPJ (p < 0.001). We provide evidence of altered Notch signaling in both SCZ and BD compared to HC, and suggest that Notch signaling pathway may be disturbed in these disorders. Lithium may ameliorate aberrant Notch signaling. We propose that drugs targeting Notch pathway could be relevant in the treatment of psychotic disorders.
Collapse
|
40
|
Li Q, Zhou J, Cao X, Liu Q, Li Q, Li W, Wang X. Clonal Characteristics of T-Cell Receptor Repertoires in Violent and Non-violent Patients With Schizophrenia. Front Psychiatry 2018; 9:403. [PMID: 30233426 PMCID: PMC6127418 DOI: 10.3389/fpsyt.2018.00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/09/2018] [Indexed: 01/28/2023] Open
Abstract
Background: Activated or impaired T-cell function in inflammatory and degenerative process can contribute to the risk and progression of schizophrenia. This study used immune repertoire sequencing to investigate the T-cell receptor beta variable chain (TRBV) presence in blood mononuclear cells in the violent or non-violent schizophrenic patients. Methods: Ten violent and 10 non-violent schizophrenic patients and 8 matched healthy controls were enrolled. The Brief Psychiatric Rating Scale (BPRS) was used to evaluate patients' psychiatric symptoms. The level of aggression was assessed using the Modified Overt Aggression Scale (MOAS). The complementarity-determining region 3 (CDR3) of TRBV was detected using multiplex-PCR and high-throughput sequencing. Results: The TCR repertoire diversity were no significant differences in the Shannon-Wiener or inverse Simpson diversity index between three groups. Principal component analysis (PCA) of TRBV composition and abundance showed that principal component 1 and principal component 2 can explain 28.88 and 13.24% of total variation, respectively. Schizophrenic patients (violent and non-violent) had significantly different V gene distribution compared to healthy controls. In particular, TRBV2 occurred at a significantly higher frequency in the violent schizophrenia group than in the non-violent schizophrenia and healthy control groups, and TRBV7-2 occurred at a significantly higher frequency in the non-violent schizophrenia group than in the violent schizophrenia and healthy control groups. Conclusions: The results suggest that violent and non-violent schizophrenic patients carry abnormal T-cell receptor repertoires, and these data provide a useful clue to explore the etiology of violent behavior in schizophrenia.
Collapse
Affiliation(s)
- Qiguang Li
- Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders and National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Jiansong Zhou
- Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders and National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xia Cao
- Department of Health Management Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Liu
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China
| | - Qi Li
- Department of Psychiatry, State Key Laboratory for Cognitive and Brain Sciences, HKU-SIRI, University of Hong Kong, Hong Kong, China
| | - Wen Li
- Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders and National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoping Wang
- Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders and National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| |
Collapse
|
41
|
Tahmasebinia F, Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:408-416. [PMID: 28760387 DOI: 10.1016/j.pnpbp.2017.07.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023]
Abstract
The role of T helper 17 (Th17) cells in auto-inflammatory neurological disorders such as Multiple Sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and schizophrenia has not been clarified completely. Th17-derived pro-inflammatory cytokines including IL-17, IL-21, IL-22, IL-23, GM-CSF, and IFN-γ have a critical role in the pathogenesis of these disorders. In this review, we demonstrate the role of Th17 cells and their related cytokines in the immunopathology of above-mentioned disorders to get a better understanding of neuroinflammatory mechanisms mediated by Th17 cells associated with events leading to neurodegeneration.
Collapse
Affiliation(s)
- Foozhan Tahmasebinia
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Arash Pourgholaminejad
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
42
|
Melbourne JK, Feiner B, Rosen C, Sharma RP. Targeting the Immune System with Pharmacotherapy in Schizophrenia. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2017; 4:139-151. [PMID: 28674674 PMCID: PMC5493152 DOI: 10.1007/s40501-017-0114-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jennifer K. Melbourne
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
| | - Benjamin Feiner
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
| | - Cherise Rosen
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
| | - Rajiv P. Sharma
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL, USA, 60612
| |
Collapse
|
43
|
de Haan P, Klein HC, 't Hart BA. Autoimmune Aspects of Neurodegenerative and Psychiatric Diseases: A Template for Innovative Therapy. Front Psychiatry 2017; 8:46. [PMID: 28421005 PMCID: PMC5378775 DOI: 10.3389/fpsyt.2017.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative and psychiatric diseases (NPDs) are today's most important group of diseases, surpassing both atherosclerotic cardiovascular disease and cancer in morbidity incidence. Although NPDs have a dramatic impact on our society because of their high incidence, mortality, and severe debilitating character, remarkably few effective interventions have become available. The current treatments, if available, comprise the lifelong intake of general immunosuppressants to delay disease progression or neurotransmitter antagonists/agonists to dampen undesired behaviors. The long-term usage of such medication, however, coincides with often severe adverse side effects. There is, therefore, an urgent need for safe and effective treatments for these diseases. Here, we discuss that many NPDs coincide with subtle chronic or flaring brain inflammation sometimes escalating with infiltrations of lymphocytes in the inflamed brain parts causing mild to severe or even lethal brain damage. Thus, NPDs show all features of autoimmune diseases. In this review, we postulate that NPDs resemble autoimmune-driven inflammatory diseases in many aspects and may belong to the same disease spectrum. Just like in autoimmune diseases, NPD symptoms basically are manifestations of a chronic self-sustaining inflammatory process with detrimental consequences for the patient. Specific inhibition of the destructive immune responses in the brain, leaving the patient's immune system intact, would be the ultimate solution to cure patients from the disease. To reach this goal, the primary targets, e.g., the primary self-antigens (pSAgs) of the patient's chronic (auto)immune response, need to be identified. For a few major NPDs, immunological studies led to the identification of the pSAgs involved in the autoimmune damage of specific brain parts. However, further research is needed to complete the list of pSAgs for all NPDs. Such immunological studies will not only provide crucial insights into NPD pathogenesis but also ultimately enable the development of a new generation of safe and effective immunotherapies for NPDs. Interventions that will dramatically improve the life expectancy and quality of life of individual patients and, moreover, will significantly reduce the health-care costs of the society in general.
Collapse
Affiliation(s)
| | - Hans C Klein
- Department of Psychiatry and Medical Imaging Centre, University Medical Centre Groningen, Groningen, Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
44
|
Debnath M, Berk M. Functional Implications of the IL-23/IL-17 Immune Axis in Schizophrenia. Mol Neurobiol 2016; 54:8170-8178. [PMID: 27900676 DOI: 10.1007/s12035-016-0309-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
The aetiology of schizophrenia seems to stem from complex interactions amongst environmental, genetic, metabolic, immunologic and oxidative components. Chronic low-grade inflammation has been persistently linked to schizophrenia, and this has primarily been based on the findings derived from Th1/Th2 cytokine balance. While the IL-23/IL-17 axis plays crucial role in the pathogenesis of several immune-mediated disorders, it has remained relatively unexplored in neuropsychiatric disorders. Altered levels of cytokines related to IL-23/IL-17 axis have been observed in schizophrenia patients in a few studies. In addition, other indirect factors known to confer schizophrenia risk like complement activation and altered gut microbiota are shown to modulate the IL-23/IL-17 axis. These preliminary observations provide crucial clues about the functional implications of IL-23/IL-17 axis in schizophrenia. In this review, an attempt has been made to highlight the biology of IL-23/IL-17 axis and its relevance to schizophrenia risk and pathogenesis. Given the pathogenic potential of the IL-23/IL-17 axis, therapeutic targeting of this axis may be a promising approach to benefit patients suffering from this devastating disorder.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, India.
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, the Florey Institute of Neuroscience and Mental Health, and Orygen Youth Health Research Centre, University of Melbourne, Parkville, Australia
| |
Collapse
|
45
|
Nath S, Christian L, Tan SY, Ki S, Ehrlich LIR, Poenie M. Dynein Separately Partners with NDE1 and Dynactin To Orchestrate T Cell Focused Secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2090-101. [PMID: 27534551 PMCID: PMC5010990 DOI: 10.4049/jimmunol.1600180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
Helper and cytotoxic T cells accomplish focused secretion through the movement of vesicles toward the microtubule organizing center (MTOC) and translocation of the MTOC to the target contact site. In this study, using Jurkat cells and OT-I TCR transgenic primary murine CTLs, we show that the dynein-binding proteins nuclear distribution E homolog 1 (NDE1) and dynactin (as represented by p150(Glued)) form mutually exclusive complexes with dynein, exhibit nonoverlapping distributions in target-stimulated cells, and mediate different transport events. When Jurkat cells expressing a dominant negative form of NDE1 (NDE1-enhanced GFP fusion) were activated by Staphylococcus enterotoxin E-coated Raji cells, NDE1 and dynein failed to accumulate at the immunological synapse (IS) and MTOC translocation was inhibited. Knockdown of NDE1 in Jurkat cells or primary mouse CTLs also inhibited MTOC translocation and CTL-mediated killing. In contrast to NDE1, knockdown of p150(Glued), which depleted the alternative dynein/dynactin complex, resulted in impaired accumulation of CTLA4 and granzyme B-containing intracellular vesicles at the IS, whereas MTOC translocation was not affected. Depletion of p150(Glued) in CTLs also inhibited CTL-mediated lysis. We conclude that the NDE1/Lissencephaly 1 and dynactin complexes separately mediate two key components of T cell-focused secretion, namely translocation of the MTOC and lytic granules to the IS, respectively.
Collapse
Affiliation(s)
- Shubhankar Nath
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| | - Laura Christian
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712
| | - Sarah Youngsun Tan
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712
| | - Sanghee Ki
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| | - Martin Poenie
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| |
Collapse
|
46
|
Chen J, Calhoun VD, Perrone-Bizzozero NI, Pearlson GD, Sui J, Du Y, Liu J. A pilot study on commonality and specificity of copy number variants in schizophrenia and bipolar disorder. Transl Psychiatry 2016; 6:e824. [PMID: 27244233 PMCID: PMC5545651 DOI: 10.1038/tp.2016.96] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are known to share genetic risks. In this work, we conducted whole-genome scanning to identify cross-disorder and disorder-specific copy number variants (CNVs) for these two disorders. The Database of Genotypes and Phenotypes (dbGaP) data were used for discovery, deriving from 2416 SZ patients, 592 BD patients and 2393 controls of European Ancestry, as well as 998 SZ patients, 121 BD patients and 822 controls of African Ancestry. PennCNV and Birdsuite detected high-confidence CNVs that were aggregated into CNV regions (CNVRs) and compared with the database of genomic variants for confirmation. Then, large (size⩾500 kb) and small common CNVRs (size <500 kb, frequency⩾1%) were examined for their associations with SZ and BD. Particularly for the European Ancestry samples, the dbGaP findings were further evaluated in the Wellcome Trust Case Control Consortium (WTCCC) data set for replication. Previously implicated variants (1q21.1, 15q13.3, 16p11.2 and 22q11.21) were replicated. Some cross-disorder variants were noted to differentially affect SZ and BD, including CNVRs in chromosomal regions encoding immunoglobulins and T-cell receptors that were associated more with SZ, and the 10q11.21 small CNVR (GPRIN2) associated more with BD. Disorder-specific CNVRs were also found. The 22q11.21 CNVR (COMT) and small CNVRs in 11p15.4 (TRIM5) and 15q13.2 (ARHGAP11B and FAN1) appeared to be SZ-specific. CNVRs in 17q21.2, 9p21.3 and 9q21.13 might be BD-specific. Overall, our primary findings in individual disorders largely echo previous reports. In addition, the comparison between SZ and BD reveals both specific and common risk CNVs. Particularly for the latter, differential involvement is noted, motivating further comparative studies and quantitative models.
Collapse
Affiliation(s)
- J Chen
- The Mind Research Network, Albuquerque, NM, USA
| | - V D Calhoun
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, USA
| | - N I Perrone-Bizzozero
- Departments of Neurosciences and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - G D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
- Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
| | - J Sui
- The Mind Research Network, Albuquerque, NM, USA
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Y Du
- The Mind Research Network, Albuquerque, NM, USA
| | - J Liu
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
47
|
Central Nervous System-Peripheral Immune System Dialogue in Neurological Disorders: Possible Application of Neuroimmunology in Urology. Int Neurourol J 2016; 20:S8-14. [PMID: 27230462 PMCID: PMC4895905 DOI: 10.5213/inj.1632614.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
Previous concepts of immune-privileged sites obscured the role of peripheral immune cells in neurological disorders and excluded the consideration of the potential benefits of immunotherapy. Recently, however, numerous studies have demonstrated that the blood–brain barrier in the central nervous system is an educational barrier rather than an absolute barrier to peripheral immune cells. Emerging knowledge of immune-privileged sites suggests that peripheral immune cells can infiltrate these sites via educative gates and that crosstalk can occur between infiltrating immune cells and the central nervous system parenchyma. This concept can be expanded to the testis, which has long been considered an immune-privileged site, and to neurogenic bladder dysfunction. Thus, we propose that the relationship between peripheral immune cells, the brain, and the urologic system should be considered as an additional possible mechanism in urologic diseases, and that immunotherapy might be an alternative therapeutic strategy in treating neurogenic bladder dysfunction.
Collapse
|
48
|
Mosley RL. Adaptive Immunity in Neurodegenerative and Neuropsychological Disorders. J Neuroimmune Pharmacol 2015; 10:522-7. [PMID: 26496777 DOI: 10.1007/s11481-015-9640-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 01/23/2023]
Abstract
Neurodegenerative and neuropsychological disorders are becoming a greater proportion of the global disease burden; however the pathogenic mechanisms by which these disorders originate and contribute to disease progression are not well-described. Increasing evidence supports neuroinflammation as a common underlying component associated with the neuropathological processes that effect disease progression. This collection of articles explores the role of adaptive immunity in autoimmunity, neurodegeneration, neurotrauma, and psychological disorders. The section emphasizes the interactions of T cells with innate cellular responses within the CNS and the effects on neurological functions. One recurrent theme is that modified and aggregated self-proteins upregulate innate-mediated inflammation and provide a permissive environment for polarization of T cells to proinflammatory effector cells. Moreover, infiltration and reactivation of those T effector cells exacerbate neuroinflammation and oxidative stress to greater neurotoxic levels. Another recurrent theme in these disorders promotes diminished regulatory functions that reduce control over activated T effector cells and microglia, and ultimately augment proinflammatory conditions. Augmentation of regulatory control is discussed as therapeutic strategies to attenuate neuroinflammation, mitigate neurodegeneration or neuronal dysfunction, and lessen disease progression.
Collapse
Affiliation(s)
- R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|