1
|
Panszczyk D, Dale C, Kurth F, Luders E. Hemispheric asymmetry in language-related brain regions. Brain Res 2025; 1857:149606. [PMID: 40157414 DOI: 10.1016/j.brainres.2025.149606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Structural asymmetries of the human brain have been widely studied in previous research. However, there is a lack of consistency across studies in terms of whether brain regions are larger in the left hemisphere than the right (leftward asymmetry), larger in the right hemisphere than the left (rightward asymmetry), or similar in both hemispheres (no asymmetry). Moreover, some of the existing studies exploring brain asymmetry were based on only small sample sizes and/or restricted to younger participants. Thus, here we analysed brain asymmetry in a well-powered sample (n = 532) later in life (mean age: 67 years). Given that language is known to be strongly lateralized in the brain, the current study focused on regions related to language. When assessing cortical volumes and surface areas, we observed significant leftward asymmetries for the superior temporal gyrus, superior temporal sulcus, supramarginal gyrus, pars opercularis, transverse gyrus, and temporal gyrus, whereas the pars triangularis showed a significant rightward asymmetry. In contrast, when assessing cortical thickness, we detected a significant leftward asymmetry for the pars triangularis and a significant rightward asymmetry for the superior temporal sulcus. The present observations on asymmetry in language-related brain regions in a large sample of older but neurologically healthy participants may serve as a normative framework against which data from clinical samples can be compared.
Collapse
Affiliation(s)
- Daniel Panszczyk
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Caitlin Dale
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand; Department of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Swedish Collegium for Advanced Study (SCAS), Uppsala 75238, Sweden; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
2
|
Sun Y, Fu C, Gu L, Zhao H, Feng Y, Jin C. Sex-related differences and associated transcriptional signatures in the brain ventricular system and cerebrospinal fluid development in full-term neonates. Biol Sex Differ 2025; 16:35. [PMID: 40414938 PMCID: PMC12103790 DOI: 10.1186/s13293-025-00719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND The cerebrospinal fluid (CSF) is known to serve as a unique environment for neurodevelopment, with specific proteins secreted by epithelial cells of the choroid plexus (CP) playing crucial roles in cortical development and cell differentiation. Sex-related differences in the brain in early life have been widely identified, but few studies have investigated the neonatal CSF system and associated transcriptional signatures. METHODS This study included 75 full-term neonates [44 males and 31 females; gestational age (GA) = 37-42 weeks] without significant MRI abnormalities from the dHCP (developing Human Connectome Project) database. Deep-learning automated segmentation was used to measure various metrics of the brain ventricular system and CSF. Sex-related differences and relationships with postnatal age were analyzed by linear regression. Correlations between the CP and CSF space metrics were also examined. LASSO regression was further applied to identify the key genes contributing to the sex-related CSF system differences by using regional gene expression data from the Allen Human Brain Atlas. RESULTS Right lateral ventricles [2.42 ± 0.98 vs. 2.04 ± 0.45 cm3 (mean ± standard deviation), p = 0.036] and right CP (0.16 ± 0.07 vs. 0.13 ± 0.04 cm3, p = 0.024) were larger in males, with a stronger volume correlation (male/female correlation coefficients r: 0.798 vs. 0.649, p < 1 × 10- 4). No difference was found in total CSF volume, while peripheral CSF (male/female β: 1.218 vs. 1.064) and CP (male/female β: 0.008 vs. 0.005) exhibited relatively faster growth in males. Additionally, the volumes of the lateral ventricular system, third ventricle, peripheral CSF, and total CSF were significantly correlated with their corresponding CP volume (r: 0.362 to 0.799, p < 0.05). DERL2 (Degradation in Endoplasmic Reticulum Protein 2) (r = 0.1319) and MRPL48 (Mitochondrial Large Ribosomal Subunit Protein) (r=-0.0370) were identified as potential key genes associated with sex-related differences in CSF system. CONCLUSION Male neonates present larger volumes and faster growth of the right lateral ventricle, likely linked to corresponding CP volume and growth pattern. The downregulation of DERL2 and upregulation of MRPL48 may contribute to these sex-related variations in the CSF system, suggesting a molecular basis for sex-specific brain development.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Chenxin Fu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Lifan Gu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Huifang Zhao
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Yuying Feng
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China.
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, P. R. China.
- Xi'an Key Laboratory of Medical Computational Imaging, Xi'an, China.
| |
Collapse
|
3
|
Mundorf A, Lischke A, Peterburs J, Alexander N, Bonnekoh LM, Brosch K, Flinkenflügel K, Goltermann J, Hahn T, Jansen A, Meinert S, Nenadić I, Schürmeyer NN, Stein F, Straube B, Thiel K, Teutenberg L, Thomas-Odenthal F, Usemann P, Winter A, Dannlowski U, Kircher T, Ocklenburg S. Handedness in schizophrenia and affective disorders: a large-scale cross-disorder study. Eur Arch Psychiatry Clin Neurosci 2025; 275:767-783. [PMID: 38914850 PMCID: PMC11946993 DOI: 10.1007/s00406-024-01833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
While most people are right-handed, a minority are left-handed or mixed-handed. It has been suggested that mental and developmental disorders are associated with increased prevalence of left-handedness and mixed-handedness. However, substantial heterogeneity exists across disorders, indicating that not all disorders are associated with a considerable shift away from right-handedness. Increased frequencies in left- and mixed-handedness have also been associated with more severe clinical symptoms, indicating that symptom severity rather than diagnosis explains the high prevalence of non-right-handedness in mental disorders. To address this issue, the present study investigated the association between handedness and measures of stress reactivity, depression, mania, anxiety, and positive and negative symptoms in a large sample of 994 healthy controls and 1213 patients with DSM IV affective disorders, schizoaffective disorders, or schizophrenia. A series of complementary analyses revealed lower lateralization and a higher percentage of mixed-handedness in patients with major depression (14.9%) and schizophrenia (24.0%) compared to healthy controls (12%). For patients with schizophrenia, higher symptom severity was associated with an increasing tendency towards left-handedness. No associations were found for patients diagnosed with major depression, bipolar disorder, or schizoaffective disorder. In healthy controls, no association between hand preference and symptoms was evident. Taken together, these findings suggest that both diagnosis and symptom severity are relevant for the shift away from right-handedness in mental disorders like schizophrenia and major depression.
Collapse
Affiliation(s)
- Annakarina Mundorf
- ISM Institute of Systems Medicine & Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany.
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexander Lischke
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- ICPP Institute for Clinical Psychology and Psychotherapy, MSH Medical School Hamburg, Hamburg, Germany
| | - Jutta Peterburs
- ISM Institute of Systems Medicine & Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Linda M Bonnekoh
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | | | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Silberfeld A, Roe JM, Ellegood J, Lerch JP, Qiu L, Kim Y, Lee JG, Hopkins WD, Grandjean J, Ou Y, Pourquié O. Left-Right Brain-Wide Asymmetry of Neuroanatomy in the Mouse Brain. Neuroimage 2025; 307:121017. [PMID: 39798830 DOI: 10.1016/j.neuroimage.2025.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes past the left. Here, we ask whether neuroanatomical asymmetries can be observed in mice, leveraging 6 mouse neuroimaging cohorts from 5 different research groups (∼3,500 animals). We found an anterior-posterior pattern of volume asymmetry with anterior regions larger on the right and posterior regions larger on the left. This pattern appears driven by similar trends in surface area and positional asymmetries, with the results together indicating a small brain-wide twisting pattern, similar to the human cerebral petalia. Furthermore, the results show no apparent relationship to known functional asymmetries in mice, emphasizing the complexity of the structure-function relationship in brain asymmetry. Our results recapitulate and extend previous patterns of asymmetry from two published studies as well as capture well-established, bilateral male-female differences in the mouse brain as a positive control. By establishing a signature of anatomical brain asymmetry in mice, we aim to provide a foundation for future studies to probe the mechanistic underpinnings of brain asymmetry seen in humans - a feature of the brain with extremely limited understanding.
Collapse
Affiliation(s)
- Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Jacob Ellegood
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Preclinical Imaging, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lily Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jong Gwan Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - William D Hopkins
- Department of Comparative Medicine & Michale E Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, Netherlands; Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, Netherlands
| | - Yangming Ou
- Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Pérez-Millan A, Lal-Trehan Estrada UM, Falgàs N, Guillén N, Borrego-Écija S, Juncà-Parella J, Bosch B, Tort-Merino A, Sarto J, Augé JM, Antonell A, Bargalló N, Ruiz-García R, Naranjo L, Balasa M, Lladó A, Sala-Llonch R, Sánchez-Valle R. The Cortical Asymmetry Index for subtyping dementia patients. Eur Radiol 2025:10.1007/s00330-025-11400-y. [PMID: 39934339 DOI: 10.1007/s00330-025-11400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVES Frontotemporal dementia (FTD) usually shows more asymmetric atrophy patterns than Alzheimer's disease (AD). We aim to quantify this asymmetry to differentiate FTD, AD, and FTD subtypes. METHODS We studied T1-MRI scans, including FTD (different phenotypes), AD, and healthy controls (CTR). We defined the Cortical Asymmetry Index (CAI) using measures based on a metric derived from information theory with the cortical thickness measures. Some participants had additional follow-up MRIs, cerebrospinal fluid (CSF), or plasma measures. We analysed differences at cross-sectional and longitudinal levels. We then clustered FTD and AD participants based on the CAI values and studied the patients' fluid biomarker characteristics within each cluster. RESULTS A total of 101 FTD patients (64 ± 8 years, 53 men), 230 AD patients (65 ± 10 years, 84 men), and 173 CTR (59 ± 15 years, 67 men) were studied. CAI differentiated FTD, AD, and CTR. It also distinguished the semantic variant primary progressive aphasia (svPPA) from the other FTD phenotypes. In FTD, the CAI increased over time. The cluster analysis identified two subgroups within FTD, characterised by different neurofilament-light (NfL) levels, and two subgroups within AD, with different plasma glial fibrillary acidic protein (GFAP) levels. In AD, CAI correlated with GFAP and Mini-Mental State Examination (MMSE); in FTD, the CAI was associated with NfL levels. CONCLUSIONS The proposed method quantifies asymmetries previously described visually. The CAI could define clinically and biologically meaningful disease subgroups in the differential diagnosis of AD and FTD and its subtypes. CAI could also be of interest in tracking disease progression in FTD. KEY POINTS Question There is a need to find quantitative metrics from MRI that can identify disease subgroups, and that could be useful for diagnosis and tracking. Findings We propose a Cortical Asymmetry Index that differentiates Alzheimer's disease (AD) from Frontotemporal dementia (FTD), distinguishes FTD subtypes, correlates with NFL and GFAP levels, and monitors FTD progression. Clinical relevance Our proposed index holds the potential to support clinical applications for diagnosis and disease tracking in AD and FTD, using a quantitative summary metric from MRI data. It also contributes to the understanding of these diseases.
Collapse
Affiliation(s)
- Agnès Pérez-Millan
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Spain
- Department of Biomedicine, University of Barcelona, 08036, Barcelona, Spain
| | - Uma Maria Lal-Trehan Estrada
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Spain
- Department of Biomedicine, University of Barcelona, 08036, Barcelona, Spain
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
| | - Núria Guillén
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
| | - Jordi Juncà-Parella
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
| | - Adrià Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
| | - Jordi Sarto
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
| | - Josep Maria Augé
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
| | - Núria Bargalló
- Image Diagnostic Centre, Hospital Clínic de Barcelona, Barcelona, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Magnetic Resonance Image Core Facility, IDIBAPS, 08036, Barcelona, Spain
| | - Raquel Ruiz-García
- Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Laura Naranjo
- Immunology Service, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Spain
| | - Roser Sala-Llonch
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Spain
- Department of Biomedicine, University of Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Group, Service of Neurology, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona-IDIBAPS, 08036, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Spain.
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
6
|
Manns M, Juckel G, Freund N. The Balance in the Head: How Developmental Factors Explain Relationships Between Brain Asymmetries and Mental Diseases. Brain Sci 2025; 15:169. [PMID: 40002502 PMCID: PMC11852682 DOI: 10.3390/brainsci15020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral lateralisation is a core organising principle of the brain that is characterised by a complex pattern of hemispheric specialisations and interhemispheric interactions. In various mental disorders, functional and/or structural hemispheric asymmetries are changed compared to healthy controls, and these alterations may contribute to the primary symptoms and cognitive impairments of a specific disorder. Since multiple genetic and epigenetic factors influence both the pathogenesis of mental illness and the development of brain asymmetries, it is likely that the neural developmental pathways overlap or are even causally intertwined, although the timing, magnitude, and direction of interactions may vary depending on the specific disorder. However, the underlying developmental steps and neuronal mechanisms are still unclear. In this review article, we briefly summarise what we know about structural, functional, and developmental relationships and outline hypothetical connections, which could be investigated in appropriate animal models. Altered cerebral asymmetries may causally contribute to the development of the structural and/or functional features of a disorder, as neural mechanisms that trigger neuropathogenesis are embedded in the asymmetrical organisation of the developing brain. Therefore, the occurrence and severity of impairments in neural processing and cognition probably cannot be understood independently of the development of the lateralised organisation of intra- and interhemispheric neuronal networks. Conversely, impaired cellular processes can also hinder favourable asymmetry development and lead to cognitive deficits in particular.
Collapse
Affiliation(s)
- Martina Manns
- Research Division Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44809 Bochum, Germany;
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany;
| | - Nadja Freund
- Research Division Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44809 Bochum, Germany;
| |
Collapse
|
7
|
Rivera-Olvera A, Houwing DJ, Ellegood J, Masifi S, Martina SL, Silberfeld A, Pourquie O, Lerch JP, Francks C, Homberg JR, van Heukelum S, Grandjean J. The universe is asymmetric, the mouse brain too. Mol Psychiatry 2025; 30:489-496. [PMID: 39107583 DOI: 10.1038/s41380-024-02687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 01/22/2025]
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models to understand the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice.
Collapse
Affiliation(s)
| | - Danielle J Houwing
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Shang Masifi
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Stephany Ll Martina
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquie
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Clyde Francks
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands.
- Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Wronski ML, Gronow F, Schlömer J, Bernardoni F, Geisler D, Doose A, Arold D, Schwanke N, Ludwicki F, Roessner V, King JA, Ehrlich S. Structural alterations of thalamic nuclei and their associations with leptin levels in patients with anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111248. [PMID: 39761816 DOI: 10.1016/j.pnpbp.2025.111248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/14/2025]
Abstract
BACKGROUND The thalamus is a complex subcortical brain structure that plays a role in various cognitive functions. Few studies have focused on thalamic nuclei-specific alterations and potential neurohormonal involvement in eating disorders including anorexia nervosa (AN). METHODS We employed a FreeSurfer segmentation tool to compare thalamic nuclei volumes cross-sectionally between females with AN (n = 131, 12-29 years) and age-matched healthy females (HC, n = 131). Potential associations with BMI, leptin, and psychiatric symptoms were analyzed via robust linear regression. RESULTS Most thalamic nuclei volumes were reduced in both hemispheres in AN versus HC. The spread of alterations ranged between -39.7 % and +3.8 % (average -9.8 %, ηp2 = 0.16). Left laterodorsal and pulvinar inferior nuclei showed positive associations with leptin in AN. Leptin mediated the effect of BMI on both thalamic nuclei volumes. CONCLUSIONS In AN, thalamic nuclei are altered to different degrees with laterodorsal nuclei emerging as substantially reduced. Leptin seems to be mechanistically involved in the reduction of some thalamic nuclei, further supporting the investigation of experimental leptin treatment for AN. Effect sizes observed for thalamic nuclei reductions in AN exceed other brain structures as well as other psychiatric disorders, which demonstrates the importance of the thalamus as a target structure in research on AN.
Collapse
Affiliation(s)
- Marie-Louis Wronski
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany; Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Franziska Gronow
- Institute of Medical Psychology, Charité University Medicine Berlin, Berlin, Germany
| | - John Schlömer
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Dominic Arold
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nadine Schwanke
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franziska Ludwicki
- Department of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Joseph A King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Kürzinger B, Schindler S, Meffert M, Rosenhahn A, Trampel R, Turner R, Schoenknecht P. Basolateral amygdala volume in affective disorders using 7T MRI in vivo. Front Psychiatry 2025; 15:1404594. [PMID: 39834577 PMCID: PMC11744004 DOI: 10.3389/fpsyt.2024.1404594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025] Open
Abstract
Background The basolateral complex of the amygdala is a crucial neurobiological site for Pavlovian conditioning. Investigations into volumetric alterations of the basolateral amygdala in individuals with major depressive disorder (MDD) have yielded conflicting results. These may be reconciled in an inverted U-shape allostatic growth trajectory. This hypothesized trajectory unfolds with an initial phase of volumetric expansion, driven by enhanced dendritic arborization and synaptic plasticity. The increase in volume is followed by a reduction phase, as glucocorticoid exposure cumulatively results in excitotoxic damage, reflecting allostatic load. Methods 7T magnetic resonance brain imaging was conducted on a total of 84 participants (mean age 38 ± 12 years), comprising 20 unmedicated and 20 medicated individuals with MDD, 21 individuals suffering from bipolar disorder and 23 healthy controls. We employed FreeSurfer 7.3.2 for automatic high-resolution segmentation of nine amygdala subnuclei. We conducted analyses of covariance, with volumes of the basolateral complex, the lateral nucleus and, exploratively, the whole amygdala, as dependent variables, while controlling for the total intracranial volume and sex. Quadratic regressions were computed within the MDD group and in relevant subgroups to investigate the presence of a U-shaped relationship between the number of preceding major depressive episodes or the duration of the disease since the first episode and the dependent variables. Results Diagnostic groups did not exhibit statistically significant differences in the volumes of the basolateral amygdala (left F (3,75) = 0.66, p >.05; right F (3,76) = 1.80, p >.05), the lateral nucleus (left F (3,75) = 1.22, p >.05; right F (3,76) = 2.30, p >.05)), or the whole amygdala (left F (3,75) = 0.48, p >.05; right F (3,76) = 1.58, p >.05). No quadratic associations were observed between surrogate parameters of disease progression and any of the examined amygdala volumes. There were no significant correlations between subregion volumes and clinical characteristics. Conclusion We found no evidence for the hypothesis of an inverted U-shaped volumetric trajectory of the basolateral amygdala in MDD. Future research with larger sample sizes, including the measurement of genetic and epigenetic markers, will hopefully further elucidate this compelling paradigm.
Collapse
Affiliation(s)
- Benedikt Kürzinger
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Stephanie Schindler
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Martin Meffert
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Anja Rosenhahn
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Turner
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Schoenknecht
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
- Out-patient Department for Sexual-therapeutic Prevention and Forensic Psychiatry, University Hospital Leipzig, Leipzig, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic, Saxon State Hospital Altscherbitz, Schkeuditz, Germany
| |
Collapse
|
10
|
Sha Z, Francks C. Large-scale genetic mapping for human brain asymmetry. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:241-254. [PMID: 40074400 DOI: 10.1016/b978-0-443-15646-5.00029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Left-right asymmetry is an important aspect of human brain organization for functions including language and hand motor control, which can be altered in some psychiatric traits. The last 5 years have seen rapid advances in the identification of specific genes linked to variation in asymmetry of the human brain and/or handedness. These advances have been driven by a new generation of large-scale genome-wide association studies, carried out in samples ranging from roughly 16,000 to over 1.5 million participants. The implicated genes tend to be most active in the embryonic and fetal brain, consistent with early developmental patterning of brain asymmetry. Several of the genes encode components of microtubules or other microtubule-associated proteins. Microtubules are key elements of the internal cellular skeleton (cytoskeleton). A major challenge remains to understand how these genes affect, or even induce, the brain's left-right axis. Several of the implicated genes have also been associated with psychiatric or neurologic disorders, and polygenic dispositions to autism and schizophrenia have been associated with structural brain asymmetry. Knowledge of developmental mechanisms that lead to hemispheric specialization may ultimately help to define etiologic subtypes of brain disorders.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience & Donders Community for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Dulyan L, Bortolami C, Forkel SJ. Asymmetries in the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:15-36. [PMID: 40074393 DOI: 10.1016/b978-0-443-15646-5.00030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The human brain is an intricate network of cortical regions interconnected by white matter pathways, dynamically supporting cognitive functions. While cortical asymmetries have been consistently reported, the asymmetry of white matter connections remains less explored. This chapter provides a brief overview of asymmetries observed at the cortical, subcortical, cytoarchitectural, and receptor levels before exploring the detailed connectional anatomy of the human brain. It thoroughly examines the lateralization and interindividual variability of 56 distinct white matter tracts, offering a comprehensive review of their structural characteristics and interindividual variability. Additionally, we provide an extensive update on the asymmetry of a wide range of white matter tracts using high-resolution data from the Human Connectome Project (7T HCP www.humanconnectome.org). Future research and advanced quantitative analyses are crucial to understanding fully how asymmetry contributes to interindividual variability. This comprehensive exploration enhances our understanding of white matter organization and its potential implications for brain function.
Collapse
Affiliation(s)
- Lilit Dulyan
- Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
| | - Cesare Bortolami
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy; Università di Genova, Genova, Italy
| | - Stephanie J Forkel
- Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, The Netherlands; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Klepits P, Koschutnig K, Zussner T, Fink A. Changes in hippocampal volume and affective functioning after a moderate intensity running intervention. Brain Struct Funct 2024; 230:2. [PMID: 39670994 PMCID: PMC11645311 DOI: 10.1007/s00429-024-02885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/16/2024] [Indexed: 12/14/2024]
Abstract
This study examined the effects of a moderately intense seven-week running intervention on the hippocampal volume and depressive symptoms of young men (20-31 years of age) from the general population (N = 21). A within-subjects-design involving a two-week baseline period before the running intervention, and two subsequent intervention cycles was applied. At four time points of assessment (t1: start of the study; t2: end of baseline period/start of the intervention; t3: end of the first intervention cycle; t4: end of the 2nd intervention cycle/study end) magnetic resonance imaging was performed and symptoms related to depression were assessed employing the Center for Epidemiological Studies Depression (CES-D) Scale. The intervention resulted in a significant increase in the estimated maximum oxygen uptake (VO2max), measured with a standardized walking test (average increase from 42.07 ml*kg- 1*min- 1 to 46.07 ml*kg- 1*min- 1). The CES-D scores decreased significantly over the course of the running intervention (average decrease from 12.76 to 10.48 on a 20-point scale). Significant volumetric increases in the hippocampus were found, most notably after the first intervention cycle in the left (average increase from 613.41 mm³ to 620.55 mm³) and right hippocampal tail (average increase from 629.77 mm³ to 638.17 mm³). These findings provide new evidence regarding the temporal dynamics of hippocampal changes following engagement in physical activity.
Collapse
Affiliation(s)
| | - Karl Koschutnig
- University of Graz, Graz, Austria
- MRI-Lab Graz, Graz, Austria
| | - Thomas Zussner
- University of Graz, Graz, Austria
- MRI-Lab Graz, Graz, Austria
| | - Andreas Fink
- University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
13
|
Dumitru ML, Johnsen E, Kroken RA, Løberg EM, Lilleskare L, Ersland L, Hugdahl K. Widespread asymmetries of amygdala nuclei predict auditory verbal hallucinations in schizophrenia. BMC Psychiatry 2024; 24:826. [PMID: 39563258 DOI: 10.1186/s12888-024-06301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Auditory verbal hallucinations, which frequently involve negative emotions, are reliable symptoms of schizophrenia. Brain asymmetries have also been linked to the condition, but the relevance of asymmetries within the amygdala, which coordinates all emotional signals, to the content of and response to auditory verbal hallucinations has not been explored. METHODS We evaluated the performance of two asymmetry biomarkers that were recently introduced in literature: the distance index, which captures global asymmetries, and a revised version of the laterality index, which captures left-right local asymmetries. We deployed random forest regression models over values computed with the distance index and with the laterality index over amygdala nuclei volumes (lateral, basal, accessory-basal, anterior amygdaloid area, central, medial, cortical, cortico-amygdaloid area, and paralaminar) for 71 patients and 71 age-matched controls. RESULTS Both biomarkers made successful predictions for the 35 items of the revised version of the Belief About Voices Questionnaire, such that hallucination severity increased with increasing local asymmetries and with decreasing global asymmetries of the amygdala. CONCLUSIONS Our findings highlight a global reorganization of the amygdala, where left and right nuclei volumes differ pairwise but become proportionally more similar as hallucinations increase in severity. Identifying asymmetries in particular brain structures relevant to specific symptoms could help monitor the evolution and outcome of psychopathological conditions.
Collapse
Affiliation(s)
- Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53 A/B, Postboks 5006, Bergen, Norway.
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Else-Marie Løberg
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Lin Lilleskare
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Lee GY, Youn YA, Jang YH, Kim H, Lee JY, Lee YJ, Jung M, Lee HJ. Structural development and brain asymmetry in the fronto-limbic regions in preschool-aged children. Front Pediatr 2024; 12:1362409. [PMID: 39411282 PMCID: PMC11473423 DOI: 10.3389/fped.2024.1362409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Early-life experiences play a crucial role in the development of the fronto-limbic regions, influencing both macro- and microstructural changes in the brain. These alterations profoundly impact cognitive, social-emotional functions. Recently, early limbic structural alterations have been associated with numerous neurological and psychiatric morbidities. Although identifying normative developmental trajectories is essential for determining brain alterations, only a few studies have focused on examining the normative trajectories in the fronto-limbic regions during preschool-aged children. The aim of this study was to investigate the structural-developmental trajectory of the fronto-limbic regions using the cortical thickness, volume, and subcortical volume in 57 healthy and typical preschool-aged children between 1 and 5 years and examined the early lateralization patterns during the development of the fronto-limbic regions. Regarding brain lateralization, remarkable asymmetry was detected in the volume of thalamus and the cortical regions excluding the lateral orbitofrontal cortex in the fronto-limbic regions. This study of preschool-aged children may fill the knowledge gaps regarding the developmental patterns and hemispheric asymmetries of the fronto-limbic regions between newborns and adolescents.
Collapse
Affiliation(s)
- Gang Yi Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Young-Ah Youn
- Department of Pediatrics, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Young Jun Lee
- Department of Radiology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Wróbel PP, Braaß H, Frey BM, Bönstrup M, Guder S, Frontzkowski LK, Feldheim JF, Cheng B, Rathi Y, Pasternak O, Thomalla G, Koerte IK, Shenton ME, Gerloff C, Quandt F, Higgen FL, Schulz R. Cortical microstructure and hemispheric specialization-A diffusion-imaging analysis in younger and older adults. Eur J Neurosci 2024; 60:5718-5730. [PMID: 39205547 DOI: 10.1111/ejn.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Characterizing cortical plasticity becomes increasingly important for identifying compensatory mechanisms and structural reserve in the ageing population. While cortical thickness (CT) largely contributed to systems neuroscience, it incompletely informs about the underlying neuroplastic pathophysiology. In turn, microstructural characteristics may correspond to atrophy mechanisms in a more sensitive way. Fractional anisotropy, a diffusion tensor imaging (DTI) measure, is inversely related to cortical histologic complexity. Axial diffusivity and radial diffusivity are assumed to be linked to the density of structures oriented perpendicular and parallel to the cortical surface, respectively. We hypothesized (1) that cortical DTI will reveal microstructural correlates for hemispheric specialization, particularly in the language and motor systems, and (2) that lateralization of cortical DTI parameters will show an age effect, paralleling age-related changes in activation, especially in the prefrontal cortex. We analysed data from healthy younger and older adult participants (N = 91). DTI and CT data were extracted from regions of the Destrieux atlas. Diffusion measures showed lateralization in specialized motor, language, visual, auditory and inferior parietal cortices. Age-dependent increased lateralization for DTI measures was observed in the prefrontal, angular, superior temporal and lateral occipital cortex. CT did not show any age-dependent alterations in lateralization. Our observations argue that cortical DTI can capture microstructural properties associated with functional specialization, resembling findings from histology. Age effects on diffusion measures in the integrative prefrontal and parietal areas may shed novel light on the atrophy-related plasticity in healthy ageing.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Braaß
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center, Leipzig, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas K Frontzkowski
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Quandt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Focko L Higgen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Mundorf A, Deneke L, Ocklenburg S. Hemispheric asymmetries in borderline personality disorder: a systematic review. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01888-8. [PMID: 39261314 DOI: 10.1007/s00406-024-01888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Borderline personality disorder (BPD) is characterized by increased mood reactivity and affective instability. Since core structures involved in emotion processing, such as the amygdala, demonstrate strong lateralization, BPD is an interesting target for laterality research. So far, a systematic integration of findings on lateralization in BPD is missing. Therefore, we systematically reviewed studies published until February 2024 in PubMed, Web of Science, and PsycInfo databases that measured hemispheric asymmetries and behavioral lateralization in patients with BPD. Inclusion criteria were (a) diagnosis of BPD and (b) results on hemispheric or behavioral asymmetries. Specifically for neuroimaging studies, hemispheres need to be assessed separately. Review articles and studies with disorders other than BPD were excluded. Risk of bias was assessed with the Newcastle Ottawa Scale for non-randomized, non-comparative intervention studies. A total of 21 studies met the inclusion criteria. Thirteen studies investigated structural hemispheric asymmetries, five functional hemispheric asymmetries, two examined handedness, and one studied hemispheric asymmetry in visuospatial attention. Overall, studies examining structural asymmetries in BPD report bilateral volume reduction in the amygdala and hippocampus but a right-sided reduction in the orbitofrontal cortex. For functional lateralization, asymmetrical de/activation patterns in the default mode network in BPD and reduced right-frontal asymmetry were evident. Also, studies indicate a trend towards increased non-right-handedness in BPD. Risk factors for BPD, such as childhood abuse, may play a crucial role in the development of structural and functional alterations. However, the generalization of results may be limited by small sample sizes and varying study designs.
Collapse
Affiliation(s)
- Annakarina Mundorf
- ISM Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, Hamburg, 20457, Germany.
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Lisa Deneke
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Handschuh PA, Reed MB, Murgaš M, Vraka C, Kaufmann U, Nics L, Klöbl M, Ozenil M, Konadu ME, Patronas EM, Spurny-Dworak B, Hahn A, Hacker M, Spies M, Baldinger-Melich P, Kranz GS, Lanzenberger R. Effects of gender-affirming hormone therapy on gray matter density, microstructure and monoamine oxidase A levels in transgender subjects. Neuroimage 2024; 297:120716. [PMID: 38955254 DOI: 10.1016/j.neuroimage.2024.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024] Open
Abstract
MAO-A catalyzes the oxidative degradation of monoamines and is thus implicated in sex-specific neuroplastic processes that influence gray matter (GM) density (GMD) and microstructure (GMM). Given the exact monitoring of plasma hormone levels and sex steroid intake, transgender individuals undergoing gender-affirming hormone therapy (GHT) represent a valuable cohort to potentially investigate sex steroid-induced changes of GM and concomitant MAO-A density. Here, we investigated the effects of GHT over a median time period of 4.5 months on GMD and GMM as well as MAO-A distribution volume. To this end, 20 cisgender women, 11 cisgender men, 20 transgender women and 10 transgender men underwent two MRI scans in a longitudinal design. PET scans using [11C]harmine were performed before each MRI session in a subset of 35 individuals. GM changes determined by diffusion weighted imaging (DWI) metrics for GMM and voxel based morphometry (VBM) for GMD were estimated using repeated measures ANOVA. Regions showing significant changes of both GMM and GMD were used for the subsequent analysis of MAO-A density. These involved the fusiform gyrus, rolandic operculum, inferior occipital cortex, middle and anterior cingulum, bilateral insula, cerebellum and the lingual gyrus (post-hoc tests: pFWE+Bonferroni < 0.025). In terms of MAO-A distribution volume, no significant effects were found. Additionally, the sexual desire inventory (SDI) was applied to assess GHT-induced changes in sexual desire, showing an increase of SDI scores among transgender men. Changes in the GMD of the bilateral insula showed a moderate correlation to SDI scores (rho = - 0.62, pBonferroni = 0.047). The present results are indicative of a reliable influence of gender-affirming hormone therapy on 1) GMD and GMM following an interregional pattern and 2) sexual desire specifically among transgender men.
Collapse
Affiliation(s)
- P A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - C Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - U Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - L Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M E Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - E M Patronas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - A Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - P Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
18
|
Kurth F, Schijven D, van den Heuvel OA, Hoogman M, van Rooij D, Stein DJ, Buitelaar JK, Bölte S, Auzias G, Kushki A, Venkatasubramanian G, Rubia K, Bollmann S, Isaksson J, Jaspers‐Fayer F, Marsh R, Batistuzzo MC, Arnold PD, Bressan RA, Stewart SE, Gruner P, Sorensen L, Pan PM, Silk TJ, Gur RC, Cubillo AI, Haavik J, O'Gorman Tuura RL, Hartman CA, Calvo R, McGrath J, Calderoni S, Jackowski A, Chantiluke KC, Satterthwaite TD, Busatto GF, Nigg JT, Gur RE, Retico A, Tosetti M, Gallagher L, Szeszko PR, Neufeld J, Ortiz AE, Ghisleni C, Lazaro L, Hoekstra PJ, Anagnostou E, Hoekstra L, Simpson B, Plessen JK, Deruelle C, Soreni N, James A, Narayanaswamy J, Reddy JY, Fitzgerald J, Bellgrove MA, Salum GA, Janssen J, Muratori F, Vila M, Giral MG, Ameis SH, Bosco P, Remnélius KL, Huyser C, Pariente JC, Jalbrzikowski M, Rosa PG, O'Hearn KM, Ehrlich S, Mollon J, Zugman A, Christakou A, Arango C, Fisher SE, Kong X, Franke B, Medland SE, Thomopoulos SI, Jahanshad N, Glahn DC, Thompson PM, Francks C, Luders E. Large-scale analysis of structural brain asymmetries during neurodevelopment: Associations with age and sex in 4265 children and adolescents. Hum Brain Mapp 2024; 45:e26754. [PMID: 39046031 PMCID: PMC11267452 DOI: 10.1002/hbm.26754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 07/25/2024] Open
Abstract
Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1-18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.
Collapse
Affiliation(s)
- F. Kurth
- School of PsychologyUniversity of AucklandAucklandNew Zealand
- Institute of Diagnostic and Interventional Radiology, Jena University HospitalJenaGermany
| | - D. Schijven
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - O. A. van den Heuvel
- Department of PsychiatryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - M. Hoogman
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - D. van Rooij
- Donders Institute for Brain, Cognition and Behavior, Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| | - D. J. Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - J. K. Buitelaar
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
| | - S. Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Curtin Autism Research Group, Curtin School of Allied HealthCurtin UniversityPerthAustralia
| | - G. Auzias
- Institut de neurosciences de la Timone UMR 7289, Aix‐Marseille Université & CNRSMarseilleFrance
| | - A. Kushki
- Holland Bloorview Kids Rehabilitation Hospital, Institute for Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - G. Venkatasubramanian
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
- Department of Psychiatry, Temerty Faculty of MedicineUniversity of TorontoTorontoCanada
| | - K. Rubia
- Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - S. Bollmann
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - J. Isaksson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Child and Adolescent Psychiatry Unit, Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - F. Jaspers‐Fayer
- BC Children's Research Institute and the University of British ColumbiaVancouverCanada
| | - R. Marsh
- Department of PsychiatryColumbia University Irving Medical Center and the New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - M. C. Batistuzzo
- Department & Institute of PsychiatryUniversity of Sao Paulo, Medical SchoolSao PauloBrazil
- Department of Methods and Techniques in PsychologyPontifical Catholic UniversitySao PauloBrazil
| | - P. D. Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
| | - R. A. Bressan
- Federal University of São PauloSão PauloBrazil
- Instituto Ame Sua MenteSão PauloBrazil
| | - S. E. Stewart
- British Columbia Children's Hospital, British Columbia Mental Health and Substance Use ServicesUniversity of British ColumbiaVancouverCanada
| | - P. Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - L. Sorensen
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - P. M. Pan
- Laboratório de Neurociências Integrativas (LINC), Departamento de PsiquiatriaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
- Instituto Nacional de siquiatria do Desenvolvimento (INPD)São PauloBrazil
| | - T. J. Silk
- Centre for Social and Early Emotional Development and School of PsychologyDeakin UniversityGeelongAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
| | - R. C. Gur
- Department of Psychiatry, Section on Neurodevelopment and Psychosis and the Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - A. I. Cubillo
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - J. Haavik
- Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - R. L. O'Gorman Tuura
- Center for MR Research, University Children's Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - C. A. Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - R. Calvo
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM)BarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - J. McGrath
- Department of PsychiatryTrinity College DublinDublinIreland
| | - S. Calderoni
- IRCCS Stella Maris FoundationPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - A. Jackowski
- Department of PsychiatryUNIFESPSão PauloBrazil
- Department of EducationICT and Learning, Østfold University CollegeHaldenNorway
| | - K. C. Chantiluke
- Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - T. D. Satterthwaite
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteUniversity of Pennsylvania & Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and Analytics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - G. F. Busatto
- Department of Psychiatry, Faculty of MedicineUniversity of São PauloSão PauloBrazil
| | - J. T. Nigg
- Department of Psychiatry and Center for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - R. E. Gur
- Department of Psychiatry, The Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - A. Retico
- Pisa DivisionNational Institute for Nuclear Physics (INFN)PisaItaly
| | | | - L. Gallagher
- Department of PsychiatryTrinity College DublinDublinIreland
- The Hospital for Sick childrenTorontoCanada
- The Centre for Addiction and Mental Health TorontoTorontoCanada
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - P. R. Szeszko
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC)James J. Peters VA Medical CenterNew YorkNew YorkUSA
| | - J. Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Swedish Collegium for Advanced Study (SCAS)UppsalaSweden
| | - A. E. Ortiz
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - C. Ghisleni
- Center for MR Research, University Children's Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - L. Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM)BarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - P. J. Hoekstra
- Department of Child and Adolescent Psychiatry & Accare Child Study CenterUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - E. Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Department of Pediatrics, Temetry School of MedicineUniversity of TorontoTorontoCanada
| | - L. Hoekstra
- Karakter University Center for Child and Adolescent PsychiatryNijmegenThe Netherlands
- Donders Center for Cognitive NeuroimagingNijmegenThe Netherlands
- Radboud University Medical CenterNijmegenThe Netherlands
| | - B. Simpson
- New York State Psychiatric Institute/CUIMCNew YorkNew YorkUSA
| | - J. K. Plessen
- Division of Child and Adolescent Psychiatry, Department of PsychiatryUniversity Hospital LausanneLausanneSwitzerland
| | - C. Deruelle
- Institut de neurosciences de la Timone UMR 7289, Aix‐Marseille Université & CNRSMarseilleFrance
| | - N. Soreni
- Pediatric OCD Consultation ClinicSJHHamiltonCanada
- Department of Psychiatry and Behavioral Neurosciences and Offord Child StudiesMcMaster UniversityHamiltonCanada
| | - A. James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - J. Narayanaswamy
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - J. Y. Reddy
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | | | - M. A. Bellgrove
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia
| | - G. A. Salum
- Graduate Program of Psychiatry and Behavioral SciencesUniversidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Child Mind InstituteNew YorkNew YorkUSA
| | - J. Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental HealthHospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
| | | | - M. Vila
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
| | - M. Garcia Giral
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
| | - S. H. Ameis
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoCanada
- Temerty Faculty of Medicine, Department of PsychiatryUniversity of TorontoTorontoCanada
| | - P. Bosco
- IRCCS Stella Maris FoundationPisaItaly
| | - K. Lundin Remnélius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - C. Huyser
- Academic Center Child and Youth PsychiatryLevvelAmsterdamThe Netherlands
- Department of Child and Adolescent PsychiatryAmsterdamUMCAmsterdamThe Netherlands
| | - J. C. Pariente
- Magnetic Resonance Image Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - M. Jalbrzikowski
- Department of Psychiatry and Behavioral SciencesBoston Children's HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - P. G. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de Sao PauloSao PauloBrazil
| | - K. M. O'Hearn
- Atrium Health Wake Forest Baptist Medical CenterWinston‐SalemNorth CarolinaUSA
| | - S. Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences & Department of Child and Adolescent PsychiatryFaculty of Medicine, TU DresdenDresdenGermany
| | - J. Mollon
- Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - A. Zugman
- National Institutes of Health/National Institute of Mental HealthBethesdaMarylandUSA
| | - A. Christakou
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
| | - C. Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of MedicineUniversidad Complutense, CIBERSAMMadridSpain
| | - S. E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - X. Kong
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
- Department of Psychiatry of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - B. Franke
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - S. E. Medland
- QIMR Berghofer Medical Research InstituteHerstonAustralia
| | - S. I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - N. Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - D. C. Glahn
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's HospitalBostonMassachusettsUSA
| | - P. M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - C. Francks
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - E. Luders
- School of PsychologyUniversity of AucklandAucklandNew Zealand
- Swedish Collegium for Advanced Study (SCAS)UppsalaSweden
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
- Laboratory of Neuro Imaging, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
19
|
Reinke P, Deneke L, Ocklenburg S. Asymmetries in event-related potentials part 1: A systematic review of face processing studies. Int J Psychophysiol 2024; 202:112386. [PMID: 38914138 DOI: 10.1016/j.ijpsycho.2024.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
The human brain shows distinct lateralized activation patterns for a range of cognitive processes. One such function, which is thought to be lateralized to the right hemisphere (RH), is human face processing. Its importance for social communication and interaction has led to a plethora of studies investigating face processing in health and disease. Temporally highly resolved methods, like event-related potentials (ERPs), allow for a detailed characterization of different processing stages and their specific lateralization patterns. This systematic review aimed at disentangling some of the contradictory findings regarding the RH specialization in face processing focusing on ERP research in healthy participants. Two databases were searched for studies that investigated left and right electrodes while participants viewed (mostly neutral) facial stimuli. The included studies used a variety of different tasks, which ranged from passive viewing to memorizing faces. The final data selection highlights, that strongest lateralization to the RH was found for the N170, especially for right-handed young male participants. Left-handed, female, and older participants showed less consistent lateralization patterns. Other ERP components like the P1, P2, N2, P3, and the N400 were overall less clearly lateralized. The current review highlights that many of the assumed lateralization patterns are less clear than previously thought and that the variety of stimuli, tasks, and EEG setups used, might contribute to the ambiguous findings.
Collapse
Affiliation(s)
- Petunia Reinke
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany.
| | - Lisa Deneke
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Ghafari T, Mazzetti C, Garner K, Gutteling T, Jensen O. Modulation of alpha oscillations by attention is predicted by hemispheric asymmetry of subcortical regions. eLife 2024; 12:RP91650. [PMID: 39017666 PMCID: PMC11254381 DOI: 10.7554/elife.91650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.
Collapse
Affiliation(s)
- Tara Ghafari
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Cecilia Mazzetti
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Kelly Garner
- School of Psychology, University of New South WalesKensingtonAustralia
| | - Tjerk Gutteling
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- CERMEP-Imagerie du Vivant, MEG DepartmentLyonFrance
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
21
|
Ocklenburg S, Mundorf A, Gerrits R, Karlsson EM, Papadatou-Pastou M, Vingerhoets G. Clinical implications of brain asymmetries. Nat Rev Neurol 2024; 20:383-394. [PMID: 38783057 DOI: 10.1038/s41582-024-00974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
No two human brains are alike, and with the rise of precision medicine in neurology, we are seeing an increased emphasis on understanding the individual variability in brain structure and function that renders every brain unique. Functional and structural brain asymmetries are a fundamental principle of brain organization, and recent research suggests substantial individual variability in these asymmetries that needs to be considered in clinical practice. In this Review, we provide an overview of brain asymmetries, variations in such asymmetries and their relevance in the clinical context. We review recent findings on brain asymmetries in neuropsychiatric and neurodevelopmental disorders, as well as in specific learning disabilities, with an emphasis on large-scale database studies and meta-analyses. We also highlight the relevance of asymmetries for disease symptom onset in neurodegenerative diseases and their implications for lateralized treatments, including brain stimulation. We conclude that alterations in brain asymmetry are not sufficiently specific to act as diagnostic biomarkers but can serve as meaningful symptom or treatment response biomarkers in certain contexts. On the basis of these insights, we provide several recommendations for neurological clinical practice.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany.
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany.
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Annakarina Mundorf
- ISM Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin Gerrits
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Emma M Karlsson
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Marietta Papadatou-Pastou
- National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Guy Vingerhoets
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Tang M, Zhang L, Zhou Z, Cao L, Gao Y, Wang Y, Li H, Hu X, Bao W, Liang K, Kuang W, Sweeney JA, Gong Q, Huang X. Divergent effects of sex on hippocampal subfield alterations in drug-naive patients with major depressive disorder. J Affect Disord 2024; 354:173-180. [PMID: 38492647 DOI: 10.1016/j.jad.2024.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The hippocampus is a crucial brain structure in etiological models of major depressive disorder (MDD). It remains unclear whether sex differences in the incidence and symptoms of MDD are related to differential illness-associated brain alterations, including alterations in the hippocampus. This study investigated divergent the effects of sex on hippocampal subfield alterations in drug-naive patients with MDD. METHODS High-resolution structural MR images were obtained from 144 drug-naive individuals with MDD early in their illness course and 135 age- and sex-matched healthy controls (HCs). Hippocampal subfields were segmented using FreeSurfer software and analyzed in terms of both histological subfields (CA1-4, dentate gyrus, etc.) and more integrative larger functional subregions (head, body and tail). RESULTS We observed a significant overall reduction in hippocampal volume in MDD patients, with deficits more prominent deficits in the posterior hippocampus. Differences in anatomic alterations between male and female patients were observed in the CA1-head, presubiculum-body and fimbria in the left hemisphere. Exploratory analyses revealed different patterns of clinical and memory function correlations with histological subfields and functional subregions between male and female patients primarily in the hippocampal head and body. LIMITATIONS This cross-sectional study cannot clarify the causality of hippocampal alterations or their association with illness risk or onset. CONCLUSIONS These findings represent the first reported sex-specific alterations in hippocampal histological subfields in patients with MDD early in the illness course prior to treatment. Sex-specific hippocampal alterations may contribute to diverse sex differences in the clinical presentation of MDD.
Collapse
Affiliation(s)
- Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingying Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
23
|
Ganesan S, Yang WFZ, Chowdhury A, Zalesky A, Sacchet MD. Within-subject reliability of brain networks during advanced meditation: An intensively sampled 7 Tesla MRI case study. Hum Brain Mapp 2024; 45:e26666. [PMID: 38726831 PMCID: PMC11082832 DOI: 10.1002/hbm.26666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 03/10/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced meditation such as jhana meditation can produce various altered states of consciousness (jhanas) and cultivate rewarding psychological qualities including joy, peace, compassion, and attentional stability. Mapping the neurobiological substrates of jhana meditation can inform the development and application of advanced meditation to enhance well-being. Only two prior studies have attempted to investigate the neural correlates of jhana meditation, and the rarity of adept practitioners has largely restricted the size and extent of these studies. Therefore, examining the consistency and reliability of observed brain responses associated with jhana meditation can be valuable. In this study, we aimed to characterize functional magnetic resonance imaging (fMRI) reliability within a single subject over repeated runs in canonical brain networks during jhana meditation performed by an adept practitioner over 5 days (27 fMRI runs) inside an ultra-high field 7 Tesla MRI scanner. We found that thalamus and several cortical networks, that is, the somatomotor, limbic, default-mode, control, and temporo-parietal, demonstrated good within-subject reliability across all jhanas. Additionally, we found that several other relevant brain networks (e.g., attention, salience) showed noticeable increases in reliability when fMRI measurements were adjusted for variability in self-reported phenomenology related to jhana meditation. Overall, we present a preliminary template of reliable brain areas likely underpinning core neurocognitive elements of jhana meditation, and highlight the utility of neurophenomenological experimental designs for better characterizing neuronal variability associated with advanced meditative states.
Collapse
Affiliation(s)
- Saampras Ganesan
- Department of PsychiatryMelbourne Neuropsychiatry CentreCarltonVictoriaAustralia
- Department of Biomedical EngineeringThe University of MelbourneCarltonVictoriaAustralia
- Contemplative Studies Centre, Melbourne School of Psychological SciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Winson F. Z. Yang
- Meditation Research Program, Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Avijit Chowdhury
- Meditation Research Program, Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrew Zalesky
- Department of PsychiatryMelbourne Neuropsychiatry CentreCarltonVictoriaAustralia
- Department of Biomedical EngineeringThe University of MelbourneCarltonVictoriaAustralia
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
24
|
Jang YH, Ham J, Kasani PH, Kim H, Lee JY, Lee GY, Han TH, Kim BN, Lee HJ. Predicting 2-year neurodevelopmental outcomes in preterm infants using multimodal structural brain magnetic resonance imaging with local connectivity. Sci Rep 2024; 14:9331. [PMID: 38653988 DOI: 10.1038/s41598-024-58682-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The neurodevelopmental outcomes of preterm infants can be stratified based on the level of prematurity. We explored brain structural networks in extremely preterm (EP; < 28 weeks of gestation) and very-to-late (V-LP; ≥ 28 and < 37 weeks of gestation) preterm infants at term-equivalent age to predict 2-year neurodevelopmental outcomes. Using MRI and diffusion MRI on 62 EP and 131 V-LP infants, we built a multimodal feature set for volumetric and structural network analysis. We employed linear and nonlinear machine learning models to predict the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) scores, assessing predictive accuracy and feature importance. Our findings revealed that models incorporating local connectivity features demonstrated high predictive performance for BSID-III subsets in preterm infants. Specifically, for cognitive scores in preterm (variance explained, 17%) and V-LP infants (variance explained, 17%), and for motor scores in EP infants (variance explained, 15%), models with local connectivity features outperformed others. Additionally, a model using only local connectivity features effectively predicted language scores in preterm infants (variance explained, 15%). This study underscores the value of multimodal feature sets, particularly local connectivity, in predicting neurodevelopmental outcomes, highlighting the utility of machine learning in understanding microstructural changes and their implications for early intervention.
Collapse
Affiliation(s)
- Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Jusung Ham
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| | - Payam Hosseinzadeh Kasani
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Gang Yi Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Tae Hwan Han
- Division of Neurology, Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Schijven D, Soheili-Nezhad S, Fisher SE, Francks C. Exome-wide analysis implicates rare protein-altering variants in human handedness. Nat Commun 2024; 15:2632. [PMID: 38565598 PMCID: PMC10987538 DOI: 10.1038/s41467-024-46277-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.
Collapse
Affiliation(s)
- Dick Schijven
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sourena Soheili-Nezhad
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Işıklar S, Sağlam D. Volumetric analysis of age- and sex-related changes in the corpus striatum and thalamus in the 1-18 age group: a retrospective magnetic resonance imaging study. Cereb Cortex 2024; 34:bhae142. [PMID: 38602741 DOI: 10.1093/cercor/bhae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024] Open
Abstract
Studies of the development and asymmetry of the corpus striatum and thalamus in early childhood are rare. Studies investigating these structures across the lifespan have not presented their changes during childhood and adolescence in detail. For these reasons, this study investigated the effect of age and sex factors on the development and asymmetry of the corpus striatum and thalamus in the 1-18 age group. In this retrospective study, we included 652 individuals [362 (56%) males] aged 1-18 years with normal brain MRI between 2012 and 2021. Absolute and relative volumes of the corpus striatum and thalamus were obtained by segmentation of three-dimensional T1-weighted MRIs with volBrain1.0. We created age-specific volume data and month-based development models with the help of SPSS (ver.28). The corpus striatum and thalamus had cubic absolute volumetric developmental models. The relative volume of the caudate and thalamus (only males) is consistent with the decreasing "growth" model, the others with the decreasing cubic model. The absolute volumes of the males' bilateral corpus striatum and thalamus and the relative volumes of the caudate and thalamus of the females were significantly larger (P < 0.05). The caudate showed right > left lateralization; putamen, globus pallidus, and thalamus showed left > right lateralization.
Collapse
Affiliation(s)
- Sefa Işıklar
- Medical Imaging Techniques Program, Vocational School of Health Services, Bursa Uludag University, Bursa 16059, Turkey
| | - Dilek Sağlam
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa 16059, Turkey
| |
Collapse
|
27
|
Blokhin V, Pavlova EN, Katunina EA, Nodel MR, Kataeva GV, Moskalets ER, Pronina TS, Ugrumov MV. Dopamine Synthesis in the Nigrostriatal Dopaminergic System in Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. J Clin Med 2024; 13:875. [PMID: 38337569 PMCID: PMC10856030 DOI: 10.3390/jcm13030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is diagnosed by the onset of motor symptoms and treated long after its onset. Therefore, the development of the early diagnosis of PD is a priority for neurology. Advanced methodologies for this include (1) searching for patients at risk of developing prodromal PD based on premotor symptoms; (2) searching for changes in the body fluids in these patients as diagnostic biomarkers; (3) verifying the diagnosis of prodromal PD and diagnostic-value biomarkers using positron emission tomography (PET); (4) anticipating the development of motor symptoms. According to our data, the majority of patients (n = 14) at risk of developing PD selected in our previous study show pronounced interhemispheric asymmetry in the incorporation of 18F-DOPA into dopamine synthesis in the striatum. This was assessed for the caudate nucleus and putamen separately using the specific binding coefficient, asymmetry index, and putamen/caudate nucleus ratio. Interhemispheric asymmetry in the incorporation of 18F-DOPA into the striatum provides strong evidence for its dopaminergic denervation and the diagnostic value of previously identified blood biomarkers. Of the 17 patients at risk of developing prodromal PD studied using PET, 3 patients developed motor symptoms within a year. Thus, our study shows the promise of using the described methodology for the development of early diagnosis of PD.
Collapse
Affiliation(s)
- Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Ekaterina N. Pavlova
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Elena A. Katunina
- Federal Center of Brain Research and Neurotechnologies of the Russian Federal Medical and Biological Agency, Moscow 117513, Russia;
- Faculty of Medicine, Department of Neurology, Neurosurgery and Medical Genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Marina R. Nodel
- Department of Nervous Diseases and Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia;
| | - Galina V. Kataeva
- Federal State Budget Institution Granov Russian Research Center of Radiology and Surgical Technologies Ministry of Health of the Russian Federation (RRCRST) 70, Leningradskaya Street, Pesochny, St. Petersburg 197758, Russia;
| | | | - Tatiana S. Pronina
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Michael V. Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| |
Collapse
|
28
|
Amin M, Nakamura K, Ontaneda D. Differentiating multiple sclerosis from non-specific white matter changes using a convolutional neural network image classification model. Mult Scler Relat Disord 2024; 82:105420. [PMID: 38183693 DOI: 10.1016/j.msard.2023.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The diagnosis of multiple sclerosis (MS) relies heavily on neuroimaging with magnetic resonance imaging (MRI) and exclusion of mimics. This can be a challenging task due to radiological overlap in several disorders and may require ancillary testing or longitudinal follow up. One of the most common radiological MS mimickers is non-specific white matter disease (NSWMD). We aimed to develop and evaluate models leveraging machine learning algorithms to help distinguish MS and NSWMD. METHODS All adult patients who underwent MRI brain using a demyelinating protocol with available electronic medical records between 2015 and 2019 at Cleveland Clinic affiliated facilities were included. Diagnosis of MS and NSWMD were assessed from clinical documentation. Those with a diagnosis of MS and NSWMD were matched using total T2 lesion volume (T2LV) and used to train models with logistic regression and convolutional neural networks (CNN). Performance metrices were reported for each model. RESULTS A total of 250 NSWMD MRI scans were identified, and 250 unique MS MRI scans were matched on T2LV. Cross validated logistic regression model was able to use 20 variables (including spinal cord area, regional volumes, and fractions) to predict MS compared to NSWMD with 68.0% accuracy while the CNN model was able to classify MS compared to NSWMD in two independent validation and testing cohorts with 77% and 78% accuracy on average. CONCLUSION Automated methods can be used to differentiate MS compared to NSWMD. These methods can be used to supplement currently available diagnostic tools for patients being evaluated for MS.
Collapse
Affiliation(s)
- Moein Amin
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kunio Nakamura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
29
|
Liu Y, Tan Y, Zhang Z, Yi M, Zhu L, Peng W. The interaction between ageing and Alzheimer's disease: insights from the hallmarks of ageing. Transl Neurodegener 2024; 13:7. [PMID: 38254235 PMCID: PMC10804662 DOI: 10.1186/s40035-024-00397-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Ageing is a crucial risk factor for Alzheimer's disease (AD) and is characterised by systemic changes in both intracellular and extracellular microenvironments that affect the entire body instead of a single organ. Understanding the specific mechanisms underlying the role of ageing in disease development can facilitate the treatment of ageing-related diseases, such as AD. Signs of brain ageing have been observed in both AD patients and animal models. Alleviating the pathological changes caused by brain ageing can dramatically ameliorate the amyloid beta- and tau-induced neuropathological and memory impairments, indicating that ageing plays a crucial role in the pathophysiological process of AD. In this review, we summarize the impact of several age-related factors on AD and propose that preventing pathological changes caused by brain ageing is a promising strategy for improving cognitive health.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China.
| |
Collapse
|
30
|
Steger C, Moatti C, Payette K, De Silvestro A, Nguyen TD, Coraj S, Yakoub N, Natalucci G, Kottke R, Tuura R, Knirsch W, Jakab A. Characterization of dynamic patterns of human fetal to neonatal brain asymmetry with deformation-based morphometry. Front Neurosci 2023; 17:1252850. [PMID: 38130698 PMCID: PMC10734644 DOI: 10.3389/fnins.2023.1252850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Despite established knowledge on the morphological and functional asymmetries in the human brain, the understanding of how brain asymmetry patterns change during late fetal to neonatal life remains incomplete. The goal of this study was to characterize the dynamic patterns of inter-hemispheric brain asymmetry over this critically important developmental stage using longitudinally acquired MRI scans. Methods Super-resolution reconstructed T2-weighted MRI of 20 neurotypically developing participants were used, and for each participant fetal and neonatal MRI was acquired. To quantify brain morphological changes, deformation-based morphometry (DBM) on the longitudinal MRI scans was utilized. Two registration frameworks were evaluated and used in our study: (A) fetal to neonatal image registration and (B) registration through a mid-time template. Developmental changes of cerebral asymmetry were characterized as (A) the inter-hemispheric differences of the Jacobian determinant (JD) of fetal to neonatal morphometry change and the (B) time-dependent change of the JD capturing left-right differences at fetal or neonatal time points. Left-right and fetal-neonatal differences were statistically tested using multivariate linear models, corrected for participants' age and sex and using threshold-free cluster enhancement. Results Fetal to neonatal morphometry changes demonstrated asymmetry in the temporal pole, and left-right asymmetry differences between fetal and neonatal timepoints revealed temporal changes in the temporal pole, likely to go from right dominant in fetal to a bilateral morphology in neonatal timepoint. Furthermore, the analysis revealed right-dominant subcortical gray matter in neonates and three clusters of increased JD values in the left hemisphere from fetal to neonatal timepoints. Discussion While these findings provide evidence that morphological asymmetry gradually emerges during development, discrepancies between registration frameworks require careful considerations when using DBM for longitudinal data of early brain development.
Collapse
Affiliation(s)
- Céline Steger
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Pediatric Heart Center, Division of Pediatric Cardiology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Charles Moatti
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Kelly Payette
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexandra De Silvestro
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Pediatric Heart Center, Division of Pediatric Cardiology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thi Dao Nguyen
- Newborn Research, Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Seline Coraj
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ninib Yakoub
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giancarlo Natalucci
- Newborn Research, Department of Neonatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ruth Tuura
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Walter Knirsch
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Pediatric Heart Center, Division of Pediatric Cardiology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andras Jakab
- Center for MR Research, University Children’s Hospital Zurich, University of Zurich, Zürich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
31
|
Okada N, Fukunaga M, Miura K, Nemoto K, Matsumoto J, Hashimoto N, Kiyota M, Morita K, Koshiyama D, Ohi K, Takahashi T, Koeda M, Yamamori H, Fujimoto M, Yasuda Y, Hasegawa N, Narita H, Yokoyama S, Mishima R, Kawashima T, Kobayashi Y, Sasabayashi D, Harada K, Yamamoto M, Hirano Y, Itahashi T, Nakataki M, Hashimoto RI, Tha KK, Koike S, Matsubara T, Okada G, van Erp TGM, Jahanshad N, Yoshimura R, Abe O, Onitsuka T, Watanabe Y, Matsuo K, Yamasue H, Okamoto Y, Suzuki M, Turner JA, Thompson PM, Ozaki N, Kasai K, Hashimoto R. Subcortical volumetric alterations in four major psychiatric disorders: a mega-analysis study of 5604 subjects and a volumetric data-driven approach for classification. Mol Psychiatry 2023; 28:5206-5216. [PMID: 37537281 DOI: 10.1038/s41380-023-02141-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/18/2023] [Accepted: 06/16/2023] [Indexed: 08/05/2023]
Abstract
Differential diagnosis is sometimes difficult in practical psychiatric settings, in terms of using the current diagnostic system based on presenting symptoms and signs. The creation of a novel diagnostic system using objective biomarkers is expected to take place. Neuroimaging studies and others reported that subcortical brain structures are the hubs for various psycho-behavioral functions, while there are so far no neuroimaging data-driven clinical criteria overcoming limitations of the current diagnostic system, which would reflect cognitive/social functioning. Prior to the main analysis, we conducted a large-scale multisite study of subcortical volumetric and lateralization alterations in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder using T1-weighted images of 5604 subjects (3078 controls and 2526 patients). We demonstrated larger lateral ventricles volume in schizophrenia, bipolar disorder, and major depressive disorder, smaller hippocampus volume in schizophrenia and bipolar disorder, and schizophrenia-specific smaller amygdala, thalamus, and accumbens volumes and larger caudate, putamen, and pallidum volumes. In addition, we observed a leftward alteration of lateralization for pallidum volume specifically in schizophrenia. Moreover, as our main objective, we clustered the 5,604 subjects based on subcortical volumes, and explored whether data-driven clustering results can explain cognitive/social functioning in the subcohorts. We showed a four-biotype classification, namely extremely (Brain Biotype [BB] 1) and moderately smaller limbic regions (BB2), larger basal ganglia (BB3), and normal volumes (BB4), being associated with cognitive/social functioning. Specifically, BB1 and BB2-3 were associated with severe and mild cognitive/social impairment, respectively, while BB4 was characterized by normal cognitive/social functioning. Our results may lead to the future creation of novel biological data-driven psychiatric diagnostic criteria, which may be expected to be useful for prediction or therapeutic selection.
Collapse
Affiliation(s)
- Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Masahiro Kiyota
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Morita
- Department of Rehabilitation, University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
- Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka, Japan
| | - Naomi Hasegawa
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hisashi Narita
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Ryo Mishima
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiko Kawashima
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuko Kobayashi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Masahito Nakataki
- Department of Psychiatry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Khin K Tha
- Department of Diagnostic Imaging, Hokkaido University Faculty of Medicine, Hokkaido, Japan
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - Shinsuke Koike
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Go Okada
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Shiga, Japan
| | - Koji Matsuo
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Aichi, Japan
- Pathophysiology of Mental Disorders, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
32
|
Wan B, Hong SJ, Bethlehem RAI, Floris DL, Bernhardt BC, Valk SL. Diverging asymmetry of intrinsic functional organization in autism. Mol Psychiatry 2023; 28:4331-4341. [PMID: 37587246 PMCID: PMC10827663 DOI: 10.1038/s41380-023-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Centre for Neuroscience Imaging Research, Institute for Basic Science, Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | - Dorothea L Floris
- Department of Psychology, University of Zürich, Zürich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
33
|
Mundorf A, Ocklenburg S. Hemispheric asymmetries in mental disorders: evidence from rodent studies. J Neural Transm (Vienna) 2023; 130:1153-1165. [PMID: 36842091 PMCID: PMC10460727 DOI: 10.1007/s00702-023-02610-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
The brain is built with hemispheric asymmetries in structure and function to enable fast neuronal processing. In neuroimaging studies, several mental disorders have been associated with altered or attenuated hemispheric asymmetries. However, the exact mechanism linking asymmetries and disorders is not known. Here, studies in animal models of mental disorders render important insights into the etiology and neuronal alterations associated with both disorders and atypical asymmetry. In this review, the current literature of animal studies in rats and mice focusing on anxiety and fear, anhedonia and despair, addiction or substance misuse, neurodegenerative disorders as well as stress exposure, and atypical hemispheric asymmetries is summarized. Results indicate overall increased right-hemispheric neuronal activity and a left-sided behavioral bias associated with symptoms of anxiety, fear, anhedonia, behavioral despair as well as stress exposure. Addiction behavior is associated with right-sided bias and transgenic models of Alzheimer's disease indicate an asymmetrical accumulation of fibrillar plaques. Most studies focused on changes in the bilateral amygdala and frontal cortex. Across studies, two crucial factors influencing atypical asymmetries arose independently of the disorder modeled: sex and developmental age. In conclusion, animal models of mental disorders demonstrate atypical hemispheric asymmetries similar to findings in patients. Particularly, increased left-sided behavior and greater right-hemispheric activity were found across models applying stress-based paradigms. However, sex- and age-dependent effects on atypical hemispheric asymmetries are present that require further investigation. Animal models enable the analysis of hemispheric changes on the molecular level which may be most effective to detect early alterations.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
34
|
Shiohama T, Maikusa N, Kawaguchi M, Natsume J, Hirano Y, Saito K, Takanashi JI, Levman J, Takahashi E, Matsumoto K, Yokota H, Hattori S, Tsujimura K, Sawada D, Uchida T, Takatani T, Fujii K, Naganawa S, Sato N, Hamada H. A Brain Morphometry Study with Across-Site Harmonization Using a ComBat-Generalized Additive Model in Children and Adolescents. Diagnostics (Basel) 2023; 13:2774. [PMID: 37685313 PMCID: PMC10487204 DOI: 10.3390/diagnostics13172774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Regional anatomical structures of the brain are intimately connected to functions corresponding to specific regions and the temporospatial pattern of genetic expression and their functions from the fetal period to old age. Therefore, quantitative brain morphometry has often been employed in neuroscience investigations, while controlling for the scanner effect of the scanner is a critical issue for ensuring accuracy in brain morphometric studies of rare orphan diseases due to the lack of normal reference values available for multicenter studies. This study aimed to provide across-site normal reference values of global and regional brain volumes for each sex and age group in children and adolescents. We collected magnetic resonance imaging (MRI) examinations of 846 neurotypical participants aged 6.0-17.9 years (339 male and 507 female participants) from 5 institutions comprising healthy volunteers or neurotypical patients without neurological disorders, neuropsychological disorders, or epilepsy. Regional-based analysis using the CIVET 2.1.0. pipeline provided regional brain volumes, and the measurements were across-site combined using ComBat-GAM harmonization. The normal reference values of global and regional brain volumes and lateral indices in our study could be helpful for evaluating the characteristics of the brain morphology of each individual in a clinical setting and investigating the brain morphology of ultra-rare diseases.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Masahiro Kawaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan; (M.K.)
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan; (M.K.)
- Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita 565-0871, Osaka, Japan
| | - Keito Saito
- Department of Pediatrics and Pediatric Neurology, Tokyo Women’s Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi 276-8524, Chiba, Japan
| | - Jun-ichi Takanashi
- Department of Pediatrics and Pediatric Neurology, Tokyo Women’s Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-shi 276-8524, Chiba, Japan
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, 5005 Chapel Square, Antigonish, NS B2G 2W5, Canada
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
- Nova Scotia Health Authority—Research, Innovation and Discovery Center for Clinical Research, 5790 University Avenue, Halifax, NS B3H 1V7, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Hajime Yokota
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Shinya Hattori
- Department of Radiology, Chiba University Hospital, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya 466-8550, Aichi, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 466-8550, Aichi, Japan
| | - Daisuke Sawada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Tomoko Uchida
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
- Department of Pediatrics, International University of Welfare and Health School of Medicine, Narita 286-8520, Chiba, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi 260-8677, Chiba, Japan
| |
Collapse
|
35
|
Rahman M, Karwowski W, Sapkota N, Ismail L, Alhujailli A, Sumano RF, Hancock PA. Isometric Arm Forces Exerted by Females at Different Levels of Physical Comfort and Their EEG Signatures. Brain Sci 2023; 13:1027. [PMID: 37508959 PMCID: PMC10377375 DOI: 10.3390/brainsci13071027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
A variety of subjective measures have traditionally been used to assess the perception of physical exertion at work and related body responses. However, the current understanding of physical comfort experienced at work is very limited. The main objective of this study was first to investigate the magnitude of isometric arm forces exerted by females at different levels of physical comfort measured on a new comfort scale and, second, to assess their corresponding neural signatures expressed in terms of power spectral density (PSD). The study assessed PSDs of four major electroencephalography (EEG) frequency bands, focusing on the brain regions controlling motor and perceptual processing. The results showed statistically significant differences in exerted arm forces and the rate of perceived exertion at the various levels of comfort. Significant differences in power spectrum density at different physical comfort levels were found for the beta EEG band. Such knowledge can be useful in incorporating female users' force requirements in the design of consumer products, including tablets, laptops, and other hand-held information technology devices, as well as various industrial processes and work systems.
Collapse
Affiliation(s)
- Mahjabeen Rahman
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Nabin Sapkota
- Department of Engineering Technology, Northwestern State University of Louisiana, Natchitoches, LA 71497, USA
| | - Lina Ismail
- Department of Industrial and Management Engineering, Arab Academy for Science, Technology, and Maritime Transport, Alexandria 2913, Egypt
| | - Ashraf Alhujailli
- Department of Management Science, Yanbu Industrial College, Yanbu 46452, Saudi Arabia
| | - Raul Fernandez Sumano
- Industrial Engineering Technology, Dunwoody College of Technology, Minneapolis, MN 55403, USA
| | - P A Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
36
|
de Matos K, Cury C, Chougar L, Strike LT, Rolland T, Riche M, Hemforth L, Martin A, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère Martinot ML, Artiges E, Nees F, Papadopoulos Orfanos D, Lemaitre H, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Frouin V, Bach Cuadra M, Colliot O, Couvy-Duchesne B. Temporo-basal sulcal connections: a manual annotation protocol and an investigation of sexual dimorphism and heritability. Brain Struct Funct 2023; 228:1459-1478. [PMID: 37358662 DOI: 10.1007/s00429-023-02663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
The temporo-basal region of the human brain is composed of the collateral, the occipito-temporal, and the rhinal sulci. We manually rated (using a novel protocol) the connections between rhinal/collateral (RS-CS), collateral/occipito-temporal (CS-OTS) and rhinal/occipito-temporal (RS-OTS) sulci, using the MRI of nearly 3400 individuals including around 1000 twins. We reported both the associations between sulcal polymorphisms as well with a wide range of demographics (e.g. age, sex, handedness). Finally, we also estimated the heritability, and the genetic correlation between sulcal connections. We reported the frequency of the sulcal connections in the general population, which were hemisphere dependent. We found a sexual dimorphism of the connections, especially marked in the right hemisphere, with a CS-OTS connection more frequent in females (approximately 35-40% versus 20-25% in males) and an RS-CS connection more common in males (approximately 40-45% versus 25-30% in females). We confirmed associations between sulcal connections and characteristics of incomplete hippocampal inversion (IHI). We estimated the broad sense heritability to be 0.28-0.45 for RS-CS and CS-OTS connections, with hints of dominant contribution for the RS-CS connection. The connections appeared to share some of their genetic causing factors as indicated by strong genetic correlations. Heritability appeared much smaller for the (rarer) RS-OTS connection.
Collapse
Affiliation(s)
- Kevin de Matos
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Claire Cury
- CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U-1228, University of Rennes, 35000, Rennes, France
| | - Lydia Chougar
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- Service de neuroradiologie, AP-HP, Pitié-Salpêtrière, Paris, France
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thibault Rolland
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Maximilien Riche
- Department of Neurosurgery, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, 75013, Paris, France
| | - Lisa Hemforth
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Alexandre Martin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
- Inria Sophia Antipolis, Morpheme Project, Paris, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Brunswick, Berlin, Germany
| | - Jean-Luc Martinot
- INSERM U 1299 "Trajectoires développementales & psychiatrie", CNRS, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- INSERM U 1299 "Trajectoires développementales & psychiatrie", CNRS, AP-HP, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-sur-Yvette, France
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Eric Artiges
- INSERM U 1299 "Trajectoires développementales & psychiatrie", CNRS, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
- UMR 5293, CNRS, CEA, Institut des Maladies Neurodégénératives, Université de Bordeaux, 33076, Bordeaux, France
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Université de Montréal and Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Department of Psychiatry and Neuroscience, Centre for Population Neuroscience and Stratified Medicine (PONS), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Department of Psychiatry and Neuroscience, Centre for Population Neuroscience and Stratified Medicine (PONS), Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Baptiste Couvy-Duchesne
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France.
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4062, Australia.
- ARAMIS Team, Pitié-Salpêtrière Hospital, Institut du Cerveau, 75013, Paris, France.
| |
Collapse
|
37
|
Wang H, Chai C, Wu G, Li J, Zhao C, Fu D, Zhang S, Wang H, Wang B, Zhu J, Shen W, Xia S. Cerebral blood flow regulates iron overload in the cerebral nuclei of hemodialysis patients with anemia. J Cereb Blood Flow Metab 2023; 43:749-762. [PMID: 36545834 PMCID: PMC10108183 DOI: 10.1177/0271678x221147363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/16/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Hemodialysis patients exhibit anemia-related cerebral hyperperfusion and iron deposition (ID). However, the mechanisms underlying the pathology of cerebral ID are not clear. We investigated the role of cerebral blood flow (CBF) in the pathophysiology of cerebral ID in hemodialysis patients with anemia. This study recruited 33 hemodialysis patients with anemia and thirty-three healthy controls (HCs). All the subjects underwent quantitative susceptibility mapping (QSM) and arterial spin labeling (ASL) to measure ID and CBF in the cerebral nuclei. Furthermore, we evaluated lacunar infarction (LI), cerebral microbleeds, and total white matter hyperintensity volume (TWMHV). Hemodialysis patients with anemia showed significantly higher ID and CBF in some nuclei compared to the HCs after adjusting for age, sex, and total intracranial volume (TIV) [P < 0.05, false discovery rate (FDR) corrected]. CBF showed a positive correlation with ID in both patients and HCs after adjustments for age, gender, and TIV (P < 0.05, FDR corrected). Serum phosphorus, calcium, TWMHV, hypertension, and dialysis duration were independently associated with ID (P < 0.05). Hemoglobin, serum phosphorus, and LI were independently associated with CBF (P < 0.05). Mediation analysis demonstrated that CBF mediated the effects between hemoglobin and ID. Our study demonstrated that CBF mediated aberrant cerebral ID in hemodialysis patients with anemia.
Collapse
Affiliation(s)
- Huiying Wang
- The School of Medicine, Nankai
University, Tianjin, China
| | - Chao Chai
- Department of Radiology, Tianjin
First Central Hospital, School of Medicine, Nankai University, Tianjin,
China
- Imaging Medicine Institute of
Tianjin, Tianjin, China
| | - Gemuer Wu
- The School of Medicine, Nankai
University, Tianjin, China
| | - Jinping Li
- Department of Hemodialysis, Tianjin
First Central Hospital, School of Medicine, Nankai University, Tianjin,
China
| | - Chenxi Zhao
- Department of Radiology, First
Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Dingwei Fu
- Department of Radiology, First
Central Clinical College, Tianjin Medical University, Tianjin, China
| | | | - Huapeng Wang
- Department of Radiology, First
Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Beini Wang
- Department of Radiology, First
Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jinxia Zhu
- MR Collaboration, Siemens
Healthcare, Northeast Asia, Beijing, China
| | - Wen Shen
- Department of Radiology, Tianjin
First Central Hospital, School of Medicine, Nankai University, Tianjin,
China
- Imaging Medicine Institute of
Tianjin, Tianjin, China
| | - Shuang Xia
- Department of Radiology, Tianjin
First Central Hospital, School of Medicine, Nankai University, Tianjin,
China
- Imaging Medicine Institute of
Tianjin, Tianjin, China
| |
Collapse
|
38
|
Mundorf A, Getzmann S, Gajewski PD, Larra MF, Wascher E, Ocklenburg S. Stress exposure, hand preference, and hand skill: A deep phenotyping approach. Laterality 2023:1-29. [PMID: 37099727 DOI: 10.1080/1357650x.2023.2204551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
ABSTRACTStress exposure and reactivity may show differential associations with handedness, but shallow phenotyping may influence the current knowledge. Importantly, different handedness measures do not necessarily show high correlations with each other and should not be used interchangeably as they may reflect different dimensions of laterality. Here, data on handedness from 599 participants in the population-based, longitudinal Dortmund Vital Study was used to determine various asymmetry indices. Hand preference was assessed with the Edinburgh Handedness Inventory (EHI) and the lateral preference inventory (LPI) measuring handedness, footedness, earedness, and eyedness. Hand performance was determined using the pegboard test. In addition, data on several dimensions of stress exposure and reactivity, including hair cortisol, and mental well-being was analysed to determine associations with handedness. All handedness measures correlated significantly with each other, with the strongest correlation between the EHI and the LPI handedness score. The EHI and LPI hand measures resulted in the highest effect sizes and most consistent correlations with stress or mental well-being. In contrast, the pegboard test only showed very little association with the stress and mental well-being measures. This highlights the importance of handedness phenotyping. Including preference measures is recommended to disentangle the link between handedness and mental health.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Mauro F Larra
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
- Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
39
|
Schijven D, Postema MC, Fukunaga M, Matsumoto J, Miura K, de Zwarte SMC, van Haren NEM, Cahn W, Hulshoff Pol HE, Kahn RS, Ayesa-Arriola R, Ortiz-García de la Foz V, Tordesillas-Gutierrez D, Vázquez-Bourgon J, Crespo-Facorro B, Alnæs D, Dahl A, Westlye LT, Agartz I, Andreassen OA, Jönsson EG, Kochunov P, Bruggemann JM, Catts SV, Michie PT, Mowry BJ, Quidé Y, Rasser PE, Schall U, Scott RJ, Carr VJ, Green MJ, Henskens FA, Loughland CM, Pantelis C, Weickert CS, Weickert TW, de Haan L, Brosch K, Pfarr JK, Ringwald KG, Stein F, Jansen A, Kircher TTJ, Nenadić I, Krämer B, Gruber O, Satterthwaite TD, Bustillo J, Mathalon DH, Preda A, Calhoun VD, Ford JM, Potkin SG, Chen J, Tan Y, Wang Z, Xiang H, Fan F, Bernardoni F, Ehrlich S, Fuentes-Claramonte P, Garcia-Leon MA, Guerrero-Pedraza A, Salvador R, Sarró S, Pomarol-Clotet E, Ciullo V, Piras F, Vecchio D, Banaj N, Spalletta G, Michielse S, van Amelsvoort T, Dickie EW, Voineskos AN, Sim K, Ciufolini S, Dazzan P, Murray RM, Kim WS, Chung YC, Andreou C, Schmidt A, Borgwardt S, McIntosh AM, Whalley HC, Lawrie SM, du Plessis S, Luckhoff HK, Scheffler F, Emsley R, Grotegerd D, Lencer R, Dannlowski U, Edmond JT, Rootes-Murdy K, Stephen JM, Mayer AR, Antonucci LA, et alSchijven D, Postema MC, Fukunaga M, Matsumoto J, Miura K, de Zwarte SMC, van Haren NEM, Cahn W, Hulshoff Pol HE, Kahn RS, Ayesa-Arriola R, Ortiz-García de la Foz V, Tordesillas-Gutierrez D, Vázquez-Bourgon J, Crespo-Facorro B, Alnæs D, Dahl A, Westlye LT, Agartz I, Andreassen OA, Jönsson EG, Kochunov P, Bruggemann JM, Catts SV, Michie PT, Mowry BJ, Quidé Y, Rasser PE, Schall U, Scott RJ, Carr VJ, Green MJ, Henskens FA, Loughland CM, Pantelis C, Weickert CS, Weickert TW, de Haan L, Brosch K, Pfarr JK, Ringwald KG, Stein F, Jansen A, Kircher TTJ, Nenadić I, Krämer B, Gruber O, Satterthwaite TD, Bustillo J, Mathalon DH, Preda A, Calhoun VD, Ford JM, Potkin SG, Chen J, Tan Y, Wang Z, Xiang H, Fan F, Bernardoni F, Ehrlich S, Fuentes-Claramonte P, Garcia-Leon MA, Guerrero-Pedraza A, Salvador R, Sarró S, Pomarol-Clotet E, Ciullo V, Piras F, Vecchio D, Banaj N, Spalletta G, Michielse S, van Amelsvoort T, Dickie EW, Voineskos AN, Sim K, Ciufolini S, Dazzan P, Murray RM, Kim WS, Chung YC, Andreou C, Schmidt A, Borgwardt S, McIntosh AM, Whalley HC, Lawrie SM, du Plessis S, Luckhoff HK, Scheffler F, Emsley R, Grotegerd D, Lencer R, Dannlowski U, Edmond JT, Rootes-Murdy K, Stephen JM, Mayer AR, Antonucci LA, Fazio L, Pergola G, Bertolino A, Díaz-Caneja CM, Janssen J, Lois NG, Arango C, Tomyshev AS, Lebedeva I, Cervenka S, Sellgren CM, Georgiadis F, Kirschner M, Kaiser S, Hajek T, Skoch A, Spaniel F, Kim M, Kwak YB, Oh S, Kwon JS, James A, Bakker G, Knöchel C, Stäblein M, Oertel V, Uhlmann A, Howells FM, Stein DJ, Temmingh HS, Diaz-Zuluaga AM, Pineda-Zapata JA, López-Jaramillo C, Homan S, Ji E, Surbeck W, Homan P, Fisher SE, Franke B, Glahn DC, Gur RC, Hashimoto R, Jahanshad N, Luders E, Medland SE, Thompson PM, Turner JA, van Erp TGM, Francks C. Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proc Natl Acad Sci U S A 2023; 120:e2213880120. [PMID: 36976765 PMCID: PMC10083554 DOI: 10.1073/pnas.2213880120] [Show More Authors] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
Collapse
Affiliation(s)
- Dick Schijven
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
| | - Merel C. Postema
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam1081 HZ, The Netherlands
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Sonja M. C. de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Neeltje E. M. van Haren
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Sophia Children's Hospital, Rotterdam3015 CN, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - René S. Kahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, New York, NY10468
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Instituto de Investigación Marqués de Valdecilla, University Hospital Marqués de Valdecilla, Santander39008, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander39011, Spain
| | - Víctor Ortiz-García de la Foz
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Psychiatry, Marqués de Valdecilla University Hospital, Instituto de Investigación Sanitaria Valdecilla, School of Medicine, University of Cantabria, Santander39011, Spain
| | - Diana Tordesillas-Gutierrez
- Department of Radiology, Instituto de Investigación Marqués de Valdecilla, Marqués de Valdecilla University Hospital, Santander39011, Spain
- Advanced Computing and e-Science, Instituto de Física de Cantabria, Universidad de Cantabria - Consejo Superior de Investigaciones Científicas, Santander39005, Spain
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Instituto de Investigación Marqués de Valdecilla, University Hospital Marqués de Valdecilla, Santander39008, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Psychiatry, School of Medicine, University of Sevilla, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas - Instituto de Biomedicina de Sevilla, Sevilla41013, Spain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychology, University of Oslo, Oslo0373, Norway
- Bjørknes College, Oslo0456, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Oslo0373, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychology, University of Oslo, Oslo0373, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo0372, Norway
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo0450, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo0373, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo0372, Norway
| | - Erik G. Jönsson
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD21201
| | - Jason M. Bruggemann
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Edith Collins Centre (Translational Research in Alcohol, Drugs & Toxicology), Sydney Local Health District, Sydney2050, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney2006, Australia
| | - Stanley V. Catts
- School of Medicine, The University of Queensland, Brisbane4006, Australia
| | - Patricia T. Michie
- School of Psychological Sciences, University of Newcastle, Newcastle2308, Australia
| | - Bryan J. Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane4072, Australia
- Queensland Centre for Mental Health Research, The University of Queensland, Brisbane4076, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Paul E. Rasser
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle2308, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle2308, Australia
- Hunter Medical Research Institute, Newcastle2305, Australia
| | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle2308, Australia
| | - Rodney J. Scott
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle2308, Australia
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Frans A. Henskens
- School of Medicine and Public Health, University of Newcastle, Newcastle2308, Australia
- PRC for Health Behaviour, Hunter Medical Research Institute, Newcastle2305, Australia
| | - Carmel M. Loughland
- School of Medicine and Public Health, University of Newcastle, Newcastle2308, Australia
- Hunter New England Mental Health Service, Newcastle2305, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne3053, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY13210
| | - Thomas W. Weickert
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY13210
| | - Lieuwe de Haan
- Early Psychosis Department, Department of Psychiatry, Amsterdam UMC (location AMC), Amsterdam1105 AZ, The Netherlands
- Arkin Institute for Mental Health, Amsterdam1033 NN, The Netherlands
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Kai G. Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
- Core-Facility Brainimaging, Faculty of Medicine, Philipps-Universität Marburg, Marburg35032, Germany
| | - Tilo T. J. Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Bernd Krämer
- Department of General Psychiatry, Section for Experimental Psychopathology and Neuroimaging, Heidelberg University, Heidelberg69115, Germany
| | - Oliver Gruber
- Department of General Psychiatry, Section for Experimental Psychopathology and Neuroimaging, Heidelberg University, Heidelberg69115, Germany
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA19104
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Juan Bustillo
- Department of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM87106
| | - Daniel H. Mathalon
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA94121
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
| | - Vince D. Calhoun
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA30303
| | - Judith M. Ford
- San Francisco VA Medical Center, University of California, San Francisco, CA94121
| | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
- Long Beach VA Health Care System, Long Beach, CA90822
| | - Jingxu Chen
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Hong Xiang
- Chongqing University Three Gorges Hospital, Chongqing404188, P.R. China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Technische Universität Dresden, University Hospital C.G. Carus, Dresden01307, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden01307, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Technische Universität Dresden, University Hospital C.G. Carus, Dresden01307, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden01307, Germany
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Maria Angeles Garcia-Leon
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Benito Menni Complex Assistencial en Salut Mental, Barcelona08830, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX77030
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Erin W. Dickie
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoM5S 2S1, Canada
- Department of Psychiatry, University of Toronto, TorontoM5T 1R8, Canada
| | - Aristotle N. Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoM5S 2S1, Canada
- Department of Psychiatry, University of Toronto, TorontoM5T 1R8, Canada
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore539747, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228, Singapore
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju54896, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju54896, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju54896, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju54896, Republic of Korea
| | - Christina Andreou
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
| | - André Schmidt
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
| | - Andrew M. McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Stephen M. Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
- Stellenbosch University Genomics of Brain Disorders Research Unit, South African Medical Research Council, Cape Town7505, South Africa
| | - Hilmar K. Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
| | - Freda Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Jesse T. Edmond
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
| | - Kelly Rootes-Murdy
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
| | | | | | - Linda A. Antonucci
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari70121, Italy
| | - Leonardo Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
- Psychiatry Unit, Bari University Hospital, Bari70121, Italy
| | - Covadonga M. Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
- School of Medicine, Universidad Complutense, Madrid28040, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
| | - Noemi G. Lois
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
- School of Medicine, Universidad Complutense, Madrid28040, Spain
| | - Alexander S. Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow115522, Russian Federation
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow115522, Russian Federation
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala751 85, Sweden
| | - Carl M. Sellgren
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm171 65, Sweden
| | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Montreal Neurological Institute, McGill University, MontrealH3A 2B4, Canada
| | - Stefan Kaiser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Department of Psychiatry, Division of Adult Psychiatry, Geneva University Hospitals, Geneva1202, Switzerland
| | - Tomas Hajek
- National Institute of Mental Health, Klecany250 67, Czech Republic
- Department of Psychiatry, Dalhousie University, HalifaxB3H 2E2, Canada
| | - Antonin Skoch
- National Institute of Mental Health, Klecany250 67, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany250 67, Czech Republic
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul08826, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul08826, Republic of Korea
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul08826, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Anthony James
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Geor Bakker
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Michael Stäblein
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Dresden01187, Germany
| | - Fleur M. Howells
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town7505, South Africa
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
| | - Ana M. Diaz-Zuluaga
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Julian A. Pineda-Zapata
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Carlos López-Jaramillo
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich8050, Switzerland
| | - Ellen Ji
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Werner Surbeck
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY11030
- Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY11004
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, New York, NY11549
| | - Simon E. Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - David C. Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA02115
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT06102
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA19104
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA19104
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland1010, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, Uppsala752 37, Sweden
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Sarah E. Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane4006, Australia
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Jessica A. Turner
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA30303
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA92697
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| |
Collapse
|
40
|
Gurlek Celik N, Tiryaki S. Changes in the volumes and asymmetry of subcortical structures in healthy individuals according to gender. Anat Sci Int 2023:10.1007/s12565-023-00714-w. [PMID: 36947348 DOI: 10.1007/s12565-023-00714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
In recent years, with the development of technology, three-dimensional software has entered our lives. Volumetric measurements made with Magnetic Resonance Imaging (MRI) are essential in the morphometry of the brain and subcortical structures. In this study, we aim to share the volume and asymmetry of the hippocampus, its sub-branches, and other subcortical structures and their interaction with age/sex using volBrain, a web-based automated software.1.5 T T1-weighted volumetric MRI, of 90 healthy individuals (51 females, 39 males) of both genders were included in our study. Pallidum, hippocampus, Cornu Ammonis1 (CA1), Cornu Ammonis2-3 (CA2-CA3), and Cornu Ammonis4-Dentate Gyrus (CA4-DG) measurements in females and males had a statistically higher mean in the right region (p < 0.05). In addition, females' hippocampus, CA1, CA2-CA3, and CA4-DG averages decreased more rapidly in the right region than in the left region. Subiculum measurement had a higher mean in the left region in both males and females (p < 0.05).The mean subiculum of males decreased more rapidly in the right region than in the left region. When the total values of the subcortical region in males and females were compared according to age categories, amygdala, pallidum, putamen, hippocampus, CA2-CA3, and subiculum values did not differ to gender in individuals aged 50 and over (p > 0.05). In individuals under 50 years old, the mean of females was statistically lower than the mean of males (p < 0.05).The Stratum radiatum (SR), Stratum lacunosum (SL), and Stratum molecuare (SM) asymmetry values of males in the examined subcortical regions had a higher mean than females (p = 0.039). In other regions, there was no statistically asymmetrical difference (p > 0.05). Studies evaluating the volumetric analysis and asymmetry of hippocampus subbranches and other subcortical structures in adults are very limited. As a result, the morphometry of the hippocampus subbranches and other subcortical structures was examined in detail. It was determined that the structures differed according to age, gender and body side.
Collapse
Affiliation(s)
- Nihal Gurlek Celik
- Department of Anatomy, Faculty of Medicine, Amasya University, 05100, Amasya, Turkey.
| | - Saban Tiryaki
- Department of Radiology, Faculty of Medicine, Kirsehir Ahi Evran University, 40100, Kirsehir, Turkey
| |
Collapse
|
41
|
Dimitriadis SI, Perry G, Lancaster TM, Tansey KE, Singh KD, Holmans P, Pocklington A, Davey Smith G, Zammit S, Hall J, O’Donovan MC, Owen MJ, Jones DK, Linden DE. Genetic risk for schizophrenia is associated with increased proportion of indirect connections in brain networks revealed by a semi-metric analysis: evidence from population sample stratified for polygenic risk. Cereb Cortex 2023; 33:2997-3011. [PMID: 35830871 PMCID: PMC10016061 DOI: 10.1093/cercor/bhac256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Research studies based on tractography have revealed a prominent reduction of asymmetry in some key white-matter tracts in schizophrenia (SCZ). However, we know little about the influence of common genetic risk factors for SCZ on the efficiency of routing on structural brain networks (SBNs). Here, we use a novel recall-by-genotype approach, where we sample young adults from a population-based cohort (ALSPAC:N genotyped = 8,365) based on their burden of common SCZ risk alleles as defined by polygenic risk score (PRS). We compared 181 individuals at extremes of low (N = 91) or high (N = 90) SCZ-PRS under a robust diffusion MRI-based graph theoretical SBN framework. We applied a semi-metric analysis revealing higher SMR values for the high SCZ-PRS group compared with the low SCZ-PRS group in the left hemisphere. Furthermore, a hemispheric asymmetry index showed a higher leftward preponderance of indirect connections for the high SCZ-PRS group compared with the low SCZ-PRS group (PFDR < 0.05). These findings might indicate less efficient structural connectivity in the higher genetic risk group. This is the first study in a population-based sample that reveals differences in the efficiency of SBNs associated with common genetic risk variants for SCZ.
Collapse
Affiliation(s)
- S I Dimitriadis
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Neuroinformatics Group, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Perry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - T M Lancaster
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Department of Psychology, Bath University, Claverton Down BA2 7AY, Bath, Wales, UK
| | - K E Tansey
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
| | - K D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - P Holmans
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - A Pocklington
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - G Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road BS8 1QU, Bristol, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - S Zammit
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
| | - J Hall
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M C O’Donovan
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - M J Owen
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
| | - D E Linden
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff School of Medicine, Cardiff University, Maindy Road CF24 4HQ, Cardiff, Wales, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road BS8 1NU, Bristol, Wales, UK
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40 UNS40 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
42
|
Korenar M, Treffers-Daller J, Pliatsikas C. Dynamic effects of bilingualism on brain structure map onto general principles of experience-based neuroplasticity. Sci Rep 2023; 13:3428. [PMID: 36854883 PMCID: PMC9974958 DOI: 10.1038/s41598-023-30326-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Bilingualism has been linked to structural adaptations of subcortical brain regions that are important for controlling multiple languages. However, research on the location and extent of these adaptations has yielded variable patterns, especially as far as the subcortical regions are concerned. Existing literature on bilingualism-induced brain restructuring has so far largely overseen evidence from other domains showing that experience-based structural neuroplasticity often triggers non-linear adaptations which follow expansion-renormalisation trajectories. Here we use generalised additive mixed models to investigate the non-linear effects of quantified bilingual experiences on the basal ganglia and the thalamus in a sample of bilinguals with a wide range of bilingual experiences. Our results revealed that volumes of the bilateral caudate nucleus and nucleus accumbens were significantly related to bilingual experiences. Importantly, these followed a non-linear pattern, with increases followed by plateauing in the most experienced bilinguals, suggesting that experience-based volumetric increases are only necessary up to a certain level of bilingual experience. Moreover, the volumes of putamen and thalamus were positively predicted by bilingual experiences. The results offer the first direct evidence that bilingualism, similarly to other cognitively demanding skills, leads to dynamic subcortical structural adaptations which can be nonlinear, in line with expansion-renormalisation models of experience-dependent neuroplasticity.
Collapse
Affiliation(s)
- M. Korenar
- grid.7177.60000000084992262Amsterdam Center for Language and Communication, Department of Dutch Studies, University of Amsterdam, Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Alzheimer Center Amsterdam, Neurology, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands ,grid.9435.b0000 0004 0457 9566School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - J. Treffers-Daller
- grid.9435.b0000 0004 0457 9566Department of English Language and Applied Linguistics, University of Reading, Reading, UK
| | - C. Pliatsikas
- grid.9435.b0000 0004 0457 9566School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK ,grid.464701.00000 0001 0674 2310Centro de Investigación Nebrija en Cognición, Universidad Nebrija, Madrid, Spain
| |
Collapse
|
43
|
Millman ZB, Hwang M, Sydnor VJ, Reid BE, Goldenberg JE, Talero JN, Bouix S, Shenton ME, Öngür D, Shinn AK. Auditory hallucinations, childhood sexual abuse, and limbic gray matter volume in a transdiagnostic sample of people with psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:118. [PMID: 36585407 PMCID: PMC9803640 DOI: 10.1038/s41537-022-00323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Childhood sexual abuse (CSA) is a potentially unique risk factor for auditory hallucinations (AH), but few studies have examined the moderating effects of sex or the association of CSA with limbic gray matter volume (GMV) in transdiagnostic samples of people with psychotic disorders. Here we found that people with psychotic disorders reported higher levels of all surveyed maltreatment types (e.g., physical abuse) than healthy controls, but people with psychotic disorders with AH (n = 41) reported greater CSA compared to both those without AH (n = 37; t = -2.21, p = .03) and controls (n = 37; t = -3.90, p < .001). Among people with psychosis, elevated CSA was most pronounced among females with AH (sex × AH status: F = 4.91, p = .009), held controlling for diagnosis, medications, and other maltreatment (F = 3.88, p = .02), and correlated with the current severity of AH (r = .26, p = .03) but not other symptoms (p's > .16). Greater CSA among patients related to larger GMV of the left amygdala accounting for AH status, diagnosis, medications, and other maltreatment (t = 2.12, p = .04). Among people with psychosis, females with AH may represent a unique subgroup with greater CSA. Prospective high-risk studies integrating multiple measures of maltreatment and brain structure/function may help elucidate the mechanisms linking CSA with amygdala alterations and AH.
Collapse
Affiliation(s)
- Zachary B Millman
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
| | - Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin E Reid
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua E Goldenberg
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Sylvain Bouix
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Ann K Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
44
|
Vann SD, Zachiu C, Meys KM, Ambrosino S, Durston S, de Vries LS, Groenendaal F, Lequin MH. Normative mammillary body volumes: From the neonatal period to young adult. NEUROIMAGE. REPORTS 2022; 2:None. [PMID: 36507070 PMCID: PMC9726681 DOI: 10.1016/j.ynirp.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The mammillary bodies may be small, but they have an important role in encoding complex memories. Mammillary body pathology often occurs following thiamine deficiency but there is increasing evidence that the mammillary bodies are also compromised in other neurological conditions and in younger ages groups. For example, the mammillary bodies are frequently affected in neonates with hypoxic-ischemic encephalopathy. At present, there is no normative data for the mammillary bodies in younger groups making it difficult to identify abnormalities in neurological disorders. To address this, the present study set out to develop a normative dataset for neonates and for children to young adult. A further aim was to determine whether there were laterality or sex differences in mammillary body volumes. Mammillary body volumes were obtained from MRI scans from 506 participants across two datasets. Measures for neonates were acquired from the Developing Human Connectome Project database (156 male; 100 female); volumes for individuals aged 6-24 were acquired from the NICHE database (166 males; 84 females). Volume measurements were acquired using a semi-automated multi-atlas segmentation approach. Mammillary body volumes increased up to approximately 15 years-of-age. The left mammillary body was marginally, but significantly, larger than the right in the neonates with a similar pattern in older children/young adults. In neonates, the mammillary bodies in males were slightly bigger than females but no sex differences were present in older children/young adults. Given the increasing presentation of mammillary body pathology in neonates and children, these normative data will enable better assessment of the mammillary bodies in healthy and at-risk populations.
Collapse
Affiliation(s)
- Seralynne D. Vann
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, 3584 CX, Utrecht, Utrecht, the Netherlands
| | - Karlijn M.E. Meys
- Division Imaging & Oncology, Department of Radiology & Nuclear Medicine, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology, 3508 GA, Utrecht, the Netherlands
| | - Sara Ambrosino
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sarah Durston
- Education Center, Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Linda S. de Vries
- Deparment of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Floris Groenendaal
- Deparment of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Maarten H. Lequin
- Division Imaging & Oncology, Department of Radiology & Nuclear Medicine, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology, 3508 GA, Utrecht, the Netherlands
| |
Collapse
|
45
|
Mai H, Bao J, Thompson PM, Kim D, Shen L. Identifying genes associated with brain volumetric differences through tissue specific transcriptomic inference from GWAS summary data. BMC Bioinformatics 2022; 23:398. [PMID: 36171548 PMCID: PMC9520794 DOI: 10.1186/s12859-022-04947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Brain volume has been widely studied in the neuroimaging field, since it is an important and heritable trait associated with brain development, aging and various neurological and psychiatric disorders. Genome-wide association studies (GWAS) have successfully identified numerous associations between genetic variants such as single nucleotide polymorphisms and complex traits like brain volume. However, it is unclear how these genetic variations influence regional gene expression levels, which may subsequently lead to phenotypic changes. S-PrediXcan is a tissue-specific transcriptomic data analysis method that can be applied to bridge this gap. In this work, we perform an S-PrediXcan analysis on GWAS summary data from two large imaging genetics initiatives, the UK Biobank and Enhancing Neuroimaging Genetics through Meta Analysis, to identify tissue-specific transcriptomic effects on two closely related brain volume measures: total brain volume (TBV) and intracranial volume (ICV). RESULTS As a result of the analysis, we identified 10 genes that are highly associated with both TBV and ICV. Nine out of 10 genes were found to be associated with TBV in another study using a different gene-based association analysis. Moreover, most of our discovered genes were also found to be correlated with multiple cognitive and behavioral traits. Further analyses revealed the protein-protein interactions, associated molecular pathways and biological functions that offer insight into how these genes function and interact with others. CONCLUSIONS These results confirm that S-PrediXcan can identify genes with tissue-specific transcriptomic effects on complex traits. The analysis also suggested novel genes whose expression levels are related to brain volumetric traits. This provides important insights into the genetic mechanisms of the human brain.
Collapse
Affiliation(s)
- Hung Mai
- Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, USA
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingxuan Bao
- Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dokyoon Kim
- Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, USA
| | - Li Shen
- Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
46
|
|
47
|
Comparing brain asymmetries independently of brain size. Neuroimage 2022; 254:119118. [PMID: 35318151 DOI: 10.1016/j.neuroimage.2022.119118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/16/2023] Open
Abstract
Studies examining cerebral asymmetries typically divide the l-R Measure (e.g., Left-Right Volume) by the L + R Measure to obtain an Asymmetry Index (AI). However, contrary to widespread belief, such a division fails to render the AI independent from the L + R Measure and/or from total brain size. As a result, variations in brain size may bias correlation estimates with the AI or group differences in AI. We investigated how to analyze brain asymmetries in to distinguish global from regional effects, and report unbiased group differences in cerebral asymmetries in the UK Biobank (N = 40, 028). We used 306 global and regional brain measures provided by the UK Biobank. Global gray and white matter volumes were taken from Freesurfer ASEG, subcortical gray matter volumes from Freesurfer ASEG and subsegmentation, cortical gray matter volumes, mean thicknesses, and surface areas from the Destrieux atlas applied on T1-and T2-weighted images, cerebellar gray matter volumes from FAST FSL, and regional white matter volumes from Freesurfer ASEG. We analyzed the extent to which the L + R Measure, Total Cerebral Measure (TCM, e.g., Total Brain Volume), and l-R TCM predict regional asymmetries. As a case study, we assessed the consequences of omitting each of these predictors on the magnitude and significance of sex differences in asymmetries. We found that the L + R Measure, the TCM, and the l-R TCM predicted the AI of more than 89% of regions and that their relationships were generally linear. Removing any of these predictors changed the significance of sex differences in 33% of regions and the magnitude of sex differences across 13-42% of regions. Although we generally report similar sex and age effects on cerebral asymmetries to those of previous large-scale studies, properly adjusting for regional and global brain size revealed additional sex and age effects on brain asymmetry.
Collapse
|
48
|
Zhao L, Matloff W, Shi Y, Cabeen RP, Toga AW. Mapping Complex Brain Torque Components and Their Genetic Architecture and Phenomic Associations in 24,112 Individuals. Biol Psychiatry 2022; 91:753-768. [PMID: 35027165 PMCID: PMC8957509 DOI: 10.1016/j.biopsych.2021.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The functional significance and mechanisms determining the development and individual variability of structural brain asymmetry remain unclear. Here, we systematically analyzed all relevant components of the most prominent structural asymmetry, brain torque (BT), and their relationships with potential genetic and nongenetic modifiers in a sample comprising 24,112 individuals from six cohorts. METHODS BT features, including petalia, bending, dorsoventral shift, brain tissue distribution asymmetries, and cortical surface positional asymmetries, were directly modeled using a set of automatic three-dimensional brain shape analysis approaches. Age-, sex-, and handedness-related effects on BT were assessed. The genetic architecture and phenomic associations of BT were investigated using genome- and phenome-wide association scans. RESULTS Our results confirmed the population-level predominance of the typical counterclockwise torque and suggested a first attenuating, then enlarging dynamic across the life span (3-81 years) primarily for frontal, occipital, and perisylvian BT features. Sex/handedness, BT, and cognitive function of verbal-numerical reasoning were found to be interrelated statistically. We observed differential heritability of up to 56% for BT, especially in temporal language areas. Individual variations of BT were also associated with various phenotypic variables of neuroanatomy, cognition, lifestyle, sociodemographics, anthropometry, physical health, and adult and child mental health. Our genomic analyses identified a number of genetic associations at lenient significance levels, which need to be further validated using larger samples in the future. CONCLUSIONS This study provides a comprehensive description of BT and insights into biological and other factors that may contribute to the development and individual variations of BT.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - William Matloff
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Yonggang Shi
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California.
| |
Collapse
|
49
|
Validation of Neuroimaging-based Brain Age Gap as a Mediator between Modifiable Risk Factors and Cognition. Neurobiol Aging 2022; 114:61-72. [DOI: 10.1016/j.neurobiolaging.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
|
50
|
Friedrich P, Patil KR, Mochalski LN, Li X, Camilleri JA, Kröll JP, Wiersch L, Eickhoff SB, Weis S. Is it left or is it right? A classification approach for investigating hemispheric differences in low and high dimensionality. Brain Struct Funct 2022; 227:425-440. [PMID: 34882263 PMCID: PMC8844166 DOI: 10.1007/s00429-021-02418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
Hemispheric asymmetries, i.e., differences between the two halves of the brain, have extensively been studied with respect to both structure and function. Commonly employed pairwise comparisons between left and right are suitable for finding differences between the hemispheres, but they come with several caveats when assessing multiple asymmetries. What is more, they are not designed for identifying the characterizing features of each hemisphere. Here, we present a novel data-driven framework-based on machine learning-based classification-for identifying the characterizing features that underlie hemispheric differences. Using voxel-based morphometry data from two different samples (n = 226, n = 216), we separated the hemispheres along the midline and used two different pipelines: First, for investigating global differences, we embedded the hemispheres into a two-dimensional space and applied a classifier to assess if the hemispheres are distinguishable in their low-dimensional representation. Second, to investigate which voxels show systematic hemispheric differences, we employed two classification approaches promoting feature selection in high dimensions. The two hemispheres were accurately classifiable in both their low-dimensional (accuracies: dataset 1 = 0.838; dataset 2 = 0.850) and high-dimensional (accuracies: dataset 1 = 0.966; dataset 2 = 0.959) representations. In low dimensions, classification of the right hemisphere showed higher precision (dataset 1 = 0.862; dataset 2 = 0.894) compared to the left hemisphere (dataset 1 = 0.818; dataset 2 = 0.816). A feature selection algorithm in the high-dimensional analysis identified voxels that most contribute to accurate classification. In addition, the map of contributing voxels showed a better overlap with moderate to highly lateralized voxels, whereas conventional t test with threshold-free cluster enhancement best resembled the LQ map at lower thresholds. Both the low- and high-dimensional classifiers were capable of identifying the hemispheres in subsamples of the datasets, such as males, females, right-handed, or non-right-handed participants. Our study indicates that hemisphere classification is capable of identifying the hemisphere in their low- and high-dimensional representation as well as delineating brain asymmetries. The concept of hemisphere classifiability thus allows a change in perspective, from asking what differs between the hemispheres towards focusing on the features needed to identify the left and right hemispheres. Taking this perspective on hemispheric differences may contribute to our understanding of what makes each hemisphere special.
Collapse
Affiliation(s)
- Patrick Friedrich
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany.
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisa N Mochalski
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Xuan Li
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jean-Philippe Kröll
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, 52428, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|