1
|
Tan LS, Lau HH, Abdelalim EM, Khoo CM, O'Brien RM, Tai ES, Teo AKK. The role of glucose-6-phosphatase activity in glucose homeostasis and its potential for diabetes therapy. Trends Mol Med 2024:S1471-4914(24)00244-2. [PMID: 39426930 DOI: 10.1016/j.molmed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Glucose-6-phosphatase catalytic subunit (G6PC)1 and G6PC2 are crucial for glucose metabolism, regulating processes like glycolysis, gluconeogenesis, and glycogenolysis. Despite their structural and functional similarities, G6PC1 and G6PC2 exhibit distinct tissue-specific expression patterns, G6P hydrolysis kinetics, and physiological functions. This review provides a comprehensive overview of their enzymology and distinct roles in glucose homeostasis. We examine how inactivating mutations in G6PC1 lead to glycogen storage disease, and how elevated G6PC1 and G6PC2 expression can affect the incidence of diabetic complications, risk for type 2 diabetes mellitus (T2DM) and various cancers. We also discuss the potential of inhibiting G6PC1 and G6PC2 to protect against complications from elevated blood glucose levels, and highlight drug development efforts targeting G6PC1 and G6PC2, and the therapeutic potential of inhibitors for disease prevention.
Collapse
Affiliation(s)
- Lay Shuen Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; Dean's Office, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Program (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Program (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Program (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Martin CC, Oeser JK, Wangmo T, Flemming BP, Attie AD, Keller MP, O’Brien RM. Multiple promoter and enhancer differences likely contribute to augmented G6PC2 expression in human versus mouse pancreatic islet alpha cells. J Mol Endocrinol 2024; 73:e240051. [PMID: 39121091 PMCID: PMC11439184 DOI: 10.1530/jme-24-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 08/11/2024]
Abstract
G6PC2 encodes a glucose-6-phosphatase catalytic subunit that opposes the action of glucokinase in pancreatic islets, thereby modulating the sensitivity of insulin and glucagon secretion to glucose. In mice, G6pc2 is expressed at ~20-fold higher levels in β-cells than in α-cells, whereas in humans G6PC2 is expressed at only ~5-fold higher levels in β-cells. We therefore hypothesize that G6PC2 likely influences glucagon secretion to a greater degree in humans. With a view to generating a humanized mouse that recapitulates augmented G6PC2 expression levels in α-cells, we sought to identify the genomic regions that confer differential mouse G6pc2 expression in α-cells versus β-cells as well as the evolutionary changes that have altered this ratio in humans. Studies in islet-derived cell lines suggest that the elevated G6pc2 expression in mouse β-cells versus α-cells is mainly due to a difference in the relative activity of the proximal G6pc2 promoter in these cell types. Similarly, the smaller difference in G6PC2 expression between α-cells and β-cells in humans is potentially explained by a change in relative proximal G6PC2 promoter activity. However, we show that both glucocorticoid levels and multiple differences in the relative activity of eight transcriptional enhancers between mice and humans likely contribute to differential G6PC2 expression. Finally, we show that a mouse-specific non-coding RNA, Gm13613, whose expression is controlled by G6pc2 enhancer I, does not regulate G6pc2 expression, indicating that altered expression of Gm13613 in a humanized mouse that contains both the human promoter and enhancers should not affect G6PC2 function.
Collapse
Affiliation(s)
- Cyrus C. Martin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Tenzin Wangmo
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Brian P. Flemming
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, University of Wisconsin-Madison
- Department of Medicine, University of Wisconsin-Madison, WI 53706
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
3
|
Keller MP, Hawes EM, Schueler KL, Stapleton DS, Mitok KA, Simonett SP, Oeser JK, Sampson LL, Attie AD, Magnuson MA, O’Brien RM. An Enhancer Within Abcb11 Regulates G6pc2 in C57BL/6 Mouse Pancreatic Islets. Diabetes 2023; 72:1621-1628. [PMID: 37552875 PMCID: PMC10588275 DOI: 10.2337/db23-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
G6PC2 is predominantly expressed in pancreatic islet β-cells where it encodes a glucose-6-phosphatase catalytic subunit that modulates the sensitivity of insulin secretion to glucose by opposing the action of glucokinase, thereby regulating fasting blood glucose (FBG). Prior studies have shown that the G6pc2 promoter alone is unable to confer sustained islet-specific gene expression in mice, suggesting the existence of distal enhancers that regulate G6pc2 expression. Using information from both mice and humans and knowledge that single nucleotide polymorphisms (SNPs) both within and near G6PC2 are associated with variations in FBG in humans, we identified several putative enhancers 3' of G6pc2. One region, herein referred to as enhancer I, resides in the 25th intron of Abcb11 and binds multiple islet-enriched transcription factors. CRISPR-mediated deletion of enhancer I in C57BL/6 mice had selective effects on the expression of genes near the G6pc2 locus. In isolated islets, G6pc2 and Spc25 expression were reduced ∼50%, and Gm13613 expression was abolished, whereas Cers6 and nostrin expression were unaffected. This partial reduction in G6pc2 expression enhanced islet insulin secretion at basal glucose concentrations but did not affect FBG or glucose tolerance in vivo, consistent with the absence of a phenotype in G6pc2 heterozygous C57BL/6 mice. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
| | - Emily M. Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | | | | | - Kelly A. Mitok
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Leesa L. Sampson
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI
- Department of Medicine, University of Wisconsin–Madison, Madison, WI
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
4
|
Ansari N, Ramachandran V, Mohamad NA, Salim E, Ismail P, Hazmi M, Mat LNI. Association of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) Gene Polymorphisms with Type 2 Diabetes among Malay Ethnics. Glob Med Genet 2023; 10:12-18. [PMID: 36703777 PMCID: PMC9873477 DOI: 10.1055/s-0042-1760384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder, and the underlying causes remain unknown and have not been fully elucidated. Several candidate genes have been associated with T2DM in various populations with conflicting results. The variations found in glucokinase ( GCK ), glucokinase regulatory protein ( GCKR ), and glucose-6-phosphatase 2 ( G6PC2 ) genes were not well studied, particularly among Asians. Aims The main objective of this study was to determine the candidate genetic polymorphisms of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) genes in T2DM among Malay ethnics. Methods In this candidate gene association study, a total of 180 T2DM subjects and 180 control subjects were recruited to determine the genotypes using polymerase chain reaction-restriction fragment length polymorphism and Taqman probe assay methods. Genotype and allele frequencies in case and control samples were compared using the chi-squared test to determine a significant difference. Results The body mass index, fasting blood glucose, hemoglobin A1c, systolic and diastolic blood pressure, and total cholesterol were significantly different ( p < 0.05) between T2DM and control subjects. The genotypic and allelic frequencies of GCK (rs1799884), GCKR (rs780094), and G6PC2 (rs560887) gene polymorphisms were significantly different between T2DM and controls ( p < 0.05). Conclusion Hence, rs1799884 of GCK gene and rs780094 of GCKR gene and rs560887 of the G6PC2 gene are possible genetic biomarkers in T2DM development among Malay ethnics in Malaysia.
Collapse
Affiliation(s)
- Neda Ansari
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vasudevan Ramachandran
- Faculty of Health Sciences, University College MAIWP International, Taman Batu Muda, Kuala Lumpur, Malaysia,Vasudevan Ramachandran Faculty of Health Sciences, University College MAIWP InternationalTaman Batu Muda, 68100 Batu Caves, Kuala LumpurMalaysia
| | - Nur Afiqah Mohamad
- Centre for Foundation Studies, Lincoln University College, Selangor, DE, Malaysia
| | - Elnaz Salim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohamad Hazmi
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Liyana Najwa Inchee Mat
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia,Address for correspondence Liyana Najwa Inchee, Mat, MBBCh BAO, PhD Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang 43400, Selangor DEMalaysia
| |
Collapse
|
5
|
Udhaya Kumar S, Kamaraj B, Varghese RP, Preethi VA, Bithia R, George Priya Doss C. Mutations in G6PC2 gene with increased risk for development of type 2 diabetes: Understanding via computational approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:351-373. [PMID: 35534112 DOI: 10.1016/bs.apcsb.2022.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An increase in the fast blood glucose (FBG) levels has been linked to an increased risk of developing a chronic condition, type 2 diabetes (T2D). The mutation in the G6PC2 gene was identified to have a lead role in the modulation of FBG levels. The abnormal regulation of this enzyme influences glucose-stimulated insulin secretion (GSIS), which controls the insulin levels corresponding to the system's glucose level. This study focuses on the mutations at the G6PC2 gene, which cause the variation from normal expression levels and increase the risk of T2D. We examined the non-synonymous single nucleotide polymorphisms (nsSNPs) present in the G6PC2 and subjected them to pathogenicity, stability, residue conservation, and membrane simulation. The individual representation of surrounding amino acids in the mutant (I63T) model showed the loss of hydrophobic interactions compared to the native G6PC2. In addition, the trajectory results from the membrane simulation exhibited reduced stability, and the least compactness was identified for the I63T mutant model. Our study shed light on the structural and conformational changes at the transmembrane region due to the I63T mutation in G6PC2. Additionally, the Gibbs free energy landscape analysis against the two principal components showed structural differences and decreased the conformational stability of the I63T mutant model compared to the native. Like those presented in this study, dynamical simulations may indeed be crucial to comprehending the structural insights of G6PC2 mutations in cardiovascular-associated mortality and T2D.
Collapse
Affiliation(s)
- S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Rinku Polachirakkal Varghese
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - V Anu Preethi
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R Bithia
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Friis G, Atwell JW, Fudickar AM, Greives TJ, Yeh PJ, Price TD, Ketterson ED, Milá B. Rapid evolutionary divergence of a songbird population following recent colonization of an urban area. Mol Ecol 2022; 31:2625-2643. [DOI: 10.1111/mec.16422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/14/2022] [Accepted: 03/01/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Guillermo Friis
- National Museum of Natural Sciences Department of Biodiversity and Evolutionary Biology Spanish National Research Council (CSIC) Madrid 28006 Spain
| | | | - Adam M. Fudickar
- Department of Biology Indiana University Bloomington IN 47405 USA
| | - Timothy J. Greives
- Department of Biological Sciences North Dakota State University Fargo ND 58105 USA
| | - Pamela J. Yeh
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles CA 90095 USA
| | - Trevor D. Price
- Department of Ecology and Evolution University of Chicago Chicago IL 60637 USA
| | | | - Borja Milá
- National Museum of Natural Sciences Department of Biodiversity and Evolutionary Biology Spanish National Research Council (CSIC) Madrid 28006 Spain
| |
Collapse
|
7
|
Glucose-6-phosphatase catalytic subunit 2 negatively regulates glucose oxidation and insulin secretion in pancreatic β-cells. J Biol Chem 2022; 298:101729. [PMID: 35176280 PMCID: PMC8941207 DOI: 10.1016/j.jbc.2022.101729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/11/2022] Open
Abstract
Elevated fasting blood glucose (FBG) is associated with increased risks of developing type 2 diabetes (T2D) and cardiovascular-associated mortality. G6PC2 is predominantly expressed in islets, encodes a glucose-6-phosphatase catalytic subunit that converts glucose-6-phosphate (G6P) to glucose, and has been linked with variations in FBG in genome-wide association studies. Deletion of G6pc2 in mice has been shown to lower FBG without affecting fasting plasma insulin levels in vivo. At 5 mM glucose, pancreatic islets from G6pc2 knockout (KO) mice exhibit no glucose cycling, increased glycolytic flux, and enhanced glucose-stimulated insulin secretion (GSIS). However, the broader effects of G6pc2 KO on β-cell metabolism and redox regulation are unknown. Here we used CRISPR/Cas9 gene editing and metabolic flux analysis in βTC3 cells, a murine pancreatic β-cell line, to examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. We found that deletion of G6pc2 led to ∼60% increases in glycolytic and citric acid cycle (CAC) fluxes at both 5 and 11 mM glucose concentrations. Furthermore, intracellular insulin content and GSIS were enhanced by approximately two-fold, along with increased cytosolic redox potential and reductive carboxylation flux. Normalization of fluxes relative to net glucose uptake revealed upregulation in two NADPH-producing pathways in the CAC. These results demonstrate that G6pc2 regulates GSIS by modulating not only glycolysis but also, independently, citric acid cycle activity in β-cells. Overall, our findings implicate G6PC2 as a potential therapeutic target for enhancing insulin secretion and lowering FBG, which could benefit individuals with prediabetes, T2D, and obesity.
Collapse
|
8
|
Zusi C, Rinaldi E, Bonetti S, Boselli ML, Trabetti E, Malerba G, Bonora E, Bonadonna RC, Trombetta M. Haplotypes of the genes (GCK and G6PC2) underlying the glucose/glucose-6-phosphate cycle are associated with pancreatic beta cell glucose sensitivity in patients with newly diagnosed type 2 diabetes from the VNDS study (VNDS 11). J Endocrinol Invest 2021; 44:2567-2574. [PMID: 34128214 DOI: 10.1007/s40618-020-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Elevated fasting plasma glucose has been associated with increased risk for development of type 2 diabetes (T2D). The balance between glucokinase (GCK) and glucose-6-phosphate catalytic subunit 2 (G6PC2) activity are involved in glucose homeostasis through glycolytic flux, and subsequent insulin secretion. AIM In this study, we evaluated the association between the genetic variability of G6PC2 and GCK genes and T2D-related quantitative traits. METHODS In 794 drug-naïve, GADA-negative, newly diagnosed T2D patients (VNDS; NTC01526720) we performed: genotyping of 6 independent tag-SNPs within GCK gene and 5 tag-SNPs within G6PC2 gene; euglycaemic insulin clamp to assess insulin sensitivity; OGTT to estimate beta-cell function (derivative and proportional control; DC, PC) by mathematical modeling. Genetic association analysis has been conducted using Plink software. RESULTS Two SNPs within GCK gene (rs882019 and rs1303722) were associated to DC in opposite way (both p < 0.004). Two G6PC2 variants (rs13387347 and rs560887) were associated to both parameters of insulin secretion (DC and PC) and to fasting C-peptide levels (all p < 0.038). Moreover, subjects carrying the A allele of rs560887 showed higher values of 2h-plasma glucose (2hPG) (p = 0.033). Haplotype analysis revealed that GCK (AACAAA) haplotype was associated to decreased fasting C-peptide levels, whereas, the most frequent haplotype of G6PC2 (GGAAG) was associated with higher fasting C-peptide levels (p = 0.001), higher PC (β = 6.87, p = 0.022) and the lower 2hPG (p = 0.012). CONCLUSION Our findings confirmed the role of GCK and G6PC2 in regulating the pulsatility in insulin secretion thereby influencing insulin-signaling and leading to a gradual modulation in glucose levels in Italian patients with newly diagnosed T2D.
Collapse
Affiliation(s)
- C Zusi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - E Rinaldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - S Bonetti
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - M L Boselli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - E Trabetti
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - G Malerba
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - E Bonora
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - R C Bonadonna
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - M Trombetta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy.
| |
Collapse
|
9
|
Chung RH, Chiu YF, Wang WC, Hwu CM, Hung YJ, Lee IT, Chuang LM, Quertermous T, Rotter JI, Chen YDI, Chang IS, Hsiung CA. Multi-omics analysis identifies CpGs near G6PC2 mediating the effects of genetic variants on fasting glucose. Diabetologia 2021; 64:1613-1625. [PMID: 33842983 DOI: 10.1007/s00125-021-05449-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS An elevated fasting glucose level in non-diabetic individuals is a key predictor of type 2 diabetes. Genome-wide association studies (GWAS) have identified hundreds of SNPs for fasting glucose but most of their functional roles in influencing the trait are unclear. This study aimed to identify the mediation effects of DNA methylation between SNPs identified as significant from GWAS and fasting glucose using Mendelian randomisation (MR) analyses. METHODS We first performed GWAS analyses for three cohorts (Taiwan Biobank with 18,122 individuals, the Healthy Aging Longitudinal Study in Taiwan with 1989 individuals and the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance with 416 individuals) with individuals of Han Chinese ancestry in Taiwan, followed by a meta-analysis for combining the three GWAS analysis results to identify significant and independent SNPs for fasting glucose. We determined whether these SNPs were methylation quantitative trait loci (meQTLs) by testing their associations with DNA methylation levels at nearby CpG sites using a subsample of 1775 individuals from the Taiwan Biobank. The MR analysis was performed to identify DNA methylation with causal effects on fasting glucose using meQTLs as instrumental variables based on the 1775 individuals. We also used a two-sample MR strategy to perform replication analysis for CpG sites with significant MR effects based on literature data. RESULTS Our meta-analysis identified 18 significant (p < 5 × 10-8) and independent SNPs for fasting glucose. Interestingly, all 18 SNPs were meQTLs. The MR analysis identified seven CpGs near the G6PC2 gene that mediated the effects of a significant SNP (rs2232326) in the gene on fasting glucose. The MR effects for two CpGs were replicated using summary data based on the European population, using an exonic SNP rs2232328 in G6PC2 as the instrument. CONCLUSIONS/INTERPRETATION Our analysis results suggest that rs2232326 and rs2232328 in G6PC2 may affect DNA methylation at CpGs near the gene and that the methylation may have downstream effects on fasting glucose. Therefore, SNPs in G6PC2 and CpGs near G6PC2 may reside along the pathway that influences fasting glucose levels. This is the first study to report CpGs near G6PC2, an important gene for regulating insulin secretion, mediating the effects of GWAS-significant SNPs on fasting glucose.
Collapse
Affiliation(s)
- Ren-Hua Chung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| | - Yen-Feng Chiu
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Chang Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - I-Te Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institutes of Molecular Medicine, Collage of Medicine, National Taiwan University, Taipei, Taiwan
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Stanford Cardiovascular Institute, Falk Cardiovascular Research Center, Stanford University, Stanford, CA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, the Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, the Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chao A Hsiung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
10
|
Lu H, Zhang J, Chen YE, Garcia-Barrio MT. Integration of Transformative Platforms for the Discovery of Causative Genes in Cardiovascular Diseases. Cardiovasc Drugs Ther 2021; 35:637-654. [PMID: 33856594 PMCID: PMC8216854 DOI: 10.1007/s10557-021-07175-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Genome-wide association studies (GWAS) are powerful epidemiological tools to find genes and variants associated with cardiovascular diseases while follow-up biological studies allow to better understand the etiology and mechanisms of disease and assign causality. Improved methodologies and reduced costs have allowed wider use of bulk and single-cell RNA sequencing, human-induced pluripotent stem cells, organoids, metabolomics, epigenomics, and novel animal models in conjunction with GWAS. In this review, we feature recent advancements relevant to cardiovascular diseases arising from the integration of genetic findings with multiple enabling technologies within multidisciplinary teams to highlight the solidifying transformative potential of this approach. Well-designed workflows integrating different platforms are greatly improving and accelerating the unraveling and understanding of complex disease processes while promoting an effective way to find better drug targets, improve drug design and repurposing, and provide insight towards a more personalized clinical practice.
Collapse
Affiliation(s)
- Haocheng Lu
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA.
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA.
| |
Collapse
|
11
|
Deciphering Biochemical and Molecular Signatures Associated with Obesity in Context of Metabolic Health. Genes (Basel) 2021; 12:genes12020290. [PMID: 33669862 PMCID: PMC7923210 DOI: 10.3390/genes12020290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
This study aims to identify the clinical and genetic markers related to the two uncommon nutritional statuses—metabolically unhealthy normal-weight (MUNW) and metabolically healthy overweight/obese (MHOW) individuals in the physically active individuals. Physically active male volunteers (n = 120) were recruited, and plasma samples were analyzed for the clinical parameters. Triglycerides, HDL-Cholesterol, LDL-cholesterol, total cholesterol, C-reactive protein, and insulin resistance were considered as markers of metabolic syndrome. The subjects were classified as ‘healthy’ (0 metabolic abnormalities) or ‘unhealthy’ (≥1 metabolic abnormalities) in their respective BMI group with a cut-off at 24.9 kg/m2. Analysis of biochemical variables was done using enzyme linked immunosorbent assay (ELISA) kits with further confirmation using western blot analysis. The microarray was conducted, followed by quantitative real-time PCR to identify and analyze differentially expressed genes (DEGs). The MHOW group constituted 12.6%, while the MUNW group constituted 32.4% of the total study population. Pro-inflammatory markers like interleukin-6, tumor necrosis factor (TNF)-α, and ferritin were increased in metabolically unhealthy groups in comparison to metabolically healthy groups. Gene expression profiling of MUNW and MHOW individuals resulted in differential expression of 7470 and 5864 genes, respectively. The gene ontology (GO) biological pathway analysis showed significant enrichment of the ‘JAK/STAT signaling pathway’ in MUNW and ‘The information-processing pathway at the IFN-β enhancer′ pathway in MHOW. The G6PC3 gene has genetically emerged as a new distinct gene showing its involvement in insulin resistance. Biochemical, as well as genetic analysis, revealed that MUNW and MHOW are the transition state between healthy and obese individuals with simply having fewer metabolic abnormalities. Moreover, it is possible that the state of obesity is a biological adaptation to cope up with the unhealthy parameters.
Collapse
|
12
|
Jung SY, Scott PA, Papp JC, Sobel EM, Pellegrini M, Yu H, Han S, Zhang ZF. Genome-wide Association Analysis of Proinflammatory Cytokines and Gene-lifestyle Interaction for Invasive Breast Cancer Risk: The WHI dbGaP Study. Cancer Prev Res (Phila) 2020; 14:41-54. [PMID: 32928877 DOI: 10.1158/1940-6207.capr-20-0256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Immune-related etiologic pathways to influence invasive breast cancer risk may interact with lifestyle factors, but the interrelated molecular genetic pathways are incompletely characterized. We used data from the Women's Health Initiative Database for Genotypes and Phenotypes Study including 16,088 postmenopausal women, a population highly susceptible to inflammation, obesity, and increased risk for breast cancer. With 21,784,812 common autosomal single-nucleotide polymorphisms (SNP), we conducted a genome-wide association (GWA) gene-environment interaction (G × E) analysis in six independent GWA Studies for proinflammatory cytokines [IL6 and C-reactive protein (CRP)] and their gene-lifestyle interactions. Subsequently, we tested for the association of the GWA SNPs with breast cancer risk. In women overall and stratified by obesity status (body mass index, waist circumference, and waist-to-hip ratio) and obesity-related lifestyle factors (exercise and high-fat diet), 88 GWA SNPs in 10 loci were associated with proinflammatory cytokines: 3 associated with IL6 (1 index SNP in MAPK1 and 1 independent SNP in DEC1); 85 with CRP (3 index SNPs in CRPP1, CRP, RP11-419N10.5, HNF1A-AS1, HNF1A, and C1q2orf43; and two independent SNPs in APOE and APOC1). Of those, 27 in HNF1A-AS1, HNF1A, and C1q2orf43 displayed significantly increased risk for breast cancer. We found a number of novel top markers for CRP and IL6, which interacted with obesity factors. A substantial proportion of those SNPs' susceptibility influenced breast cancer risk. Our findings may contribute to better understanding of genetic associations between pro-inflammation and cancer and suggest intervention strategies for women who carry the risk genotypes, reducing breast cancer risk. PREVENTION RELEVANCE: The top GWA-SNPs associated with pro-inflammatory biomarkers have implications for breast carcinogenesis by interacting with obesity factors. Our findings may suggest interventions for women who carry the inflammatory-risk genotypes to reduce breast cancer risk.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, Los Angeles, California.
| | - Peter A Scott
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California
| | - Jeanette C Papp
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Eric M Sobel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, California
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Sihao Han
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California.,Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
13
|
Si Z, Guan X, Teng X, Peng X, Wan Z, Li Q, Chen G, Tan J, Li J. Identification of CYP46A1 as a new regulator of lipid metabolism through CRISPR-based whole-genome screening. FASEB J 2020; 34:13776-13791. [PMID: 32816363 DOI: 10.1096/fj.202001067r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
Abnormal lipid droplet (LD) metabolism causes a variety of disorders, especially to nonalcoholic fatty liver disease (NAFLD). But the mechanism of abnormal aggregation of LD is still not fully elucidated. Here, Genome-wide CRISPR-Cas9 knockout (GeCKO) screening was employed to identify candidate genes regulating LD metabolism in L02 cell. We analyzed simultaneously the transcriptomics of liver tissues of NAFLD to find potential genes involved in pathogenesis of NAFLD. After integration these data, we found that the expression of 43 candidate genes from the GeCKO screening was also decreased in tissues of NAFLD patients. Many of these 43 overlapping genes have been reported to play an important role in the formation of LD. Subsequently, we focused on CYP46A1, one of 43 candidate genes and mitochondria-related genes. We confirmed that the protein expression of CYP46A1 is deceased in tissues of NAFLD patients. Downregulation or overexpression of CYP46A1 affected LD accumulation in vitro. Deficiency of CYP46A1 impaired mitochondrial morphology and function, which may be responsible for the accumulation of LD. In summary, this study explored regulatory factors of LD accumulation at the whole-genome level, and demonstrated that CYP46A1 regulated LD formation involving in NAFLD pathogenesis. It provides new clues for studying the molecular mechanisms of diseases related to abnormal lipid metabolism.
Collapse
Affiliation(s)
- Zhongzhou Si
- Center for Organ Transplantation, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xinjie Guan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, P.R. China
| | | | - Xiaoxia Peng
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, P.R. China
| | - Zhengqin Wan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, P.R. China
| | - Qiang Li
- Center for Organ Transplantation, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Guangshun Chen
- Center for Organ Transplantation, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, P.R. China
| | - Jiequn Li
- Center for Organ Transplantation, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
14
|
Syring KE, Bosma KJ, Goleva SB, Singh K, Oeser JK, Lopez CA, Skaar EP, McGuinness OP, Davis LK, Powell DR, O’Brien RM. Potential positive and negative consequences of ZnT8 inhibition. J Endocrinol 2020; 246:189-205. [PMID: 32485672 PMCID: PMC7351606 DOI: 10.1530/joe-20-0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
SLC30A8 encodes the zinc transporter ZnT8. SLC30A8 haploinsufficiency protects against type 2 diabetes (T2D), suggesting that ZnT8 inhibitors may prevent T2D. We show here that, while adult chow fed Slc30a8 haploinsufficient and knockout (KO) mice have normal glucose tolerance, they are protected against diet-induced obesity (DIO), resulting in improved glucose tolerance. We hypothesize that this protection against DIO may represent one mechanism whereby SLC30A8 haploinsufficiency protects against T2D in humans and that, while SLC30A8 is predominantly expressed in pancreatic islet beta cells, this may involve a role for ZnT8 in extra-pancreatic tissues. Consistent with this latter concept we show in humans, using electronic health record-derived phenotype analyses, that the 'C' allele of the non-synonymous rs13266634 SNP, which confers a gain of ZnT8 function, is associated not only with increased T2D risk and blood glucose, but also with increased risk for hemolytic anemia and decreased mean corpuscular hemoglobin (MCH). In Slc30a8 KO mice, MCH was unchanged but reticulocytes, platelets and lymphocytes were elevated. Both young and adult Slc30a8 KO mice exhibit a delayed rise in insulin after glucose injection, but only the former exhibit increased basal insulin clearance and impaired glucose tolerance. Young Slc30a8 KO mice also exhibit elevated pancreatic G6pc2 gene expression, potentially mediated by decreased islet zinc levels. These data indicate that the absence of ZnT8 results in a transient impairment in some aspects of metabolism during development. These observations in humans and mice suggest the potential for negative effects associated with T2D prevention using ZnT8 inhibitors.
Collapse
Affiliation(s)
- Kristen E. Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Karin J. Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Slavina B. Goleva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kritika Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Christopher A. Lopez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Eric P. Skaar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| | - Lea K. Davis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David R. Powell
- Lexicon Pharmaceuticals Incorporated, 8800 Technology Forest Place, The Woodlands, Texas 77381
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine
| |
Collapse
|
15
|
Wang X, Jia J, Huang T. Shared genetic architecture and casual relationship between leptin levels and type 2 diabetes: large-scale cross-trait meta-analysis and Mendelian randomization analysis. BMJ Open Diabetes Res Care 2020; 8:8/1/e001140. [PMID: 32341051 PMCID: PMC7202746 DOI: 10.1136/bmjdrc-2019-001140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE We aimed to estimate genetic correlation, identify shared loci and test causality between leptin levels and type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS Our study consists of three parts. First, we calculated the genetic correlation of leptin levels and T2D or glycemic traits by using linkage disequilibrium score regression analysis. Second, we conducted a large-scale genome-wide cross-trait meta-analysis using cross-phenotype association to identify shared loci between trait pairs that showed significant genetic correlations in the first part. In the end, we carried out a bidirectional MR analysis to find out whether there is a causal relationship between leptin levels and T2D or glycemic traits. RESULTS We found positive genetic correlations between leptin levels and T2D (Rg=0.3165, p=0.0227), fasting insulin (FI) (Rg=0.517, p=0.0076), homeostasis model assessment-insulin resistance (HOMA-IR) (Rg=0.4785, p=0.0196), as well as surrogate estimates of β-cell function (HOMA-β) (Rg=0.4456, p=0.0214). We identified 12 shared loci between leptin levels and T2D, 1 locus between leptin levels and FI, 1 locus between leptin levels and HOMA-IR, and 1 locus between leptin levels and HOMA-β. We newly identified eight loci that did not achieve genome-wide significance in trait-specific genome-wide association studies. These shared genes were enriched in pancreas, thyroid gland, skeletal muscle, placenta, liver and cerebral cortex. In addition, we found that 1-SD increase in HOMA-IR was causally associated with a 0.329 ng/mL increase in leptin levels (β=0.329, p=0.001). CONCLUSIONS Our results have shown the shared genetic architecture between leptin levels and T2D and found causality of HOMA-IR on leptin levels, shedding light on the molecular mechanisms underlying the association between leptin levels and T2D.
Collapse
Affiliation(s)
- Xinpei Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Statistical Science, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
16
|
Westermeier F, Holyoak T, Asenjo JL, Gatica R, Nualart F, Burbulis I, Bertinat R. Gluconeogenic Enzymes in β-Cells: Pharmacological Targets for Improving Insulin Secretion. Trends Endocrinol Metab 2019; 30:520-531. [PMID: 31213347 DOI: 10.1016/j.tem.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells express the gluconeogenic enzymes glucose 6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBP), and phosphoenolpyruvate (PEP) carboxykinase (PCK), which modulate glucose-stimulated insulin secretion (GSIS) through their ability to reverse otherwise irreversible glycolytic steps. Here, we review current knowledge about the expression and regulation of these enzymes in the context of manipulating them to improve insulin secretion in diabetics. Because the regulation of gluconeogenic enzymes in β-cells is so poorly understood, we propose novel research avenues to study these enzymes as modulators of insulin secretion and β-cell dysfunction, with especial attention to FBP, which constitutes an attractive target with an inhibitor under clinical evaluation at present.
Collapse
Affiliation(s)
- Francisco Westermeier
- FH JOANNEUM Gesellschaft mbH University of Applied Sciences, Institute of Biomedical Science, Eggenberger Allee 13, 8020 Graz, Austria
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joel L Asenjo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Independencia 631, 5110566 Valdivia, Chile
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, La Pirámide 5750, 8580745 Santiago, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160 C, 4030000 Concepción, Chile
| | - Ian Burbulis
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall Room 6022, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA; Escuela de Medicina, Universidad San Sebastián, Sede Patagonia, Lago Panguipulli 1390, 5501842 Puerto Montt, Chile
| | - Romina Bertinat
- Centro de Microscopía Avanzada, CMA BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160 C, 4030000 Concepción, Chile.
| |
Collapse
|
17
|
Jung SY, Mancuso N, Yu H, Papp J, Sobel E, Zhang ZF. Genome-Wide Meta-analysis of Gene-Environmental Interaction for Insulin Resistance Phenotypes and Breast Cancer Risk in Postmenopausal Women. Cancer Prev Res (Phila) 2019; 12:31-42. [PMID: 30327367 DOI: 10.1158/1940-6207.capr-18-0180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/14/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022]
Abstract
Insulin resistance (IR)-related genetic variants are possibly associated with breast cancer, and the gene-phenotype-cancer association could be modified by lifestyle factors including obesity, physical inactivity, and high-fat diet. Using data from postmenopausal women, a population highly susceptible to obesity, IR, and increased risk of breast cancer, we implemented a genome-wide association study (GWAS) in two steps: (1) GWAS meta-analysis of gene-environmental (i.e., behavioral) interaction (G*E) for IR phenotypes (hyperglycemia, hyperinsulinemia, and homeostatic model assessment-insulin resistance) and (2) after the G*E GWAS meta-analysis, the identified SNPs were tested for their associations with breast cancer risk in overall or subgroup population, where the SNPs were identified at genome-wide significance. We found 58 loci (55 novel SNPs; 5 index SNPs and 6 SNPs, independent of each other) that are associated with IR phenotypes in women overall or women stratified by obesity, physical activity, and high-fat diet; among those 58 loci, 29 (26 new loci; 2 index SNPs and 2 SNPs, independently) were associated with postmenopausal breast cancer. Our study suggests that a number of newly identified SNPs may have their effects on glucose intolerance by interplaying with obesity and other lifestyle factors, and a substantial proportion of these SNPs' susceptibility can also interact with the lifestyle factors to ultimately influence breast cancer risk. These findings may contribute to improved prediction accuracy for cancer and suggest potential intervention strategies for those women carrying genetic risk that will reduce their breast cancer risk.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, Los Angeles, California.
| | - Nick Mancuso
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Jeanette Papp
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Eric Sobel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
18
|
Spracklen CN, Shi J, Vadlamudi S, Wu Y, Zou M, Raulerson CK, Davis JP, Zeynalzadeh M, Jackson K, Yuan W, Wang H, Shou W, Wang Y, Luo J, Lange LA, Lange EM, Popkin BM, Gordon-Larsen P, Du S, Huang W, Mohlke KL. Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey. PLoS Genet 2018; 14:e1007275. [PMID: 29621232 PMCID: PMC5886383 DOI: 10.1371/journal.pgen.1007275] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
To identify genetic contributions to type 2 diabetes (T2D) and related glycemic traits (fasting glucose, fasting insulin, and HbA1c), we conducted genome-wide association analyses (GWAS) in up to 7,178 Chinese subjects from nine provinces in the China Health and Nutrition Survey (CHNS). We examined patterns of population structure within CHNS and found that allele frequencies differed across provinces, consistent with genetic drift and population substructure. We further validated 32 previously described T2D- and glycemic trait-loci, including G6PC2 and SIX3-SIX2 associated with fasting glucose. At G6PC2, we replicated a known fasting glucose-associated variant (rs34177044) and identified a second signal (rs2232326), a low-frequency (4%), probably damaging missense variant (S324P). A variant within the lead fasting glucose-associated signal at SIX3-SIX2 co-localized with pancreatic islet expression quantitative trait loci (eQTL) for SIX3, SIX2, and three noncoding transcripts. To identify variants functionally responsible for the fasting glucose association at SIX3-SIX2, we tested five candidate variants for allelic differences in regulatory function. The rs12712928-C allele, associated with higher fasting glucose and lower transcript expression level, showed lower transcriptional activity in reporter assays and increased binding to GABP compared to the rs12712928-G, suggesting that rs12712928-C contributes to elevated fasting glucose levels by disrupting an islet enhancer, resulting in reduced gene expression. Taken together, these analyses identified multiple loci associated with glycemic traits across China, and suggest a regulatory mechanism at the SIX3-SIX2 fasting glucose GWAS locus.
Collapse
Affiliation(s)
- Cassandra N. Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jinxiu Shi
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Swarooparani Vadlamudi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ying Wu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Meng Zou
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Chelsea K. Raulerson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James P. Davis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Monica Zeynalzadeh
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kayla Jackson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wentao Yuan
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Haifeng Wang
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Weihua Shou
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Ying Wang
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Jingchun Luo
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Leslie A. Lange
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ethan M. Lange
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Barry M. Popkin
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Penny Gordon-Larsen
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shufa Du
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Solimena M, Schulte AM, Marselli L, Ehehalt F, Richter D, Kleeberg M, Mziaut H, Knoch KP, Parnis J, Bugliani M, Siddiq A, Jörns A, Burdet F, Liechti R, Suleiman M, Margerie D, Syed F, Distler M, Grützmann R, Petretto E, Moreno-Moral A, Wegbrod C, Sönmez A, Pfriem K, Friedrich A, Meinel J, Wollheim CB, Baretton GB, Scharfmann R, Nogoceke E, Bonifacio E, Sturm D, Meyer-Puttlitz B, Boggi U, Saeger HD, Filipponi F, Lesche M, Meda P, Dahl A, Wigger L, Xenarios I, Falchi M, Thorens B, Weitz J, Bokvist K, Lenzen S, Rutter GA, Froguel P, von Bülow M, Ibberson M, Marchetti P. Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 2018; 61:641-657. [PMID: 29185012 PMCID: PMC5803296 DOI: 10.1007/s00125-017-4500-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/29/2017] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.
Collapse
Affiliation(s)
- Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), 01307, Dresden, Germany.
| | - Anke M Schulte
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Building H821, 65926, Frankfurt am Main, Germany.
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Florian Ehehalt
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Daniela Richter
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Manuela Kleeberg
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Hassan Mziaut
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Klaus-Peter Knoch
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Julia Parnis
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Afshan Siddiq
- Queen Mary University of London, Dawson Hall, London, UK
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Frédéric Burdet
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland
| | - Robin Liechti
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Daniel Margerie
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Building H821, 65926, Frankfurt am Main, Germany
| | - Farooq Syed
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Marius Distler
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Robert Grützmann
- Department of Surgery, University Hospital of Erlangen, Erlangen, Germany
| | - Enrico Petretto
- Medical Research Council (MRC), Institute of Medical Sciences, Imperial College London, London, UK
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Aida Moreno-Moral
- Medical Research Council (MRC), Institute of Medical Sciences, Imperial College London, London, UK
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Carolin Wegbrod
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Anke Sönmez
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Katja Pfriem
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Anne Friedrich
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Jörn Meinel
- Department of Pathology, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, Geneva University Medical Center, Geneva, Switzerland
| | - Gustavo B Baretton
- Department of Pathology, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Raphael Scharfmann
- INSERM, U1016, Institut Cochin, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Everson Nogoceke
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland
| | - Ezio Bonifacio
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Dorothée Sturm
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Birgit Meyer-Puttlitz
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Building H821, 65926, Frankfurt am Main, Germany
| | - Ugo Boggi
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | - Hans-Detlev Saeger
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franco Filipponi
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy
| | | | - Paolo Meda
- Department of Cell Physiology and Metabolism, Geneva University Medical Center, Geneva, Switzerland
| | - Andreas Dahl
- Biotechnology Center, TU Dresden, Dresden, Germany
| | - Leonore Wigger
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland
| | - Ioannis Xenarios
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland
| | - Mario Falchi
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| | - Bernard Thorens
- Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jürgen Weitz
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Department of Visceral-Thoracic-Vascular Surgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Krister Bokvist
- Lilly Research Laboratories, Eli Lilly, Indianapolis, IN, USA
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Philippe Froguel
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France
- Lille University Hospital, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Manon von Bülow
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Building H821, 65926, Frankfurt am Main, Germany
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Quartier Sorge, bâtiment Génopode, 1015, Lausanne, Switzerland.
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Cisanello University Hospital, University of Pisa, Via Paradisa 2, 56126, Pisa, Italy.
| |
Collapse
|
20
|
Evaluating the contribution of gut microbiome to the variance of porcine serum glucose and lipid concentration. Sci Rep 2017; 7:14928. [PMID: 29097803 PMCID: PMC5668236 DOI: 10.1038/s41598-017-15044-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
Serum glucose and lipids are important indicators for host metabolic condition. Interaction of host and gut microbes regulates the metabolism process. However, how much the gut microbiome contributes to the variance of serum glucose and lipids is largely unknown. Here we carried out a 16S rRNA gene based association study between cecum microbiome and the concentration of serum glucose and lipids in 240 Chinese Erhualian pigs. We identified tens of bacterial taxa associated with serum glucose and lipids. The butyrate-producing bacteria were significantly associated with serum glucose level. The pathogenic bacteria belonging to Proteobacteria and Fusobacteria showed significant associations with increased serum lipid levels, while the bacteria Lactobacillus and Bacilli had negative correlations with serum lipids. Cross-validation analysis revealed that 23.8% variation of serum glucose and 1.6%~6.0% variations of serum lipids were explained by gut microbiome. Furthermore, predicted function capacities related to nutrition intake, transport and carbohydrate metabolism were significantly associated with serum glucose level, while the pathways related to antioxidant metabolism and bile synthesis tended to be associated with serum lipid level. The results provide meaningful information to get insight into the effect of gut microbiome on serum glucose and lipid levels in pigs.
Collapse
|
21
|
Meta-analyses of the association of G6PC2 allele variants with elevated fasting glucose and type 2 diabetes. PLoS One 2017; 12:e0181232. [PMID: 28704540 PMCID: PMC5509327 DOI: 10.1371/journal.pone.0181232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
Objective To collectively evaluate the association of glucose-6-phosphatase catalytic unit 2 (G6PC2) allele variants with elevated fasting glucose (FG) and type 2 diabetes (T2D). Design Meta-analysis Data sources PubMed, Web of Knowledge and Embase databases. Study selection Full text articles of studies that identified an association of G6PC2 with T2D and elevated FG. Patient involvement There was no T2D patient involvement in the analyses on the association of FG with G6PC2, there were T2D patients and non-diabetes patient involvement in the analyses on the association of T2D with G6PC2. Statistical analysis Random-effects meta-analyses were used to calculate the pool effect sizes. I2 metric and H2 tests were used to calculate the heterogeneity. Begg's funnel plot and Egger’s linear regression test were done to assess publication bias. Results Of the 423 studies identified, 21 were eligible and included. Data on three loci (rs560887, rs16856187 and rs573225) were available. The G allele at rs560887 in three ethnicities, the C allele at rs16856187 and the A allele at rs573225 all had a positive association with elevated FG. Per increment of G allele at rs560887 and A allele at rs573225 resulted in a FG 0.070 mmol/l and 0.075 mmol/l higher (ß (95% CI) = 0.070 (0.060, 0.079), p = 4.635e-50 and 0.075 (0.065, 0.085), p = 5.856e-48, respectively). With regard to the relationship of rs16856187 and FG, an increase of 0.152 (95% CI: 0.034–0.270; p = 0.011) and 0.317 (95% CI: 0.193–0.442, p = 6.046e-07) was found in the standardized mean difference (SMD) of FG for the AC and CC genotypes, respectively, when compared with the AA reference genotype. However, the G-allele of rs560887 in Caucasians under the additive model and the C-allele of rs16856187 under the allele and dominant models were associated with a decreased risk of T2D (OR (95% CI) = 0.964 (0.947, 0.981), p = 0.570e-4; OR (95% CI) = 0.892 (0.832, 0.956), p = 0.001; and OR (95% CI) = 0.923(0.892, 0.955), p = 5.301e-6, respectively). Conclusions Our meta-analyses demonstrate that all three allele variants of G6PC2 (rs560887, rs16856187 and rs573225) are associated with elevated FG, with two variants (rs560887 in the Caucasians subgroup and rs16856187 under the allele and dominant model) being associated with T2D as well. Further studies utilizing larger sample sizes and different ethnic populations are needed to extend and confirm these findings.
Collapse
|
22
|
Mitchell RK, Nguyen-Tu MS, Chabosseau P, Callingham RM, Pullen TJ, Cheung R, Leclerc I, Hodson DJ, Rutter GA. The transcription factor Pax6 is required for pancreatic β cell identity, glucose-regulated ATP synthesis, and Ca 2+ dynamics in adult mice. J Biol Chem 2017; 292:8892-8906. [PMID: 28377501 PMCID: PMC5448123 DOI: 10.1074/jbc.m117.784629] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Heterozygous mutations in the human paired box gene PAX6 lead to impaired glucose tolerance. Although embryonic deletion of the Pax6 gene in mice leads to loss of most pancreatic islet cell types, the functional consequences of Pax6 loss in adults are poorly defined. Here we developed a mouse line in which Pax6 was selectively inactivated in β cells by crossing animals with floxed Pax6 alleles to mice expressing the inducible Pdx1CreERT transgene. Pax6 deficiency, achieved by tamoxifen injection, caused progressive hyperglycemia. Although β cell mass was preserved 8 days post-injection, total insulin content and insulin:chromogranin A immunoreactivity were reduced by ∼60%, and glucose-stimulated insulin secretion was eliminated. RNA sequencing and quantitative real-time PCR analyses revealed that, although the expression of key β cell genes, including Ins2, Slc30a8, MafA, Slc2a2, G6pc2, and Glp1r, was reduced after Pax6 deletion, that of several genes that are usually selectively repressed (“disallowed”) in β cells, including Slc16a1, was increased. Assessed in intact islets, glucose-induced ATP:ADP increases were significantly reduced (p < 0.05) in βPax6KO versus control β cells, and the former displayed attenuated increases in cytosolic Ca2+. Unexpectedly, glucose-induced increases in intercellular connectivity were enhanced after Pax6 deletion, consistent with increases in the expression of the glucose sensor glucokinase, but decreases in that of two transcription factors usually expressed in fully differentiated β-cells, Pdx1 and Nkx6.1, were observed in islet “hub” cells. These results indicate that Pax6 is required for the functional identity of adult β cells. Furthermore, deficiencies in β cell glucose sensing are likely to contribute to defective insulin secretion in human carriers of PAX6 mutations.
Collapse
Affiliation(s)
- Ryan K Mitchell
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Marie-Sophie Nguyen-Tu
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Pauline Chabosseau
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Rebecca M Callingham
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Timothy J Pullen
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Rebecca Cheung
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Isabelle Leclerc
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - David J Hodson
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom, .,the Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, University of Birmingham, Edgbaston B15 2TT, United Kingdom, and.,the Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| | - Guy A Rutter
- From the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom,
| |
Collapse
|
23
|
Boortz KA, Syring KE, Pound LD, Mo H, Bastarache L, Oeser JK, McGuinness OP, Denny JC, O’Brien RM. Effects of G6pc2 deletion on body weight and cholesterol in mice. J Mol Endocrinol 2017; 58:127-139. [PMID: 28122818 PMCID: PMC5380368 DOI: 10.1530/jme-16-0202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 11/08/2022]
Abstract
Genome-wide association study (GWAS) data have linked the G6PC2 gene to variations in fasting blood glucose (FBG). G6PC2 encodes an islet-specific glucose-6-phosphatase catalytic subunit that forms a substrate cycle with the beta cell glucose sensor glucokinase. This cycle modulates the glucose sensitivity of insulin secretion and hence FBG. GWAS data have not linked G6PC2 to variations in body weight but we previously reported that female C57BL/6J G6pc2-knockout (KO) mice were lighter than wild-type littermates on both a chow and high-fat diet. The purpose of this study was to compare the effects of G6pc2 deletion on FBG and body weight in both chow-fed and high-fat-fed mice on two other genetic backgrounds. FBG was reduced in G6pc2 KO mice largely independent of gender, genetic background or diet. In contrast, the effect of G6pc2 deletion on body weight was markedly influenced by these variables. Deletion of G6pc2 conferred a marked protection against diet-induced obesity in male mixed genetic background mice, whereas in 129SvEv mice deletion of G6pc2 had no effect on body weight. G6pc2 deletion also reduced plasma cholesterol levels in a manner dependent on gender, genetic background and diet. An association between G6PC2 and plasma cholesterol was also observed in humans through electronic health record-derived phenotype analyses. These observations suggest that the action of G6PC2 on FBG is largely independent of the influences of environment, modifier genes or epigenetic events, whereas the action of G6PC2 on body weight and cholesterol are influenced by unknown variables.
Collapse
Affiliation(s)
- Kayla A. Boortz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kristen E. Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Lynley D. Pound
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Mo
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
24
|
Al-Daghri NM, Pontremoli C, Cagliani R, Forni D, Alokail MS, Al-Attas OS, Sabico S, Riva S, Clerici M, Sironi M. Susceptibility to type 2 diabetes may be modulated by haplotypes in G6PC2, a target of positive selection. BMC Evol Biol 2017; 17:43. [PMID: 28173748 PMCID: PMC5297017 DOI: 10.1186/s12862-017-0897-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum enzyme glucose-6-phosphatase catalyzes the common terminal reaction in the gluconeogenic/glycogenolytic pathways and plays a central role in glucose homeostasis. In most mammals, different G6PC subunits are encoded by three paralogous genes (G6PC, G6PC2, and G6PC3). Mutations in G6PC and G6PC3 are responsible for human mendelian diseases, whereas variants in G6PC2 are associated with fasting glucose (FG) levels. RESULTS We analyzed the evolutionary history of G6Pase genes. Results indicated that the three paralogs originated during early vertebrate evolution and that negative selection was the major force shaping diversity at these genes in mammals. Nonetheless, site-wise estimation of evolutionary rates at corresponding sites revealed weak correlations, suggesting that mammalian G6Pases have evolved different structural features over time. We also detected pervasive positive selection at mammalian G6PC2. Most selected residues localize in the C-terminal protein region, where several human variants associated with FG levels also map. This region was re-sequenced in ~560 subjects from Saudi Arabia, 185 of whom suffering from type 2 diabetes (T2D). The frequency of rare missense and nonsense variants was not significantly different in T2D and controls. Association analysis with two common missense variants (V219L and S342C) revealed a weak but significant association for both SNPs when analyses were conditioned on rs560887, previously identified in a GWAS for FG. Two haplotypes were significantly associated with T2D with an opposite effect direction. CONCLUSIONS We detected pervasive positive selection at mammalian G6PC2 genes and we suggest that distinct haplotypes at the G6PC2 locus modulate susceptibility to T2D.
Collapse
Affiliation(s)
- Nasser M Al-Daghri
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | | | - Rachele Cagliani
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| | - Majed S Alokail
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Omar S Al-Attas
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Shaun Sabico
- Biomarker research program, Biochemistry Department, College of Science, King Saud Universiy, Riyadh, 11451, Kingdom of Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis Research, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Stefania Riva
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, via F.lli Cervi 93, Segrate, 20090, Milan, Italy. .,Don Gnocchi Foundation, ONLUS, Milan, 20148, Italy.
| | - Manuela Sironi
- Scientific Institute IRCCS E.MEDEA, Bosisio Parini, 23842, Italy
| |
Collapse
|
25
|
Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression. PLoS One 2016; 11:e0162439. [PMID: 27611587 PMCID: PMC5017610 DOI: 10.1371/journal.pone.0162439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022] Open
Abstract
Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans.
Collapse
|
26
|
Boortz KA, Syring KE, Dai C, Pound LD, Oeser JK, Jacobson DA, Wang JC, McGuinness OP, Powers AC, O'Brien RM. G6PC2 Modulates Fasting Blood Glucose In Male Mice in Response to Stress. Endocrinology 2016; 157:3002-8. [PMID: 27300767 PMCID: PMC4967123 DOI: 10.1210/en.2016-1245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The glucose-6-phosphatase catalytic 2 (G6PC2) gene is expressed specifically in pancreatic islet beta cells. Genome-wide association studies have shown that single nucleotide polymorphisms in the G6PC2 gene are associated with variations in fasting blood glucose (FBG) but not fasting plasma insulin. Molecular analyses examining the functional effects of these single nucleotide polymorphisms demonstrate that elevated G6PC2 expression is associated with elevated FBG. Studies in mice complement these genome-wide association data and show that deletion of the G6pc2 gene lowers FBG without affecting fasting plasma insulin. This suggests that, together with glucokinase, G6PC2 forms a substrate cycle that determines the glucose sensitivity of insulin secretion. Because genome-wide association studies and mouse studies demonstrate that elevated G6PC2 expression raises FBG and because chronically elevated FBG is detrimental to human health, increasing the risk of type 2 diabetes, it is unclear why G6PC2 evolved. We show here that the synthetic glucocorticoid dexamethasone strongly induces human G6PC2 promoter activity and endogenous G6PC2 expression in isolated human islets. Acute treatment with dexamethasone selectively induces endogenous G6pc2 expression in 129SvEv but not C57BL/6J mouse pancreas and isolated islets. The difference is due to a single nucleotide polymorphism in the C57BL/6J G6pc2 promoter that abolishes glucocorticoid receptor binding. In 6-hour fasted, nonstressed 129SvEv mice, deletion of G6pc2 lowers FBG. In response to the stress of repeated physical restraint, which is associated with elevated plasma glucocorticoid levels, G6pc2 gene expression is induced and the difference in FBG between wild-type and knockout mice is enhanced. These data suggest that G6PC2 may have evolved to modulate FBG in response to stress.
Collapse
Affiliation(s)
- Kayla A Boortz
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Kristen E Syring
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Chunhua Dai
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Lynley D Pound
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - James K Oeser
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - David A Jacobson
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Jen-Chywan Wang
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Owen P McGuinness
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Alvin C Powers
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| | - Richard M O'Brien
- Departments of Molecular Physiology and Biophysics (K.A.B., K.E.S., L.D.P., J.K.O., D.A.J., O.P.M., R.M.O.) and Medicine (C.D., A.C.P.), Vanderbilt University School of Medicine, and VA Tennessee Valley Healthcare System (A.C.P.), Nashville, Tennessee 37232-0615; and Department of Nutritional Sciences and Toxicology (J.-C.W.), University of California, Berkeley, Berkeley, California 94720-3104
| |
Collapse
|
27
|
Dorrell C, Schug J, Canaday PS, Russ HA, Tarlow BD, Grompe MT, Horton T, Hebrok M, Streeter PR, Kaestner KH, Grompe M. Human islets contain four distinct subtypes of β cells. Nat Commun 2016; 7:11756. [PMID: 27399229 PMCID: PMC4942571 DOI: 10.1038/ncomms11756] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/27/2016] [Indexed: 01/10/2023] Open
Abstract
Human pancreatic islets of Langerhans contain five distinct endocrine cell types, each producing a characteristic hormone. The dysfunction or loss of the insulin-producing β cells causes diabetes mellitus, a disease that harms millions. Until now, β cells were generally regarded as a single, homogenous cell population. Here we identify four antigenically distinct subtypes of human β cells, which we refer to as β1–4, and which are distinguished by differential expression of ST8SIA1 and CD9. These subpopulations are always present in normal adult islets and have diverse gene expression profiles and distinct basal and glucose-stimulated insulin secretion. Importantly, the β cell subtype distribution is profoundly altered in type 2 diabetes. These data suggest that this antigenically defined β cell heterogeneity is functionally and likely medically relevant. Dysfunction or loss of insulin-secreting β cells in the pancreas is a hallmark of diabetes. Here, Dorrell et al. identify four subpopulations of β cells in humans, which differ in gene expression and insulin secretion kinetics, and the abundance of which is altered in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Craig Dorrell
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Pamela S Canaday
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Holger A Russ
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Branden D Tarlow
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Maria T Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Tamara Horton
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Philip R Streeter
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism; University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| |
Collapse
|
28
|
Abstract
Islets of Langerhans contain multiple hormone-producing endocrine cells controlling glucose homeostasis. Transcription establishes and maintains islet cellular fates and identities. Genetic and environmental disruption of islet transcription triggers cellular dysfunction and disease. Early transcriptional regulation studies of specific islet genes, including insulin (INS) and the transcription factor PDX1, identified the first cis-regulatory DNA sequences and trans-acting factors governing islet function. Here, we review how human islet "omics" studies are reshaping our understanding of transcriptional regulation in islet (dys)function and diabetes. First, we highlight the expansion of islet transcript number, form, and function and of DNA transcriptional regulatory elements controlling their production. Next, we cover islet transcriptional effects of genetic and environmental perturbation. Finally, we discuss how these studies' emerging insights should empower our diabetes research community to build mechanistic understanding of diabetes pathophysiology and to equip clinicians with tailored, precision medicine options to prevent and treat islet dysfunction and diabetes.
Collapse
Affiliation(s)
- Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine (JAX-GM), Farmington, CT, USA,
| | | | | | | |
Collapse
|
29
|
Wall ML, Pound LD, Trenary I, O'Brien RM, Young JD. Novel stable isotope analyses demonstrate significant rates of glucose cycling in mouse pancreatic islets. Diabetes 2015; 64:2129-37. [PMID: 25552595 PMCID: PMC4439557 DOI: 10.2337/db14-0745] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 12/20/2014] [Indexed: 11/20/2022]
Abstract
A polymorphism located in the G6PC2 gene, which encodes an islet-specific glucose-6-phosphatase catalytic subunit, is the most important common determinant of variations in fasting blood glucose (FBG) levels in humans. Studies of G6pc2 knockout (KO) mice suggest that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion (GSIS) that acts by hydrolyzing glucose-6-phosphate (G6P), thereby reducing glycolytic flux. However, this conclusion conflicts with the very low estimates for the rate of glucose cycling in pancreatic islets, as assessed using radioisotopes. We have reassessed the rate of glucose cycling in pancreatic islets using a novel stable isotope method. The data show much higher levels of glucose cycling than previously reported. In 5 mmol/L glucose, islets from C57BL/6J chow-fed mice cycled ∼16% of net glucose uptake. The cycling rate was further increased at 11 mmol/L glucose. Similar cycling rates were observed using islets from high fat-fed mice. Importantly, glucose cycling was abolished in G6pc2 KO mouse islets, confirming that G6pc2 opposes the action of the glucose sensor glucokinase by hydrolyzing G6P. The demonstration of high rates of glucose cycling in pancreatic islets explains why G6pc2 deletion enhances GSIS and why variants in G6PC2 affect FBG in humans.
Collapse
Affiliation(s)
- Martha L Wall
- Department of Chemical and Biomolecular Engineering, Vanderbilt School of Engineering, Nashville, TN
| | - Lynley D Pound
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt School of Engineering, Nashville, TN
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt School of Engineering, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN
| |
Collapse
|
30
|
Zheng C, Dalla Man C, Cobelli C, Groop L, Zhao H, Bale AE, Shaw M, Duran E, Pierpont B, Caprio S, Santoro N. A common variant in the MTNR1b gene is associated with increased risk of impaired fasting glucose (IFG) in youth with obesity. Obesity (Silver Spring) 2015; 23:1022-9. [PMID: 25919927 PMCID: PMC4414047 DOI: 10.1002/oby.21030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/21/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the role of MTNR1B rs10830963 and G6PC2 rs560887 variants in the pathogenesis of impaired fasting glucose (IFG) in obese adolescents. METHODS A total of 346 Caucasians, 218 African-Americans, and 217 Hispanics obese children and adolescents underwent an oral glucose tolerance test (OGTT) and 518 underwent the evaluation of insulin secretion by the oral minimal model (OMM). Also, 274 subjects underwent a second OGTT after 3.0 ± 2.1 years. RESULTS The MTNR1B rs10830963 variant was associated with higher fasting glucose levels and lower dynamic beta-cell response in Caucasians and Hispanics (P < 0.05) and conferred an increased risk of showing IFG to Caucasians (P = 0.05), African-Americans (P = 0.0066), and Hispanics (P = 0.024). Despite the association between the G6PC2 rs560887 and higher fasting glucose levels (P < 0.05), there was no association between this variant and IFG at baseline or at follow-up (all P > 0.10). CONCLUSIONS It has been shown for the first time in obese youth that the MTNR1B variant is associated with an increased risk of IFG.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
- Department of Endocrinology, The 2 Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Leif Groop
- Department of Clinical Sciences/Diabetes & Endocrinology and Lund University Diabetes Centre, Lund University, University Hospital, Malmoe, Malmoe, Sweden
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Allen E Bale
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Melissa Shaw
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Elvira Duran
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Bridget Pierpont
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
31
|
|
32
|
Service SK, Teslovich TM, Fuchsberger C, Ramensky V, Yajnik P, Koboldt DC, Larson DE, Zhang Q, Lin L, Welch R, Ding L, McLellan MD, O'Laughlin M, Fronick C, Fulton LL, Magrini V, Swift A, Elliott P, Jarvelin MR, Kaakinen M, McCarthy MI, Peltonen L, Pouta A, Bonnycastle LL, Collins FS, Narisu N, Stringham HM, Tuomilehto J, Ripatti S, Fulton RS, Sabatti C, Wilson RK, Boehnke M, Freimer NB. Re-sequencing expands our understanding of the phenotypic impact of variants at GWAS loci. PLoS Genet 2014; 10:e1004147. [PMID: 24497850 PMCID: PMC3907339 DOI: 10.1371/journal.pgen.1004147] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/16/2013] [Indexed: 01/22/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified >500 common variants associated with quantitative metabolic traits, but in aggregate such variants explain at most 20–30% of the heritable component of population variation in these traits. To further investigate the impact of genotypic variation on metabolic traits, we conducted re-sequencing studies in >6,000 members of a Finnish population cohort (The Northern Finland Birth Cohort of 1966 [NFBC]) and a type 2 diabetes case-control sample (The Finland-United States Investigation of NIDDM Genetics [FUSION] study). By sequencing the coding sequence and 5′ and 3′ untranslated regions of 78 genes at 17 GWAS loci associated with one or more of six metabolic traits (serum levels of fasting HDL-C, LDL-C, total cholesterol, triglycerides, plasma glucose, and insulin), and conducting both single-variant and gene-level association tests, we obtained a more complete understanding of phenotype-genotype associations at eight of these loci. At all eight of these loci, the identification of new associations provides significant evidence for multiple genetic signals to one or more phenotypes, and at two loci, in the genes ABCA1 and CETP, we found significant gene-level evidence of association to non-synonymous variants with MAF<1%. Additionally, two potentially deleterious variants that demonstrated significant associations (rs138726309, a missense variant in G6PC2, and rs28933094, a missense variant in LIPC) were considerably more common in these Finnish samples than in European reference populations, supporting our prior hypothesis that deleterious variants could attain high frequencies in this isolated population, likely due to the effects of population bottlenecks. Our results highlight the value of large, well-phenotyped samples for rare-variant association analysis, and the challenge of evaluating the phenotypic impact of such variants. Abnormal serum levels of various metabolites, including measures relevant to cholesterol, other fats, and sugars, are known to be risk factors for cardiovascular disease and type 2 diabetes. Identification of the genes that play a role in generating such abnormalities could advance the development of new treatment and prevention strategies for these disorders. Investigations of common genetic variants carried out in large sets of research subjects have successfully pinpointed such genes within many regions of the human genome. However, these studies often have not led to the identification of the specific genetic variations affecting metabolic traits. To attempt to detect such causal variations, we sequenced genes in 17 genomic regions implicated in metabolic traits in >6,000 people from Finland. By conducting statistical analyses relating specific variations (individually and grouped by gene) to the measures for these metabolic traits observed in the study subjects, we added to our understanding of how genotypes affect these traits. Our findings support a long-held hypothesis that the unique history of the Finnish population provides important advantages for analyzing the relationship between genetic variations and biomedically important traits.
Collapse
Affiliation(s)
- Susan K. Service
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tanya M. Teslovich
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vasily Ramensky
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Pranav Yajnik
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel C. Koboldt
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - David E. Larson
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Qunyuan Zhang
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Ling Lin
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Ryan Welch
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Li Ding
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Michael D. McLellan
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Michele O'Laughlin
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Catrina Fronick
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Lucinda L. Fulton
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Vincent Magrini
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Amy Swift
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Faculty of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, Finland
| | - Marika Kaakinen
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Leena Peltonen
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- The Program for Human and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Anneli Pouta
- Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, Finland
- Institute of Clinical Medicine/Obstetrics and Gynecology, University of Oulu, Oulu, Finland
| | - Lori L. Bonnycastle
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Francis S. Collins
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Narisu Narisu
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Heather M. Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jaakko Tuomilehto
- Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Hjelt Institute, University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Robert S. Fulton
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Chiara Sabatti
- Department of Health and Research Policy, Stanford University, Stanford, California, United States of America
| | - Richard K. Wilson
- The Genome Institute at Washington University, St. Louis, Missouri, United States of America
- * E-mail: (RKW); (MB); (NBF)
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (RKW); (MB); (NBF)
| | - Nelson B. Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (RKW); (MB); (NBF)
| |
Collapse
|