1
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Carandina A, Fanti G, Carminati A, Baroni M, Salafia G, Arosio B, Macchi C, Ruscica M, Vicenzi M, Carugo S, Borghi F, Spinazzè A, Cavallo DM, Tobaldini E, Montano N, Bonzini M. Indoor air pollution impacts cardiovascular autonomic control during sleep and the inflammatory profile. ENVIRONMENTAL RESEARCH 2024; 260:119783. [PMID: 39142457 DOI: 10.1016/j.envres.2024.119783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
The present study explores the modifications of cardiovascular autonomic control (CAC) during wake and sleep time and the systemic inflammatory profile associated with exposure to indoor air pollution (IAP) in a cohort of healthy subjects. Twenty healthy volunteers were enrolled. Indoor levels of fine particulate matter (PM2.5), nitrogen dioxide (NO2) and volatile organic compounds (VOCs) were monitored using a portable detector for 7 days. Together, a 7-day monitoring was performed through a wireless patch that continuously recorded electrocardiogram, respiratory activity and actigraphy. Indexes of CAC during wake and sleep time were derived from the biosignals: heart rate and low-frequency to high-frequency ratio (LF/HF), index of sympathovagal balance with higher values corresponding to a predominance of the sympathetic branch. Cyclic variation of heart rate index (CVHRI events/hour) during sleep, a proxy for the evaluation of sleep apnea, was assessed for each night. After the monitoring, blood samples were collected to assess the inflammatory profile. Regression and correlation analyses were performed. A positive association between VOC exposure and the CVHRI (Δ% = +0.2% for 1 μg/m3 VOCs, p = 0.008) was found. The CVHRI was also positively associated with LF/HF during sleep, thus higher CVHRI values corresponded to a shift of the sympathovagal balance towards a sympathetic predominance (r = 0.52; p = 0.018). NO2 exposure was positively associated with both the pro-inflammatory biomarker TREM-1 and the anti-inflammatory biomarker IL-10 (Δ% = +1.2% and Δ% = +2.4%, for 1 μg/m3 NO2; p = 0.005 and p = 0.022, respectively). The study highlights a possible causal relationship between IAP exposure and higher risk of sleep apnea events, associated with impaired CAC during sleep, and a pro-inflammatory state counterbalanced by an increased anti-inflammatory response in healthy subjects. This process may be disrupted in vulnerable populations, leading to a harmful chronic pro-inflammatory profile. Thus, IAP may emerge as a critical and often neglected risk factor for the public health that can be addressed through targeted preventive interventions.
Collapse
Affiliation(s)
- Angelica Carandina
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Fanti
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Alessio Carminati
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Michele Baroni
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Greta Salafia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco Vicenzi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, Como, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, Como, Italy
| | | | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Bonzini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Warnakulasuriya T, Medagoda K, Kottahachchi D, Luke D, Wadasinghe D, Rathnayake P, Ariyawansa J, Dissanayake T, Sandeepani P, De Silva DC, Devanarayana NM. Exploring the impact of occupational exposure: A study on cardiovascular autonomic functions of male gas station attendants in Sri Lanka. Physiol Rep 2024; 12:e70071. [PMID: 39462981 PMCID: PMC11513408 DOI: 10.14814/phy2.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Fuel dispensing at fuel stations is performed manually by unprotected male gas station attendants in Sri Lanka, who have long working hours. These workers are exposed to hydrocarbon fuels associated with multiple health effects by modulation of the autonomic nervous system. This study was performed to determine cardiovascular autonomic functions among fuel pump attendants in Sri Lanka. Fuel pump attendants (n = 50) aged between 19 and 65 years were identified for the study from seven fuel stations. They were compared with age- and gender-matched controls (n = 46) without occupational exposure to fuel. A physical examination was performed before the autonomic function and heart rate variability (HRV) assessment. There were no significant differences in weight, height, or BMI between the study and the control populations (p > 0.05). Both the systolic blood pressure (SBP) (Mann Whitney U (MWU) = 743.5, p = 0.003) and diastolic blood pressure (DBP) (MWU = 686.5, p = 0.001) were significantly higher among the gas station attendants compared to controls. Valsalva ratio was significantly higher among the study group (MW U = 874.00, p = 0.043) compared to controls. The HRV analysis showed significantly higher SDNN and SD2 (MWU = 842.00, p = 0.034, and MWU = 843.50, p = 0.035 respectively) among the gas station attendants compared to controls. The changes to the cardiovascular autonomic parameters among those exposed to fuel vapor as a gas station attendant indicate an increase in sympathetic outflow to the vessels. In the occupational setting as fuel pump attendants need periodic monitoring.
Collapse
Affiliation(s)
| | - Kushan Medagoda
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dulani Kottahachchi
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dunya Luke
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dilesha Wadasinghe
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Prasanna Rathnayake
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Janaki Ariyawansa
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Tharuka Dissanayake
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Pavani Sandeepani
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Deepthi C. De Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | | |
Collapse
|
4
|
Hughes F, Parsons L, Levy JH, Shindell D, Alhanti B, Ohnuma T, Kasibhatla P, Montgomery H, Krishnamoorthy V. Impact of Wildfire Smoke on Acute Illness. Anesthesiology 2024; 141:779-789. [PMID: 39105660 DOI: 10.1097/aln.0000000000005115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Climate change increases wildfire smoke exposure. Inhaled smoke causes inflammation, oxidative stress, and coagulation, which exacerbate cardiovascular and respiratory disease while worsening obstetric and neonatal outcomes.
Collapse
Affiliation(s)
- Fintan Hughes
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Luke Parsons
- Global Science, Nature Conservancy and Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Jerrold H Levy
- Departments of Anesthesiology and Surgery (Cardiothoracic), Duke University School of Medicine, Durham, North Carolina
| | - Drew Shindell
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Brooke Alhanti
- Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Tetsu Ohnuma
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Prasad Kasibhatla
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Hugh Montgomery
- Department of Intensive Care Medicine, University College London, London, United Kingdom
| | - Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
5
|
Czernych R, Kozera G, Badyda AJ, Bieniaszewski L, Zagożdżon P. Air Pollution Increases Risk of Occurrence of Intracerebral Haemorrhage but Not of Subarachnoid Haemorrhage: Time-Series Cross-Sectional Study. Biomedicines 2024; 12:1562. [PMID: 39062135 PMCID: PMC11274972 DOI: 10.3390/biomedicines12071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Haemorrhagic strokes (HS), including intracerebral (ICH) and subarachnoid haemorrhages (SAH), account for approximately 10-15% of strokes worldwide but are associated with worse functional outcomes and higher rates of mortality, and financial burden than ischemic stroke. There is evidence that confirmed poor air quality may increase the incidence of haemorrhagic strokes. The aim of our study was to evaluate the association between individual ambient air pollutants and the risk of haemorrhagic stroke in an urban environment without high levels of air pollution. (2) Methods: A time-series cross-sectional study design was used. A daily air pollution concentration (Agency of Regional Air Quality Monitoring in the Gdansk Metropolitan Area) and incidence of haemorrhagic strokes (National Health Fund) were obtained and covered the time period from 1 January 2014 to 31 December 2018. A generalised additive model with Poisson regression was used to estimate the associations between 24-h mean concentrations of SO2, NO, NO2, NOx, CO, PM10, PM2.5, and O3 and a daily number of haemorrhagic strokes. (3) Results: The single-day lag model results showed that NO2, NO and NOx exposure was associated with increased risk of ICH (88% events) with RR of 1.059 (95% CI: 1.015-1.105 for lag0), 1.033 (95% CI: 1.007-1.060 for lag0) and 1.031 (95% CI: 1.005-1.056 for lag0), but not for SAH (12% events). Exposure to CO was related to a substantial and statistically significant increase in incidence for 1.031 (95% CI: 1.002-1.061 for lag0) but not for SAH. Higher SO2, PM10, PM2.5, and O3 exposures were not significantly related to both ISC and SAH. (4) Conclusions: In this time-series cross-sectional study, we found strong evidence that supports the hypothesis that transient elevations in ambient NO2, NO and CO are associated with a higher relative risk of intracerebral but not subarachnoid haemorrhage.
Collapse
Affiliation(s)
- Radosław Czernych
- Department of Hygiene and Epidemiology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Grzegorz Kozera
- Centre of Medical Simulations, Medical University of Gdańsk, 80-204 Gdańsk, Poland; (G.K.); (L.B.)
| | - Artur Jerzy Badyda
- Department of Informatics and Environment Quality Research, Faculty of Building Services, Hydro- and Environmental Engineering, Warsaw University of Technology, 01-604 Warsaw, Poland;
| | - Leszek Bieniaszewski
- Centre of Medical Simulations, Medical University of Gdańsk, 80-204 Gdańsk, Poland; (G.K.); (L.B.)
| | - Paweł Zagożdżon
- Department of Hygiene and Epidemiology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
6
|
Darras-Hostens M, Degrendel M, Amouyel P, Dauchet L. Association between residential air pollution exposure and cardiovascular risk factors in adults living in northern France. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:232. [PMID: 38849665 DOI: 10.1007/s10653-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024]
Abstract
Air pollution is associated with elevated cardiovascular mortality and an increase in cardiovascular risk factors. However, the literature data on associations between air pollution and cardiovascular risk factors are contradictory. To explore the relationship between residential exposure to atmospheric pollutants and cardiovascular risk factors (lipid biomarker and blood pressure levels). We studied a sample of 2339 adult participants in the ELISABET study from the Dunkirk and Lille urban areas of France. The mean annual exposure to atmospheric pollutants (PM10, NO2 and SO2) at the home address was estimated via an air dispersion model. The associations were probed in multivariate linear regression models. The mean NO2 level was 26.05 μg/m3 in Lille and 19.96 µg/m3 in Dunkirk. The mean PM10 level was 27.02 μg/m3 in Lille and 26.53 μg/m3 in Dunkirk. We detected a significant association between exposure to air pollutants and the high-density lipoprotein (HDL) (which is a protective factor against cardiovascular diseases) level: for a 2 µg/m3 increment in PM10, the HDL level decreased by 1.72% (p = 0.0037). None of the associations with other lipid variables or with blood pressure were significant. We didn't find evidence significant associations for most of the risk factors but, long-term exposure of adults to moderate levels of ambient air pollution was associated with a decrement in HDL.
Collapse
Affiliation(s)
- Marion Darras-Hostens
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, University of Lille, 59000, Lille, France
| | - Maxime Degrendel
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, University of Lille, 59000, Lille, France
| | - Philippe Amouyel
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, University of Lille, 59000, Lille, France
| | - Luc Dauchet
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, University of Lille, 59000, Lille, France.
- Epidemiology Unit, 2 Rue du Pr. Laguesse (MRRC), Lille University Medical Center, 59037, Lille Cedex, France.
| |
Collapse
|
7
|
Wu R, Kang N, Zhang C, Song Y, Liao W, Hong Y, Hou J, Zhang K, Tian H, Lin H, Wang C. Long-term exposure to PM 2.5 and its components is associated with elevated blood pressure and hypertension prevalence: Evidence from rural adults. J Adv Res 2024; 60:173-181. [PMID: 37517519 PMCID: PMC11156605 DOI: 10.1016/j.jare.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023] Open
Abstract
INTRODUCTION The toxicity of fine particulate matter (PM2.5) is determined by its components, while the evidence regarding associations of PM2.5 components with blood pressure (BP) is limited, especially in rural areas. OBJECTIVES This study aimed to explore the associations of PM2.5 and its chemical components with systolic BP (SBP), diastolic BP (DBP), pulse pressure (PP), mean artery pressure (MAP) levels and hypertension prevalence, and to identify key components in Chinese rural areas. METHODS 39,211 adults from the Henan Rural Cohort were included during 2015-2017. Different periods of PM2.5 and chemical components were estimated by hybrid satellite model. The single-pollutant, component-PM2.5 model, component-residual model and component-proportion model were applied to explore the associations of pollutants with BP levels and hypertension prevalence. Exposure-response (E-R) relationships, stratified analyses and sensitivity analyses were used to explore these associations further. RESULTS 12,826 (32.71%) were identified with hypertension. For each 1 μg/m3 increase of pollutants, the adjusted odds ratio (OR) for hypertension prevalence was 1.03 for PM2.5 mass, 1.40 for BC, 1.16 for NH4+, 1.08 for NO3-, 1.17 for OM, 1.12 for SO42- and 1.25 for SOIL in the single-pollutant model. BC and SOIL were statistically significant in the component-PM2.5 model, component-residual model and component-proportion model. Similarly, associations of these pollutants with elevated BP levels were also found in aforementioned four models. These pollutants produced a stronger association with SBP than DBP, PP and MAP. Most of associations were non-linear in E-R relationships. The groups of older, the men, with lower per capita monthly income, lower educational level and higher BMI were more vulnerable to these pollutants in stratified analyses. The results remained stable in sensitivity analyses. CONCLUSION Long-term exposure to PM2.5 and its components, especially BC and SOIL, was associated with elevated BP and hypertension prevalence in rural adults, and decreasing pollutants may provide additional benefits.
Collapse
Affiliation(s)
- Ruiyu Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Caiyun Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yueling Hong
- Department of Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY, USA
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing, PR China
| | - Hualiang Lin
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
8
|
Abstract
Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.
Collapse
Affiliation(s)
| | | | | | | | - Jessica M. Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Liu Y, Guo M, Wang J, Gong Y, Huang C, Wang W, Liu X, Liu J, Ju C, Ba Y, Zhou G, Wu X. Effect of short-term exposure to air pollution on hospital admission for cardiovascular disease: A time-series study in Xiangyang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170735. [PMID: 38325454 DOI: 10.1016/j.scitotenv.2024.170735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Data on the relationship between short-term exposure to air pollution and cardiovascular diseases (CVDs) and the potential modifying factors are limited and inconsistent. OBJECTIVE To explore the relationship between short-term exposure to air pollution and CVD risk, and potential modification effect factors. METHOD A time series study was conducted on 52,991 hospital admissions for CVD from 2015 to 2019 in Xiangyang City, China. Air pollution data from four national fixed monitoring stations were collected to estimate exposure level in Xiangyang City. A quasi-Poisson generalized additive model incorporating a distributed lag nonlinear model was applied to evaluate the association between air pollution and CVD risk. The potential modification effect of sex, age, and season on the above associations was also evaluated. RESULTS CVD risk was positively associated with air pollution. Peak associations in single lag day structures were observed for particulate matter ≤10 μm in aerodynamic (PM10; RR: 1.040, 95 % CI: 0.996-1.087), PM2.5 (1.025, 1.004-1.045), nitrogen dioxide (NO2; 1.074, 1.039-1.111), and sulfur dioxide (SO2; 1.079, 1.019-1.141) at Lag 0 and ozone (O3; 1.018, 1.004-1.031) at Lag 4. In cumulative lag day structures, the highest RRs were 1.225 (1.079,1.392) for PM10 at Lag 06, 1.054 (1.013, 1.098) for PM2.5 at Lag 03, 1.200 (1.119, 1.287) for NO2 at Lag 04, and 1.135 (1.025, 1.257) for SO2 at Lag 02. Moreover, the association between air pollution and CVD risk was modified by sex and age (P < 0.05). Females and individuals aged ≤65 years were more vulnerable to NO2 and had a higher CVD risk. CONCLUSION Short-term exposure to air pollution was positively associated with CVD risk. Moreover, sex and age could modify the effect of air pollution on CVD risk. Females and individuals aged ≤65 years had a higher NO2 exposure-induced CVD risk.
Collapse
Affiliation(s)
- Yangwenhao Liu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China
| | - Meng Guo
- Division of Cardiac Surgery, Wuhan Asia Heart Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Junxiang Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China
| | - Yongxiang Gong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China.
| | - Chunrong Huang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China
| | - Wei Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China
| | - Xiaodong Liu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China
| | - Juming Liu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China
| | - Changyu Ju
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan 450002, PR China
| | - Xiaolin Wu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, PR China; Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, PR China.
| |
Collapse
|
10
|
Li Y, Yu B, Yin L, Li X, Nima Q. Long-term exposure to particulate matter is associated with elevated blood pressure: Evidence from the Chinese plateau area. J Glob Health 2024; 14:04039. [PMID: 38483442 PMCID: PMC10939114 DOI: 10.7189/jogh.14.04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Background Ambient air pollution could increase the risk of hypertension; however, evidence regarding the relationship between long-term exposure to particulate matter and elevated blood pressure in plateau areas with lower pollution levels is limited. Methods We assessed the associations of long-term exposure to particulate matter (PM, PM1, PM2.5, and PM10) with hypertension, diastolic blood pressure (DBP), systolic blood pressure (SBP) and pulse pressure (PP) in 4.235 Tibet adults, based on the baseline of the China multi-ethnic cohort study (CMEC) in Lhasa city, Tibet from 2018-19. We used logistic regression and linear regression models to evaluate the associations of ambient PM with hypertension and blood pressure, respectively. Results Long-term exposure to PM1, PM2.5, and PM10 is positively associated with hypertension, DBP, and SBP, while negatively associated with PP. Among these air pollutants, PM10 had the strongest effect on hypertension, DBP, and SBP, while PM2.5 had the strongest effect on PP. The results showed for hypertension odds ratio (OR) = 1.99; 95% confidence interval (CI) = 1.58, 2.51 per interquartile range (IQR) μg/m3 increase in PM1, OR = 1.93; 95% CI = 1.55, 2.40 per IQR μg/m3 increase in PM2.5, and OR = 2.12; 95% CI = 1.67, 2.68 per IQR μg/m3 increase in PM10. Conclusions Long-term exposure to ambient air pollution was associated with an increased risk of hypertension, elevated SBP and DBP levels, and decreased PP levels. To reduce the risk of hypertension and PP reduction, attention should be paid to air quality interventions in plateau areas with low pollution levels.
Collapse
Affiliation(s)
- Yajie Li
- Tibet Centre for Disease Control and Prevention, Lhasa, Tibet Autonomous Region, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University – Hong Kong Polytechnic University, Chengdu, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Yin
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Xianzhi Li
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Qucuo Nima
- Tibet Centre for Disease Control and Prevention, Lhasa, Tibet Autonomous Region, China
| |
Collapse
|
11
|
Prueitt RL, Meakin CJ, Drury NL, Goodman JE. Evaluation of neural reflex activation as a potential mode of action for respiratory and cardiovascular effects of fine particulate matter. Inhal Toxicol 2024; 36:125-144. [PMID: 38488087 DOI: 10.1080/08958378.2024.2324033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/20/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVES Mortality from respiratory and cardiovascular health conditions contributes largely to the total mortality that has been associated with exposure to PM2.5 in epidemiology studies. A mode of action (MoA) for these underlying morbidities has not been established, but it has been proposed that some effects of PM2.5 occur through activation of neural reflexes. MATERIALS AND METHODS We critically reviewed the experimental studies of PM2.5 (including ambient PM2.5, diesel exhaust particles, concentrated ambient particles, diesel exhaust, and cigarette smoke) and neural reflex activation, and applied the principles of the International Programme on Chemical Safety (IPCS) MoA/human relevance framework to assess whether they support a biologically plausible and human-relevant MoA by which PM2.5 could contribute to cardiovascular and respiratory causes of death. We also considered whether the evidence from these studies supports a non-threshold MoA that operates at low, human-relevant PM2.5 exposure concentrations. RESULTS AND DISCUSSION We found that the proposed MoA of neural reflex activation is biologically plausible for PM2.5-induced respiratory effects at high exposure levels used in experimental studies, but further studies are needed to fill important data gaps regarding the relevance of this MoA to humans at lower PM2.5 exposure levels. A role for the proposed MoA in PM2.5-induced cardiovascular effects is plausible for some effects but not others. CONCLUSIONS Further studies are needed to determine whether neural reflex activation is the MoA by which PM2.5 could cause either respiratory or cardiovascular morbidities in humans, particularly at the ambient concentrations associated with total mortality in epidemiology studies.
Collapse
|
12
|
Daouda M, Kaali S, Spring E, Mujtaba MN, Jack D, Dwommoh Prah RK, Colicino E, Tawiah T, Gennings C, Osei M, Janevic T, Chillrud SN, Agyei O, Gould CF, Lee AG, Asante KP. Prenatal Household Air Pollution Exposure and Childhood Blood Pressure in Rural Ghana. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:37006. [PMID: 38506828 PMCID: PMC10953816 DOI: 10.1289/ehp13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The association between prenatal household air pollution (HAP) exposure and childhood blood pressure (BP) is unknown. OBJECTIVE Within the Ghana Randomized Air Pollution and Health Study (GRAPHS) we examined time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure with BP at 4 years of age and, separately, whether a stove intervention delivered prenatally and continued through the first year of life could improve BP at 4 years of age. METHODS GRAPHS was a cluster-randomized cookstove intervention trial wherein n = 1,414 pregnant women were randomized to one of two stove interventions: a) a liquefied petroleum gas (LPG) stove or improved biomass stove, or b) control (open fire cooking). Maternal HAP exposure over pregnancy and child HAP exposure over the first year of life was quantified by repeated carbon monoxide (CO) measurements; a subset of women (n = 368 ) also performed one prenatal and one postnatal personal fine particulate matter (PM 2.5 ) measurement. Systolic and diastolic BP (SBP and DBP) were measured in n = 667 4-y-old children along with their PM 2.5 exposure (n = 692 ). We examined the effect of the intervention on resting BP z -scores. We also employed reverse distributed lag models to examine time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure and resting BP z -scores. Among those with PM 2.5 measures, we examined associations between PM 2.5 and resting BP z -scores. Sex-specific effects were considered. RESULTS Intention-to-treat analyses identified that DBP z -score at 4 years of age was lower among children born in the LPG arm (LPG β = - 0.20 ; 95% CI: - 0.36 , - 0.03 ) as compared with those in the control arm, and females were most susceptible to the intervention. Higher CO exposure in late gestation was associated with higher SBP and DBP z -score at 4 years of age, whereas higher late-first-year-of-life CO exposure was associated with higher DBP z -score. In the subset with PM 2.5 measurements, higher maternal postnatal PM 2.5 exposure was associated with higher SBP z -scores. DISCUSSION These findings suggest that prenatal and first-year-of-life HAP exposure are associated with child BP and support the need for reductions in exposure to HAP, with interventions such as cleaner cooking beginning in pregnancy. https://doi.org/10.1289/EHP13225.
Collapse
Affiliation(s)
- Misbath Daouda
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Emma Spring
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammed N. Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, New York, USA
| | - Rebecca Kyerewaa Dwommoh Prah
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Theresa Tawiah
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Teresa Janevic
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, New York, New York, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Carlos F. Gould
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Alison G. Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| |
Collapse
|
13
|
Kim H, Kim M, Jang Y. Inhaled Volatile Molecules-Responsive TRP Channels as Non-Olfactory Receptors. Biomol Ther (Seoul) 2024; 32:192-204. [PMID: 37551139 PMCID: PMC10902705 DOI: 10.4062/biomolther.2023.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023] Open
Abstract
Generally, odorant molecules are detected by olfactory receptors, which are specialized chemoreceptors expressed in olfactory neurons. Besides odorant molecules, certain volatile molecules can be inhaled through the respiratory tract, often leading to pathophysiological changes in the body. These inhaled molecules mediate cellular signaling through the activation of the Ca2+-permeable transient receptor potential (TRP) channels in peripheral tissues. This review provides a comprehensive overview of TRP channels that are involved in the detection and response to volatile molecules, including hazardous substances, anesthetics, plant-derived compounds, and pheromones. The review aims to shed light on the biological mechanisms underlying the sensing of inhaled volatile molecules. Therefore, this review will contribute to a better understanding of the roles of TRP channels in the response to inhaled molecules, providing insights into their implications for human health and disease.
Collapse
Affiliation(s)
- Hyungsup Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, Republic of Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| |
Collapse
|
14
|
Henning RJ. Particulate Matter Air Pollution is a Significant Risk Factor for Cardiovascular Disease. Curr Probl Cardiol 2024; 49:102094. [PMID: 37734693 DOI: 10.1016/j.cpcardiol.2023.102094] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Air pollution is responsible worldwide for 9-12 million deaths annually. The major contributor to air pollution is particulate matter ≤2.5 µg per cubic meter of air (PM2.5) from vehicles, industrial emissions, and wildfire smoke. United States ambient air standards recommend annual average PM2.5 concentrations of ≤12 μg/m³ while European standards allow an average annual PM2.5 concentration of ≤20 μg/m3. However, significant PM2.5 cardiovascular and pulmonary health risks exist below these concentrations. Chronic PM2.5 exposure significantly increases major cardiovascular and pulmonary event risks in Americans by 8 to more than 20% for each 10-μg/m3 increase in PM2.5. PM2.5-induced increases in lipid peroxidation, induction of vascular inflammation and endothelial cell injury initiate and propagate respiratory diseases, coronary and carotid atherosclerosis. PM2.5 can cause atherosclerotic vascular plaque rupture and myocardial infarction and stroke by activating metalloproteinases. This article discusses PM2.5 effects on the cardiovascular and pulmonary systems, specific PM2.5 pathophysiologic mechanisms contributing to cardiopulmonary disease, and preventive measures to limit the cardiovascular and pulmonary effects of PM2.5.
Collapse
|
15
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Costabile F, Gualtieri M, Rinaldi M, Canepari S, Vecchi R, Massimi L, Di Iulio G, Paglione M, Di Liberto L, Corsini E, Facchini MC, Decesari S. Exposure to urban nanoparticles at low PM[Formula: see text] concentrations as a source of oxidative stress and inflammation. Sci Rep 2023; 13:18616. [PMID: 37903867 PMCID: PMC10616204 DOI: 10.1038/s41598-023-45230-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
Exposures to fine particulate matter (PM[Formula: see text]) have been associated with health impacts, but the understanding of the PM[Formula: see text] concentration-response (PM[Formula: see text]-CR) relationships, especially at low PM[Formula: see text], remains incomplete. Here, we present novel data using a methodology to mimic lung exposure to ambient air (2[Formula: see text] 60 [Formula: see text]g m[Formula: see text]), with minimized sampling artifacts for nanoparticles. A reference model (Air Liquid Interface cultures of human bronchial epithelial cells, BEAS-2B) was used for aerosol exposure. Non-linearities observed in PM[Formula: see text]-CR curves are interpreted as a result of the interplay between the aerosol total oxidative potential (OP[Formula: see text]) and its distribution across particle size (d[Formula: see text]). A d[Formula: see text]-dependent condensation sink (CS) is assessed together with the distribution with d[Formula: see text] of reactive species . Urban ambient aerosol high in OP[Formula: see text], as indicated by the DTT assay, with (possibly copper-containing) nanoparticles, shows higher pro-inflammatory and oxidative responses, this occurring at lower PM[Formula: see text] concentrations (< 5 [Formula: see text]g m[Formula: see text]). Among the implications of this work, there are recommendations for global efforts to go toward the refinement of actual air quality standards with metrics considering the distribution of OP[Formula: see text] with d[Formula: see text] also at relatively low PM[Formula: see text].
Collapse
Affiliation(s)
- Francesca Costabile
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133 Rome, Italy
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Maurizio Gualtieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 26126 Milan, Italy
| | - Matteo Rinaldi
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| | - Silvia Canepari
- Department of Environmental Biology, University of Rome Sapienza, 00185 Rome, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano,and INFN-Milan, 20133 Milan, Italy
| | - Lorenzo Massimi
- Department of Environmental Biology, University of Rome Sapienza, 00185 Rome, Italy
| | - Gianluca Di Iulio
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133 Rome, Italy
| | - Marco Paglione
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| | - Luca Di Liberto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133 Rome, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Cristina Facchini
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| | - Stefano Decesari
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129 Bologna, Italy
| |
Collapse
|
18
|
Li B, Wen F, Liu K, Xie Y, Zhang F, Li P, Sun Y, Qu A, Yang X, Zhang L. The mediation effect of lipids, blood pressure and BMI between air pollutant mixture and atherosclerotic cardiovascular disease: The CHCN-BTH cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115491. [PMID: 37729805 DOI: 10.1016/j.ecoenv.2023.115491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The combine effect of air pollutant mixture on atherosclerotic cardiovascular disease (ASCVD) remain undefined. This study aims to explore the association between long-term exposure of air pollutants and ASCVD, focusing on the mediating role of lipids, blood pressure and BMI. METHODS This study was based on the CHCN-BTH cohort study. The annual concentrations of air pollutants and PM2.5 constituents were sourced from in the Tracking Air Pollution in China (TAP) and ChinaHighAirPollutants (CHAP) datasets from 2014 to 2019. A Cox mixed-effects model was used to investigate the associations between long-term exposure of air pollutants and ASCVD. The combined impact of the air pollutant mixture was assessed using Quantile g-Computation. Stratified, sensitivity, and mediation analyses were conducted. RESULTS A total of 27,134 participants aged 18-80 were recruited in the present study. We found that each IQR increase of PM2.5, PM1, NO2, O3, BC, SO42-, and OM were significantly associated with the incidence of ASCVD, the hazard ratios (HRs) and 95 % confidence interval (CI) were 1.55 (1.35, 1.78), 1.46 (1.27, 1.67), 1.30 (1.21, 1.39), 1.66 (1.41,1.95), 2.14 (1.63, 2.83), 1.65 (1.25, 2.17) and 1.92(1.52, 2.45), respectively. The combined effect of air pollutant mixture on ASCVD was 1.79 (1.46, 2.20), PM2.5 contributed 83.3 % to this combined effect. Mediation effect models suggested that air pollutants and ASCVD might be mediated through SBP, DBP, HDL-C, LDL-C, hsCRP and BMI (mediation proportion range from 1.3 % to 26.1 %), Notably, HDL-C played mediation roles of 11.3 % (7.0 %, 18.4), 26.1 % (17.7 %, 38.1 %) and 25.4 % (15.4, 47.7 %) in the effects of long-term exposure to PM2.5, PM1 and OM on ASCVD, respectively. CONCLUSIONS Long-term, high-level air pollutant exposure was significantly associated with an elevated risk of ASCVD, particularly for PM2.5. Blood pressure, lipids and BMI, especially HDL-C, may mediate the effects of air pollutants exposure on ASCVD.
Collapse
Affiliation(s)
- Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Pandi Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Aibin Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiaojun Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| |
Collapse
|
19
|
Schwarz M, Schneider A, Cyrys J, Bastian S, Breitner S, Peters A. Impact of ultrafine particles and total particle number concentration on five cause-specific hospital admission endpoints in three German cities. ENVIRONMENT INTERNATIONAL 2023; 178:108032. [PMID: 37352580 DOI: 10.1016/j.envint.2023.108032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
INTRODUCTION Numerous studies have shown associations between daily concentrations of fine particles (e.g., particulate matter with an aerodynamic diameter ≤2.5 µm; PM2.5) and morbidity. However, evidence for ultrafine particles (UFP; particles with an aerodynamic diameter of 10-100 nm) remains conflicting. Therefore, we aimed to examine the short-term associations of UFP with five cause-specific hospital admission endpoints for Leipzig, Dresden, and Augsburg, Germany. MATERIAL AND METHODS We obtained daily counts of (cause-specific) cardiorespiratory hospital admissions between 2010 and 2017. Daily average concentrations of UFP, total particle number (PNC; 10-800 nm), and black carbon (BC) were measured at six sites; PM2.5 and nitrogen dioxide (NO2) were obtained from monitoring networks. We assessed immediate (lag 0-1), delayed (lag 2-4, lag 5-7), and cumulative (lag 0-7) effects by applying station-specific confounder-adjusted Poisson regression models. We then used a novel multi-level meta-analytical method to obtain pooled risk estimates. Finally, we performed two-pollutant models to investigate interdependencies between pollutants and examined possible effect modification by age, sex, and season. RESULTS UFP showed a delayed (lag 2-4) increase in respiratory hospital admissions of 0.69% [95% confidence interval (CI): -0.28%; 1.67%]. For other hospital admission endpoints, we found only suggestive results. Larger particle size fractions, such as accumulation mode particles (particles with an aerodynamic diameter of 100-800 nm), generally showed stronger effects (respiratory hospital admissions & lag 2-4: 1.55% [95% CI: 0.86%; 2.25%]). PM2.5 showed the most consistent associations for (cardio-)respiratory hospital admissions, whereas NO2 did not show any associations. Two-pollutant models showed independent effects of PM2.5 and BC. Moreover, higher risks have been observed for children. CONCLUSIONS We observed clear associations with PM2.5 but UFP or PNC did not show a clear association across different exposure windows and cause-specific hospital admissions. Further multi-center studies are needed using harmonized UFP measurements to draw definite conclusions on the health effects of UFP.
Collapse
Affiliation(s)
- Maximilian Schwarz
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
20
|
Ulusoy Ş, Özkan G, Varol G, Erdem Y, Derici Ü, Yılmaz R, Müge Değer S, Arınsoy T, Akpolat T. The Effect of Ambient Air Pollution on Office, Home, and 24-Hour Ambulatory Blood Pressure Measurements. Am J Hypertens 2023; 36:431-438. [PMID: 37058613 DOI: 10.1093/ajh/hpad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Air pollution has recently been linked to a number of cardiovascular diseases, particularly hypertension (HT). In our study, we aimed to evaluate the association between air pollution and blood pressure (BP) and compare the relationship of BP measurement results obtained using different methods (office, home, and 24-hour ambulatory BP monitoring [ABPM]). METHODS This retrospective nested panel study performed with prospective Cappadocia cohort data investigated the relationships between particulate matter (PM) 10 and sulfur dioxide (SO2) and concurrent home, office, and 24-hour ABPM data at each control performed over a 2-year period. RESULTS A total of 327 patients in the Cappadocia cohort were included in this study. On the day of office blood pressure measurement, there was an increase of 1.36 mm Hg in systolic BP and 1.18 mm Hg in diastolic BP for every 10 µm/m3 rise in SO2 values. A mean 3-day 10 µm/m3 increase in SO2 was linked to an increase of 1.60 mm Hg in systolic BP and 1.33 mm Hg in diastolic BP. A 10 µm/m3 rise in mean SO2 on the day of 24-hour ABPM measurement was found to be associated with an increase of 1.3 mm Hg in systolic BP and 0.8 mm Hg in diastolic BP. SO2 and PM 10 had no effect on home measurements. CONCLUSION In conclusion, increased SO2 levels, during winter months in particular, can be associated with an elevation in office BP values. Our study findings show that air pollution in the setting in which BP is measured may be associated with the results.
Collapse
Affiliation(s)
- Şükrü Ulusoy
- Department of Nephrology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gülsüm Özkan
- Department of Nephrology, School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Gamze Varol
- Department of Public Health, School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Yunus Erdem
- Department of Nephrology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Ülver Derici
- Department of Nephrology, School of Medicine, Gazi University, Ankara, Turkey
| | - Rahmi Yılmaz
- Department of Nephrology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Serpil Müge Değer
- Department of Nephrology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Turgay Arınsoy
- Department of Nephrology, School of Medicine, Gazi University, Ankara, Turkey
| | - T Akpolat
- Department of Nephrology, Istinye University Liv Hospital, Istanbul, Turkey
| |
Collapse
|
21
|
Cheng J, Zheng H, Wei J, Huang C, Ho HC, Sun S, Phung D, Kim H, Wang X, Bai Z, Hossain MZ, Tong S, Su H, Xu Z. Short-term residential exposure to air pollution and risk of acute myocardial infarction deaths at home in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:76881-76890. [PMID: 37247141 PMCID: PMC10300167 DOI: 10.1007/s11356-023-27813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Air pollution remains a major threat to cardiovascular health and most acute myocardial infarction (AMI) deaths occur at home. However, currently established knowledge on the deleterious effect of air pollution on AMI has been limited to routinely monitored air pollutants and overlooked the place of death. In this study, we examined the association between short-term residential exposure to China's routinely monitored and unmonitored air pollutants and the risk of AMI deaths at home. A time-stratified case-crossover analysis was undertaken to associate short-term residential exposure to air pollution with 0.1 million AMI deaths at home in Jiangsu Province (China) during 2016-2019. Individual-level residential exposure to five unmonitored and monitored air pollutants including PM1 (particulate matter with an aerodynamic diameter ≤ 1 μm) and PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm), SO2 (sulfur dioxide), NO2 (nitrogen dioxide), and O3 (ozone) was estimated from satellite remote sensing and machine learning technique. We found that exposure to five air pollutants, even below the recently released stricter air quality standards of the World Health Organization (WHO), was all associated with increased odds of AMI deaths at home. The odds of AMI deaths increased by 20% (95% confidence interval: 8 to 33%), 22% (12 to 33%), 14% (2 to 27%), 13% (3 to 25%), and 7% (3 to 12%) for an interquartile range increase in PM1, PM2.5, SO2, NO2, and O3, respectively. A greater magnitude of association between NO2 or O3 and AMI deaths was observed in females and in the warm season. The greatest association between PM1 and AMI deaths was found in individuals aged ≤ 64 years. This study for the first time suggests that residential exposure to routinely monitored and unmonitored air pollutants, even below the newest WHO air quality standards, is still associated with higher odds of AMI deaths at home. Future studies are warranted to understand the biological mechanisms behind the triggering of AMI deaths by air pollution exposure, to develop intervention strategies to reduce AMI deaths triggered by air pollution exposure, and to evaluate the cost-effectiveness, accessibility, and sustainability of these intervention strategies.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Hung Chak Ho
- Department of Public and International Affairs, City University of Hong Kong , Hong Kong, China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Dung Phung
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Ho Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment and Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Xiling Wang
- School of Public Health, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Zhongliang Bai
- School of Health Services Management, Anhui Medical University, Hefei, China
| | - Mohammad Zahid Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
- School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- Center for Global Health, Nanjing Medical University, Nanjing, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
22
|
Kyle Martin W, Schladweiler MC, Oshiro W, Smoot J, Fisher A, Williams W, Valdez M, Miller CN, Jackson TW, Freeborn D, Kim YH, Davies D, Ian Gilmour M, Kodavanti U, Kodavanti P, Hazari MS, Farraj AK. Wildfire-related smoke inhalation worsens cardiovascular risk in sleep disrupted rats. FRONTIERS IN ENVIRONMENTAL HEALTH 2023; 2:1166918. [PMID: 38116203 PMCID: PMC10726696 DOI: 10.3389/fenvh.2023.1166918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Introduction As a lifestyle factor, poor sleep status is associated with increased cardiovascular morbidity and mortality and may be influenced by environmental stressors, including air pollution. Methods To determine whether exposure to air pollution modified cardiovascular effects of sleep disruption, we evaluated the effects of single or repeated (twice/wk for 4 wks) inhalation exposure to eucalyptus wood smoke (ES; 964 μg/m3 for 1 h), a key wildland fire air pollution source, on mild sleep loss in the form of gentle handling in rats. Blood pressure (BP) radiotelemetry and echocardiography were evaluated along with assessments of lung and systemic inflammation, cardiac and hypothalamic gene expression, and heart rate variability (HRV), a measure of cardiac autonomic tone. Results and Discussion GH alone disrupted sleep, as evidenced by active period-like locomotor activity, and increases in BP, heart rate (HR), and hypothalamic expression of the circadian gene Per2. A single bout of sleep disruption and ES, but neither alone, increased HR and BP as rats transitioned into their active period, a period aligned with a critical early morning window for stroke risk in humans. These responses were immediately preceded by reduced HRV, indicating increased cardiac sympathetic tone. In addition, only sleep disrupted rats exposed to ES had increased HR and BP during the final sleep disruption period. These rats also had increased cardiac output and cardiac expression of genes related to adrenergic function, and regulation of vasoconstriction and systemic blood pressure one day after final ES exposure. There was little evidence of lung or systemic inflammation, except for increases in serum LDL cholesterol and alanine aminotransferase. These results suggest that inhaled air pollution increases sleep perturbation-related cardiovascular risk, potentially in part by increased sympathetic activity.
Collapse
Affiliation(s)
- W. Kyle Martin
- Curriculum in Toxicology and Environmental Medicine, UNC, Chapel Hill, NC, United States
| | - M. C. Schladweiler
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Oshiro
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - J. Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - A. Fisher
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - W. Williams
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Valdez
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - C. N. Miller
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - T. W. Jackson
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Freeborn
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - Y. H. Kim
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - D. Davies
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. Ian Gilmour
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - U. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - P. Kodavanti
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - M. S. Hazari
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| | - A. K. Farraj
- Public Health & Integrated Toxicology Division, US EPA, Research Triangle Park, NC, United States
| |
Collapse
|
23
|
Zhang Y, Chen S, Chen L, Wu Y, Wei J, Ma T, Chen M, Ma Q, Liu J, Wang X, Xing Y, Wu L, Li W, Liu X, Guo X, Ma J, Dong Y, Zhang J. Association of SO 2/CO exposure and greenness with high blood pressure in children and adolescents: A longitudinal study in China. Front Public Health 2023; 11:1097510. [PMID: 37304113 PMCID: PMC10248062 DOI: 10.3389/fpubh.2023.1097510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction We aimed to investigate the association between greenness around schools, long-term gaseous air pollution exposure (SO2 and CO), and blood pressure in children and adolescents. Methods From 2006 to 2018, a total of 219,956 Chinese children and adolescents aged 7-17 years in Beijing and Zhongshan were included in this longitudinal study. Annual average concentrations of SO2 and CO and the mean values of normalized difference vegetation index around schools were calculated. We used the generalized estimation equation model, restricted cubic spline model, and Cox model to analyze the health effects. Results Among all the subjects, 52,515 had the first onset of HBP. During the follow-up, HBP's cumulative incidence and incidence density were 23.88% and 7.72 per 100 person-year respectively. Exposures to SO2 and CO were significantly associated with SBP [β = 1.30, 95% CI: (1.26, 1.34) and 0.78 (0.75, 0.81)], DBP [β = 0.81 (0.79, 0.84) and 0.46 (0.44, 0.48)] and HBP [HR = 1.58 (1.57, 1.60) and 1.42 (1.41, 1.43)]. The risks of HBP attributed to SO2 and CO pollution would be higher in school-aged children in the low greenness group: the attributable fractions (AFs) were 26.31% and 20.04%, but only 13.90% and 17.81% in the higher greenness group. The AFs were also higher for normal-BMI children and adolescents in the low greenness group (AFs = 30.90% and 22.64%, but 14.41% and 18.65% in the high greenness group), while the AFs were not as high as expected for obese children in the low greenness group (AFs = 10.64% and 8.61%), nor was it significantly lower in the high greenness group (AFs = 9.60% and 10.72%). Discussion Greenness could alleviate the damage effects of SO2/CO exposure on the risks of HBP among children and adolescents, and the benefit is BMI sensitivity. It might offer insights for policymakers in making effective official interventions to prevent and control the prevalence of childhood HBP and the future disease burden caused by air pollution.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Shuo Chen
- Beijing Physical Examination Center, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yu Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinxin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Weiming Li
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jingbo Zhang
- Beijing Physical Examination Center, Beijing, China
| |
Collapse
|
24
|
Schwarz M, Schneider A, Cyrys J, Bastian S, Breitner S, Peters A. Impact of Ambient Ultrafine Particles on Cause-Specific Mortality in Three German Cities. Am J Respir Crit Care Med 2023; 207:1334-1344. [PMID: 36877186 PMCID: PMC10595437 DOI: 10.1164/rccm.202209-1837oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Rationale: Exposure to ambient air pollution has been associated with adverse effects on morbidity and mortality. However, the evidence for ultrafine particles (UFPs; 10-100 nm) based on epidemiological studies remains scarce and inconsistent. Objectives: We examined associations between short-term exposures to UFPs and total particle number concentrations (PNCs; 10-800 nm) and cause-specific mortality in three German cities: Dresden, Leipzig, and Augsburg. Methods: We obtained daily counts of natural, cardiovascular, and respiratory mortality between 2010 and 2017. UFPs and PNCs were measured at six sites, and measurements of fine particulate matter (PM2.5; ⩽2.5 μm in aerodynamic diameter) and nitrogen dioxide were collected from routine monitoring. We applied station-specific confounder-adjusted Poisson regression models. We investigated air pollutant effects at aggregated lags (0-1, 2-4, 5-7, and 0-7 d after UFP exposure) and used a novel multilevel meta-analytical method to pool the results. Additionally, we assessed interdependencies between pollutants using two-pollutant models. Measurements and Main Results: For respiratory mortality, we found a delayed increase in relative risk of 4.46% (95% confidence interval, 1.52 to 7.48%) per 3,223-particles/cm3 increment 5-7 days after UFP exposure. Effects for PNCs showed smaller but comparable estimates consistent with the observation that the smallest UFP fractions showed the largest effects. No clear associations were found for cardiovascular or natural mortality. UFP effects were independent of PM2.5 in two-pollutant models. Conclusions: We found delayed effects for respiratory mortality within 1 week after exposure to UFPs and PNCs but no associations for natural or cardiovascular mortality. This finding adds to the evidence on the independent health effects of UFPs.
Collapse
Affiliation(s)
- Maximilian Schwarz
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology, Dresden, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Shvachiy L, Amaro-Leal Â, Outeiro TF, Rocha I, Geraldes V. Intermittent Lead Exposure Induces Behavioral and Cardiovascular Alterations Associated with Neuroinflammation. Cells 2023; 12:cells12050818. [PMID: 36899953 PMCID: PMC10000953 DOI: 10.3390/cells12050818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The nervous system is the primary target for lead exposure and the developing brain appears to be especially susceptible, namely the hippocampus. The mechanisms of lead neurotoxicity remain unclear, but microgliosis and astrogliosis are potential candidates, leading to an inflammatory cascade and interrupting the pathways involved in hippocampal functions. Moreover, these molecular changes can be impactful as they may contribute to the pathophysiology of behavioral deficits and cardiovascular complications observed in chronic lead exposure. Nevertheless, the health effects and the underlying influence mechanism of intermittent lead exposure in the nervous and cardiovascular systems are still vague. Thus, we used a rat model of intermittent lead exposure to determine the systemic effects of lead and on microglial and astroglial activation in the hippocampal dentate gyrus throughout time. In this study, the intermittent group was exposed to lead from the fetal period until 12 weeks of age, no exposure (tap water) until 20 weeks, and a second exposure from 20 to 28 weeks of age. A control group (without lead exposure) matched in age and sex was used. At 12, 20 and 28 weeks of age, both groups were submitted to a physiological and behavioral evaluation. Behavioral tests were performed for the assessment of anxiety-like behavior and locomotor activity (open-field test), and memory (novel object recognition test). In the physiological evaluation, in an acute experiment, blood pressure, electrocardiogram, and heart and respiratory rates were recorded, and autonomic reflexes were evaluated. The expression of GFAP, Iba-1, NeuN and Synaptophysin in the hippocampal dentate gyrus was assessed. Intermittent lead exposure induced microgliosis and astrogliosis in the hippocampus of rats and changes in behavioral and cardiovascular function. We identified increases in GFAP and Iba1 markers together with presynaptic dysfunction in the hippocampus, concomitant with behavioral changes. This type of exposure produced significant long-term memory dysfunction. Regarding physiological changes, hypertension, tachypnea, baroreceptor reflex impairment and increased chemoreceptor reflex sensitivity were observed. In conclusion, the present study demonstrated the potential of lead intermittent exposure inducing reactive astrogliosis and microgliosis, along with a presynaptic loss that was accompanied by alterations of homeostatic mechanisms. This suggests that chronic neuroinflammation promoted by intermittent lead exposure since fetal period may increase the susceptibility to adverse events in individuals with pre-existing cardiovascular disease and/or in the elderly.
Collapse
Affiliation(s)
- Liana Shvachiy
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Ângela Amaro-Leal
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Natural Science, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37073 Göttingen, Germany
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
- Correspondence: ; Tel.: +351-217999435
| |
Collapse
|
26
|
Karamanos A, Lu Y, Mudway IS, Ayis S, Kelly FJ, Beevers SD, Dajnak D, Fecht D, Elia C, Tandon S, Webb AJ, Grande AJ, Molaodi OR, Maynard MJ, Cruickshank JK, Harding S. Associations between air pollutants and blood pressure in an ethnically diverse cohort of adolescents in London, England. PLoS One 2023; 18:e0279719. [PMID: 36753491 PMCID: PMC9907839 DOI: 10.1371/journal.pone.0279719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/13/2022] [Indexed: 02/09/2023] Open
Abstract
Longitudinal evidence on the association between air pollution and blood pressure (BP) in adolescence is scarce. We explored this association in an ethnically diverse cohort of schoolchildren. Sex-stratified, linear random-effects modelling was used to examine how modelled residential exposure to annual average nitrogen dioxide (NO2), particulate matter (PM2.5, PM10) and ozone (O3), measures in μg/m3, associated with blood pressure. Estimates were based on 3,284 adolescents; 80% from ethnic minority groups, recruited from 51 schools, and followed up from 11-13 to 14-16 years old. Ethnic minorities were exposed to higher modelled annual average concentrations of pollution at residential postcode level than their White UK peers. A two-pollutant model (NO2 & PM2.5), adjusted for ethnicity, age, anthropometry, and pubertal status, highlighted associations with systolic, but not diastolic BP. A μg/m3 increase in NO2 was associated with a 0.30 mmHg (95% CI 0.18 to 0.40) decrease in systolic BP for girls and 0.19 mmHg (95% CI 0.07 to 0.31) decrease in systolic BP for boys. In contrast, a 1 μg/m3 increase in PM2.5 was associated with 1.34 mmHg (95% CI 0.85 to 1.82) increase in systolic BP for girls and 0.57 mmHg (95% CI 0.04 to 1.03) increase in systolic BP for boys. Associations did not vary by ethnicity, body size or socio-economic advantage. Associations were robust to adjustments for noise levels and lung function at 11-13 years. In summary, higher ambient levels of NO2 were associated with lower and PM2.5 with higher systolic BP across adolescence, with stronger associations for girls.
Collapse
Affiliation(s)
- A. Karamanos
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - Y. Lu
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
- Clinical Research Center of The Third Xiangya Hospital, Central South University, Changsha, China
| | - I. S. Mudway
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - S. Ayis
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| | - F. J. Kelly
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - S. D. Beevers
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - D. Dajnak
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - D. Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - C. Elia
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - S. Tandon
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| | - A. J. Webb
- Faculty of Life Sciences & Medicine, Department of Clinical Pharmacology, King’s College London BHF Centre of Excellence, School of Cardiovascular Medicine and Sciences, King’s College, London, United Kingdom
| | - A. J. Grande
- Curso de Medicina, Universidade Estadual do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - O. R. Molaodi
- MRC/CSO Social and Public Health Sciences Unit, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - M. J. Maynard
- School of Clinical & Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - J. K. Cruickshank
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - S. Harding
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
27
|
Ming Y, Zhou X, Liu G, Abudupataer M, Zhu S, Xiang B, Yin X, Lai H, Sun Y, Wang C, Li J, Zhu K. PM2.5 exposure exacerbates mice thoracic aortic aneurysm and dissection by inducing smooth muscle cell apoptosis via the MAPK pathway. CHEMOSPHERE 2023; 313:137500. [PMID: 36495979 DOI: 10.1016/j.chemosphere.2022.137500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Air pollution is a major public health concern worldwide. Exposure to fine particulate matter (PM2.5) is closely associated with cardiovascular diseases. However, the effect of PM2.5 exposure on thoracic aortic aneurysm and dissection (TAAD) has not been fully elucidated. Diesel exhaust particulate (DEP) is an important component of PM2.5, which causes health effects and is closely related to the incidence of cardiovascular disease. In the current study, we found that DEP exposure increased the incidence of aortic dissection (AD) in β-aminopropionitrile (BAPN)-induced thoracic aortic aneurysm (TAA). In addition, exposure to PM2.5 increased the diameter of the thoracic aorta in mice models. The number of apoptotic cells increased in the aortic wall of PM2.5-treated mice, as did the protein expression level of BAX/Bcl2 and cleaved caspase3/caspase3. Using a rhythmically stretching aortic mechanical simulation model, fluorescent staining indicated that PM2.5 administration could induce mitochondrial dysfunction and increase reactive oxygen species (ROS) levels in human aortic smooth muscle cells (HASMCs). Furthermore, ERK1/2 mitogen-activated protein kinase (MAPK) signaling pathways participated in the apoptosis of HASMCs after PM2.5 exposure. Therefore, we concluded that PM2.5 exposure could exacerbate the progression of TAAD, which could be induced by the increased apoptosis in HASMCs through the ERK1/2 MAPK signaling pathway.
Collapse
Affiliation(s)
- Yang Ming
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Gang Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Mieradilijiang Abudupataer
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Shichao Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Bitao Xiang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiujie Yin
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
28
|
Impact of air pollution on ischemic heart disease: Evidence, mechanisms, clinical perspectives. Atherosclerosis 2023; 366:22-31. [PMID: 36696748 DOI: 10.1016/j.atherosclerosis.2023.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Ambient air pollution, and especially particulate matter (PM) air pollution <2.5 μm in diameter (PM2.5), has clearly emerged as an important yet often overlooked risk factor for atherosclerosis and ischemic heart disease (IHD). In this review, we examine the available evidence demonstrating how acute and chronic PM2.5 exposure clinically translates into a heightened coronary atherosclerotic burden and an increased risk of acute ischemic coronary events. Moreover, we provide insights into the pathophysiologic mechanisms underlying PM2.5-mediated atherosclerosis, focusing on the specific biological mechanism through which PM2.5 exerts its detrimental effects. Further, we discuss about the possible mechanisms that explain the recent findings reporting a strong association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, increased PM2.5 exposure, and morbidity and mortality from IHD. We also address the possible mitigation strategies that should be implemented to reduce the impact of PM2.5 on cardiovascular morbidity and mortality, and underscoring the strong need of clinical trials demonstrating the efficacy of specific interventions (including both PM2.5 reduction and/or specific drugs) in reducing the incidence of IHD. Finally, we introduce the emerging concept of the exposome, highlighting the close relationship between PM2.5 and other environmental exposures (i.e.: traffic noise and climate change) in terms of common underlying pathophysiologic mechanisms and possible mitigation strategies.
Collapse
|
29
|
Fathieh S, Grieve SM, Negishi K, Figtree GA. Potential Biological Mediators of Myocardial and Vascular Complications of Air Pollution-A State-of-the-Art Review. Heart Lung Circ 2023; 32:26-42. [PMID: 36585310 DOI: 10.1016/j.hlc.2022.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022]
Abstract
Ambient air pollution is recognised globally as a significant contributor to the burden of cardiovascular diseases. The evidence from both human and animal studies supporting the cardiovascular impact of exposure to air pollution has grown substantially, implicating numerous pathophysiological pathways and related signalling mediators. In this review, we summarise the list of activated mediators for each pathway that lead to myocardial and vascular injury in response to air pollutants. We performed a systematic search of multiple databases, including articles between 1990 and Jan 2022, summarising the evidence for activated pathways in response to each significant air pollutant. Particulate matter <2.5 μm (PM2.5) was the most studied pollutant, followed by particulate matter between 2.5 μm-10 μm (PM10), nitrogen dioxide (NO2) and ozone (O3). Key pathogenic pathways that emerged included activation of systemic and local inflammation, oxidative stress, endothelial dysfunction, and autonomic dysfunction. We looked at how potential mediators of each of these pathways were linked to both cardiovascular disease and air pollution and included the overlapping mediators. This review illustrates the complex relationship between air pollution and cardiovascular diseases, and discusses challenges in moving beyond associations, towards understanding causal contributions of specific pathways and markers that may inform us regarding an individual's exposure, response, and likely risk.
Collapse
Affiliation(s)
- Sina Fathieh
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Stuart M Grieve
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kazuaki Negishi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas, Australia; Department of Cardiology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan; Sydney Medical School Nepean, Faculty of Medicine and Health, Charles Perkins Centre Nepean, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Nepean Hospital, Sydney, NSW, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Xu C, Zhang Q, Huang G, Huang J, Zhang H. The impact of PM2.5 on kidney. J Appl Toxicol 2023; 43:107-121. [PMID: 35671242 DOI: 10.1002/jat.4356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 01/09/2023]
Abstract
PM2.5 poses a severe risk to kidneys, inducing kidney function decline, increasing the risk of suffering from chronic kidney diseases and promoting the occurrence and development of various renal tumors. The mechanism of PM2.5-induced renal injury may involve oxidative stress, inflammatory response, and cytotoxicity. This paper elaborated PM2.5-induced kidney damage and the corresponding possible mechanism so as to raise awareness of air pollution and reduce the damage to human body.
Collapse
Affiliation(s)
- Chunming Xu
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China
| | - Qian Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Guochen Huang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Jia Huang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.,Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Hongxia Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
31
|
BAÑERAS J, IGLESIES-GRAU J, TÉLLEZ-PLAZA M, ARRARTE V, BÁEZ-FERRER N, BENITO B, CAMPUZANO RUIZ R, CECCONI A, DOMÍNGUEZ-RODRÍGUEZ A, RODRÍGUEZ-SINOVAS A, UJUETA F, VOZZI C, LAMAS GA, NAVAS-ACIÉN A. [Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment]. Rev Esp Cardiol 2022; 75:1050-1058. [PMID: 36570815 PMCID: PMC9785336 DOI: 10.1016/j.recesp.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi BAÑERAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Josep IGLESIES-GRAU
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canadá
| | - María TÉLLEZ-PLAZA
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, España
| | - Vicente ARRARTE
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, España
| | - Néstor BÁEZ-FERRER
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Begoña BENITO
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Raquel CAMPUZANO RUIZ
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, España
| | - Alberto CECCONI
- Servicio de Cardiología, Hospital Universitario de la Princesa, Madrid, España
| | - Alberto DOMÍNGUEZ-RODRÍGUEZ
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, España
| | - Antonio RODRÍGUEZ-SINOVAS
- Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Francisco UJUETA
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Carlos VOZZI
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A. LAMAS
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, Estados Unidos
| | - Ana NAVAS-ACIÉN
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, Estados Unidos
| |
Collapse
|
32
|
Bañeras J, Iglesies-Grau J, Téllez-Plaza M, Arrarte V, Báez-Ferrer N, Benito B, Campuzano Ruiz R, Cecconi A, Domínguez-Rodríguez A, Rodríguez-Sinovas A, Ujueta F, Vozzi C, Lamas GA, Navas-Acién A. Environment and cardiovascular health: causes, consequences and opportunities in prevention and treatment. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:1050-1058. [PMID: 35931285 PMCID: PMC10266758 DOI: 10.1016/j.rec.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the contribution of environmental exposures with the aim of minimizing the harmful influences of pollution and promoting cardiovascular health through specific preventive or therapeutic strategies. The present review focuses on particulate matter and metals, which are the pollutants with the strongest level of scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial (NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease. More research and action in environmental cardiology could substantially help to improve the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Bañeras
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Josep Iglesies-Grau
- Centre ÉPIC and Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
| | - María Téllez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Arrarte
- Servicio de Cardiología, Hospital General Universitario Dr. Balmis, ISABIAL, Alicante, Spain
| | - Néstor Báez-Ferrer
- Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Begoña Benito
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Raquel Campuzano Ruiz
- Servicio de Cardiología, Hospital Universitario Fundación de Alcorcón, Alcorcón, Madrid, Spain
| | - Alberto Cecconi
- Servicio de Cardiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Alberto Domínguez-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Servicio de Cardiología, Hospital Universitario de Canarias, Universidad Europea de Canarias, Santa Cruz de Tenerife, Spain
| | - Antonio Rodríguez-Sinovas
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Francisco Ujueta
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Carlos Vozzi
- Departamento de Cardiología, Instituto Vozzi, Rosario, Argentina
| | - Gervasio A Lamas
- Columbia University Division of Cardiology, Mount Sinai Medical Center, Miami Beach, Florida, United States; Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Ana Navas-Acién
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Nueva York, United States.
| |
Collapse
|
33
|
Mei Y, Zhao J, Zhou Q, Zhao M, Xu J, Li Y, Li K, Xu Q. Residential greenness attenuated association of long-term air pollution exposure with elevated blood pressure: Findings from polluted areas in Northern China. Front Public Health 2022; 10:1019965. [PMID: 36249254 PMCID: PMC9557125 DOI: 10.3389/fpubh.2022.1019965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
Background Evidence on the hypertensive effects of long-term air pollutants exposure are mixed, and the joint hypertensive effects of air pollutants are also unclear. Sparse evidence exists regarding the modifying role of residential greenness in such effects. Methods A cross-sectional study was conducted in typically air-polluted areas in northern China. Particulate matter with diameter < 1 μm (PM1), particulate matter with diameter < 2.5 μm (PM2.5), particulate matter with diameter < 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were predicted by space-time extremely randomized trees model. We used the Normalized Difference Vegetation Index (NDVI) to reflect residential green space. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were examined. We also calculated the pulse pressure (PP) and mean arterial pressure (MAP). Generalized additive model and quantile g-computation were, respectively, conducted to investigate individual and joint effects of air pollutants on blood pressure. Furthermore, beneficial effect of NDVI and its modification effect were explored. Results Long-term air pollutants exposure was associated with elevated DBP and MAP. Specifically, we found a 10-μg/m3 increase in PM2.5, PM10, and SO2 were associated with 2.36% (95% CI: 0.97, 3.76), 1.51% (95% CI: 0.70, 2.34), and 3.54% (95% CI: 1.55, 5.56) increase in DBP; a 10-μg/m3 increase in PM2.5, PM10, and SO2 were associated with 1.84% (95% CI: 0.74, 2.96), 1.17% (95% CI: 0.52, 1.83), and 2.43% (95% CI: 0.71, 4.18) increase in MAP. Air pollutants mixture (one quantile increase) was positively associated with increased values of DBP (8.22%, 95% CI: 5.49, 11.02) and MAP (4.15%, 95% CI: 2.05, 6.30), respectively. These identified harmful effect of air pollutants mainly occurred among these lived with low NDVI values. And participants aged ≥50 years were more susceptible to the harmful effect of PM2.5 and PM10 compared to younger adults. Conclusions Our study indicated the harmful effect of long-term exposure to air pollutants and these effects may be modified by living within higher green space place. These evidence suggest increasing residential greenness and air pollution control may have simultaneous effect on decreasing the risk of hypertension.
Collapse
Affiliation(s)
- Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China,Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,*Correspondence: Qun Xu
| |
Collapse
|
34
|
Wu T, Tong M, Chu A, Wu K, Niu X, Zhang Z. PM2.5-Induced Programmed Myocardial Cell Death via mPTP Opening Results in Deteriorated Cardiac Function in HFpEF Mice. Cardiovasc Toxicol 2022; 22:746-762. [PMID: 35593990 DOI: 10.1007/s12012-022-09753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022]
Abstract
PM2.5 exposure can induce or exacerbate heart failure and is associated with an increased risk of heart failure hospitalization and mortality; however, the underlying mechanisms remain unclear. This study focuses on the potential mechanisms underlying PM2.5 induction of cardiomyocyte programmed necrosis as well as its promotion of cardiac function impairment in a mouse model of heart failure with preserved ejection fraction (HFpEF). HFpEF mice were exposed to concentrated ambient PM2.5 (CAP) (CAP group) or filtered air (FA) (FA group) for 6 weeks. Changes in myocardial pathology and cardiac function were documented for comparisons between the two groups. In vitro experiments were performed to measure oxidative stress and mitochondrial permeability transition pore (mPTP) dynamics in H9C2 cells following 24 h exposure to PM2.5. Additionally, co-immunoprecipitation was conducted to detect p53 and cyclophilin D (CypD) interactions. The results showed exposure to CAP promoted cardiac function impairment in HFpEF mice. Myocardial pathology analysis and in vitro experiments demonstrated that PM2.5 led to mitochondrial damage in cardiomyocytes and, eventually, their necrosis. Moreover, our experiments also suggested that PM2.5 increases mitochondrial reactive oxygen species (ROS), induces DNA oxidative damage, and decreases the inner mitochondrial membrane potential (ΔΨm). This indicates the presence of mPTP opening. Co-immunoprecipitation results showed a p53/CypD interaction in the myocardial tissue of HFpEF mice in the CAP group. Inhibition of CypD by cyclosporin A was found to reverse PM2.5-induced mPTP opening and H9C2 cell death. In conclusion, PM2.5 induces mPTP opening to stimulate mitochondria-mediated programmed necrosis of cardiomyocytes, and it might exacerbate cardiac function impairment in HFpEF mice.
Collapse
Affiliation(s)
- Tingting Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
- The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Minghui Tong
- The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Aiai Chu
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Kaiyue Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China
| | - Xiaowei Niu
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zheng Zhang
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
35
|
Weng Z, Liu Q, Yan Q, Liang J, Zhang X, Xu J, Li W, Xu C, Gu A. Associations of genetic risk factors and air pollution with incident hypertension among participants in the UK Biobank study. CHEMOSPHERE 2022; 299:134398. [PMID: 35339527 DOI: 10.1016/j.chemosphere.2022.134398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The purposes of this study were to quantify the association of the combination of air pollution and genetic risk factors with hypertension and explore the interactions between air pollution and genetic risk. This study included 391,366 participants of European ancestry initially free from pre-existing hypertension in the UK Biobank. Exposure to ambient air pollutants, including particulate matter (PM2.5 PM2.5-10, and PM10), nitrogen dioxide (NO2) and nitrogen oxides (NOX), was estimated through land use regression modelling, and the associations between air pollutants and the incidence of hypertension were investigated using a Cox proportional hazards model adjusted for covariates. Furthermore, we established a polygenic risk score for hypertension and assessed the combined effect of genetic susceptibility and air pollution on incident hypertension. The results showed significant associations between the risk of hypertension and exposure to PM2.5 (hazard ratio [HR]: 1.41, 95% confidence interval [CI]: 1.29-1.53; per 10 μg/m3), PM10 (1.05, 1.00-1.09; per 10 μg/m3), and NOX (1.01, 1.01-1.02 per 10 μg/m3). Additive effects of PM2.5 and NOX exposure and genetic risk were observed. Compared to individuals with a low genetic risk and low air pollution exposure, participants with high air pollution exposure and a high genetic risk had a significantly increased risk of hypertension (PM2.5: 71% (66%-76%), PM10: 59% (55%-64%), NOX: 65% (60%-70%)). Our results indicate that long-term exposure to air pollution is associated with an increased risk of hypertension, especially in individuals with a high genetic risk.
Collapse
Affiliation(s)
- Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Koracevic G, Micic S, Stojanovic M, Radovanovic RV, Pavlovic MP, Kostic T, Djordjevic D, Antonijevic N, Koracevic M, Atanaskovic V, Dakic S. Beta Blockers can mask not only Hypoglycemia, but also Hypotension. Curr Pharm Des 2022; 28:1660-1668. [DOI: 10.2174/1381612828666220421135523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
Background:
Beta-adrenergic (β-AR) receptor blockers (BBs) are an essential class of drugs as they have numerous indications. On the other hand, they have numerous unwanted effects which decrease the compliance, adherence, and persistence of this very useful group of drugs.
Objective:
The paper aims to analyze the possibility that an unnoticed side effect may contribute to a less favorable pharmacologic profile of BBs, e.g., a diminished reaction to a sudden fall in BP.
Methods:
We searched two medical databases for abstracts and citations (Medline and SCOPUS). Moreover, we searched the internet for drug prescription leaflets (of the individual BBs).
Results:
Whichever cause of stress is considered, the somatic manifestations of stress will be (partially) masked if a patient takes BB. Stress–induced hypercatecholaminemia acts on β-AR of cardiomyocytes; it increases heart rate and contractility, effects suppressed by BBs. The answers of the organism to hypoglycemia and hypotension share the main mechanisms such as sympathetic nervous system activation and hypercatecholaminemia. Thus, there is a striking analogy: BBs can cover up symptoms of both hypoglycemia (which is widely known) and of hypotension (which is not recognized). It is widely known that BBs can cause hypotension. However, they can also complicate recovery by spoiling the defense mechanisms in hypotension as they interfere with the crucial compensatory reflex to increase blood pressure in hypotension.
Conclusion:
Beta blockers can cause hypotension, mask it, and make recovery more difficult. This is clinically important and deserves to be more investigated and probably to be stated as a warning.
Collapse
Affiliation(s)
- Goran Koracevic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
| | | | | | | | - Milan Pavlovic Pavlovic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - Tomislav Kostic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - Dragan Djordjevic
- Faculty of Medicine, University of Nis, Nis, Serbia
- Institute for Treatment and Rehabilitation Niska Banja, Nis, Serbia
| | - Nebojsa Antonijevic
- Clinic for Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Maja Koracevic
- Faculty of Medicine, University of Nis, Nis, Serbia
- Innovation Centre, University of Nis, Nis, Serbia
| | - Vesna Atanaskovic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
| | - Sonja Dakic
- Department for Cardiovascular Diseases, University Clinical Centre Nis, Nis, Serbia
| |
Collapse
|
37
|
Qin Y, Zhang H, Jiang B, Chen J, Zhang T. Food bioactives lowering risks of chronic diseases induced by fine particulate air pollution: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7811-7836. [PMID: 35317688 DOI: 10.1080/10408398.2022.2051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Airborne particulate matter (PM) exerts huge negative impacts on human health worldwide, not only targeting the respiratory system but more importantly inducing and aggravating associated chronic diseases like asthma, lung cancer, atherosclerosis, diabetes mellitus and Alzheimer diseases. Food-derived bioactive compounds like vitamins, dietary polyphenols, omega-3 polyunsaturated fatty acids and sulforaphane are feasible alternative therapeutic approaches against PM-mediated potential health damages, drawing great attention in recent years. In this review, the association between PM exposure and risks of developing chronic diseases, and the detailed mechanisms underlying the detrimental effects of PM will be discussed. Subsequently, principal food-derived bioactive compounds, with emphasize on the preventative or protective effects against PM, along with potential mechanisms will be elucidated. This comprehensive review will discuss and present current research findings to reveal the nutritional intervention as a preventative or therapeutic strategy against ambient air pollution, thereby lowering the risk of developing chronic diseases.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Zhao M, Xu Z, Guo Q, Gan Y, Wang Q, Liu JA. Association between long-term exposure to PM 2.5 and hypertension: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL RESEARCH 2022; 204:112352. [PMID: 34762927 DOI: 10.1016/j.envres.2021.112352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Numerous studies have examined the association between long-term exposure to particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) and hypertension. However, the results are inconsistent. OBJECTIVES Considering the limitations of previous meta-analyses and the publication of many new studies in recent years, we conducted this meta-analysis to assess the relationship between long-term PM2.5 exposure and the incidence and prevalence of hypertension in a healthy population. METHODS We searched PubMed, Web of Science, Embase, and Scopus for relevant studies published until April 2, 2021 and reviewed the reference lists of previous reviews. A total of 28 observational studies reporting RR or OR with 95% CI for the association between long-term PM2.5 exposure and the risk of hypertension were included. RESULTS After the sensitivity analysis, we excluded one study with a high degree of heterogeneity, resulting in 27 studies and 28 independent reports. Approximately 42 million participants were involved, and the cases of hypertension in cohort and cross-sectional studies were 508,749 and 1,793,003, respectively. The meta-analysis showed that each 10 μg/m3 increment in PM2.5 was significantly associated with the risks of hypertension incidence (RR = 1.21, 95% CI: 1.07, 1.35) and prevalence (OR = 1.06, 95% CI: 1.03, 1.09). Subgroup analyses showed that occupational exposure had a significant effect on the association of PM2.5 and hypertension incidence (p for interaction = 0.042) and that the PM2.5 concentration level and physical activity had a noticeable effect on the association of PM2.5 and hypertension prevalence (p for interaction = 0.005; p for interaction = 0.022). CONCLUSIONS A significantly positive correlation was observed between long-term PM2.5 exposure and risks of hypertension incidence and prevalence, and a high PM2.5 concentration resulted in an increased risk of hypertension.
Collapse
Affiliation(s)
- Mingqing Zhao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyuan Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianqian Guo
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-An Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
39
|
Air Pollution Role as Risk Factor of Cardioinhibitory Carotid Hypersensitivity. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Little is known about the impact of air pollution on neuroautonomic system. The authors have investigated possible influence of air pollution and outdoor temperature on the carotid sinus hypersensitivity (CSH), as main cause of neurally mediated syncope in forty-years-old subjects and older. Pollutants’ concentrations and outdoor temperature of days in which 179 subjects with recurrent syncope underwent carotid sinus massage (CSM) were analyzed. Before this manoeuvre, cardiovascular control by short period heart and blood pressure spectral duration of segment between the end of P and R ECG-waves (PeR) were registred; RR variability on the same short period ECG recordings and their spectral coherence were also analyzed. CSH was found in 57 patients (28 with cardioinhibitory response and 29 subjects showed vasodepressor reaction), while 122 subjects had a normal response. CSM performed during high ozone concentrations was associated with slightly higher risk of cardioinhibitory response (odd ratio 1.012, 95% CI 1.001–1.023, p < 0.05), but neither this or other polluting agent nor outdoor temperature seemed to influence autonomic control in basal resting condition. Thus, ozone seemed to influence response to the CSM in CSH patients and it is probably able to facilitate a cardioinhibitory response, perhaps through an increase of nerve acetylcholine release. P→PR coherence could be useful in predicting a sinus cardioinhibitory hypersensitivity in those cases when CSM is contraindicated.
Collapse
|
40
|
Olivo CR, Castro TBP, Riane A, Regonha T, Rivero DHRF, Vieira RP, Saraiva-Romanholo BM, Lopes FDTQS, Tibério IFLC, Martins MA, Prado CM. The effects of exercise training on the lungs and cardiovascular function of animals exposed to diesel exhaust particles and gases. ENVIRONMENTAL RESEARCH 2022; 203:111768. [PMID: 34339693 DOI: 10.1016/j.envres.2021.111768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Air pollution has been identified as one of the main environmental risks to health. Since exercise training seems to act as an anti-inflammatory modulator, our hypothesis is that exercise training prevents damage to respiratory and cardiovascular function caused by diesel exhaust particle (DEP) exposure. This study aimed to evaluate whether aerobic exercise training prior to DEP exposure prevents inflammatory processes in the pulmonary and cardiovascular systems. Therefore, BALB/C male mice were or were not submitted to a 10-week exercise training protocol (5×/week, 1 h/d), and after four weeks, they were exposed to DEP in a chamber with 24 μg/m3 PM2.5 or filtered air. Heart rate variability, lung mechanics and bronchoalveolar lavage fluid, cytokines and polymorphonuclear cells in the lung parenchyma were evaluated. Exposure to DEPs reduced heart rate variability and the elastance of the respiratory system and increased the number of cells in bronchoalveolar lavage fluid, as well as macrophages, neutrophils and lymphocytes, the density of polymorphonuclear cells and the proportion of collagen fibres in the lung parenchyma. Additionally, DEP-exposed animals showed increased expression of IL-23 and IL-12p40 (proinflammatory cytokines) and inducible nitric oxide synthase. Exercise training avoided the increases in all these inflammatory parameters, except the elastance of the respiratory system, the amount of collagen fibres and the expression of inducible nitric oxide synthase. Additionally, trained animals showed increased expression of the anti-inflammatory cytokine IL-1ra. Although our data showed a reduction in proinflammatory markers and an increase in markers of the anti-inflammatory pathway, these changes were not sufficient to prevent damage to the lung and cardiovascular function induced by DEPs. Based on these data, we propose that aerobic exercise training prevents the lung inflammatory process induced by DEPs, although it was not sufficient to avoid chronic damage, such as a loss of lung function or cardiovascular events.
Collapse
Affiliation(s)
- C R Olivo
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil; University City of Sao Paulo (UNICID), Sao Paulo, Brazil; Department of Bioscience, Universidade Federal de São Paulo, São Paulo, 11015-020, Brazil.
| | - T B P Castro
- Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil
| | - A Riane
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - T Regonha
- University City of Sao Paulo (UNICID), Sao Paulo, Brazil
| | - D H R F Rivero
- Department of Clinical Medicine (LIM 05), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - R P Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (LABPEI), Sao Jose dos Campos, SP, Brazil
| | - B M Saraiva-Romanholo
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil; University City of Sao Paulo (UNICID), Sao Paulo, Brazil
| | - F D T Q S Lopes
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - I F L C Tibério
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - M A Martins
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - C M Prado
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Department of Bioscience, Universidade Federal de São Paulo, São Paulo, 11015-020, Brazil
| |
Collapse
|
41
|
Liang X, Chen J, An X, Liu F, Liang F, Tang X, Qu P. The impact of PM2.5 on children's blood pressure growth curves: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2022; 158:107012. [PMID: 34991268 DOI: 10.1016/j.envint.2021.107012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study was to explore the association between exposure to particulate matter with an aerodynamic diameter of 2.5 mm or less (PM2.5) and blood pressure (BP) levels in children and adolescents and to illustrate the impact of PM2.5 levels on BP growth curves in a cohort study. METHODS A longitudinal study was designed and included 4303 children (7617 BP measurements) living in the selected areas, and evaluations were conducted in 2014-2015 (visit 1) and followed up in 2019 (visit 2). Two-stage stratified cluster sampling was used to include urban-rural areas. A mixed linear regression model and mixed logistic regression model were used to analyze the effect of PM2.5 exposure on BP and the incidence of prehypertension and hypertension in children. RESULTS After adjusting for covariates, systolic blood pressure (SBP) (2.21 (95% CIs: 0. 81, 3.62), mmHg), diastolic blood pressure (DBP) (1.92 (95% CIs: 0.74, 3.11), mmHg), mean arterial pressure (MAP) (2.03 (95% CIs: 0.89, 3.17), mmHg) and heart rate (HR) (2.24 (95% CIs: 0.11, 4.37), beats/min) increased significantly in the fourth quartile of PM2.5 exposure levels compared with the first quartile (all P < 0.01). In addition, long-term exposure to PM2.5 was significantly positively correlated with SBP, DBP and MAP, and the effect was more notable in urban areas than that in rural areas. Moreover, the risk of prehypertension and hypertension incidence increased by 1.17 (95% CIs: 1.03, 1.33) fold with a one-quartile increase in PM2.5 exposure. The long-term effects of annual mean PM2.5 exposure on SBP, DBP and MAP were significant from pregnancy to 7, 3 and 4 years of age, respectively. CONCLUSION Long-term exposure to PM2.5 was positively associated with growth curves of hemodynamics indexed from pregnancy to childhood and adolescence, and the effect was more significant in urban areas than in rural areas.
Collapse
Affiliation(s)
- Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China.
| | - Jingyu Chen
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Xizhou An
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xian Tang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Ping Qu
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| |
Collapse
|
42
|
The cardiovascular effects of air pollution: Prevention and reversal by pharmacological agents. Pharmacol Ther 2021; 232:107996. [PMID: 34571110 PMCID: PMC8941724 DOI: 10.1016/j.pharmthera.2021.107996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Air pollution is associated with staggering levels of cardiovascular morbidity and mortality. Airborne particulate matter (PM), in particular, has been associated with a wide range of detrimental cardiovascular effects, including impaired vascular function, raised blood pressure, alterations in cardiac rhythm, blood clotting disorders, coronary artery disease, and stroke. Considerable headway has been made in elucidating the biological processes underlying these associations, revealing a labyrinth of multiple interacting mechanistic pathways. Several studies have used pharmacological agents to prevent or reverse the cardiovascular effects of PM; an approach that not only has the advantages of elucidating mechanisms, but also potentially revealing therapeutic agents that could benefit individuals that are especially susceptible to the effects of air pollution. This review gathers investigations with pharmacological agents, offering insight into the biology of how PM, and other air pollutants, may cause cardiovascular morbidity.
Collapse
|
43
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
44
|
Colonna CH, Henriquez AR, House JS, Motsinger-Reif AA, Alewel DI, Fisher A, Ren H, Snow SJ, Schladweiler MC, Miller DB, Miller CN, Kodavanti PRS, Kodavanti UP. The Role of Hepatic Vagal Tone in Ozone-Induced Metabolic Dysfunction in the Liver. Toxicol Sci 2021; 181:229-245. [PMID: 33662111 DOI: 10.1093/toxsci/kfab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Air pollution has been associated with metabolic diseases and hepatic steatosis-like changes. We have shown that ozone alters liver gene expression for metabolic processes through neuroendocrine activation. This study aimed to further characterize ozone-induced changes and to determine the impact of hepatic vagotomy (HV) which reduces parasympathetic influence. Twelve-week-old male Wistar-Kyoto rats underwent HV or sham surgery 5-6 days before air or ozone exposure (0 or 1 ppm; 4 h/day for 1 or 2 days). Ozone-induced lung injury, hyperglycemia, glucose intolerance, and increases in circulating cholesterol, triglycerides, and leptin were similar in rats with HV and sham surgery. However, decreases in circulating insulin and increased HDL and LDL were observed only in ozone-exposed HV rats. Ozone exposure resulted in changed liver gene expression in both sham and HV rats (sham > HV), however, HV did not change expression in air-exposed rats. Upstream target analysis revealed that ozone-induced transcriptomic changes were similar to responses induced by glucocorticoid-mediated processes in both sham and HV rats. The directionality of ozone-induced changes reflecting cellular response to stress, metabolic pathways, and immune surveillance was similar in sham and HV rats. However, pathways regulating cell-cycle, regeneration, proliferation, cell growth, and survival were enriched by ozone in a directionally opposing manner between sham and HV rats. In conclusion, parasympathetic innervation modulated ozone-induced liver transcriptional responses for cell growth and regeneration without affecting stress-mediated metabolic changes. Thus, impaired neuroendocrine axes and parasympathetic innervation could collectively contribute to adverse effects of air pollutants on the liver.
Collapse
Affiliation(s)
- Catherine H Colonna
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - John S House
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Alison A Motsinger-Reif
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Hongzu Ren
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Desinia B Miller
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Prasada Rao S Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
45
|
Santiago ÍS, Silva TFA, Marques EV, Barreto FMDS, Ferreira AG, Rocha CA, Mendonça KV, Cavalcante RM. Influence of the seasonality and of urban variables in the BTEX and PM 2.5 atmospheric levels and risks to human health in a tropical coastal city (Fortaleza, CE, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42670-42682. [PMID: 33818727 DOI: 10.1007/s11356-021-13590-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The International Agency for Research on Cancer (IARC) classifies benzene in group 1 (carcinogenic to humans). Particulate matter (PM) has recently also been classified in this category. This was an advance toward prioritizing the monitoring of particles in urban areas. The aim of the present study was to assess levels of PM2.5 and BTEX (benzene, toluene, ethylbenzene, and xylene), the influence of meteorological variables, the planetary boundary layer (PBL), and urban variables as well as risks to human health in the city of Fortaleza, Brazil, in the wet and dry periods. BTEX compounds were sampled using the 1501 method of NIOSH and determined by GC-HS-PID/FID. PM2.5 was monitored using an air sampling pump with a filter holder and determined by the gravimetric method. Average concentrations of BTEX ranged from 1.6 to 45.5 μg m-3, with higher values in the wet period, which may be explained by the fact that annual distribution is influenced by meteorological variables and the PBL. PM2.5 levels ranged from 4.12 to 33.0 μg m-3 and 4.18 to 86.58 μg m-3 in the dry and wet periods, respectively. No seasonal pattern was found for PM2.5, probably due to the influence of meteorological variables, the PBL, and urban variables. Cancer risk ranged from 2.46E-04 to 4.71E-03 and 1.72E-04 to 2.01E-03 for benzene and from 3.07E-06 to 7.04E-05 and 3.08E-06 to 2.85E-05 for PM2.5 in the wet and dry periods, respectively. Cancer risk values for benzene were above the acceptable limit established by the international regulatory agency in both the dry and wet periods. The results obtained of the noncarcinogenic risks for the compounds toluene, ethylbenzene, and xylene were within the limits of acceptability. The findings also showed that the risk related to PM is always greater among smokers than nonsmokers.
Collapse
Affiliation(s)
- Íthala S Santiago
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará, Fortaleza, Ceará, 60165-081, Brazil
- Undergraduate Course in Environmental Science - Institute of Marine Sciences, Federal University of Ceará (UFC), Fortaleza, Ceará, 60165-081, Brazil
| | - Tamiris F A Silva
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará, Fortaleza, Ceará, 60165-081, Brazil
- Undergraduate Course in Environmental Science - Institute of Marine Sciences, Federal University of Ceará (UFC), Fortaleza, Ceará, 60165-081, Brazil
| | - Elissandra V Marques
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará, Fortaleza, Ceará, 60165-081, Brazil
- Undergraduate Course in Environmental Science - Institute of Marine Sciences, Federal University of Ceará (UFC), Fortaleza, Ceará, 60165-081, Brazil
| | - Francisco M de S Barreto
- Federal Institute of Education, Science and Technology - IFCE, Fortaleza Campus, Fortaleza, Brazil
| | - Antonio G Ferreira
- Earth Observation Labomar Laboratory (EOLLab), Institute of Marine Sciences, Federal University of Ceará, Fortaleza, Ceará, 60165-081, Brazil
| | - Camille A Rocha
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará, Fortaleza, Ceará, 60165-081, Brazil
| | - Kamila V Mendonça
- Laboratory of Economics, Law and Sustainability (LEDS/LABOMAR), Institute of Marine Sciences, Federal University of Ceará, CEP: 60165-081, Fortaleza, CE, Brazil
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences, Federal University of Ceará, Fortaleza, Ceará, 60165-081, Brazil.
- Undergraduate Course in Environmental Science - Institute of Marine Sciences, Federal University of Ceará (UFC), Fortaleza, Ceará, 60165-081, Brazil.
| |
Collapse
|
46
|
Air pollution-associated blood pressure may be modified by diet among children in Guangzhou, China. J Hypertens 2021; 38:2215-2222. [PMID: 32649627 DOI: 10.1097/hjh.0000000000002521] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To assess the associations between long-term air pollution exposure and blood pressure in children, and to explore the modifying effects of diet on prehypertension and hypertension. METHODS We evaluated 7225 primary school children aged 6-12 years from Guangzhou, China, in 2017. The blood pressure was measured objectively. The individual 1-year average concentration of particles with an aerodynamic diameter of 2.5 μm or less or 10 μm or less (PM2.5, PM10), sulfur dioxide (SO2), and ozone (O3) before each blood pressure measurement were calculated by inverse distance weighting interpolation according to each home address. Generalized linear mixed-effects models were used to examine the health effects and potential effect modifications by diet factors after adjusting for covariates. RESULTS The results showed that the estimated increase in mean SBP was 0.92 mmHg (95% CI 0.05-1.79) per interquartile range increase in O3. An interquartile range increase in the 1-year mean of SO2 and O3 was associated with odds ratios of 1.26 (95% CI 1.04-1.52) and 1.20 (95% CI 1.06-1.35) for prehypertension, respectively. In addition, an interquartile range increase in PM2.5, SO2, and O3 exposure was positively associated with hypertension, with odds ratios of 1.33 (95% CI 1.11-1.61), 1.70 (95% CI 1.33-2.16), and 1.48 (95% CI 1.20-1.83), respectively. Stronger effect estimates between PM2.5, SO2, and O3 concentration on prehypertension were exhibited among subgroups of children with a higher intake of sugar-sweetened beverages. CONCLUSION Long-term exposure to PM2.5, SO2, and O3 were associated with higher blood pressure levels in children, and dietary intake might modify these associations.
Collapse
|
47
|
Huang CC, Chen YH, Hung CS, Lee JK, Hsu TP, Wu HW, Chuang PY, Chen MF, Ho YL. The Association Between Short-term Exposure to Ambient Air Pollution and Patient-Level Home Blood Pressure Among Patients With Chronic Cardiovascular Diseases in a Web-Based Synchronous Telehealth Care Program: Retrospective Study. JMIR Public Health Surveill 2021; 7:e26605. [PMID: 34100764 PMCID: PMC8238492 DOI: 10.2196/26605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The association between short-term exposure to ambient air pollution and blood pressure has been inconsistent, as reported in the literature. OBJECTIVE This study aimed to investigate the relationship between short-term ambient air pollution exposure and patient-level home blood pressure (HBP). METHODS Patients with chronic cardiovascular diseases from a telehealth care program at a university-affiliated hospital were enrolled as the study population. HBP was measured by patients or their caregivers. Hourly meteorological data (including temperature, relative humidity, wind speed, and rainfall) and ambient air pollution monitoring data (including CO, NO2, particulate matter with a diameter of <10 µm, particulate matter with a diameter of <2.5 µm, and SO2) during the same time period were obtained from the Central Weather Bureau and the Environmental Protection Administration in Taiwan, respectively. A stepwise multivariate repeated generalized estimating equation model was used to assess the significant factors for predicting systolic and diastolic blood pressure (SBP and DBP). RESULTS A total of 253 patients and 110,715 HBP measurements were evaluated in this study. On multivariate analysis, demographic, clinical, meteorological factors, and air pollutants significantly affected the HBP (both SBP and DBP). All 5 air pollutants evaluated in this study showed a significant, nonlinear association with both home SBP and DBP. Compared with demographic and clinical factors, environmental factors (meteorological factors and air pollutants) played a minor yet significant role in the regulation of HBP. CONCLUSIONS Short-term exposure to ambient air pollution significantly affects HBP in patients with chronic cardiovascular disease.
Collapse
Affiliation(s)
- Ching-Chang Huang
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Hsien Chen
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Sheng Hung
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Kuang Lee
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tse-Pin Hsu
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Wen Wu
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yu Chuang
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Fong Chen
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Lwun Ho
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
48
|
Liang B, He X, Du X, Liu X, Ma C. Effect of Air Quality on the Risk of Emergency Room Visits in Patients With Atrial Fibrillation. Front Cardiovasc Med 2021; 8:672745. [PMID: 34046441 PMCID: PMC8148017 DOI: 10.3389/fcvm.2021.672745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: We investigated the effect of particulate matter with aerodynamic diameter <2.5 μm (PM2.5) and meteorological conditions on the risk of emergency room visits in patients with atrial fibrillation (AF) in Beijing, which is considered as a monsoon climate region. Methods: In this case-crossover design study, medical records from patients with AF who visited the Critical Care Center in the Emergency Department of Anzhen Hospital from January 2011 through December 2014 and air quality and meteorological data of Beijing during the same period were collected and analyzed using Cox regression and time-series autocorrelation analyses. Results: A total of 8,241 patients were included. When the average PM2.5 concentration was >430 μg/m3, the risk of emergency room visits for patients with uncomplicated AF, AF combined with cardiac insufficiency, and AF combined with rheumatic heart disease increased by 12, 12, and 40%, respectively. When the average PM2.5 concentration was >420 μg/m3, patients with AF combined with diabetes mellitus had a 75% increased risk of emergency room visits, which was the largest increase in risk among all types of patients with AF. When the average PM2.5 concentration was >390 μg/m3, patients with AF combined with acute coronary syndrome had an approximately 30% increased risk of emergency room visits, which was the highest and fastest increase in risk among all types of patients with AF. The risk of emergency room visits for patients with AF was positively correlated with air quality as the time lag proceeded, with an autocorrelation coefficient of 0.223 between the risk of emergency room visits and air quality in patients with AF on day 6 of the time lag. Conclusion: Exposure to certain concentrations of PM2.5 in a monsoon climate region significantly increased the risk of emergency room visits in patients with AF.
Collapse
Affiliation(s)
- Bin Liang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaonan He
- Emergency Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Rankin GD, Kabéle M, Brown R, Macefield VG, Sandström T, Bosson JA. Acute Exposure to Diesel Exhaust Increases Muscle Sympathetic Nerve Activity in Humans. J Am Heart Assoc 2021; 10:e018448. [PMID: 33942621 PMCID: PMC8200707 DOI: 10.1161/jaha.120.018448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Diesel exhaust (DE) emissions are a major contributor to ambient air pollution and are strongly associated with cardiovascular morbidity and mortality. Exposure to traffic‐related particulate matter is linked with acute adverse cardiovascular events; however, the mechanisms are not fully understood. We examined the role of the autonomic nervous system during exposure to DE that has previously only been indirectly investigated. Methods and Results Using microneurography, we measured muscle sympathetic nerve activity (MSNA) directly in the peroneal nerve of 16 healthy individuals. MSNA, heart rate, and respiration were recorded while subjects rested breathing filtered air, filtered air with an exposure mask, and standardized diluted DE (300 µg/m3) through the exposure mask. Heart rate variability was assessed from an ECG. DE inhalation rapidly causes an increase in number of MSNA bursts as well as the size of bursts within 10 minutes, peaking by 30 minutes (P<0.001), compared with baseline filtered air with an exposure mask. No significant changes occurred in heart rate variability indices during DE exposure; however, MSNA frequency correlated negatively with total power (r2=0.294, P=0.03) and low frequency (r2=0.258, P=0.045). Heart rate correlated positively with MSNA frequency (r2=0.268, P=0.04) and the change in percentage of larger bursts (burst amplitude, height >50% of the maximum burst) from filtered air with an exposure mask (r2=0.368, P=0.013). Conclusions Our study provides direct evidence for the rapid modulation of the autonomic nervous system after exposure to DE, with an increase in MSNA. The quick increase in sympathetic outflow may explain the strong epidemiological data associating traffic‐related particulate matter to acute adverse cardiovascular events such as myocardial infarction. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02892279.
Collapse
Affiliation(s)
- Gregory D Rankin
- Department of Public Health and Clinical Medicine Section of Medicine/Respiratory Umeå University Umeå Sweden
| | - Mikael Kabéle
- Department of Public Health and Clinical Medicine Section of Medicine/Respiratory Umeå University Umeå Sweden
| | - Rachael Brown
- School of Medicine Western Sydney University Sydney NSW Australia
| | - Vaughan G Macefield
- Human Autonomic Neurophysiology Laboratory School of Medicine Baker Heart and Diabetes Institute Melbourne Vic. Australia.,Department of Physiology School of Biomedical Sciences The University of Melbourne Melbourne Vic. Australia
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine Section of Medicine/Respiratory Umeå University Umeå Sweden
| | - Jenny A Bosson
- Department of Public Health and Clinical Medicine Section of Medicine/Respiratory Umeå University Umeå Sweden
| |
Collapse
|
50
|
Huang M, Chen J, Yang Y, Yuan H, Huang Z, Lu Y. Effects of Ambient Air Pollution on Blood Pressure Among Children and Adolescents: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2021; 10:e017734. [PMID: 33942625 PMCID: PMC8200690 DOI: 10.1161/jaha.120.017734] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Previous studies have investigated the association of ambient air pollution with blood pressure (BP) in children and adolescents, however, the results are not consistent. We conducted a systematic review and meta‐analysis to assess the relationship between short‐term and long‐term ambient air pollutant exposure with BP values among children and adolescents. Methods and Results We searched PubMed, Web of Science, and Embase before September 6, 2020. Two reviewers independently searched and selected studies, extracted data, and assessed study quality. The studies were divided into groups by composition of air pollutants (NO2, particulate matter (PM) with diameter ≤10 μm or ≤2.5 μm) and length of exposure. The beta regression coefficients (β) and their 95% CIs were calculated to evaluate the strength of the effect with each 10 μg/m3 increase in air pollutants. Out of 36 650 articles, 14 articles were included in this meta‐analysis. The meta‐analysis showed short‐term exposure to PM with diameter ≤10 μm (β=0.267; 95% CI, 0.033‒0.501) was significantly associated with elevated systolic BP values. In addition, long‐term exposure to PM with diameter ≤2.5 μm (β=1.809; 95% CI, 0.962‒2.655), PM with diameter ≤10 μm (β=0.526; 95% CI, 0.095‒0.958), and NO2 (β=0.754; 95% CI, 0.541‒0.968) were associated with systolic BP values and long‐term exposure to PM with diameter ≤2.5 μm (β=0.931; 95% CI, 0.157‒1.705), and PM with diameter ≤10 μm (β=0.378; 95% CI, 0.022‒0.735) was associated with diastolic BP. Conclusions Our study indicates that both short‐term and long‐term exposure to some ambient air pollutants may increase BP values among children and adolescents.
Collapse
Affiliation(s)
- Miao Huang
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China
| | - Jingyuan Chen
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China
| | - Yiping Yang
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China
| | - Hong Yuan
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China.,National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology Changsha China
| | - Zhijun Huang
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China.,National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology Changsha China
| | - Yao Lu
- Center of Clinical Pharmacology The Third Xiangya Hospital, Central South University Changsha China.,National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology Changsha China.,Department of Life Science and Medicine King's College London London United Kingdom
| |
Collapse
|