1
|
Dąbrowska-Bouta B, Strużyńska L, Sidoryk-Węgrzynowicz M, Sulkowski G. Memantine Improves the Disturbed Glutamine and γ-Amino Butyric Acid Homeostasis in the Brain of Rats Subjected to Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2023; 24:13149. [PMID: 37685956 PMCID: PMC10488185 DOI: 10.3390/ijms241713149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Glutamine (Gln), glutamate (Glu), and γ-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocyte-derived Gln is the precursor for the two most important neurotransmitters in the central nervous system (CNS), which are the excitatory neurotransmitter Glu and the inhibitory neurotransmitter GABA. In addition to their roles in neurotransmission, these amino acids can be used as alternative substrates in brain metabolism that enable metabolic coupling between astrocytes and neurons in the glutamate-glutamine cycle (GGC). The disturbed homeostasis of these amino acids within the tripartite synapse may be involved in the pathogenesis of various neurological diseases. Interactions between astrocytes and neurons in terms of Gln, Glu, and GABA homeostasis were studied in different phases of experimental allergic encephalomyelitis (EAE) in Lewis rats. The results of the study showed a decrease in the transport (uptake and release) of Gln and GABA in both neuronal and astrocyte-derived fractions. These effects were fully or partially reversed when the EAE rats were treated with memantine, a NMDA receptor antagonist. Changes in the expression and activity of selected glutamine/glutamate metabolizing enzymes, such as glutamine synthase (GS) and phosphate-activated glutaminase (PAG), which were affected by memantine, were observed in different phases of EAE. The results suggested perturbed homeostasis of Gln, Glu, and GABA during EAE, which may indicate alterations in neuron-astrocyte coupling and dysfunction of the tripartite synapse. Memantine appears to partially regulate the disturbed relationships between Gln, Glu, and GABA.
Collapse
Affiliation(s)
| | | | | | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland; (B.D.-B.); (L.S.); (M.S.-W.)
| |
Collapse
|
2
|
Ryrfeldt Å, Hansson E, Brattsand R. Effects of Budesonide and Dexamethasone on Cell Morphology, Thymidine Incorporation and Glutamine Synthetase Activity in Rat Primary Astroglial Culture. Altern Lab Anim 2020. [DOI: 10.1177/026119298901600310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucocorticoids are widely used in medical practice. Since astrocytes are target cells for glucocorticoids, the effects of two glucocorticoids, budesonide and dexamethasone, on cell morphology, thymidine incorporation into DNA and glutamine synthetase (GS) activity, were evaluated in primary astroglial cultures. Both budesonide and dexamethasone caused a threefold increase in GS activity over a dose range of 10-6–10-9M. There were no differences between the effects of the two glucocorticoids. No morphological changes were obtained with the glucocorticoids with the same concentration range as above and with incubation periods of up to 48 hours. Nor were any effects on [3H]-thymidine incorporation observed. It is concluded that glucocorticoids can regulate intracellular amino acid metabolism in astrocytes by an activation of GS, while cell morphology and cell replication appear not to be affected.
Collapse
Affiliation(s)
- Åke Ryrfeldt
- Safety Assessment, AB Astra, S-151 85 Södertälje, Sweden
| | - Elisabeth Hansson
- Institute of Neurobiology, University of Göteborg, P.O. Box 33031, S-400 33 Göteborg, Sweden
| | | |
Collapse
|
3
|
Sandström J, Kratschmar DV, Broyer A, Poirot O, Marbet P, Chantong B, Zufferey F, Dos Santos T, Boccard J, Chrast R, Odermatt A, Monnet-Tschudi F. In vitro models to study insulin and glucocorticoids modulation of trimethyltin (TMT)-induced neuroinflammation and neurodegeneration, and in vivo validation in db/db mice. Arch Toxicol 2019; 93:1649-1664. [PMID: 30993381 DOI: 10.1007/s00204-019-02455-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
Brain susceptibility to a neurotoxic insult may be increased in a compromised health status, such as metabolic syndrome. Both metabolic syndrome and exposure to trimethyltin (TMT) are known to promote neurodegeneration. In combination the two factors may elicit additive or compensatory/regulatory mechanisms. Combined effects of TMT exposure (0.5-1 μM) and mimicked metabolic syndrome-through modulation of insulin and glucocorticoid (GC) levels-were investigated in three models: tridimensional rat brain cell cultures for neuron-glia effects; murine microglial cell line BV-2 for a mechanistic analysis of microglial reactivity; and db/db mice as an in vivo model of metabolic syndrome. In 3D cultures, low insulin condition significantly exacerbated TMT's effect on GABAergic neurons and promoted TMT-induced neuroinflammation, with increased expression of cytokines and of the regulator of intracellular GC activity, 11β-hydroxysteroid dehydrogenase 1 (11β-Hsd1). Microglial reactivity increased upon TMT exposure in medium combining low insulin and high GC. These results were corroborated in BV-2 microglial cells where lack of insulin exacerbated the TMT-induced increase in 11β-Hsd1 expression. Furthermore, TMT-induced microglial reactivity seems to depend on mineralocorticoid receptor activation. In diabetic BKS db mice, a discrete exacerbation of TMT neurotoxic effects on GABAergic neurons was observed, together with an increase of interleukin-6 (IL-6) and of basal 11β-Hsd1 expression as compared to controls. These results suggest only minor additive effects of the two brain insults, neurotoxicant TMT exposure and metabolic syndrome conditions, where 11β-Hsd1 appears to play a key role in the regulation of neuroinflammation and of its protective or neurodegenerative consequences.
Collapse
Affiliation(s)
- Jenny Sandström
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Alexandra Broyer
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland
| | - Olivier Poirot
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Philippe Marbet
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Boonrat Chantong
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fanny Zufferey
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Tania Dos Santos
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland
| | - Julien Boccard
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Florianne Monnet-Tschudi
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland. .,Swiss Centre for Applied Human Toxicology, Basel, Switzerland.
| |
Collapse
|
4
|
Potential mechanisms of development-dependent adverse effects of the herbicide paraquat in 3D rat brain cell cultures. Neurotoxicology 2017; 60:116-124. [PMID: 28467894 DOI: 10.1016/j.neuro.2017.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/23/2022]
Abstract
Exposure to environmental toxicants during vulnerable windows of brain development is suspected to raise the prevalence for neurological dysfunctions at later stages in life. Differentiation processes and changes in morphology, as well as a lack of physiological barriers, might be reasons that render a developing brain more susceptible to neurotoxicants than an adult. However, also the intrinsic capacity of cells to combat toxicant induced cellular stress might differ between the immature- and mature brain. In order to study whether this intrinsic protection capacity differs between immature and maturated brain cells we chose to study the maturation-dependent adverse effects of the known neurotoxicant Paraquat Dichloride (PQ) in 3D rat brain cell cultures. This in vitro system consists of the major brain cell types - neurons, astrocytes, oligodendrocytes and microglia - and over the time in vitro cultured cells undergo differentiation and maturation into a tissue-like organization. PQ was applied repeatedly over ten days in the sub-micromolar range, and effects were evaluated on neurons and glial cells. We observed that despite a higher PQ-uptake in mature cultures, PQ-induced adverse effects on glutamatergic-, GABAergic- and dopaminergic neurons, as assessed by gene expression and enzymatic activity, were more pronounced in immature cultures. This was associated with a stronger astrogliosis in immature- as compared to mature cultures, as well as perturbations of the glutathione-mediated defense against oxidative stress. Furthermore we observed evidence of microglial activation only in mature cultures, whereas immature cultures appeared to down-regulate markers for neuroprotective M2-microglial phenotype upon PQ-exposure. Taken together our results indicate that immature brain cell cultures have less intrinsic capacity to cope with cellular stress elicited by PQ as compared to mature cells. This may render immature brain cells more susceptible to the adverse effects of PQ.
Collapse
|
5
|
Cudré-Cung HP, Zavadakova P, do Vale-Pereira S, Remacle N, Henry H, Ivanisevic J, Tavel D, Braissant O, Ballhausen D. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab 2016; 119:57-67. [PMID: 27599447 DOI: 10.1016/j.ymgme.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 01/09/2023]
Abstract
Using 3D organotypic rat brain cell cultures in aggregates we recently identified 2-methylcitrate (2-MCA) as the main toxic metabolite for developing brain cells in methylmalonic aciduria. Exposure to 2-MCA triggered morphological changes and apoptosis of brain cells. This was accompanied by increased ammonium and decreased glutamine levels. However, the sequence and causal relationship between these phenomena remained unclear. To understand the sequence and time course of pathogenic events, we exposed 3D rat brain cell aggregates to different concentrations of 2-MCA (0.1, 0.33 and 1.0mM) from day in vitro (DIV) 11 to 14. Aggregates were harvested at different time points from DIV 12 to 19. We compared the effects of a single dose of 1mM 2-MCA administered on DIV 11 to the effects of repeated doses of 1mM 2-MCA. Pan-caspase inhibitors Z-VAD FMK or Q-VD-OPh were used to block apoptosis. Ammonium accumulation in the culture medium started within few hours after the first 2-MCA exposure. Morphological changes of the developing brain cells were already visible after 17h. The highest rate of cleaved caspase-3 was observed after 72h. A dose-response relationship was observed for all effects. Surprisingly, a single dose of 1mM 2-MCA was sufficient to induce all of the biochemical and morphological changes in this model. 2-MCA-induced ammonium accumulation and morphological changes were not prevented by concomitant treatment of the cultures with pan-caspase inhibitors Z-VAD FMK or Q-VD-OPh: ammonium increased rapidly after a single 1mM 2-MCA administration even after apoptosis blockade. We conclude that following exposure to 2-MCA, ammonium production in brain cell cultures is an early phenomenon, preceding cell degeneration and apoptosis, and may actually be the cause of the other changes observed. The fact that a single dose of 1mM 2-MCA is sufficient to induce deleterious effects over several days highlights the potential damaging effects of even short-lasting metabolic decompensations in children affected by methylmalonic aciduria.
Collapse
Affiliation(s)
| | - Petra Zavadakova
- Center of Molecular Diseases, Lausanne University Hospital, Switzerland
| | | | - Noémie Remacle
- Center of Molecular Diseases, Lausanne University Hospital, Switzerland
| | - Hugues Henry
- Biomedicine, Innovation & Development, Lausanne University Hospital, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Research Platform, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Denise Tavel
- Department of Physiology, Lausanne University, Switzerland
| | | | - Diana Ballhausen
- Center of Molecular Diseases, Lausanne University Hospital, Switzerland.
| |
Collapse
|
6
|
Sandström von Tobel J, Zoia D, Althaus J, Antinori P, Mermoud J, Pak HS, Scherl A, Monnet-Tschudi F. Immediate and delayed effects of subchronic Paraquat exposure during an early differentiation stage in 3D-rat brain cell cultures. Toxicol Lett 2014; 230:188-97. [DOI: 10.1016/j.toxlet.2014.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 11/28/2022]
|
7
|
Zurich MG, Monnet-Tschudi F, Bérode M, Honegger P. Lead acetate toxicity in vitro: Dependence on the cell composition of the cultures. Toxicol In Vitro 2012; 12:191-6. [PMID: 20654400 DOI: 10.1016/s0887-2333(97)00089-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/1997] [Indexed: 11/30/2022]
Abstract
It is well known that exposure to low doses of lead causes long-lasting neurobehavioural deficits, but the cellular changes underlying these behavioural changes remain to be elucidated. A protective role of glial cells on neurons through lead sequestration by astrocytes has been proposed. The possible modulation of lead neurotoxicity by neuron-glia interactions was examined in three-dimensional cultures of foetal rat telencephalon. Mixed-brain cell cultures or cultures enriched in either neurons or glial cells were treated for 10 days with lead acetate (10(-6) m), a concentration below the limit of cytotoxicity. Intracellular lead content and cell type-specific enzyme activities were determined. It was found that in enriched cultures neurons stored more lead than glial cells, and each cell type alone stored more lead than in co-culture. Moreover, glial cells but not neurons were more affected by lead in enriched culture than in co-culture. These results show that neuron-glia interactions attenuate the cellular lead uptake and the glial susceptibility to lead, but they do not support the idea of a protective role of astrocytes.
Collapse
Affiliation(s)
- M G Zurich
- Institute of Physiology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
8
|
Mongin AA, Hyzinski-García MC, Vincent MY, Keller RW. A simple method for measuring intracellular activities of glutamine synthetase and glutaminase in glial cells. Am J Physiol Cell Physiol 2011; 301:C814-22. [PMID: 21734190 DOI: 10.1152/ajpcell.00035.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report and validate a simple method for measuring intracellular activities of glial glutamine synthetase (GS) and glutaminase (GLNase) in intact glial cells. These enzymes are responsible for glutamate and glutamine recycling in the brain, where glutamate and glutamine transport from the blood stream is strongly limited by the blood-brain barrier. The intracellular levels of glutamate and glutamine are dependent on activities of numerous enzymatic processes, including 1) cytosolic production of glutamine from glutamate by GS, 2) production of glutamate from glutamine by GLNase that is primarily localized between mitochondrial membranes, and 3) mitochondrial conversion of glutamate to the tricarboxylic cycle intermediate α-ketoglutarate in the reactions of oxidative deamination and transamination. We measured intracellular activities of GS and GLNase by quantifying enzymatic interconversions of L-[(3)H]glutamate and L-[(3)H]glutamine in cultured rat astrocytes. The intracellular substrate and the products of enzymatic reactions were separated in one step using commercially available anion exchange columns and quantified using a scintillation counter. The involvement of GS and GLNase in the conversion of (3)H-labeled substrates was verified using irreversible pharmacological inhibitors for each of the enzymes and additionally validated by measuring intracellular amino acid levels using an HPLC. Overall, this paper describes optimized conditions and pharmacological controls for measuring GS and GLNase activities in intact glial cells.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | | | | | |
Collapse
|
9
|
Cagnon L, Braissant O. Role of caspases, calpain and cdk5 in ammonia-induced cell death in developing brain cells. Neurobiol Dis 2008; 32:281-92. [PMID: 18722528 DOI: 10.1016/j.nbd.2008.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/23/2008] [Accepted: 07/14/2008] [Indexed: 11/26/2022] Open
Abstract
Hyperammonemia in neonates and infants causes irreversible damages in the developing CNS due to brain cell loss. Elucidating the mechanisms triggering ammonia-induced cell death in CNS is necessary for the development of neuroprotective strategies. We used reaggregated developing brain cell cultures derived from fetal rat telencephalon exposed to ammonia as an experimental model. Ammonia induced neuronal and oligodendroglial death, triggered apoptosis and activated caspases and calpain. Probably due to calpain activation, ammonia caused the cleavage of the cyclin-dependent kinase 5 activator, p35, to p25, the cdk5/p25 complex being known to lead to neurodegeneration. Roscovitine, a cdk5 inhibitor, protected neurons from ammonia-induced cell death. However, roscovitine also impaired axonal growth, probably through inhibition of the remaining cdk5/p35 activity, which is involved in neurite outgrowth. Thus, cdk5 appears as a promising therapeutic target for treating hyperammonemic newborns and infants, especially if one develops specific cdk5/p25 inhibitors.
Collapse
Affiliation(s)
- Laurène Cagnon
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | | |
Collapse
|
10
|
Monnet-Tschudi F, Hazekamp A, Perret N, Zurich MG, Mangin P, Giroud C, Honegger P. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures. Toxicol Appl Pharmacol 2008; 228:8-16. [DOI: 10.1016/j.taap.2007.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/28/2007] [Accepted: 11/07/2007] [Indexed: 11/27/2022]
|
11
|
Zurich MG, Lengacher S, Braissant O, Monnet-Tschudi F, Pellerin L, Honegger P. Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience 2005; 134:771-82. [PMID: 15994020 DOI: 10.1016/j.neuroscience.2005.04.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Revised: 02/21/2005] [Accepted: 04/13/2005] [Indexed: 11/26/2022]
Abstract
Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.
Collapse
Affiliation(s)
- M-G Zurich
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, CH-1005 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
12
|
Rotoli BM, Uggeri J, Dall'Asta V, Visigalli R, Barilli A, Gatti R, Orlandini G, Gazzola GC, Bussolati O. Inhibition of glutamine synthetase triggers apoptosis in asparaginase-resistant cells. Cell Physiol Biochem 2005; 15:281-92. [PMID: 16037693 DOI: 10.1159/000087238] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2005] [Indexed: 11/19/2022] Open
Abstract
The resistance to L-asparaginase (ASNase) has been associated to the overexpression of asparagine synthetase (AS), although the role played by other metabolic adaptations has not been yet defined. Both in ASNase-sensitive Jensen rat sarcoma cells and in ARJ cells, their ASNase-resistant counterparts endowed with a five-fold increased AS activity, ASNase treatment rapidly depletes intracellular asparagine. Under these conditions, cell glutamine is also severely reduced and the activity of glutamine synthetase (GS) is very low. After 24 h of treatment, while sensitive cells have undergone massive apoptosis, ARJ cells exhibit a marked increase in GS activity, associated with overexpression of GS protein but not of GS mRNA, and a partial restoration of glutamine and asparagine. However, when ARJ cells are treated with both ASNase and L-methionine-sulfoximine (MSO), an inhibitor of GS, no restoration of cell amino acids occurs and the cell population undergoes a typical apoptosis. No toxicity is observed upon MSO treatment in the absence of ASNase. The effects of MSO are not referable to depletion of cell glutathione or inhibition of AS. These findings indicate that, in the presence of ASNase, the inhibition of GS triggers apoptosis. GS may thus constitute a target for the suppression of ASNase-resistant phenotypes.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Units of General and Clinical Pathology, Department of Experimental Medicine, Universita degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zurich MG, Honegger P, Schilter B, Costa LG, Monnet-Tschudi F. Involvement of glial cells in the neurotoxicity of parathion and chlorpyrifos. Toxicol Appl Pharmacol 2004; 201:97-104. [PMID: 15541749 DOI: 10.1016/j.taap.2004.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Accepted: 05/03/2004] [Indexed: 11/15/2022]
Abstract
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to investigate the influence of glial cells on the neurotoxicity of two organophosphorus pesticides (OPs), chlorpyrifos and parathion. Mixed-cell aggregate cultures were treated continuously for 10 days between DIV 5 and 15. Parathion induced astrogliosis at concentration at which MAP-2 immunostaining, found here to be more sensitive than neuron-specific enzyme activities, was not affected. In contrast, chlorpyrifos induced a comparatively weak gliotic reaction, and only at concentrations at which neurons were already affected. After similar treatments, increased neurotoxicity of parathion and chlorpyrifos was found in aggregate cultures deprived of glial cells. These results suggest that glial cells provide neuroprotection against OPs toxicity. To address the question of the difference in toxicity between parathion and chlorpyrifos, the toxic effects of their leaving groups, p-nitrophenol and trichloropyridinol, were studied in mixed-cell aggregates. General cytotoxicity was more pronounced for trichloropyridinol and both compounds had similar toxic effects on neuron-specific enzyme activities. In contrast, trichloropyridinol induced a much stronger decrease in glutamine synthetase activity, the enzymatic marker of astrocytes. Trichloropyridinol may exert a toxic effect on astrocytes, compromising their neuroprotective function, thus exacerbating the neurotoxicity of chlorpyrifos. This is in line with the suggestion that glial cells may contribute to OPs neurotoxicity, and with the view that OPs may exert their neurotoxic effects through different mechanisms.
Collapse
Affiliation(s)
- M-G Zurich
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
14
|
Irino T, Kitoh T, Koami K, Kashima T, Mukai K, Takeuchi E, Hongo T, Nakahata T, Schuster SM, Osaka M. Establishment of real-time polymerase chain reaction method for quantitative analysis of asparagine synthetase expression. J Mol Diagn 2004; 6:217-24. [PMID: 15269298 PMCID: PMC1867639 DOI: 10.1016/s1525-1578(10)60513-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2004] [Indexed: 10/18/2022] Open
Abstract
We established a real-time quantitative PCR (RQ-PCR) with which to measure abundance of the asparagine synthetase (AS) mRNA. The level of AS mRNA paralleled AS enzyme activity, as well as the AS protein level detected by Western blotting and by in situ immunostaining. Cytotoxicity tests in vitro showed that the AS mRNA level also synchronized with cellular resistance to L-asparaginase in cell lines. Cellular levels of AS enzyme activity correlated with resistance to L-asparaginase. These results indicate that the AS mRNA level is an index of resistance to L-asparaginase. RQ-PCR is superior to enzyme assays, Western blotting, and immunostaining in the following ways: less labor and time, accurate and reproducible quantitativity, and broad dynamic range. In addition, RQ-PCR could evaluate differences in L-asparaginase sensitivity although immunostaining could not. And in clinical samples, we analyzed eight pediatric leukemia cases by this RQ-PCR to evaluate whether this method was applicable to clinical laboratories and the expression level of AS mRNA in each case were predictable for the effectiveness of L-asparaginase treatment. Consequently, this method was useful enough in defining candidates for selective therapy that targets an AS deficiency.
Collapse
Affiliation(s)
- Tamotsu Irino
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama 524-0022, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zurich MG, Eskes C, Honegger P, Bérode M, Monnet-Tschudi F. Maturation-dependent neurotoxicity of lead acetate in vitro: implication of glial reactions. J Neurosci Res 2002; 70:108-16. [PMID: 12237869 DOI: 10.1002/jnr.10367] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite a wealth of data on the neurotoxic effects of lead at the cellular and molecular levels, the reasons for its development-dependent neurotoxicity are still unclear. Here, the maturation-dependent effects of lead acetate were analyzed in immature and differentiated brain cells cultured in aggregates. Markers of general cytotoxicity as well as cell-type-specific markers of glial and neuronal cells showed that immature brain cells were more sensitive to lead than the differentiated counterparts, demonstrating that the development-dependent neurotoxicity of lead can be reproduced in aggregating brain cell cultures. After 10 days of treatment, astrocytes were found to be more affected by lead acetate than neurons in immature cultures, and microglial cells were strongly activated. Eleven days after cessation of the treatment, lead acetate caused a partial loss of astrocytes and an intense reactivity of the remaining ones. Furthermore, microglial cells expressed a macrophagic phenotype, and the loss of activity of neuron-specific enzymes was aggravated. In differentiated cultures, no reactive gliosis was found. It is hypothetized that the intense glial reactions (microgliosis and astrogliosis) observed in immature cultures contribute to the development-dependent neurotoxicity of lead.
Collapse
|
16
|
Abstract
We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Molecular and Cellular Physiology, University of Cincinnati, OH 45267, USA
| | | |
Collapse
|
17
|
Monnet-Tschudi F, Zurich MG, Schilter B, Costa LG, Honegger P. Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol Appl Pharmacol 2000; 165:175-83. [PMID: 10873710 DOI: 10.1006/taap.2000.8934] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to study the maturation-dependent sensitivity of brain cells to two organophosphorus pesticides (OPs), chlorpyrifos and parathion, and to their oxon derivatives. Immature (DIV 5-15) or differentiated (DIV 25-35) brain cells were treated continuously for 10 days. Acetylcholinesterase (AChE) inhibitory potency for the OPs was compared to that of eserine (physostigmine), a reversible AChE inhibitor. Oxon derivatives were more potent AChE inhibitors than the parent compounds, and parathion was more potent than chlorpyrifos. No maturation-dependent differences for AChE inhibition were found for chlorpyrifos and eserine, whereas for parathion and paraoxon there was a tendency to be more effective in immature cultures, while the opposite was true for chlorpyrifos-oxon. Toxic effects, assessed by measuring protein content as an index of general cytotoxicity, and various enzyme activities as cell-type-specific neuronal and glial markers (ChAT and GAD, for cholinergic and GABAergic neurons, respectively, and GS and CNP, for astrocytes and oligodendrocytes, respectively) were only found at more than 70% of AChE inhibition. Immature compared to differentiated cholinergic neurons appeared to be more sensitive to OP treatments. The oxon derivates were found to be more toxic on neurons than the parent compounds, and chlorpyrifos was more toxic than parathion. Eserine was not neurotoxic. These results indicate that inhibition of AChE remains the most sensitive macromolecular target of OP exposure, since toxic effects were found at concentrations in which AChE was inhibited. Furthermore, the compound-specific reactions, the differential pattern of toxicity of OPs compared to eserine, and the higher sensitivity of immature brain cells suggest that the toxic effects and inhibition of AChE are unrelated.
Collapse
|
18
|
Pardo B, Honegger P. Differentiation of rat striatal embryonic stem cells in vitro: monolayer culture vs. three-dimensional coculture with differentiated brain cells. J Neurosci Res 2000; 59:504-12. [PMID: 10679789 DOI: 10.1002/(sici)1097-4547(20000215)59:4<504::aid-jnr5>3.0.co;2-n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several groups have demonstrated the existence of self-renewing stem cells in embryonic and adult mouse brain. In vitro, these cells proliferate in response to epidermal growth factor, forming clusters of nestin-positive cells that may be dissociated and subcultured repetitively. Here we show that, in stem cell clusters derived from rat embryonic striatum, cell proliferation decreased with increasing number of passages and in response to elevated concentrations of potassium (30 mM KCl). In monolayer culture, the appearance of microtubule-associated protein type-5-immunoreactive (MAP-5(+)) cells (presumptive neurons) in response to basic fibroblast growth factor (bFGF) was reduced at low cell density and with increasing number of passages. In the presence of bFGF, elevated potassium caused a more differentiated neuronal phenotype, characterized by an increased proportion of MAP-5(+) cells, extensive neuritic branching, and higher specific activity of glutamic acid decarboxylase. Dissociated stem cells were able to invade cultured brain cell aggregates containing different proportions of neurons and glial cells, whereas they required the presence of a considerable proportion of glial cells in the host cultures to become neurofilament H-positive. The latter observation supports the view that astrocyte-derived factors influence early differentiation of the neuronal cell lineage.
Collapse
Affiliation(s)
- B Pardo
- Institute of Physiology, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
19
|
|
20
|
Pardo B, Honegger P. Aggregating Brain Cell Cultures as a Model to Study Ischaemia-induced Neurodegeneration. Toxicol In Vitro 1999; 13:543-7. [PMID: 20654513 DOI: 10.1016/s0887-2333(99)00033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.
Collapse
Affiliation(s)
- B Pardo
- Institute of Physiology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
21
|
Pardo B, Honegger P. High sensitivity of immature GABAergic neurons to blockers of voltage-gated calcium channels. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 115:9-16. [PMID: 10366697 DOI: 10.1016/s0165-3806(99)00040-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The involvement of voltage-gated calcium channels in the survival of immature CNS neurons was studied in aggregating brain cell cultures by examining cell type-specific effects of various channel blockers. Nifedipine (10 microM), a specific blocker of L-type calcium channels, caused a pronounced and irreversible decrease of glutamic acid decarboxylase activity, whereas the activity of choline acetyltransferase was significantly less affected. Flunarizine (1-10 microM, a relatively unspecific ion channel blocker) elicited similar effects, that were attenuated by NMDA. The glia-specific marker enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase, were affected only after treatment with high concentrations of nifedipine (50 microM) or NiCl2 (100 microM, shown to block T-type calcium channels). Nifedipine (50 microM), NiCl2 (100 microM), and flunarizine (5 microM) also caused a significant increase in the soluble nucleosome concentration, indicating increased apoptotic cell death. This effect was prevented by cycloheximide (1 microM). Furthermore, the combined treatment with calcicludine (10 nM, blocking L-type calcium channels) and funnel-web spider toxin-3.3 (100 nM, blocking T-type channels) also caused a significant increase in free nucleosomes as well as a decrease in glutamic acid decarboxylase activity. In contrast, cell viability was not affected by peptide blockers specific for N-, P-, and/or Q-type calcium channels. Highly differentiated cultures showed diminished susceptibility to nifedipine and flunarizine. The present data suggest that the survival of immature neurons, and particularly that of immature GABAergic neurons, requires the sustained entry of Ca2+ through voltage-gated calcium channels.
Collapse
Affiliation(s)
- B Pardo
- Institute of Physiology, University of Lausanne, 7, rue du Bugnon, CH-1005, Lausanne, Switzerland.
| | | |
Collapse
|
22
|
Fraser CM, Sills GJ, Forrest G, Thompson GG, Brodie MJ. Effects of anti-epileptic drugs on glutamine synthetase activity in mouse brain. Br J Pharmacol 1999; 126:1634-8. [PMID: 10323596 PMCID: PMC1565942 DOI: 10.1038/sj.bjp.0702472] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1998] [Accepted: 01/19/1999] [Indexed: 11/09/2022] Open
Abstract
1. Glutamine synthetase (GS) is a key enzyme in the regulation of glutamate neurotransmission in the central nervous system. It is responsible for the conversion of glutamate to glutamine, and for the detoxification of ammonia. 2. We have investigated the effects of single and repeated intraperitoneal administration of a range of established and new anti-epileptic drugs on GS activity in mouse brain. 3. Four hours after the final dose, animals were sacrificed and the brains removed for analysis of GS activity. 4. Both single and repeated doses of phenytoin and carbamazepine were found to reduce enzyme activity (P<0.05). 5. Single doses of phenobarbitone, felbamate and topiramate were without effect, however repeated administration of these drugs dose-dependently reduced GS activity (P<0.05). 6. Single and repeated doses of sodium valproate, vigabatrin, lamotrigine, gabapentin, tiagabine, levetiracetam and desglycinyl-remacemide were found to have no effect on GS activity. 7. The reduction in enzyme activity demonstrated is unlikely to be related to the anti-epileptic actions of these drugs, but may contribute to their toxicity.
Collapse
Affiliation(s)
- Caroline M Fraser
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow G11 6NT
| | - Graeme J Sills
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow G11 6NT
| | - Gerard Forrest
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow G11 6NT
| | - George G Thompson
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow G11 6NT
| | - Martin J Brodie
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow G11 6NT
| |
Collapse
|
23
|
Pardo B, Honegger P. Selective neurodegeneration induced in rotation-mediated aggregate cell cultures by a transient switch to stationary culture conditions: a potential model to study ischemia-related pathogenic mechanisms. Brain Res 1999; 818:84-95. [PMID: 9914441 DOI: 10.1016/s0006-8993(98)01287-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Aggregating brain cell cultures at an advanced maturational stage (20-21 days in vitro) were subjected for 1-3 h to anaerobic (hypoxic) and/or stationary (ischemic) conditions. After restoration of the normal culture conditions, cell loss was estimated by measuring the release of lactate dehydrogenase as well as the irreversible decrease of cell type-specific enzyme activities, total protein and DNA content. Ischemia for 2 h induced significant neuronal cell death. Hypoxia combined with ischemia affected both neuronal and glial cells to different degrees (GABAergic neurons>cholinergic neurons>astrocytes). Hypoxic and ischemic conditions greatly stimulated the uptake of 2-deoxy-D-glucose, indicating increased glucose consumption. Furthermore, glucose restriction (5.5 mM instead of 25 mM) dramatically increased the susceptibility of neuronal and glial cells to hypoxic and ischemic conditions. Glucose media concentrations below 2 mM caused selective neuronal cell death in otherwise normal culture conditions. GABAergic neurons showed a particularly high sensitivity to glucose restriction, hypoxia, and ischemia. The pattern of ischemia-induced changes in vitro showed many similarities to in vivo findings, suggesting that aggregating brain cell cultures provide a useful in vitro model to study pathogenic mechanisms related to brain ischemia.
Collapse
Affiliation(s)
- B Pardo
- Institute of Physiology, University of Lausanne, Rue du Bugnon 7, CH-1005, Laussane, Switzerland
| | | |
Collapse
|
24
|
Minet R, Villie F, Marcollet M, Meynial-Denis D, Cynober L. Measurement of glutamine synthetase activity in rat muscle by a colorimetric assay. Clin Chim Acta 1997; 268:121-32. [PMID: 9495576 DOI: 10.1016/s0009-8981(97)00173-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase catalyses the formation of L-Gln from L-Glu and NH4+. This enzyme also exerts a glutamyl-transferase activity that produces gamma-glutamyl-hydroxamate from Gln and hydroxylamine. This gamma-glutamyl-transfer reaction can be used to determine glutamine synthetase activity by colorimetric assay. This method has never been applied to rat muscle. The aim of this work was to study and optimize the glutamine synthetase assay conditions in rat muscle. Enzyme activity was linear with time of incubation (30 min at 37 degrees C) and linear with enzyme concentration in the incubation medium. The method was specific. In addition, this assay correlated well with a radiometric assay (y = 0.76x + 340, where x and y are the glutamine synthetase activities measured by radiometry and colorimetry respectively; r = 0.94; P = 0.05). Finally, no glutamine synthetase activity was found in muscles of rats treated with methionine sulfoximine, an inhibitor of glutamine synthetase, and activity dramatically rose in muscles from rats treated with dexamethasone, an activator of glutamine synthetase (in extensor digitorum longus: 2717 +/- 54 nmol/min/g protein in dexamethasone-treated rats versus 1228 +/- 114 nmol/min/g protein in control rats, P < 0.0001). In conclusion, the method presented here is accurate and reliable for measurement of glutamine synthetase activity in muscles.
Collapse
Affiliation(s)
- R Minet
- Department of Biochemistry, Molecular Biology and Nutrition, Pharmacy School, Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
25
|
Pouly S, Storch M, Matthieu JM, Lassmann H, Monnet-Tschudi F, Honegger P. Demyelination induced by protein kinase C-activating tumor promoters in aggregating brain cell cultures. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970715)49:2<121::aid-jnr1>3.0.co;2-b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Monnet-Tschudi F, Zurich MG, Honegger P. Comparison of the developmental effects of two mercury compounds on glial cells and neurons in aggregate cultures of rat telencephalon. Brain Res 1996; 741:52-9. [PMID: 9001704 DOI: 10.1016/s0006-8993(96)00895-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.
Collapse
|
27
|
Beckett PR, Fiorotto ML, Davis TA, Reeds PJ. Corticosterone has independent effects on tissue maturation and growth in the suckling rat. Pediatr Res 1996; 39:395-400. [PMID: 8929857 DOI: 10.1203/00006450-199603000-00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glucocorticoids are associated with reduced weight gain when used to improve pulmonary function in premature infants. However, tissue maturation is stimulated during normal development by an increase in serum glucocorticoids. We evaluated the effects of glucocorticoid treatment on tissue weight gain and the activity of specific enzymes in the suckling rat, with the hypothesis that these processes are independently regulated. Before the ontogenic surge in corticosterone, 6-d-old rat pups were implanted with a pellet to release corticosterone continuously at 0 (placebo), 48, 120, 240, or 360 micro g/d. We killed the pups at 7, 9, or 12 d of age and measured tissue weights and activities of sucrase and glutamine synthetase. Serum corticosterone concentrations were elevated with dose. Tissue weight gain was proportional to ln(e) serum corticosterone at all ages. In contrast, enzyme indices of tissue maturation did not respond to corticosterone until d9. Also, intestinal tissue was more sensitive than muscle to the effects of corticosterone on weight but less sensitive to its effects on maturation. We conclude that the immediate response, in terms of weight versus the delayed response of the enzymes and their reciprocal sensitivity in muscle and gut, indicates that these processes are independently regulated.
Collapse
Affiliation(s)
- P R Beckett
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
28
|
Krajnc D, Neff NH, Hadjiconstantinou M. Glutamate, glutamine and glutamine synthetase in the neonatal rat brain following hypoxia. Brain Res 1996; 707:134-7. [PMID: 8866724 DOI: 10.1016/0006-8993(95)01372-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exposing 7-day-old rat pups to hypoxia, 8% oxygen/92% nitrogen, for 3 h alters glutamate (GLU), glutamine and glutamine synthetase (GS) activity in the striatum, frontal cortex and hippocampus. Immediately following the hypoxic insult there is a rapid transient elevation of GLU followed by a fall and then recovery to control values within 6 h. Glutamine content initially decreased after the termination of the insult, rose thereafter and approached control values within 6 h. GS activity was depressed after hypoxia and gradually returned to normal levels within 6 h. GS mRNA was increased in the three brain regions studied after hypoxia and returned to control values within 24 h. These results suggest that hypoxia alters GLU metabolism in the immature brain.
Collapse
Affiliation(s)
- D Krajnc
- Department of Psychiatry, Ohio State University College of Medicine, Colombus 43210, USA
| | | | | |
Collapse
|
29
|
Schilter B, Nöldner M, Chatterjee S, Honegger P. Anticonvulsant drug toxicity in rat brain cell aggregate cultures. Toxicol In Vitro 1995; 9:381-6. [DOI: 10.1016/0887-2333(95)00027-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Honegger P, Schilter B. The Use of Serum-Free Aggregating Brain Cell Cultures in Neurotoxicology. Neurotoxicology 1995. [DOI: 10.1016/b978-012168055-8/50037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
31
|
Passaquin AC, Schreier WA, de Vellis J. Gene expression in astrocytes is affected by subculture. Int J Dev Neurosci 1994; 12:363-72. [PMID: 7526608 DOI: 10.1016/0736-5748(94)90086-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have investigated the effects of cell passaging and time in culture on astrocyte morphology, transferrin expression and the expression of two main astrocyte markers, glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS: EC 6.3.1.2). When primary astrocytes were subcultured, giving rise to secondary and tertiary cultures, their morphology changed, regardless of the split ratio used to passage the cells. Correlating with this morphological change, a dramatic increase in the accumulation of GFAP and GS mRNAs was observed after cells had been passaged. This effect was in marked contrast to the moderate increase in the levels of GFAP and GS mRNAs observed over several weeks in primary culture. Hydrocortisone induction of GS gene expression was not affected by cell passage. Transferrin mRNA, which is not normally found in astrocytes in vivo, was expressed at a high level in primary cultures of astrocytes. However, transferring mRNA almost completely disappeared after the second passage. Astrocyte-conditioned media, or co-cultures with oligodendrocytes, modified transferrin gene expression. Taken together, these results show that subculturing of primary rat astrocytes leads to a dramatic change in the genetic expression of several proteins and provides a new approach to modify astrocyte differentiation in vitro.
Collapse
Affiliation(s)
- A C Passaquin
- Department of Anatomy and Cell Biology, University of California, Los Angeles 90024
| | | | | |
Collapse
|
32
|
Loughlin AJ, Honegger P, Woodroofe MN, Comte V, Matthieu JM, Cuzner ML. Myelin basic protein content of aggregating rat brain cell cultures treated with cytokines and/or demyelinating antibody: effects of macrophage enrichment. J Neurosci Res 1994; 37:647-53. [PMID: 7518010 DOI: 10.1002/jnr.490370512] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The demyelinative potential of the cytokines interleukin-1 alpha (IL-1 alpha), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) has been investigated in myelinating aggregate brain cell cultures. Treatment of myelinated cultures with these cytokines resulted in a reduction in myelin basic protein (MBP) content. This effect was additively increased by anti-myelin/oligodendrocyte glycoprotein (alpha-MOG) in the presence of complement. Qualitative immunocytochemistry demonstrated that peritoneal macrophages, added to the fetal telencephalon cell suspensions at the start of the culture period, successfully integrated into aggregate cultures. Supplementing the macrophage component of the cultures in this fashion resulted in increased accumulation of MBP. The effect of IFN-gamma on MBP content of cultures was not affected by the presence of macrophages in increased numbers.
Collapse
Affiliation(s)
- A J Loughlin
- Multiple Sclerosis Laboratory, Institute of Neurology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Kish SJ, Chang LJ, Dixon LM, Robitaille Y, DiStefano L. Cerebellar glutamate metabolizing enzymes in spinocerebellar ataxia type I. Metab Brain Dis 1994; 9:97-103. [PMID: 7914669 DOI: 10.1007/bf01996077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We measured the levels of three glutamate metabolizing enzymes, namely, glutamate dehydrogenase (GDH), aspartate aminotransferase (AAT), and glutamine synthetase (GS) in cerebellar and occipital cortices of nine patients with dominantly-inherited olivopontocerebellar atrophy (OPCA; spinocerebellar ataxia type I). As compared with the controls, mean GDH activities in cerebellar cortex of the OPCA patients were normal whereas levels of AAT (-17%) and the glial enzyme GS (-27%) were significantly reduced. No statistically significant changes were observed in occipital cortex, a morphologically unaffected brain area. We suggest that the decreased GS levels could reflect impaired capacity of astrocytes to metabolize glutamate which might contribute to the degenerative processes in OPCA cerebellum.
Collapse
Affiliation(s)
- S J Kish
- Human Neurochemical Pathology Lab, Clarke Institute of Psychiatry, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
34
|
Kelleher JA, Gregory GA, Chan PH. Effect of fructose-1,6-bisphosphate on glutamate uptake and glutamine synthetase activity in hypoxic astrocyte cultures. Neurochem Res 1994; 19:209-15. [PMID: 7910381 DOI: 10.1007/bf00966818] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Astrocytes are important in regulating the microenvironment of neurons both by catabolic and synthetic pathways. The glutamine synthetase (GS) activity observed in astrocytes affects neurons by removing toxic substances, NH3 and glutamate; and by providing an important neuronal substrate, glutamine. This glutamate cycle might play a critical role during periods of hypoxia and ischemia, when an increase in extracellular excitatory amino acids is observed. It was previously shown in our laboratory that fructose-1,6-bisphosphate (FBP) protected cortical astrocyte cultures from hypoxic insult and reduced ATP loss following a prolonged (18-30 hrs) hypoxia. In the present study we established the effects of FBP on the level of glutamate uptake and GS activity under normoxic and hypoxic conditions. Under normoxic conditions, [U-14C]glutamate uptake and glutamine production were independent of FBP treatment; whereas under hypoxic conditions, the initial increase in glutamate uptake and an overall increase in glutamine production in astrocytes were FBP-dependent. Glutamine synthetase activity was dependent on FBP added during the 22 hours of either normoxic- or hypoxic-treatment, hence significant increases in activity were observed due to FBP regardless of the oxygen/ATP levels in situ. These studies suggest that activation of GS by FBP may provide astrocytic protection against hypoxic injury.
Collapse
Affiliation(s)
- J A Kelleher
- Department of Neurology, School of Medicine, University of California, San Francisco 94143-0114
| | | | | |
Collapse
|
35
|
Chatterjee SS, Nöldner M. An aggregate brain cell culture model for studying neuronal degeneration and regeneration. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 44:47-60. [PMID: 7897399 DOI: 10.1007/978-3-7091-9350-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rotation-mediated aggregating cell cultures from fetal rat telencephalons containing glial and neuronal cells mature in a fashion comparable to that known to occur in brain in vivo. Large aggregates of 300-500 microM diameters can now reproducibly be cultivated and maintained for more than 40 days in a well defined serum free medium. Validity of the use of such cultures for in vitro studies of various physiological, pharmacological and toxicological phenomenon has already been demonstrated. In this communication some observations suggesting the usefulness of such cultures for pharmacological studies clarifying the possible effects of drugs and other agents on excitatory amino acid induced pathological processes will be presented. The advantages and limitations of the use of aggregated brain cell culture based models for the development of agents potentially useful for the treatment of aging and dementia will also be discussed.
Collapse
Affiliation(s)
- S S Chatterjee
- Department of Pharmacology, Dr. Willmar Schwabe Arzneimittel, Karlsruhe-Durlach, Federal Republic of Germany
| | | |
Collapse
|
36
|
Low SY, Salter M, Knowles RG, Pogson CI, Rennie MJ. A quantitative analysis of the control of glutamine catabolism in rat liver cells. Use of selective inhibitors. Biochem J 1993; 295 ( Pt 2):617-24. [PMID: 8240266 PMCID: PMC1134926 DOI: 10.1042/bj2950617] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. At a physiological concentration of glutamine (0.5 mM), 87% of the total transport across the plasma membrane of liver cells isolated from fed rats involved the Na(+)-dependent system N; this was substantially inhibited by L-histidine. The residual Na(+)-independent component was attributed to system L on the basis of inhibition by 2-amino-2-norbornanecarboxylate and L-tryptophan. 2. Catabolism of glutamine by intact liver cells or by isolated mitochondria was inhibited by glutamate gamma-hydrazide with IC50 values of 13.7 +/- 3.5 microM and 22.6 +/- 3.8 microM respectively and a maximal inhibition of approx. 75%. The site of inhibition was identified as glutaminase; glutamate gamma-hydrazide inhibited this enzyme in cell-free extracts (IC50 37.8 +/- 7.7 microM) but had no activity against glutamate dehydrogenase or transport of glutamine, whether across mitochondrial or plasma membranes. 3. The major control site in cells from fed animals incubated with 0.5 mM L-glutamine was glutaminase (flux control coefficient 0.96). Appreciable control also resided in both plasma membrane transport systems, with coefficients of 0.51 for system N and -0.46 for system L, such that both interacted to provide a fine control of the intracellular concentration of the amino acid. Similar values were obtained by computer simulation based on theoretical determination of elasticities. 4. Previous controversy about the locus of regulation of hepatic glutamine metabolism is resolved by this distribution of control.
Collapse
Affiliation(s)
- S Y Low
- Department of Anatomy and Physiology, University of Dundee, Scotland, U.K
| | | | | | | | | |
Collapse
|
37
|
Galiana E, Bernard R, Borde I, Rouget P, Evrard C. Proliferation and differentiation properties of bipotent glial progenitor cell lines immortalized with the adenovirus E1A gene. J Neurosci Res 1993; 36:133-46. [PMID: 7903403 DOI: 10.1002/jnr.490360204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bipotent glial progenitors have been immortalized by the transfer of the adenovirus E1A gene into primary cultured cells from embryonic rat brain. The lines obtained are phenotypically untransformed, retain growth contact-inhibition, and are able to differentiate, unless they are surtransfected with transforming oncogenes. Depending on the growth conditions, these immortalized cells express differentially either oligodendrocyte or astrocyte-specific markers and genes. After being seeded in serum-free medium, they display gangliosides recognized by A2B5 monoclonal antibody, and then they express sequentially O4 epitopes, galactocerebroside, and the myelin protein DM20. When grown in serum-supplemented medium, the cells express at first A2B5 epitopes, and then transiently O4 and galactocerebroside; after reaching confluence, O4 and galactocerebroside become undetectable, whereas the cells begin to coexpress glial fibrillary acidic protein and glutamine synthetase. These results indicate that the cell lines can undergo a differentiation reminiscent both of O-2A progenitors and of plastic process-bearing glial subpopulations. The cells were also genetically marked by the stable introduction of the nlslacZ reporter gene. Thus, the lines could be useful for studying direct interactions in vitro, or for post-grafting investigations. They should also provide a model for studying the mechanisms involved in the commitment and in the control of proliferation and differentiation of this cell lineage. This suggestion is consistent with the data indicating a growth arrest-dependent differential expression of a novel gene encoding a protein with a helix-loop-helix domain.
Collapse
Affiliation(s)
- E Galiana
- Laboratoire Biologie Moléculaire et Différenciation, Université Paris-6 et Collège de France
| | | | | | | | | |
Collapse
|
38
|
Monnet-Tschudi F, Zurich MG, Honegger P. Evaluation of the toxicity of different metal compounds in the developing brain using aggregating cell cultures as a model. Toxicol In Vitro 1993; 7:335-9. [DOI: 10.1016/0887-2333(93)90024-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Matthieu JM, Comte V, Tosic M, Honegger P. Myelin gene expression during demyelination and remyelination in aggregating brain cell cultures. J Neuroimmunol 1992; 40:231-4. [PMID: 1385472 DOI: 10.1016/0165-5728(92)90138-b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Remyelination can be studied in aggregating rat brain cell cultures after limited demyelination. Demyelination was induced using a monoclonal antibody against myelin/oligodendrocyte glycoprotein (MOG mAb), in the presence of complement. De- and remyelination were assessed by measuring myelin basic protein (MBP). Two days after removing the MOG mAb, MBP levels reached 50% of controls and after 7 days 93%. During this period, cell proliferation determined by [14C]thymidine incorporation was similar in remyelinating and control cultures. Hormones and growth factors were tested for possible stimulatory effect on remyelinating cultures. Bovine growth hormone (bGH), triiodothyronine (T3), basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) did not improve remyelination. Only epidermal growth factor (EGF) increased the level of remyelination. PDGF increased the rate of cell proliferation in both control and remyelinating cultures. A significant proportion of oligodendrocytes entered the cell division cycle and were not available for remyelination. The results obtained with PDGF and FGF (inhibition) support the idea that a pool of progenitor cells was still present and able to proliferate and differentiate into myelinating oligodendrocytes. The levels of myelin protein mRNAs were investigated during de- and remyelination. During demyelination, myelin protein mRNA levels decreased to approximately 50% of control cultures and returned to normal during remyelination. These preliminary results indicate that normal levels of gene transcription are sufficient to meet the increased need for newly synthesized myelin proteins during remyelination.
Collapse
Affiliation(s)
- J M Matthieu
- Laboratoire de neurochimie, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
| | | | | | | |
Collapse
|
40
|
Honegger P, Tenot-Sparti M. Developmental effects of basic fibroblast growth factor and platelet-derived growth factor on glial cells in a three-dimensional cell culture system. J Neuroimmunol 1992; 40:295-303. [PMID: 1358916 DOI: 10.1016/0165-5728(92)90146-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In order to study peptide growth factor action in a three-dimensional cellular environment, aggregating cell cultures prepared from 15-day fetal rat telencephalon were grown in a chemically defined medium and treated during an early developmental stage with either bovine fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF homodimers AA and BB). A single dose (5-50 ng/ml) of either growth factor given to the cultures on day 3 greatly enhanced the developmental increase of the two glia-specific enzyme activities, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) and glutamine synthetase (GS), whereas it had relatively little effect on total protein and DNA content. Distinct patterns of dose-dependency were found for CNP and GS stimulation. At low concentrations of bFGF (0.5-5 ng/ml) and at all PDGF concentrations applied, the oligodendroglial marker enzyme CNP was the most affected. A relatively small but significant mitogenic effect was observed after treatment with PDGF, particularly at higher concentrations or after repetitive stimulation. The two PDGF homodimers AA and BB were similar in their biological effects and potency. The present results show that under histotypic conditions both growth factors, bFGF and PDGF, promote the maturation rather than the proliferation of immature oligodendrocytes and astrocytes.
Collapse
Affiliation(s)
- P Honegger
- Institute of Physiology, University of Lausanne, Switzerland
| | | |
Collapse
|
41
|
Abstract
Glutamate metabolism in rat cortical astrocyte cultures was studied to evaluate the relative rates of flux of glutamate carbon through oxidative pathways and through glutamine synthetase (GS). Rates of 14CO2 production from [1-14C]glutamate were determined, as was the metabolic fate of [14C(U)]glutamate in the presence and absence of the transaminase inhibitor aminooxyacetic acid and of methionine sulfoximine, an irreversible inhibitor of GS. The effects of subculturing and dibutyryl cyclic AMP treatment of astrocytes on these parameters were also examined. The vast majority of exogenously added glutamate was converted to glutamine and exported into the extracellular medium. Inhibition of GS led to a sustained and greatly elevated intracellular glutamate level, thereby demonstrating the predominance of this pathway in the astrocytic metabolism of glutamate. Nevertheless, there was some glutamate oxidation in the astrocyte culture, as evidenced by aspartate production and labeling of intracellular aspartate pools. Inhibition of aspartate aminotransferase caused a greater than 70% decrease in 14CO2 production from [1-14C]glutamate. Inhibition of GS caused an increase in aspartate production. It is concluded that transamination of glutamate rather than oxidative deamination catalyzed by glutamate dehydrogenase is the first step in the entry of glutamate carbon into the citric acid cycle in cultured astrocytes. This scheme of glutamate metabolism was not qualitatively altered by subculturing or by treatment of the cultures with dibutyryl cyclic AMP.
Collapse
Affiliation(s)
- S E Farinelli
- Graduate Program of Pharmacology, Rutgers University, Piscataway, New Jersey
| | | |
Collapse
|
42
|
Waniewski RA. Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J Neurochem 1992; 58:167-74. [PMID: 1345764 DOI: 10.1111/j.1471-4159.1992.tb09292.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of ammonia on glutamate accumulation and metabolism was examined in astrocyte cultures prepared from neonatal rat cortices. Intact astrocytes were incubated with 70 microM L-[14C(U)]glutamate and varying amounts of ammonium chloride. The media and cells were analyzed separately by HPLC for amino acids and labelled metabolites. Extracellular glutamate was reduced to 8 microM by 60 min. Removal of glutamate from the extracellular space was not altered by addition of ammonia. The rate of glutamine synthesis was increased from 3.6 to 9.3 nmol/mg of protein/min by addition of 100 microM ammonia, and intracellular glutamate was reduced from 262 to 86 nmol/mg of protein after 30 min. The metabolism of accumulated glutamate was matched nearly perfectly by the synthesis of glutamine, and both processes were proportional to the amount of added ammonia. The transamination and deamination products of glutamate were minor metabolites that either decreased or remained unchanged with increasing ammonia. Thus, ammonia addition stimulates the conversion of glutamate to glutamine in intact astrocyte cultures. At physiological concentrations of ammonia, glutamine synthesis appears to be limited by the rate of glutamate accumulation and the activity of competing reactions and not by the activity of glutamine synthetase.
Collapse
Affiliation(s)
- R A Waniewski
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| |
Collapse
|
43
|
Rimvall K, Martin DL. Increased intracellular gamma-aminobutyric acid selectively lowers the level of the larger of two glutamate decarboxylase proteins in cultured GABAergic neurons from rat cerebral cortex. J Neurochem 1992; 58:158-66. [PMID: 1727428 DOI: 10.1111/j.1471-4159.1992.tb09291.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The regulation of glutamate decarboxylase (GAD; EC 4.1.1.15) was studied by using cultures of cerebral cortical neurons from rat brain grown in serum-free medium. About 50% of the neurons in the cultures were gamma-aminobutyric acid (GABA)ergic as determined by two double-staining procedures. Immunoblotting experiments with four anti-GAD sera that recognize the two forms to varying degrees, demonstrated that the cultures contained the two forms of GAD that are present in rat brain (apparent molecular masses = 63 and 66 kDa). GAD activity was reduced by 60-70% when intracellular GABA levels were increased by incubating the cultures with the GABA-transaminase inhibitor gamma-vinyl-GABA for greater than 5-10 h or with 1 mM GABA itself. Neither baclofen nor muscimol (100 microM) affected GAD activity. Immunoblotting experiments showed that only the larger of the two forms of GAD (66 kDa) was decreased by elevated GABA levels. These results, together with previous results indicating that the smaller form of GAD is more strongly regulated by pyridoxal 5'-phosphate (the cofactor for GAD), suggest that the two forms of GAD are regulated by different mechanisms.
Collapse
Affiliation(s)
- K Rimvall
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | |
Collapse
|
44
|
Rimvall K, Martin DL. GAD and GABA in an enriched population of cultured GABAergic neurons from rat cerebral cortex. Neurochem Res 1991; 16:859-68. [PMID: 1686298 DOI: 10.1007/bf00965534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To study various aspects of GABAergic metabolism in an easily accessible system, dissociated cells from postnatal rat cerebral cortex were cultured in a serum-based medium and characterized morphologically and biochemically. The majority (70-96%) of the neurons were GABAergic as determined by three double-labeling procedures. The specific activity of glutamine synthetase in the cultures was 4-5% of the levels in rat astrocyte cultures and intact rat brain, indicating that glia were a minor component. The developmental increase of GABA levels preceded the increase of GAD activity in both immunocytochemical and biochemical experiments. GABA turnover rates also increased with culture age and were 20-30% of GAD activity. Four anti-GAD antibodies, which recognize GAD subunits with differing molecular masses to varying degrees, were used to stain cultured neurons and make immunoblots. Immunoblots showed that the neurons contained two major subunits of GAD which differed in mass by 2 kDa. All four antibodies immunostained both neuronal perikarya and neurites but one antibody, which on the immunoblots predominantly labeled the GAD protein with the lower molecular weight, showed a somewhat more pronounced punctate staining, possibly indicating a principal localization to neurites.
Collapse
Affiliation(s)
- K Rimvall
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | |
Collapse
|
45
|
Sippel H, Penttila KE, Lindros KO. Regioselective induction of liver glutathione transferase by ethanol and acetone. PHARMACOLOGY & TOXICOLOGY 1991; 68:391-3. [PMID: 1946185 DOI: 10.1111/j.1600-0773.1991.tb01258.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Both ethanol and acetone are substrates and inducers of the cytochrome P450 IIEI. This isoenzyme is induced in the perivenous region, which may explain the centrilobular damage elicited by several hepatotoxins being substrates for P450 IIE1. Here we demonstrate that induction of glutathione S-transferase after ethanol and acetone treatment is also restricted to the perivenous region, suggesting regiospecific enhancement of the transferase associated cellular defence capacity. The total glutathione peroxidase activity does not increase after the induction.
Collapse
Affiliation(s)
- H Sippel
- Department of Forensic Medicine, University of Helsinki, Finland
| | | | | |
Collapse
|
46
|
Battaglioli G, Martin DL. GABA synthesis in brain slices is dependent on glutamine produced in astrocytes. Neurochem Res 1991; 16:151-6. [PMID: 1881516 DOI: 10.1007/bf00965703] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rate of gamma-aminobutyric acid (GABA) synthesis in rat-brain slices was determined by inhibiting GABA transaminase with 20-microM gabaculine and measuring the increase of GABA. Added 500-microM glutamine increased the rate of GABA synthesis by 50%, indicating that glutamate decarboxylase is not saturated in brain slices. The stimulation of GABA synthesis with added glutamine in brain slices was much less than that reported for synaptosomes. The lower stimulation in slices was attributable to astrocytic glutamine production, as the rate of GABA synthesis decreased by 44% when glutamine production was inhibited with methionine sulfoximine. Added glutamine restored the rate to the maximal value observed in brain slices. The rate of GABA synthesis was decreased by 65% in slices pretreated with an inhibitor of glutaminase, and added glutamine did not reverse this effect. These results suggest that glutamine produced by astrocytes is a quantitatively important precursor of GABA synthesis in cortical slices.
Collapse
Affiliation(s)
- G Battaglioli
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | |
Collapse
|
47
|
Kerlero de Rosbo N, Honegger P, Lassmann H, Matthieu JM. Demyelination induced in aggregating brain cell cultures by a monoclonal antibody against myelin/oligodendrocyte glycoprotein. J Neurochem 1990; 55:583-7. [PMID: 1695240 DOI: 10.1111/j.1471-4159.1990.tb04173.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A monoclonal antibody (8-18C5) directed against myelin/oligodendrocyte glycoprotein (MOG) induced demyelination in aggregating brain cell cultures. With increasing doses of anti-MOG antibody in the presence of complement, myelin basic protein (MBP) concentration decreased in a dose-related manner. A similar, albeit less pronounced, effect was observed on specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase. In the absence of complement, anti-MOG antibody did not induce detectable demyelination. In contrast to the effect of anti-MOG antibody and as expected, anti-MBP antibody did not demyelinate aggregating brain cell cultures in the presence of complement. These results provide additional support to the suggestion that MOG, a quantitatively minor myelin component located on the external side of the myelin membrane, is a good target antigen for antibody-induced demyelination. Indeed, they show that a purified anti-MOG antibody directed against a single epitope on the glycoprotein can produce demyelination, not only in vivo as previously shown, but also in cultures. Such an observation has not been made with polyclonal antisera raised against purified myelin proteins like MBP and proteolipid protein, the major protein components of the myelin membrane, or myelin-associated glycoprotein. These observations may have important implications regarding the possible role of anti-MOG antibodies in demyelinating diseases.
Collapse
Affiliation(s)
- N Kerlero de Rosbo
- Laboratoire de Neurochimie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | |
Collapse
|
48
|
Role of cysteine and taurine in regulating glutathione synthesis by periportal and perivenous hepatocytes. Biochem J 1990; 269:659-64. [PMID: 1975168 PMCID: PMC1131638 DOI: 10.1042/bj2690659] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The uptake and metabolism of 35S-labelled sulphur amino acids were compared in periportal (PP) and perivenous (PV) rat hepatocytes, isolated by digitonin/collagenase perfusion, to identify the factors underlying the previously observed [Kera, Penttilä & Lindros, Biochem. J. (1988) 254, 411-417] higher rate of GSH replenishment in PP cells. The buthionine sulphoximine-inhibitable synthesis of GSH was faster in PP than in PV hepatocytes with both cysteine (6.1 versus 5.0 mumol/h per g of cells) and methionine (4.5 versus 3.3 mumol/h per g) as well as with endogenous precursors and L-2-oxo-4-thiazolidinecarboxylate as substrates. However, the uptake of cysteine by PP cells was slower than by PV cells (8.6 versus 10.3 mumol/h per g of cells), whereas methionine was taken up at similar rates. The activity of gamma-glutamylcysteine synthetase (GCS) was slightly higher in digitonin lysates from the PP than from the PV zone. Production of sulphate, the major catabolite of [35S]cysteine sulphur, as well as incorporation of the label into protein occurred at similar rates in PP and PV cells. Taurine, on the other hand, was produced from [35S]cysteine much faster by PV than by PP cells (0.7 versus 0.1 mumol/h per g of cells). Accordingly, the taurine content of PV hepatocytes tended to be higher and to increase faster during incubation with methionine. These results imply that metabolism of taurine is highly zonated within the acinus. They also suggest that both the slightly lower GCS activity and the fast metabolism of cysteine to taurine limit the capacity of PV hepatocytes to synthesize GSH.
Collapse
|
49
|
Nagami GT. Effect of bath and luminal potassium concentration on ammonia production and secretion by mouse proximal tubules perfused in vitro. J Clin Invest 1990; 86:32-9. [PMID: 2164046 PMCID: PMC296686 DOI: 10.1172/jci114702] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To determine the effects of acute changes in K+ concentration in vitro on ammonia production and secretion by the proximal tubule, we studied mouse S2 segments perfused with and bathed in Krebs-Ringer bicarbonate buffers containing various K+ concentrations. All bath solutions contained L-glutamine as the ammoniagenic substrate. High bath and luminal K+ concentrations (8 mM), but not high luminal K+ concentration alone, inhibited total ammonia production rates by 26%, while low bath and luminal K+ concentrations (2 mM), but not low luminal K+ concentration alone, stimulated total ammonia production rates by 33%. The stimulation of ammonia production by low bath K+ concentration was not observed when L-glutamine was added to the luminal perfusion solution. On the other hand, high luminal K+ concentration stimulated, while low luminal K+ concentration inhibited, net luminal secretion of total ammonia in a way that was: (a) independent of total ammonia production rates, (b) independent of Na(+)-H+ exchange activity, and (c) not due to changes in transepithelial fluxes of total ammonia. These results suggest that luminal potassium concentration has a direct effect on cell-to-lumen transport of ammonia.
Collapse
Affiliation(s)
- G T Nagami
- Nephrology Section, Veterans Administration Medical Center, West Los Angeles, California 90073
| |
Collapse
|
50
|
Fonnum F, Paulsen RE. Comparison of transmitter amino acid levels in rat globus pallidus and neostriatum during hypoglycemia or after treatment with methionine sulfoximine or gamma-vinyl gamma-aminobutyric acid. J Neurochem 1990; 54:1253-7. [PMID: 1968959 DOI: 10.1111/j.1471-4159.1990.tb01956.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The levels of amino acids in globus pallidus, a structure heavily innervated with gamma-aminobutyric acid (GABA)-ergic terminals but few glutamergic terminals, were compared with the levels in neostriatum, a structure richly innervated with glutamergic terminals but intermediate in GABAergic terminals. The level of glutamate in neostriatum was twice as high as in globus pallidus whereas the level of GABA in globus pallidus was three times higher than in neostriatum. The level of aspartate was similar in both regions whereas the level of glutamine was correlated with the level of glutamate. Methionine sulfoximine, a glutamine synthetase inhibitor, reduced the level of glutamine to 10-20% of control in both structures. This reduction was accompanied by the largest decrease in the level of glutamate in neostriatum, indicating that transmitter glutamate turns over more rapidly than other glutamate pools. Likewise, insulin decreased the levels of glutamate and glutamine more in neostriatum than in globus pallidus. gamma-Vinyl GABA increased the level of GABA in globus pallidus more than in neostriatum although the percent increase was largest in neostriatum. Treatment with gamma-vinyl GABA was accompanied by a large reduction in the level of GABA, indicating that a substantial proportion of the glutamine pool is linked to GABA metabolism.
Collapse
Affiliation(s)
- F Fonnum
- Norwegian Defence Research Establishment, Division for Environmental Toxicology, Kjeller
| | | |
Collapse
|