1
|
Shen WJ, Cortez Y, Singh A, Chen W, Azhar S, Kraemer FB. Mice deficient in ER protein seipin have reduced adrenal cholesteryl ester lipid droplet formation and utilization. J Lipid Res 2022; 63:100309. [PMID: 36332685 PMCID: PMC9703635 DOI: 10.1016/j.jlr.2022.100309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Cholesteryl ester (CE)-rich lipid droplets (LDs) accumulate in steroidogenic tissues under physiological conditions and constitute an important source of cholesterol as the precursor for the synthesis of all steroid hormones. The mechanisms specifically involved in CE-rich LD formation have not been directly studied and are assumed by most to occur in a fashion analogous to triacylglycerol-rich LDs. Seipin is an endoplasmic reticulum protein that forms oligomeric complexes at endoplasmic reticulum-LD contact sites, and seipin deficiency results in severe alterations in LD maturation and morphology as seen in Berardinelli-Seip congenital lipodystrophy type 2. While seipin is critical for triacylglycerol-rich LD formation, no studies have directly addressed whether seipin is important for CE-rich LD biogenesis. To address this issue, mice with deficient expression of seipin specifically in adrenal, testis, and ovary, steroidogenic tissues that accumulate CE-rich LDs under normal physiological conditions, were generated. We found that the steroidogenic-specific seipin-deficient mice displayed a marked reduction in LD and CE accumulation in the adrenals, demonstrating the pivotal role of seipin in CE-rich LD accumulation/formation. Moreover, the reduction in CE-rich LDs was associated with significant defects in adrenal and gonadal steroid hormone production that could not be completely reversed by addition of exogenous lipoprotein cholesterol. We conclude that seipin has a heretofore unappreciated role in intracellular cholesterol trafficking.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Stanford, CA, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Yuan Cortez
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Amar Singh
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Weiqin Chen
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Stanford, CA, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Zaidi SK, Shen WJ, Cortez Y, Bittner S, Bittner A, Arshad S, Huang TT, Kraemer FB, Azhar S. SOD2 deficiency-induced oxidative stress attenuates steroidogenesis in mouse ovarian granulosa cells. Mol Cell Endocrinol 2021; 519:110888. [PMID: 32717420 PMCID: PMC8011630 DOI: 10.1016/j.mce.2020.110888] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
This study investigated the effects of SOD2 (MnSOD)-deficiency-induced excessive oxidative stress on ovarian steroidogenesis in vivo and isolated and cultured granulosa cells using WT and Sod2+/- mice. Basal and 48 h eCG-stimulated plasma progesterone levels were decreased ~50% in female Sod2+/- mice, whereas plasma progesterone levels were decreased ~70% in Sod2+/- mice after sequential stimulation with eCG followed by hCG. Sod2+/- deficiency caused about 50% reduction in SOD2 activity in granulosa cells. SOD2-deficiency also caused a marked reduction in progestins and estradiol in isolated granulosa cells. qRT-PCR measurements indicated that the mRNA expression levels of StAR protein and steroidogenic enzymes are decreased in the ovaries of Sod2+/- mice. Further studies showed a defect in the movement of mobilized cytosolic cholesterol to mitochondria. The ovarian membrane from Sod2+/- mice showed higher susceptibility to lipid peroxidation. These data indicates that SOD2-deficiency induced oxidative stress inhibits ovarian granulosa cell steroidogenesis primarily by interfering with cholesterol transport to mitochondria and attenuating the expression of Star protein gene and key steroidogenic enzyme genes.
Collapse
Affiliation(s)
- Syed Kashif Zaidi
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Wen-Jun Shen
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yuan Cortez
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Stefanie Bittner
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Alex Bittner
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Sara Arshad
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ting-Ting Huang
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Wang W, Hao X, Han L, Yan Z, Shen WJ, Dong D, Hasbargen K, Bittner S, Cortez Y, Greenberg AS, Azhar S, Kraemer FB. Tissue-Specific Ablation of ACSL4 Results in Disturbed Steroidogenesis. Endocrinology 2019; 160:2517-2528. [PMID: 31504388 PMCID: PMC6773434 DOI: 10.1210/en.2019-00464] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
Abstract
ACSL4 is a member of the ACSL family that catalyzes the conversion of long-chain fatty acids to acyl-coenzyme As, which are essential for fatty-acid incorporation and utilization in diverse metabolic pathways, including cholesteryl ester synthesis. Steroidogenic tissues such as the adrenal gland are particularly enriched in cholesteryl esters of long-chain polyunsaturated fatty acids, which constitute an important pool supplying cholesterol for steroid synthesis. The current studies addressed whether ACSL4 is required for normal steroidogenesis. CYP11A1 promoter‒mediated Cre was used to generate steroid tissue‒specific ACSL4 knockout (KO) mice. Results demonstrated that ACSL4 plays an important role in adrenal cholesteryl ester formation, as well as in determining the fatty acyl composition of adrenal cholesteryl esters, with ACSL4 deficiency leading to reductions in cholesteryl ester storage and alterations in cholesteryl ester composition. Statistically significant reductions in corticosterone and testosterone production, but not progesterone production, were observed in vivo, and these deficits were accentuated in ex vivo and in vitro studies of isolated steroid tissues and cells from ACSL4-deficient mice. However, these effects on steroid production appear to be due to reductions in cholesteryl ester stores rather than disturbances in signaling pathways. We conclude that ACSL4 is dispensable for normal steroidogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Xiao Hao
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Lina Han
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Zhe Yan
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Correspondence: Fredric B. Kraemer, MD, or Wen-Jun Shen, PhD, Division of Endocrinology, S025, Stanford University School of Medicine, Stanford, California 94305-5103. E-mail: or
| | - Dachuan Dong
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Kathrin Hasbargen
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Stefanie Bittner
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Yuan Cortez
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Andrew S Greenberg
- Obesity and Metabolism Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Salman Azhar
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Correspondence: Fredric B. Kraemer, MD, or Wen-Jun Shen, PhD, Division of Endocrinology, S025, Stanford University School of Medicine, Stanford, California 94305-5103. E-mail: or
| |
Collapse
|
4
|
Shen WJ, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res 2018; 59:1114-1131. [PMID: 29720388 DOI: 10.1194/jlr.r083121] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
5
|
Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, DerOhannessian S, Kontush A, Surendran P, Saleheen D, Trompet S, Jukema JW, De Craen A, Deloukas P, Sattar N, Ford I, Packard C, Majumder AAS, Alam DS, Di Angelantonio E, Abecasis G, Chowdhury R, Erdmann J, Nordestgaard BG, Nielsen SF, Tybjærg-Hansen A, Schmidt RF, Kuulasmaa K, Liu DJ, Perola M, Blankenberg S, Salomaa V, Männistö S, Amouyel P, Arveiler D, Ferrieres J, Müller-Nurasyid M, Ferrario M, Kee F, Willer CJ, Samani N, Schunkert H, Butterworth AS, Howson JMM, Peloso GM, Stitziel NO, Danesh J, Kathiresan S, Rader DJ. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 2016; 351:1166-71. [PMID: 26965621 DOI: 10.1126/science.aad3517] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).
Collapse
Affiliation(s)
- Paolo Zanoni
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sumeet A Khetarpal
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel B Larach
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William F Hancock-Cerutti
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. INSERM UMR 1166 ICAN, Université Pierre et Marie Curie Paris 6, Hôpital de la Pitié, Paris, France
| | - John S Millar
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marina Cuchel
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie DerOhannessian
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anatol Kontush
- INSERM UMR 1166 ICAN, Université Pierre et Marie Curie Paris 6, Hôpital de la Pitié, Paris, France
| | - Praveen Surendran
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Danish Saleheen
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands. Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands. The Interuniversity Cardiology Institute of the Netherlands, Utrecht, Netherlands
| | - Anton De Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Chris Packard
- Glasgow Clinical Research Facility, Western Infirmary, Glasgow, UK
| | | | - Dewan S Alam
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Emanuele Di Angelantonio
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goncalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jeanette Erdmann
- Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck 23562, Germany
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Sune F Nielsen
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Anne Tybjærg-Hansen
- Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Frikke Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Kari Kuulasmaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Dajiang J Liu
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland. Institute of Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany. University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Satu Männistö
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Philippe Amouyel
- Department of Epidemiology and Public Health, Institut Pasteur de Lille, Lille, France
| | - Dominique Arveiler
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
| | - Jean Ferrieres
- Department of Epidemiology, Toulouse University-CHU Toulouse, Toulouse, France
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marco Ferrario
- Research Centre in Epidemiology and Preventive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, Department of Human Genetics, and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK. National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hotel, Leicester, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Adam S Butterworth
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joanna M M Howson
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gina M Peloso
- Broad Institute and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nathan O Stitziel
- Department of Medicine, Division of Cardiology, Department of Genetics, and the McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Danesh
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Sekar Kathiresan
- Broad Institute and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel J Rader
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
6
|
DeAngelis AM, Roy-O'Reilly M, Rodriguez A. Genetic alterations affecting cholesterol metabolism and human fertility. Biol Reprod 2014; 91:117. [PMID: 25122065 DOI: 10.1095/biolreprod.114.119883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility.
Collapse
Affiliation(s)
| | | | - Annabelle Rodriguez
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
7
|
Hu Z, Shen WJ, Kraemer FB, Azhar S. MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol Cell Biol 2012; 32:5035-45. [PMID: 23045399 PMCID: PMC3510537 DOI: 10.1128/mcb.01002-12] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/03/2012] [Indexed: 12/25/2022] Open
Abstract
We sought to identify and characterize microRNA (miRNAs) that posttranscriptionally regulate the expression of scavenger receptor class B type I (SR-BI) and SR-BI-linked selective high-density lipoprotein (HDL) cholesteryl ester (CE) transport and steroidogenesis. Four miRNAs (miRNA-125a, miRNA-125b, miRNA-145, and miRNA-455) with a potential to regulate SR-BI were identified in silico and validated by quantitative real-time PCR (qRT-PCR), Western blot analysis, and SR-BI 3' untranslated region (UTR) reporter assays. In vitro treatment of primary rat granulosa cells and MLTC-1 cells with cyclic AMP (cAMP) or in vivo treatment of rat adrenals with adrenocorticotropic hormone (ACTH) decreased the expression of miRNA-125a, miRNA-125b, and miRNA-455 and reciprocally increased SR-BI expression. Using luciferase constructs containing the 3' untranslated region of SR-BI combined with miRNA overexpression and mutagenesis, we have provided evidence that steroidogenic SR-BI is a direct target of miRNA-125a and miRNA-455. Moreover, the transfection of Leydig tumor cells with precursor miRNA 125a (pre-miRNA-125a) or pre-miRNA-455 resulted in the suppression of SR-BI at both the transcript and protein levels and reduced selective HDL CE uptake and HDL-stimulated progesterone production. Transfection of liver Hepa 1-6 cells with pre-miRNA-125a significantly reduced SR-BI expression and its selective transport function. In contrast, overexpression of miRNA-145 did not affect SR-BI expression or selective HDL CE uptake mediated by SR-BI in steroidogenic cell lines. These data suggest that a trophic hormone and cAMP inversely regulate the expression of SR-BI and miRNA-125a and miRNA-455 in steroidogenic tissues/cells and that both miRNA-125a and miRNA-455, by targeting steroidogenic SR-BI, negatively regulate selective HDL CE uptake and HDL CE-supported steroid hormone production.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology
| | - Fredric B. Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Endocrinology
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
Shen WJ, Zaidi SK, Patel S, Cortez Y, Ueno M, Azhar R, Azhar S, Kraemer FB. Ablation of vimentin results in defective steroidogenesis. Endocrinology 2012; 153:3249-57. [PMID: 22535769 PMCID: PMC3380307 DOI: 10.1210/en.2012-1048] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In steroidogenic tissues, cholesterol must be transported to the inner mitochondrial membrane to be converted to pregnenolone as the first step of steroidogenesis. Whereas steroidogenic acute regulatory protein has been shown to be responsible for the transport of cholesterol from the outer to the inner mitochondrial membrane, the process of how cholesterol moves to mitochondria from the cytoplasm is not clearly defined. The involvement of the cytoskeleton has been suggested; however, no specific mechanism has been confirmed. In this paper, using genetic ablation of an intermediate filament protein in mice, we present data demonstrating a marked defect in adrenal and ovarian steroidogenesis in the absence of vimentin. Cosyntropin-stimulated corticosterone production is decreased 35 and 50% in male and female Vimentin null (Vim(-/-)) mice, respectively, whereas progesterone production is decreased 70% in female Vim(-/-) mice after pregnant mare's serum gonadotropin and human chorionic gonadotropin stimulation, but no abnormalities in human chorionic gonadotropin-stimulated testosterone production is observed in male Vim(-/-) mice. These defects in steroid production are also seen in isolated adrenal and granulosa cells in vitro. Further studies show a defect in the movement of cholesterol from the cytosol to mitochondria in Vim(-/-) cells. Because the mobilization of cholesterol from lipid droplets and its transport to mitochondria is a preferred pathway for the initiation of steroid production in the adrenal and ovary but not the testis and vimentin is a droplet-associated protein, our results suggest that vimentin is involved in the movement of cholesterol from its storage in lipid droplets to mitochondria for steroidogenesis.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Guo L, Chen M, Song Z, Daugherty A, Li XA. C323 of SR-BI is required for SR-BI-mediated HDL binding and cholesteryl ester uptake. J Lipid Res 2011; 52:2272-2278. [PMID: 21917726 DOI: 10.1194/jlr.m019091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Scavenger receptor BI (SR-BI) is an HDL receptor. It binds HDL and mediates the uptake of cholesteryl ester from HDL. Early studies have pointed out that the extracellular domain of SR-BI is critical for SR-BI-mediated cholesteryl ester uptake. However, the extracellular loop of SR-BI is large: it contains 403 amino acids. The HDL binding site and the modulation of SR-BI-mediated cholesteryl ester uptake remain to be identified. In this study, using C323G mutant SR-BI, we showed that C323G mutant SR-BI lost its HDL binding and cholesteryl ester uptake activity, indicating that the highly conserved C323 is required for SR-BI-mediated HDL binding and cholesteryl ester uptake. Using a blocking antibody against C323 region, we demonstrated that C323 is directly involved in HDL binding and likely an HDL binding site. Using C323G mutant transgenic mouse model, we further demonstrated that C323 of SR-BI is required for regulating plasma cholesterol levels in vivo. Using redox reagents, we showed that physiological relevant levels of H(2)O(2) upregulated the SR-BI-mediated cholesteryl ester uptake activity by 65%, whereas GSH or DTT significantly downregulated SR-BI-mediated cholesteryl ester uptake activity by 45%. C323 of SR-BI is critical for SR-BI-mediated HDL binding and cholesteryl ester uptake, and changes in redox status may be a regulatory factor modulating SR-BI-mediated cholesterol transport.
Collapse
Affiliation(s)
- Ling Guo
- Department of Pediatrics, University of Kentucky Medical School, Lexington, KY
| | - Min Chen
- Department of Pediatrics, University of Kentucky Medical School, Lexington, KY; Taian Central Hospital, Taian, Shandong, China
| | - Zhiqing Song
- Department of Pediatrics, University of Kentucky Medical School, Lexington, KY; Taian Central Hospital, Taian, Shandong, China
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky Medical School, Lexington, KY and
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky Medical School, Lexington, KY; Saha Cardiovascular Research Center, University of Kentucky Medical School, Lexington, KY and; Graduate Center for Nutritional Sciences, University of Kentucky Medical School, Lexington, KY; and.
| |
Collapse
|
10
|
Fujimoto VY, Browne RW, Bloom MS, Sakkas D, Alikani M. Pathogenesis, developmental consequences, and clinical correlations of human embryo fragmentation. Fertil Steril 2011; 95:1197-204. [DOI: 10.1016/j.fertnstert.2010.11.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 12/20/2022]
|
11
|
Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 2010; 7:47. [PMID: 20515451 PMCID: PMC2890697 DOI: 10.1186/1743-7075-7-47] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/01/2010] [Indexed: 11/28/2022] Open
Abstract
Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones. These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis, maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for steroidogenesis is derived from a combination of sources: 1) de novo synthesis in the endoplasmic reticulum (ER); 2) the mobilization of cholesteryl esters (CEs) stored in lipid droplets through cholesteryl ester hydrolase; 3) plasma lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-BI-mediated selective uptake; and 4) in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol, events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner mitochondrial membrane sites, where P450scc (CYP11A) is localized and where the conversion of cholesterol to pregnenolone (the common steroid precursor) takes place.
Collapse
|
12
|
Yue P, Chen Z, Nassir F, Bernal-Mizrachi C, Finck B, Azhar S, Abumrad NA. Enhanced hepatic apoA-I secretion and peripheral efflux of cholesterol and phospholipid in CD36 null mice. PLoS One 2010; 5:e9906. [PMID: 20360851 PMCID: PMC2845618 DOI: 10.1371/journal.pone.0009906] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/02/2010] [Indexed: 11/19/2022] Open
Abstract
CD36 facilitates oxidized low density lipoprotein uptake and is implicated in development of atherosclerotic lesions. CD36 also binds unmodified high and very low density lipoproteins (HDL, VLDL) but its role in the metabolism of these particles is unclear. Several polymorphisms in the CD36 gene were recently shown to associate with serum HDL cholesterol. To gain insight into potential mechanisms for these associations we examined HDL metabolism in CD36 null (CD36−/−) mice. Feeding CD36−/− mice a high cholesterol diet significantly increased serum HDL, cholesterol and phospholipids, as compared to wild type mice. HDL apolipoproteins apoA-I and apoA-IV were increased and shifted to higher density HDL fractions suggesting altered particle maturation. Clearance of dual-labeled HDL was unchanged in CD36−/− mice and cholesterol uptake from HDL or LDL by isolated CD36−/− hepatocytes was unaltered. However, CD36−/− hepatocytes had higher cholesterol and phospholipid efflux rates. In addition, expression and secretion of apoA-I and apoA-IV were increased reflecting enhanced PXR. Similar to hepatocytes, cholesterol and phospholipid efflux were enhanced in CD36−/− macrophages without changes in protein levels of ABCA1, ABCG1 or SR-B1. However, biotinylation assays showed increased surface ABCA1 localization in CD36−/− cells. In conclusion, CD36 influences reverse cholesterol transport and hepatic ApoA-I production. Both pathways are enhanced in CD36 deficiency, increasing HDL concentrations, which suggests the potential benefit of CD36 inhibition.
Collapse
Affiliation(s)
- Pin Yue
- Department of Medicine, Washington University School of Medicine, Center for Human Nutrition, St Louis, Missouri, United States of America.
| | | | | | | | | | | | | |
Collapse
|
13
|
Fujimoto VY, Kane JP, Ishida BY, Bloom MS, Browne RW. High-density lipoprotein metabolism and the human embryo. Hum Reprod Update 2010; 16:20-38. [PMID: 19700490 DOI: 10.1093/humupd/dmp029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High-density lipoprotein (HDL) appears to be the dominant lipoprotein particle in human follicular fluid (FF). The reported anti-atherogenic properties of HDL have been attributed in part to reverse cholesterol transport. The discoveries of the scavenger receptor class B type I (SR-BI) and the ATP-binding cassette A1 lipid (ABCA1) transporter have generated studies aimed at unraveling the pathways of HDL biogenesis, remodeling and catabolism. The production of SR-BI and ABCA1 knockout mice as well as other lipoprotein metabolism-associated mutants has resulted in reduced or absent fertility, leading us to postulate the existence of a human hepatic-ovarian HDL-associated axis of fertility. Here, we review an evolving literature on the role of HDL metabolism on mammalian fertility and oocyte development. METHODS An extensive online search was conducted of published articles relevant to the section topics discussed. All relevant English language articles contained in Pubmed/Medline, with no specific time frame for publication, were considered for this narrative review. Cardiovascular literature was highly cited due to the wealth of relevant knowledge on HDL metabolism, and the dearth thereof in the reproductive field. RESULTS Various vertebrate models demonstrate a role for HDL in embryo development and fertility. In our clinical studies, FF levels of HDL cholesterol and apolipoprotein AI levels were negatively associated with embryo fragmentation, but not with embryo cell cleavage rate. However, the HDL component, paraoxonase 1 arylesterase activity, was positively associated with embryo cell cleavage rate. CONCLUSIONS HDL contributes to intra-follicular cholesterol homeostasis which appears to be important for successful oocyte and embryo development.
Collapse
Affiliation(s)
- Victor Y Fujimoto
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94115-0916, USA.
| | | | | | | | | |
Collapse
|
14
|
Argov N, Sklan D, Arieli A. Role for LDL in estradiol-synthesis capacity of bovine ovarian follicles. Livest Sci 2007. [DOI: 10.1016/j.livsci.2006.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Parathath S, Darlington YF, de la Llera Moya M, Drazul-Schrader D, Williams DL, Phillips MC, Rothblat GH, Connelly MA. Effects of amino acid substitutions at glycine 420 on SR-BI cholesterol transport function. J Lipid Res 2007; 48:1386-95. [PMID: 17372332 DOI: 10.1194/jlr.m700086-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) facilitates the uptake of HDL cholesteryl esters (CEs) in a two-step process involving binding of HDL to its extracellular domain and transfer of HDL core CEs to a metabolically active membrane pool, where they are subsequently hydrolyzed by a neutral CE hydrolase. Recently, we characterized a mutant, G420H, which replaced glycine 420 in the extracellular domain of SR-BI with a histidine residue and had a profound effect on SR-BI function. The G420H mutant receptor exhibited a reduced ability to mediate selective HDL CE uptake and was unable to deliver HDL CE for hydrolysis, despite the fact that it retained the ability to bind HDL. This did not hold true if glycine 420 was replaced with an alanine residue; G420A maintained wild-type HDL binding and cholesterol transport activity. To further understand the role that glycine 420 plays in SR-BI function and why there was a disparity between replacing glycine 420 with a histidine versus an alanine, we generated a battery of point mutants by substituting glycine 420 with amino acids possessing side chains that were charged, hydrophobic, polar, or bulky and tested the resulting mutants for their ability to support HDL binding, HDL cholesterol transport, and delivery for hydrolysis. The results indicated that substitution with a negatively charged residue or a proline impaired cell surface expression of SR-BI or its interaction with HDL, respectively. Furthermore, substitution of glycine 420 with a positively charged residue reduced HDL CE uptake as well as its subsequent hydrolysis.
Collapse
Affiliation(s)
- Saj Parathath
- Department of Pharmacological Sciences, University Medical Center, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Reaven E, Nomoto A, Cortez Y, Azhar S. Consequences of over-expression of rat Scavenger Receptor, SR-BI, in an adrenal cell model. Nutr Metab (Lond) 2006; 3:43. [PMID: 17173681 PMCID: PMC1764879 DOI: 10.1186/1743-7075-3-43] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 12/15/2006] [Indexed: 11/28/2022] Open
Abstract
Background The plasma membrane scavenger receptor, SR-BI, mediates the 'selective uptake' process by which cholesteryl esters (CE) from exogenously supplied HDL are taken up by target cells. Recent work suggests that dimer and higher order oligomeric forms of the SR-BI protein are important to this process. SR-BI has been shown to be particularly associated with microvilli and microvillar channels found at the cell surface of steroidogenic cells, and a study with the hormone stimulated adrenal gland has shown impressive changes in the size and complexity of the microvillar compartment as the mass of CE uptake (and accompanying steroidogenesis) fluctuates. In the present study, we examine a cell line in which we overexpress the SR-BI protein to determine if morphological, biochemical and functional events associated with SR-BI in a controlled cell system are similar to those observed in the intact mammalian adrenal which is responsive to systemic factors. Methods Y1-BS1 mouse adrenocortical cells were transiently transfected using rat SR-BI-pcDNA6-V5-His, rat SR-BI-pcDNA6-cMyc-His or control pcDNA6-V5-His vector construct using a CaPO4 precipitation technique. Twenty four hours after transfection, cells were treated with, or without, Bt2cAMP, and SR-BI expression, CE uptake, and steroidogenesis was measured. SR-BI dimerization and cell surface architectural changes were assessed using immunoelectron microscopic techniques. Results Overexpression of the scavenger receptor protein, SR-BI, in Y1-BS1 cells results in major alterations in cell surface architecture designed to increase uptake of HDL supplied-CEs. Changes include [1] the formation of crater-like erosions of the surface with multiple double membraned channel structures lining the craters, and [2] dimerized formations of SR-BI lining the newly formed craters and associated double membraned channels. Conclusion These data show that overexpression of the scavenger receptor protein, SR-BI (accompanied by suitable hormone treatment and lipoproteins) in susceptible mammalian cells – is associated with increased cholesterol uptake and SR-BI dimerization within a much enlarged and architecturally complex microvillar compartment. These changes duplicate the structural, biochemical and functional changes related to the uptake of HDL CEs normally signaled by the action of ACTH on intact adrenal tissue.
Collapse
Affiliation(s)
- Eve Reaven
- Geriatric Research, Education, and Clinical Center (GRECC), Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ann Nomoto
- Geriatric Research, Education, and Clinical Center (GRECC), Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yuan Cortez
- Geriatric Research, Education, and Clinical Center (GRECC), Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Center (GRECC), Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Digestive Disease Center, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Chatterton RT, Mateo ET, Lu D, Ling FJH. Interpopulational differences in the concentrations and ratios of salivary and serum progesterone. Fertil Steril 2006; 86:723-5. [PMID: 16828474 DOI: 10.1016/j.fertnstert.2006.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 11/25/2022]
Abstract
Lower concentrations of salivary P in Bolivian women cannot be attributed to lower serum P or cholesterol or to higher cortisol-binding globulin or cortisol (stress) levels than those of the American women. Whether serum or salivary concentrations in the two population groups better reflect availability of P to the tissues is an unresolved question.
Collapse
Affiliation(s)
- Robert T Chatterton
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
18
|
Azhar S, Medicherla S, Shen WJ, Fujioka Y, Fong LG, Reaven E, Cooper AD. LDL and cAMP cooperate to regulate the functional expression of the LRP in rat ovarian granulosa cells. J Lipid Res 2006; 47:2538-50. [PMID: 16929031 PMCID: PMC1855269 DOI: 10.1194/jlr.m600349-jlr200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rat ovarian granulosa rely heavily on lipoprotein-derived cholesterol for steroidogenesis, which is principally supplied by the LDL receptor- and scavenger receptor class B type I (SR-BI)-mediated pathways. In this study, we characterized the hormonal and cholesterol regulation of another member of the LDL receptor superfamily, low density lipoprotein receptor-related protein (LRP), and its role in granulosa cell steroidogenesis. Coincubation of cultured granulosa cells with LDL and N6,O2'-dibutyryl adenosine 3',5'-cyclic monophosphate (Bt2cAMP) greatly increased the mRNA/protein levels of LRP. Bt2cAMP and Bt2cAMP plus human hLDL also enhanced SR-BI mRNA levels. However, there was no change in the expression of receptor-associated protein, a chaperone for LRP, or another lipoprotein receptor, LRP8/apoER2, in response to Bt2cAMP plus hLDL, whereas the mRNA expression of LDL receptor was reduced significantly. The induced LRP was fully functional, mediating increased uptake of its ligand, alpha2-macroglobulin. The level of binding of another LRP ligand, chylomicron remnants, did not increase, although the extent of remnant degradation that could be attributed to the LRP doubled in cells with increased levels of LRP. The addition of lipoprotein-type LRP ligands such as chylomicron remnants and VLDL to the incubation medium significantly increased the progestin production under both basal and stimulated conditions. In summary, our studies demonstrate a role for LRP in lipoprotein-supported ovarian granulosa cell steroidogenesis.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Parathath S, Connelly MA, Rieger RA, Klein SM, Abumrad NA, De La Llera-Moya M, Iden CR, Rothblat GH, Williams DL. Changes in plasma membrane properties and phosphatidylcholine subspecies of insect Sf9 cells due to expression of scavenger receptor class B, type I, and CD36. J Biol Chem 2004; 279:41310-8. [PMID: 15280390 DOI: 10.1074/jbc.m404952200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells scavenger receptor class B, type I (SR-BI), mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester into hepatic and steroidogenic cells. In addition, SR-BI has a variety of effects on plasma membrane properties including stimulation of the bidirectional flux of free cholesterol (FC) between cells and HDL and changes in the organization of plasma membrane FC as indicated by increased susceptibility to exogenous cholesterol oxidase. Recent studies in SR-BI-deficient mice and in SR-BI-expressing Sf9 insect cells showed that SR-BI has significant effects on plasma membrane ultrastructure. The present study was designed to test the range of SR-BI effects in Sf9 insect cells that typically have very low cholesterol content and a different phospholipid profile compared with mammalian cells. The results showed that, as in mammalian cells, SR-BI expression increased HDL cholesteryl ester selective uptake, cellular cholesterol mass, FC efflux to HDL, and the sensitivity of membrane FC to cholesterol oxidase. These activities were diminished or absent upon expression of the related scavenger receptor CD36. Thus, SR-BI has fundamental effects on cholesterol flux and membrane properties that occur in cells of evolutionarily divergent origins. Profiling of phospholipid species by electrospray ionization mass spectrometry showed that scavenger receptor expression led to the accumulation of phosphatidylcholine species with longer mono- or polyunsaturated acyl chains. These changes would be expected to decrease phosphatidylcholine/cholesterol interactions and thereby enhance cholesterol desorption from the membrane. Scavenger receptor-mediated changes in membrane phosphatidylcholine may contribute to the increased flux of cholesterol and other lipids elicited by these receptors.
Collapse
Affiliation(s)
- Saj Parathath
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794-8651, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Parathath S, Sahoo D, Darlington YF, Peng Y, Collins HL, Rothblat GH, Williams DL, Connelly MA. Glycine 420 near the C-terminal transmembrane domain of SR-BI is critical for proper delivery and metabolism of high density lipoprotein cholesteryl ester. J Biol Chem 2004; 279:24976-85. [PMID: 15060063 DOI: 10.1074/jbc.m402435200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor BI, SR-BI, is a physiologically relevant receptor for high density lipoprotein (HDL) that mediates the uptake of cholesteryl esters and delivers them to a metabolically active membrane pool where they are subsequently hydrolyzed. A previously characterized SR-BI mutant, A-VI, with an epitope tag inserted into the extracellular domain near the C-terminal transmembrane segment, revealed a separation-of-function between SR-BI-mediated HDL cholesteryl ester uptake and cholesterol efflux to HDL, on one hand, and cholesterol release to small unilamellar phospholipid vesicle acceptors and an increased cholesterol oxidase-sensitive pool of membrane free cholesterol on the other. To further elucidate amino acid residues responsible for this separation-of-function phenotype, we engineered alanine substitutions and point mutations in and around the site of epitope tag insertion, and tested these for various cholesterol transport functions. We found that changing amino acid 420 from glycine to histidine had a profound effect on SR-BI function. Despite the ability to mediate selective HDL cholesteryl ester uptake, the G420H receptor had a greatly reduced ability to: 1) enlarge the cholesterol oxidase-sensitive pool of membrane free cholesterol, 2) mediate cholesterol efflux to HDL, even at low concentrations of HDL acceptor where binding-dependent cholesterol efflux predominates, and 3) accumulate cholesterol mass within the cell. Most importantly, the G420H mutant was unable to deliver the HDL cholesteryl ester to a metabolically active membrane compartment for efficient hydrolysis. These observations have important implications regarding SR-BI function as related to its structure near the C-terminal transmembrane domain.
Collapse
Affiliation(s)
- Saj Parathath
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Reaven E, Cortez Y, Leers-Sucheta S, Nomoto A, Azhar S. Dimerization of the scavenger receptor class B type I: formation, function, and localization in diverse cells and tissues. J Lipid Res 2004; 45:513-28. [PMID: 14657200 DOI: 10.1194/jlr.m300370-jlr200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study has examined the dimeric/oligomeric forms of scavenger receptor class B type I (SR-BI) and its alternatively spliced form, SR-BII, in a diverse group of cells and tissues: i.e., normal and hormonally altered tissues of mice and rats as well as tissues of transgenic animals and genetically altered steroidogenic and nonsteroidogenic cells overexpressing the SR-B proteins. Using both biochemical and morphological techniques, we have seen that these dimeric and higher order oligomeric forms of SR-BI expression are strongly associated with both functional and morphological expression of the selective HDL cholesteryl ester uptake pathway. Rats and mice show some species differences in expression of SR-BII dimeric forms; this difference does not extend to the use of SR-B cDNA types for transfection purposes. In a separate study, cotransfection of HEK293 cells with cMyc and V5 epitope-tagged SR-BI permitted coprecipitation and quantitative coimmunocytochemical measurements at the electron microscope level, suggesting that much of the newly expressed SR-BI protein in stimulated cells dimerizes and that the SR-BI dimers are localized to the cell surface and specifically to microvillar or double membraned intracellular channels. These combined data suggest that SR-BI self-association represents an integral step in the selective cholesteryl ester uptake process.
Collapse
MESH Headings
- Adrenal Glands/metabolism
- Animals
- Cell Membrane/metabolism
- Cells, Cultured
- Dimerization
- Female
- Gene Expression Profiling
- Humans
- Immunohistochemistry
- Lysosomal Membrane Proteins
- Male
- Membrane Proteins/chemistry
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Organ Specificity
- Ovary/metabolism
- Protein Transport
- Rats
- Rats, Sprague-Dawley
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/classification
- Receptors, Immunologic/metabolism
- Receptors, Lipoprotein/chemistry
- Receptors, Lipoprotein/metabolism
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Sialoglycoproteins
Collapse
Affiliation(s)
- Eve Reaven
- Geriatrics Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | | | | | | | | |
Collapse
|
22
|
Kraemer FB, Shen WJ, Harada K, Patel S, Osuga JI, Ishibashi S, Azhar S. Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol Endocrinol 2003; 18:549-57. [PMID: 14657254 DOI: 10.1210/me.2003-0179] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroid hormones are synthesized using cholesterol as precursor, with a substantial portion supplied by the selective uptake of lipoprotein-derived cholesteryl esters. Adrenals express a high level of neutral cholesteryl ester hydrolase activity, and recently hormone-sensitive lipase (HSL) was shown to be responsible for most adrenal neutral cholesteryl ester hydrolase activity. To determine the functional importance of HSL in adrenal steroidogenesis, adrenal cells were isolated from control and HSL-/- mice, and the in vitro production of corticosterone was quantified. Results show that, even though adrenal cholesteryl ester content was substantially elevated in both male and female HSL-/- mice, basal corticosterone production was reduced approximately 50%. The maximum corticosterone production induced by dibutyryl cAMP, and lipoproteins was approximately 75-85% lower in adrenal cells from HSL-/- mice compared with control. There is no intrinsic defect in the conversion of cholesterol into steroids in HSL-/- mice. Dibutyryl cAMP-stimulated conversion of high-density lipoprotein cholesteryl esters into corticosterone was reduced 97% in HSL-/- mice. An increase in low-density lipoprotein receptor expression appears to be one of the compensatory mechanisms for cholesterol delivery in HSL-/- mice. These findings suggest that HSL is functionally linked to the selective pathway and is critically involved in the intracellular processing and availability of cholesterol for adrenal steroidogenesis.
Collapse
Affiliation(s)
- Fredric B Kraemer
- Veterans Affairs Palo Alto Health Care System, California 94304, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wu Q, Sucheta S, Azhar S, Menon KMJ. Lipoprotein enhancement of ovarian theca-interstitial cell steroidogenesis: relative contribution of scavenger receptor class B (type I) and adenosine 5'-triphosphate- binding cassette (type A1) transporter in high-density lipoprotein-cholesterol transport and androgen synthesis. Endocrinology 2003; 144:2437-45. [PMID: 12746305 DOI: 10.1210/en.2002-221110] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The theca-interstitial cells take up plasma high-density lipoprotein (HDL)- and low-density-lipoprotein-derived cholesterol to convert into steroid hormones. The uptake of HDL-derived cholesterol is mediated by the scavenger receptor, class B, type I (SR-BI). In nonsteroidogenic cells, HDL-stimulated efflux of cholesterol has been shown to be mediated by the ATP-binding cassette A1 (ABCA1) transporter. Its expression has not been documented in steroidogenic cells. The goal of the present study was to determine: 1) the role of SR-BI in theca-interstitial cell androgen production; 2) whether theca-interstitial cells express ABCA1 transporter mRNA; and 3) the relative roles of SR-BI and ABCA1 transporter in androgen production. The ABCA1 transporter mRNA expression in rat theca-interstitial cells was shown using RT-PCR and Northern blot analyses. The role of SR-BI and ABCA1 in androstenedione production was also examined by treating cells with anti-SR-BI and 2-hydroxypropyl-beta-cyclodextrin in the presence and absence of human chorionic gonadotropin and/or human HDL(3). The treatment of theca-interstitial cells with anti-SR-BI antibody blocked more than 90% of HDL plus human chorionic gonadotropin-stimulated androstenedione production, and selective HDL-CE uptake. On the other hand, the use of inhibitors of ABCA1 transporter function had no discernible effect on HDL-supported androgen production. These data demonstrate that, although theca-interstitial cells express both SR-BI and ABCA1 transporter mRNA, the SR-BI pathway supplies the majority of the cholesterol required for androgen production. Furthermore, the present study presents evidence for a crucial role for SR-BI in HDL-mediated androgen production.
Collapse
Affiliation(s)
- Qian Wu
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
24
|
Temel RE, Parks JS, Williams DL. Enhancement of scavenger receptor class B type I-mediated selective cholesteryl ester uptake from apoA-I(-/-) high density lipoprotein (HDL) by apolipoprotein A-I requires HDL reorganization by lecithin cholesterol acyltransferase. J Biol Chem 2003; 278:4792-9. [PMID: 12473673 DOI: 10.1074/jbc.m208160200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The severe depletion of cholesteryl ester (CE) in adrenocortical cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays an important role in the high density lipoprotein (HDL) CE selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. A recent study showed that apoA-I(-/-) HDL binds to SR-BI with the same affinity as apoA-I(+/+) HDL, but apoA-I(-/-) HDL has a decreased V(max) for CE transfer from the HDL particle to adrenal cells. The present study was designed to determine the basis for the reduced selective uptake of CE from apoA-I(-/-) HDL. Variations in apoA-I(-/-) HDL particle diameter, free cholesterol or phospholipid content, or the apoE or apoA-II content of apoA-I(-/-) HDL had little effect on HDL CE selective uptake into Y1-BS1 adrenal cells. Lecithin cholesterol acyltransferase treatment alone or addition of apoA-I to apoA-I(-/-) HDL alone also had little effect. However, addition of apoA-I to apoA-I(-/-) HDL in the presence of lecithin cholesterol acyltransferase reorganized the large heterogeneous apoA-I(-/-) HDL to a more discrete particle with enhanced CE selective uptake activity. These results show a unique role for apoA-I in HDL CE selective uptake that is distinct from its role as a ligand for HDL binding to SR-BI. These data suggest that the conformation of apoA-I at the HDL surface is important for the efficient transfer of CE to the cell.
Collapse
Affiliation(s)
- Ryan E Temel
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
25
|
Connelly MA, Kellner-Weibel G, Rothblat GH, Williams DL. SR-BI-directed HDL-cholesteryl ester hydrolysis. J Lipid Res 2003; 44:331-41. [PMID: 12576515 DOI: 10.1194/jlr.m200186-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have examined the metabolic fate of HDL cholesteryl ester (CE) delivered to cells expressing scavenger receptor class B type I (SR-BI). Comparison of SR-BI with a related class B scavenger receptor, CD36, showed a greater uptake and a more rapid and extensive hydrolysis of HDL-CE when delivered by SR-BI. In addition, hydrolysis of HDL-CE delivered by both receptors was via a neutral CE hydrolase. These data indicate that SR-BI, but not CD36, can efficiently direct HDL-CE to a neutral CE hydrolytic pathway. In contrast, LDL-CE was delivered and hydrolyzed equally well by SR-BI and CD36. Hydrolysis of LDL-CE delivered by SR-BI was via a neutral CE hydrolase but that delivered by CD36 occurred via an acidic CE hydrolase, indicating that SR-BI and CD36 deliver LDL-CE to different metabolic pathways. Comparison of inhibitor sensitivities in Y1-BS1 adrenal, Fu5AH hepatoma, and transfected cells suggests that hydrolysis of HDL-CE delivered by SR-BI occurs via cell type-specific neutral CE hydrolases. Furthermore, HDL-CE hydrolytic activity was recovered in a membrane fraction of Y1-BS1 cells. These findings suggest that SR-BI efficiently delivers HDL-CE to a metabolically active membrane compartment where CE is hydrolyzed by a neutral CE hydrolase.
Collapse
Affiliation(s)
- Margery A Connelly
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | | | | | |
Collapse
|
26
|
Rao RM, Jo Y, Leers-Sucheta S, Bose HS, Miller WL, Azhar S, Stocco DM. Differential regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of SR-B1-mediated selective cholesteryl ester transport. Biol Reprod 2003; 68:114-21. [PMID: 12493702 DOI: 10.1095/biolreprod.102.007518] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The rat R2C Leydig tumor cell line is constitutively steroidogenic in nature, while the mouse MA-10 Leydig tumor cell line synthesizes large amounts of steroids only in response to hormonal stimulation. Earlier studies showed abundant cAMP-independent steroid production and constitutive expression of steroidogenic acute regulatory (StAR) protein in R2C cells. The objective of the current study was to identify possible genetic alterations in the R2C cell line responsible for rendering it a constitutively steroidogenic cell line, especially those that might have altered its cholesterol homeostatic mechanisms. Measurement of the levels of cholesterol esters and free cholesterol, precursors for steroidogenesis, indicated that R2C mitochondria were fourfold enriched in free cholesterol content compared with MA-10 mitochondria. In addition to the previously demonstrated increased expression of StAR protein, we show that R2C cells possess marginally enhanced protein kinase A activity, exhibit higher capacity to take up extracellular cholesterol esters, and express much higher levels of scavenger receptor-type B class 1 (SR-B1) and hormone sensitive lipase (HSL). These observations suggest that the high level of steroid biosynthesis in R2C cells is a result of the constitutive expression of the components involved in the uptake of cholesterol esters (SR-B1), their conversion to free cholesterol (HSL), and its mobilization to the inner mitochondrial membrane (StAR).
Collapse
Affiliation(s)
- Rekha M Rao
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Azhar S, Reaven E. Scavenger receptor class BI and selective cholesteryl ester uptake: partners in the regulation of steroidogenesis. Mol Cell Endocrinol 2002; 195:1-26. [PMID: 12354669 DOI: 10.1016/s0303-7207(02)00222-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The steroidogenic tissues have a special requirement for cholesterol, which is used as a substrate for steroid hormone biosynthesis. In many species this cholesterol is obtained from plasma lipoproteins by a unique pathway in which circulating lipoproteins bind to the surface of the steroidogenic cells and contribute their cholesteryl esters to the cells by a 'selective' process in which the whole lipoprotein particle does not enter the cell. This review describes the lipoprotein selective cholesteryl ester uptake process and its specific partnership with the HDL receptor, scavenger receptor class BI (SR-BI). It describes the characteristics of the selective pathway, and the molecular properties, localization, regulation, anchoring sites and potential mechanisms of action of SR-BI in facilitating cholesteryl ester uptake by steroidogenic cells.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education and Clinical Center, GRECC-182B, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
28
|
Temel RE, Walzem RL, Banka CL, Williams DL. Apolipoprotein A-I is necessary for the in vivo formation of high density lipoprotein competent for scavenger receptor BI-mediated cholesteryl ester-selective uptake. J Biol Chem 2002; 277:26565-72. [PMID: 12000760 DOI: 10.1074/jbc.m203014200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The severe depletion of cholesteryl ester (CE) in steroidogenic cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays a specific role in the high density lipoprotein (HDL) CE-selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. The nature of this role, however, is unclear because a variety of apolipoproteins bind to SR-BI expressed in transfected cells. In this study the role of apoA-I in SR-BI-mediated HDL CE-selective uptake was tested via analyses of the biochemical properties of apoA-I(-/-) HDL and its interaction with SR-BI on adrenocortical cells, hepatoma cells, and cells expressing a transfected SR-BI. apoA-I(-/-) HDL are large heterogeneous particles with a core consisting predominantly of CE and a surface enriched in phospholipid, free cholesterol, apoA-II, and apoE. Functional analysis showed apoA-I(-/-) HDL to bind to SR-BI with the same or higher affinity as compared with apoA-I(+/+) HDL, but apoA-I(-/-) HDL showed a 2-3-fold decrease in the V(max) for CE transfer from the HDL particle to adrenal cells. These results indicate that the absence of apoA-I results in HDL particles with a reduced capacity for SR-BI-mediated CE-selective uptake. The reduced V(max) illustrates that HDL properties necessary for binding to SR-BI are distinct from those properties necessary for the transfer of HDL CE from the core of the HDL particle to the plasma membrane. The reduced V(max) for HDL CE-selective uptake likely contributes to the severe reduction in CE accumulation in steroidogenic cells of apoA-I(-/-) mice.
Collapse
Affiliation(s)
- Ryan E Temel
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
29
|
Johnson MSC, Svensson PA, Borén J, Billig H, Carlsson LMS, Carlsson B. Expression of scavenger receptor class B type I in gallbladder columnar epithelium. J Gastroenterol Hepatol 2002; 17:713-20. [PMID: 12100619 DOI: 10.1046/j.1440-1746.2002.02776.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND The lipid content of bile may be modified by the gallbladder epithelium. Recent studies indicate that cholesterol can be absorbed from bile and that this can be enhanced by apolipoprotein (apo) A-I. SR-BI is a multifunctional receptor capable of binding a wide array of native or modified lipoproteins, phospholipid or bile acid micelles. As apo A-I is a ligand for scavenger receptor class B type I (SR-BI) we have characterized the expression of this receptor in murine gallbladder. METHODS Reverse transcription-polymerase chain reaction (RT-PCR), immunoblotting and immunohistochemistry were used to study SR-BI expression in murine gallbladders. SR-BI expression was also used to examine gallbladders from high-fat-fed wild-type and apo B-100 transgenic mice. RESULTS SR-BI and SR-BII mRNA are expressed in gallbladder. SR-BI immunoreactivity was localized to the columnar epithelium of the gallbladder. Immunoreactive SR-BI in gallbladder had an estimated molecular weight of 57 kDa, in contrast to the expected 82 kDa. Deglycosylation experiments indicated that the size difference between the two forms of the receptor is due to post-translational modification. Fat feeding of apo B transgenic mice resulted in gallstone formation but had no effect on the abundance of SR-BI. CONCLUSIONS Gallbladder epithelial cells express SR-BI. This opens the possibility that SR-BI may influence the modification of bile in the gallbladder.
Collapse
Affiliation(s)
- Magnus S C Johnson
- Department of Internal Medicine Vita Stråket 12, Research Center for Endocrinology & Metabolism (RCEM), Pav. 8:3 Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
30
|
Cherradi N, Bideau M, Arnaudeau S, Demaurex N, James RW, Azhar S, Capponi AM. Angiotensin II promotes selective uptake of high density lipoprotein cholesterol esters in bovine adrenal glomerulosa and human adrenocortical carcinoma cells through induction of scavenger receptor class B type I. Endocrinology 2001; 142:4540-9. [PMID: 11564720 DOI: 10.1210/endo.142.10.8412] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II is one of the main physiological regulators of aldosterone biosynthesis in the zona glomerulosa of the adrenal cortex. The hormone stimulates intracellular cholesterol mobilization to the mitochondrion for steroid biosynthesis. Here we have examined whether angiotensin II also modulates exogenous lipoprotein cholesterol ester supply to the steroidogenic machinery and whether this control is exerted on the selective transport of high density lipoprotein-derived cholesterol ester to intracellular lipid droplets through the scavenger receptor class B type I. In bovine adrenal glomerulosa and human NCI H295R adrenocortical carcinoma cells, high density lipoprotein stimulated steroid production. Angiotensin II pretreatment for 24 h potentiated this response. Fluorescence microscopy of cellular uptake of reconstituted high density lipoprotein containing a fluorescent cholesterol ester revealed an initial, time-dependent narrow labeling of the cell membrane followed by an intense accumulation of the fluorescent cholesterol ester within lipid droplets. At all time points, labeling was more pronounced in cells that had been treated for 24 h with angiotensin II. Fluorescence incorporation into cells was prevented by a monoclonal antibody directed against apolipoprotein A-I. Upon quantitative fluorometric determination, cholesterol ester uptake in angiotensin II-treated bovine cells was increased to 175 +/- 15% of controls after 2 h and to 260 +/- 10% after 4 h of exposure to fluorescent high density lipoprotein. The amount of scavenger receptor class B type I protein detected in cells treated with angiotensin II for 24 h reached 203 +/- 12% of that measured in control cells (n = 3, P < 0.01). In contrast, low density lipoprotein receptors were only minimally affected by angiotensin II treatment. This increase in scavenger receptor class B type I protein was associated with a 3-fold induction of scavenger receptor class B type I mRNA, which could be prevented by actinomycin D but not by cycloheximide. Similar results were obtained in the human adenocarcinoma cell line H295R. These observations show that angiotensin II regulates the scavenger receptor class B type I-mediated selective transport of lipoprotein cholesterol ester across the cell membrane as a major source of precursor for mineralocorticoid biosynthesis in both human and bovine adrenal cells.
Collapse
Affiliation(s)
- N Cherradi
- Division of Endocrinology and Diabetology, Faculty of Medicine, University Hospital, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Reaven E, Leers-Sucheta S, Nomoto A, Azhar S. Expression of scavenger receptor class B type 1 (SR-BI) promotes microvillar channel formation and selective cholesteryl ester transport in a heterologous reconstituted system. Proc Natl Acad Sci U S A 2001; 98:1613-8. [PMID: 11171999 PMCID: PMC29305 DOI: 10.1073/pnas.98.4.1613] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the "selective" cholesteryl ester (CE) uptake process, surface-associated lipoproteins [high density lipoprotein (HDL) and low density lipoprotein] are trapped in the space formed between closely apposed surface microvilli (microvillar channels) in hormone-stimulated steroidogenic cells. This is the same location where an HDL receptor (SR-BI) is found. In the current study, we sought to understand the relationship between SR-BI and selective CE uptake in a heterologous insect cell system. Sf9 (Spodoptera frugiperda) cells overexpressing recombinant SR-BI were examined for (i) SR-BI protein by Western blot analysis and light or electron immunomicroscopy, and (ii) selective lipoprotein CE uptake by the use of radiolabeled or fluorescent (BODIPY-CE)-labeled HDL. Noninfected or infected control Sf9 cells do not express SR-BI, show microvillar channels, or internalize CEs. An unexpected finding was the induction of a complex channel system in Sf9 cells expressing SR-BI. SR-BI-expressing cells showed many cell surface double-membraned channels, immunogold SR-BI, apolipoprotein (HDL) labeling of the channels, and high levels of selective HDL-CE uptake. Thus, double-membraned channels can be induced by expression of recombinant SR-BI in a heterologous system, and these specialized structures facilitate both the binding of HDL and selective HDL-CE uptake.
Collapse
MESH Headings
- Animals
- Biological Transport
- Blotting, Western/methods
- Boron Compounds
- CD36 Antigens/biosynthesis
- CD36 Antigens/genetics
- Cell Line
- Cholesterol Esters/metabolism
- Fluorescent Dyes
- Iodine Radioisotopes
- Isotope Labeling
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL3
- Membrane Proteins
- Microscopy, Electron/methods
- Microscopy, Fluorescence/methods
- Microvilli/metabolism
- Protein Binding
- Rats
- Receptors, Immunologic
- Receptors, Lipoprotein/biosynthesis
- Receptors, Lipoprotein/genetics
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Spodoptera
- Tritium
Collapse
Affiliation(s)
- E Reaven
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Alzheimer disease affects almost 4 million Americans and costs $65 billion annually. The disease is more common in women than in men, and studies suggest that oestrogen may have a protective effect. Oestrogen replacement lowers circulating concentrations of gonadotropins. When gonadotropins are added to rat granulosa cells in culture, the number of low density lipoprotein (LDL) receptors and the rate of uptake of low density lipoprotein increases. Many proteins found in Alzheimer disease plaques are ligands for low density lipoprotein receptors (LDLR) on central nervous system (CNS) neurones. This study evaluated whether gonadotropins may be associated with Alzheimer disease. Circulating concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels in 40 male residents of long-term care facilities with the primary diagnosis of dementia were compared to 29 age-matched controls. Serum concentrations of FSH and LH were significantly higher in dementia patients. We speculate they may play an aetiologic role in the deposition of abnormal proteins, particularly those associated with low density lipoprotein receptors, in CNS neurones.
Collapse
Affiliation(s)
- R L Bowen
- Beers-Murphy Clinical Nutrition Center, Section of Clinical Nutrition, University of Wisconsin, Madison, USA.
| | | | | |
Collapse
|
33
|
Reaven E, Zhan L, Nomoto A, Leers-Sucheta S, Azhar S. Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig cells from rat testis. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)34473-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Stangl H, Hyatt M, Hobbs HH. Transport of lipids from high and low density lipoproteins via scavenger receptor-BI. J Biol Chem 1999; 274:32692-8. [PMID: 10551825 DOI: 10.1074/jbc.274.46.32692] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The scavenger receptor-BI (SR-BI) delivers sterols from circulating lipoproteins to tissues, but the relative potency of individual lipoproteins and the transported cholesterol has not been studied in detail. In this study, we used Chinese hamster ovary cells that express recombinant mouse SR-BI but have no functional low density lipoprotein (LDL) receptors (ldlA7-SRBI cells) to compare the fate of lipids transferred from high or low density lipoproteins to cells by SR-BI. HDL and LDL were equally effective in mediating the transfer of [(3)H]cholesterol to cells. Only 5% of the free cholesterol transferred to cells was esterified, in direct contrast to the findings in the cells that express LDL receptors in which 50% of the transported cholesterol was esterified. Almost all the free cholesterol transferred from lipoproteins to cells was rapidly excreted when the ldlA7-SRBI cells were switched to media containing unlabeled lipoproteins. SR-BI expression was associated with an increase in selective cholesteryl ester uptake from both lipoproteins, but HDL was a more effective donor. HDL and LDL were equally effective in delivering cholesterol to the intracellular regulatory pool via SR-BI. These data indicate that SR-BI is able to exchange cholesterol rapidly between lipoproteins and cell membranes and can mediate the uptake of cholesteryl esters from both classes of lipoproteins.
Collapse
Affiliation(s)
- H Stangl
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
35
|
Swarnakar S, Temel RE, Connelly MA, Azhar S, Williams DL. Scavenger receptor class B, type I, mediates selective uptake of low density lipoprotein cholesteryl ester. J Biol Chem 1999; 274:29733-9. [PMID: 10514447 DOI: 10.1074/jbc.274.42.29733] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor, class B, type I (SR-BI) is a cell-surface glycoprotein that mediates selective uptake of high density lipoprotein cholesteryl ester (CE) without the concomitant uptake and degradation of the particle. We have investigated the endocytic and selective uptake of low density lipoprotein (LDL)-CE by SR-BI using COS-7 cells transiently transfected with mouse SR-BI. Analysis of lipoprotein uptake data showed a concentration-dependent LDL-CE-selective uptake when doubly labeled LDL particles were incubated with SR-BI-expressing COS-7 cells. In contrast to vector-transfected cells, SR-BI-expressing COS-7 cells showed marked increases in LDL cell association and CE uptake by the selective uptake pathway, but only a modest increase in CE uptake by the endocytic pathway. SR-BI-mediated LDL-CE-selective uptake exceeded LDL endocytic uptake by 50-100-fold. SR-BI-mediated LDL-CE-selective uptake was not inhibited by the proteoglycan synthesis inhibitor, p-nitrophenyl-beta-D-xylopyranoside or by the sulfation inhibitor sodium chlorate, indicating that SR-BI-mediated LDL-CE uptake occurs independently of LDL interaction with cell-surface proteoglycan. Analyses with subclones of Y1 adrenocortical cells showed that LDL-CE-selective uptake was proportional to the level of SR-BI expression. Furthermore, antibody directed to the extracellular domain of SR-BI blocked LDL-CE-selective uptake in adrenocortical cells. Thus, in cells that normally express SR-BI and in transfected COS-7 cells SR-BI mediates the efficient uptake of LDL-CE via the selective uptake mechanism. These results suggest that SR-BI may influence the metabolism of apoB-containing lipoproteins in vivo by mediating LDL-CE uptake into SR-BI-expressing cells.
Collapse
Affiliation(s)
- S Swarnakar
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
36
|
Azhar S, Luo Y, Medicherla S, Reaven E. Upregulation of selective cholesteryl ester uptake pathway in mice with deletion of low-density lipoprotein receptor function. J Cell Physiol 1999; 180:190-202. [PMID: 10395289 DOI: 10.1002/(sici)1097-4652(199908)180:2<190::aid-jcp7>3.0.co;2-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study examines the effect of mutation of the low-density lipoprotein receptor (LDLR) on cholesterol metabolism, and especially lipoprotein-derived cholesteryl ester uptake, in murine ovarian granulosa cells. Although the tests were conducted on cells prepared by two different procedures, the results are similar. Deletion of LDLR function did not noticeably affect key enzymes of the steroidogenic pathway or affect progestin production and secretion in granulosa cells. No change was found in expression of LDL-related protein (LRP). These data suggested that cholesterol turnover in cells from the knockout animals is within normal limits and that the cells are not stressed to acquire more cholesterol. Both biochemical and morphological data indicate that unstimulated granulosa cells from LDLR-/- mice are nonetheless programmed to take in double the amount of lipoprotein-derived cholesteryl ester (via the selective cholesteryl ester uptake pathway) and to process (hydrolyze, re-esterify, or utilize) more than twofold the cholesteryl ester processed by cells from wildtype (LDLR+/+) animals. Bt2cAMP stimulation of the murine granulosa cells increases the mass of cholesteryl ester taken up by the selective pathway by an additional 38%. To determine to what extent this increase is related to high-density lipoprotein (HDL) scavenger receptor protein (SR-BI) or caveolin function, Western blots and immunohistochemical studies were performed under a variety of conditions. SR-BI levels are found to be low in unstimulated cells of both LDLR+/+ and LDLR-/- animals, but highly expressed (approximately 20-fold increase over basal levels) in stimulated (Bt2cAMP) cells of both animal models. Thus, the functional relationship between selective cholesteryl ester uptake and SR-BI receptor protein is not as tight as in previously reported studies, suggesting a requirement for other tissue factors. Caveolin expression did not change under any of the conditions tested and appears not to be functionally involved in this process.
Collapse
MESH Headings
- Animals
- Biological Transport/drug effects
- Biological Transport/physiology
- Boron Compounds/pharmacokinetics
- Bucladesine/pharmacology
- CD36 Antigens/analysis
- CD36 Antigens/genetics
- Caveolin 1
- Caveolins
- Cells, Cultured
- Cholesterol Esters/pharmacokinetics
- Cholesterol, HDL/pharmacokinetics
- Female
- Fluorescent Antibody Technique
- Gene Expression/physiology
- Granulosa Cells/chemistry
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Humans
- Iodine Radioisotopes
- Lipoproteins/metabolism
- Male
- Membrane Proteins/analysis
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Probes
- RNA, Messenger/analysis
- Receptors, Immunologic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, Lipoprotein
- Receptors, Scavenger
- Reverse Transcriptase Polymerase Chain Reaction
- Scavenger Receptors, Class B
- Up-Regulation/genetics
Collapse
Affiliation(s)
- S Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, California 94304, USA
| | | | | | | |
Collapse
|
37
|
Williams DL, Connelly MA, Temel RE, Swarnakar S, Phillips MC, de la Llera-Moya M, Rothblat GH. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol 1999; 10:329-39. [PMID: 10482136 DOI: 10.1097/00041433-199908000-00007] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scavenger receptor BI (SR-BI) mediates the selective uptake of HDL cholesteryl ester into steroidogenic cells and the liver and is a major determinant of the plasma HDL concentration in the mouse. Recent studies indicate that SR-BI also alters the metabolism of apolipoprotein B-containing particles and influences the development of atherosclerosis in several animal models. These results and the similar pattern of SR-BI expression in humans emphasize that it is important to learn how this receptor influences lipoprotein metabolism and atherosclerosis in people.
Collapse
Affiliation(s)
- D L Williams
- Department of Pharmacological Sciences, University Medical Centre, State University of New York at Stony Brook, 11794, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Lambert G, Chase MB, Dugi K, Bensadoun A, Brewer HB, Santamarina-Fojo S. Hepatic lipase promotes the selective uptake of high density lipoprotein-cholesteryl esters via the scavenger receptor B1. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33491-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Reaven E, Lua Y, Nomoto A, Temel R, Williams DL, van der Westhuyzen DR, Azhar S. The selective pathway and a high-density lipoprotein receptor (SR-BI) in ovarian granulosa cells of the mouse. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1436:565-76. [PMID: 9989286 DOI: 10.1016/s0005-2760(98)00169-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently reported that rat luteinized ovary tissue and primary cultures of rat ovarian granulosa cells reveal a remarkably tight functional correlation between expressed selective uptake of lipoprotein cholesteryl esters and the expression of an HDL receptor protein, scavenger receptor, class B, type I (SR-BI). In the current study, we examine these same processes in C57 mouse granulosa cells and report a different correlation. Unlike the rat cells, non-hormone stimulated mouse granulosa cells are able to effectively carry out their selective pathway functions and secrete HDL-derived progestins despite low levels of SR-BI and barely detectable levels of SR-BII (an isoform of SR-BI). Once stimulated with trophic hormones or Bt2cAMP, small (30-40%) increases are observed in selective pathway functions, but major (approximately 20-fold) increases are seen in SR-BI and SR-BII expression: thus, relatively little is gained in selective cholesteryl ester uptake by mouse granulosa cells even though SR-BI and SR-BII levels are greatly increased. The importance of the HDL receptor proteins to the selective pathway remains clear, however, since a significant portion of the selective process in both basal and stimulated granulosa cells is inhibitable by the use of blocking antibody. Another surface protein, caveolin, previously reported to co-localize with SR-BI in mouse cells shows no change in expression during periods when SR-BI/BII levels are undergoing major shifts.
Collapse
Affiliation(s)
- E Reaven
- Education and Clinical Center, VA Palo Alto Health Care System, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Connelly MA, Klein SM, Azhar S, Abumrad NA, Williams DL. Comparison of class B scavenger receptors, CD36 and scavenger receptor BI (SR-BI), shows that both receptors mediate high density lipoprotein-cholesteryl ester selective uptake but SR-BI exhibits a unique enhancement of cholesteryl ester uptake. J Biol Chem 1999; 274:41-7. [PMID: 9867808 DOI: 10.1074/jbc.274.1.41] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor BI (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without internalization and degradation of the HDL particle. The biochemical mechanism by which SR-BI mediates the selective uptake of HDL CE is poorly understood. Given that CE transfer will occur to some extent from HDL to protein-free synthetic membranes, one hypothesis is that the role of SR-BI is primarily to tether HDL close to the cell surface to facilitate CE transfer from the particle to the plasma membrane. In the present study, this hypothesis was tested by comparing the selective uptake of HDL CE mediated by mouse SR-BI (mSR-BI) with that mediated by rat CD36 (rCD36), a closely related class B scavenger receptor. Both mSR-BI and rCD36 bind HDL with high affinity, and both receptors mediate HDL CE selective uptake. However, SR-BI mediates selective uptake of HDL CE with a 7-fold greater efficiency than rCD36. HDL CE selective uptake mediated by rCD36 is dependent on HDL binding to the receptor, since a mutation that blocks HDL binding also blocks HDL CE selective uptake. These data lead us to hypothesize that one component of HDL CE selective uptake is the tethering of HDL particles to the cell surface. To explore the molecular domains responsible for the greater efficiency of selective uptake by mSR-BI, we compared binding and selective uptake among mSR-BI, scavenger receptor BII, and various chimeric receptors formed from mSR-BI and rCD36. The results show that the extracellular domain of mSR-BI is essential for efficient HDL CE uptake, but the C-terminal cytoplasmic tail also has a major influence on the selective uptake process.
Collapse
Affiliation(s)
- M A Connelly
- Department of Pharmacological Sciences, University Medical Center, State University at Stony Brook, Stony Brook, New York, 11794-8651, USA
| | | | | | | | | |
Collapse
|
41
|
Gu X, Trigatti B, Xu S, Acton S, Babitt J, Krieger M. The efficient cellular uptake of high density lipoprotein lipids via scavenger receptor class B type I requires not only receptor-mediated surface binding but also receptor-specific lipid transfer mediated by its extracellular domain. J Biol Chem 1998; 273:26338-48. [PMID: 9756864 DOI: 10.1074/jbc.273.41.26338] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The class B type I scavenger receptor, (SR-BI), is a member of the CD36 superfamily of proteins and is a physiologically relevant, high affinity cell surface high density lipoprotein (HDL) receptor that mediates selective lipid uptake. The mechanism of selective lipid uptake is fundamentally different from that of classic receptor-mediated uptake via coated pits and vesicles (e.g. the low density lipoprotein receptor pathway) in that it involves efficient transfer of the lipids, but not the outer shell proteins, from HDL to cells. The abilities of SR-BI and CD36, both of which are class B scavenger receptors, to bind HDL and mediate cellular uptake of HDL-associated lipid when transiently expressed in COS cells were examined. For these experiments, the binding of HDL to cells was assessed using either 125I- or Alexa (a fluorescent dye)-HDL in which the apolipoproteins on the surface of the HDL particles were covalently modified. Lipid transfer was measured using HDL noncovalently labeled by the fluorescent lipid 1,1'-dioctadecyl-3,3, 3',3'-tetramethylindocarbocyanine perchlorate. Although both mSR-BI and human CD36 (hCD36) could mediate the binding of HDL in a punctate pattern across the surfaces of cells, only mSR-BI efficiently mediated the transfer of lipid to the cells. Analysis of point mutants established that the major sites of fatty acylation of mSR-BI are Cys462 and Cys470 and that fatty acylation is not required for receptor clustering, HDL binding, or efficient lipid transfer. Generation of mSR-BI/hCD36 domain swap chimeras showed that the differences in lipid uptake activities between mSR-BI and hCD36 were not due to differences between their two sets of transmembrane and cytoplasmic domains but rather result from differences in their large extracellular loop domains. These results show that high affinity binding to a cell surface receptor is not sufficient to ensure efficient cellular lipid uptake from HDL. Thus, SR-BI-mediated binding combined with SR-BI-dependent facilitated transfer of lipid from the HDL particle to the cell appears to be the most likely mechanism for the bulk of the selective uptake of cholesteryl esters from HDL to the liver and steroidogenic tissues.
Collapse
Affiliation(s)
- X Gu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
42
|
Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32191-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Reaven E, Nomoto A, Leers-Sucheta S, Temel R, Williams DL, Azhar S. Expression and microvillar localization of scavenger receptor, class B, type I (a high density lipoprotein receptor) in luteinized and hormone-desensitized rat ovarian models. Endocrinology 1998; 139:2847-56. [PMID: 9607793 DOI: 10.1210/endo.139.6.6056] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Steroidogenic cells in rats and mice obtain most of their cholesterol for steroid production and cholesteryl ester (CE) storage via the selective uptake pathway in which high density lipoprotein CE (HDL-CE) is taken into the cell without the uptake and degradation of the HDL particle. A number of recent studies show that the scavenger receptor, class B, type I (SR-BI) can mediate HDL-CE selective uptake in cultured cells and suggest that this receptor may be responsible for HDL-CE selective uptake in steroidogenic cells in vivo. In the current study we examine the relationship between SR-BI expression and HDL-CE selective uptake in the gonadotropin-primed, luteinized rat ovary and in the ovary that is desensitized by multiple gonadotropin treatments. Results from this study demonstrate a tight association between expression of SR-BI and measurements of HDL-CE selective uptake regardless of the steroidogenic state of the ovary. Thus, in the luteinized ovary (which is actively producing progestins), HDL-CE selective uptake is high, as is the expression of SR-BI. In the desensitized ovary (where CE content is reduced by 90% and progestin production is virtually absent), HDL-CE selective uptake and SR-BI are induced 2- to 3-fold compared with those in the luteinized ovary. These data argue that SR-BI can be regulated by the cholesterol status of the luteal cell independently of gonadotropic stimulation. Immunostaining at the light microscopic level showed strong expression of SR-BI specifically on the surface of luteal cells in the luteinized and desensitized ovary. Immunolocalization at the electron microscopic level showed that SR-BI was associated with microvilli and microvillar channels of the luteal cell surface. This result supports the hypothesis that microvilli and microvillar channels represent a cell surface compartment that is specialized for the selective uptake of lipoprotein cholesterol into steroidogenic cells.
Collapse
Affiliation(s)
- E Reaven
- Geriatric Research, Education and Clinical Center, Veterans Administration Palo Alto Health Care System, California 94304, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Swarnakar S, Reyland ME, Deng J, Azhar S, Williams DL. Selective uptake of low density lipoprotein-cholesteryl ester is enhanced by inducible apolipoprotein E expression in cultured mouse adrenocortical cells. J Biol Chem 1998; 273:12140-7. [PMID: 9575160 DOI: 10.1074/jbc.273.20.12140] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E is expressed at high levels by steroidogenic cells of the adrenal gland, ovary, and testis. The cell surface location of apoE in adrenocortical cells suggests that apoE may facilitate the uptake of lipoprotein cholesterol by either the endocytic or the selective uptake pathways, or both. To examine these possibilities, the human apoE gene was expressed in murine Y1 adrenocortical cells under control of an inducible tetracycline-regulated promoter. The results show that induction of apoE yielded a 2-2.5-fold increase in the uptake of low density lipoprotein-cholesteryl ester (LDL-CE) but had little effect on high density lipoprotein-CE uptake. Analysis of lipoprotein uptake pathways showed that apoE increased LDL-CE uptake by both endocytic and selective uptake pathways. In terms of cholesterol delivery to the adrenal cell, the apoE-mediated enhancement of LDL-CE selective uptake was quantitatively more important. Furthermore, the predominant effect of apoE expression was on the low affinity component of LDL-CE selective uptake. LDL particles incubated with apoE-expressing cells contained 0.92 +/- 0.11 apoE molecules/apoB after gel filtration chromatography, indicating stable complex formation between apoE and LDL. ApoE expression by Y1 cells was necessary for enhanced LDL-CE selective uptake. This result may indicate an interaction between apoE-containing LDL and cell surface apoE. These data suggest that apoE produced locally by steroidogenic cells facilitates cholesterol acquisition by the LDL selective uptake pathway.
Collapse
Affiliation(s)
- S Swarnakar
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
45
|
Azhar S, Tsai L, Medicherla S, Chandrasekher Y, Giudice L, Reaven E. Human granulosa cells use high density lipoprotein cholesterol for steroidogenesis. J Clin Endocrinol Metab 1998; 83:983-91. [PMID: 9506760 DOI: 10.1210/jcem.83.3.4662] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examines the ability of human high density lipoproteins (HDL3) to deliver cholesteryl esters to human granulosa cells and describes the selective cholesterol pathway by which this occurs. Luteinized cells obtained from subjects undergoing in vitro fertilization-embryo transfer procedures were incubated with native HDL3 (or radiolabeled or fluorescently labeled HDL cholesteryl esters) to determine whether cells from humans (in which HDL is not the primary circulating lipoprotein species) can nevertheless interiorize and appropriately process cholesteryl esters for steroidogenesis. The results indicate that hormone-stimulated granulosa cells actively and efficiently use human HDL-derived cholesterol for progesterone production. More than 95% of the mass of HDL cholesteryl esters entering cells does so through the nonlysosomal (selective) pathway, i.e. cholesteryl esters released from HDL are taken up directly by the cells without internalization of apoproteins. Once internalized, the cholesteryl esters are either hydrolyzed and directly used for steroidogenesis or stored in the cells as cholesteryl esters until needed. The utilization of the internalized cholesteryl esters is a hormone-regulated event; i.e. luteinized human granulosa cells internalize and store large quantities of HDL-donated cholesteryl esters when available, but further processing of the cholesteryl esters (hydrolysis, re-esterification, or use in steroidogenesis) does not occur unless the cells are further stimulated to increase progesterone secretion.
Collapse
Affiliation(s)
- S Azhar
- Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, California 94304, USA
| | | | | | | | | | | |
Collapse
|
46
|
Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A 1997; 94:13600-5. [PMID: 9391072 PMCID: PMC28352 DOI: 10.1073/pnas.94.25.13600] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1997] [Accepted: 10/08/1997] [Indexed: 02/05/2023] Open
Abstract
The class B, type I scavenger receptor, SR-BI, binds high density lipoprotein (HDL) and mediates the selective uptake of HDL cholesteryl ester (CE) by cultured transfected cells. The high levels of SR-BI expression in steroidogenic cells in vivo and its regulation by tropic hormones provides support for the hypothesis that SR-BI is a physiologically relevant HDL receptor that supplies substrate cholesterol for steroid hormone synthesis. This hypothesis was tested by determining the ability of antibody directed against murine (m) SR-BI to inhibit the selective uptake of HDL CE in Y1-BS1 adrenocortical cells. Anti-mSR-BI IgG inhibited HDL CE-selective uptake by 70% and cell association of HDL particles by 50% in a dose-dependent manner. The secretion of [3H]steroids derived from HDL containing [3H]CE was inhibited by 78% by anti-mSR-BI IgG. These results establish mSR-BI as the major route for the selective uptake of HDL CE and the delivery of HDL cholesterol to the steroidogenic pathway in cultured mouse adrenal cells.
Collapse
Affiliation(s)
- R E Temel
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
47
|
Xu S, Laccotripe M, Huang X, Rigotti A, Zannis VI, Krieger M. Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37413-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Komaromy M, Azhar S, Cooper AD. Chinese hamster ovary cells expressing a cell surface-anchored form of hepatic lipase. Characterization of low density lipoprotein and chylomicron remnant uptake and selective uptake of high density lipoprotein-cholesteryl ester. J Biol Chem 1996; 271:16906-14. [PMID: 8663289 DOI: 10.1074/jbc.271.28.16906] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The enzyme hepatic lipase may play several roles in lipoprotein metabolism. Recent investigation has suggested a role for the enzyme in lipoprotein and/or lipoprotein lipid uptake. To study this, a simple isolated system that mimics the in vivo system would be desirable. The enzyme is secreted by the hepatic parenchymal cell but exists, and presumably exerts its effects, while bound to capillary endothelial cells in the liver, adrenal gland, and the ovary. We constructed a cDNA that encodes the expression of a chimeric protein composed of rat hepatic lipase and the signal sequence for the addition of the glycophosphatidylinositol (GPI) anchor from human decay-accelerating factor. When transfected into Chinese hamster ovary (CHO) cells this gave rise to a cell population that had immunoreactive hepatic lipase on the cell surface. Cloning of the transfected cells produced several cell lines that expressed the chimeric protein bound to the cell surface by a GPI anchor. This was documented by demonstrating incorporation of [3H]ethanolamine into anti-hepatic lipase immunoprecipitable material; in addition, hepatic lipase was released from the cells by phosphatidylinositol-specific phospholipase C but not by heparin. Phosphatidylinositol-phospholipase C treatment of cells expressing the anchored lipase released material that comigrated with hepatic lipase on SDS-polyacrylamide gel electrophoresis and was immunoreactive with antibody to the cross-reacting determinant of GPI anchors. Cell lysates containing the anchored protein contained salt-resistant lipase activity, a known feature of the secreted hepatic lipase; thus it appears that these cells have a surface-anchored hepatic lipase molecule. Although it was not possible to demonstrate lipolysis by the enzyme while it was on the cell surface for technical reasons, the protein produced by these cells was active when studied in cell membranes. The ability of the cells to take up lipoproteins was studied. The cells demonstrated an increased affinity for low density lipoprotein (LDL) receptor mediated uptake of LDL. They did not, however, demonstrate any enhanced binding or removal of chylomicron remnants. With respect to LDL and remnants, the cells expressing anchored lipase behaved similarly to CHO cell that expressed secreted hepatic lipase. The cells expressing anchored hepatic lipase had a marked increase in the uptake of high density lipoprotein and high density lipoprotein cholesteryl ester when compared to that seen with CHO cells secreting hepatic lipase. This increase occurred primarily via the selective pathway, and was not reduced by addition of anti-LDL receptor or anti-hepatic lipase antibodies or the receptor-associated protein. Together the results suggest that hepatic lipase, when bound to the cell surface by a GPI anchor, plays a role in enhancing lipoprotein uptake. For LDL this may involve the provision of a second foot for particle binding, thus enhancing affinity for the LDL receptor. For chylomicron remnants an additional molecule or molecules are necessary to mediate this effect. For HDL, the enzyme facilitates uptake of cholesteryl ester primarily by the selective pathway.
Collapse
Affiliation(s)
- M Komaromy
- Research Institute, Palo Alto Medical Foundation, Department of Medicine, Stanford University, Palo Alto, California 94301, USA
| | | | | |
Collapse
|
49
|
Reaven E, Tsai L, Azhar S. Intracellular events in the "selective" transport of lipoprotein-derived cholesteryl esters. J Biol Chem 1996; 271:16208-17. [PMID: 8663101 DOI: 10.1074/jbc.271.27.16208] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The current study utilizes human, apoE-free high density lipoprotein reconstituted with a highly specific fluorescent-cholesteryl ester probe to define the initial steps and regulatory sites associated with the "selective" uptake and intracellular itinerary of lipoprotein-derived cholesteryl esters. Bt2cAMP-stimulated ovarian granulosa cells were used as the experimental model, and both morphological and biochemical fluorescence data were obtained. The data show that cholesteryl ester provided through the selective pathway is a process which begins with a temperature-independent transfer of cholesteryl ester to the cell's plasma membrane. Thereafter transfer of the lipid proceeds rapidly and accumulates prominently in a perinuclear region (presumed to be the Golgi/membrane sorting compartment) and in lipid storage droplets of the cells. The data suggest that lipid transfer proteins (or other small soluble proteins) are not required for the intracellular transport of the cholesteryl esters, nor is an intact Golgi complex or an intact cell cytoskeleton (although the transfer is less efficient in the presence of certain microtubule-disrupting agents). The intracellular transfer of the cholesteryl esters is also somewhat dependent on an energy source in that a glucose-deficient culture medium or a combination of metabolic inhibitors reduces the efficiency of the transfer. A protein-mediated event may be required for cholesteryl ester internalization from the plasma membrane, in that N-ethylmaleimide dramatically blocks the internalization phase of the selective uptake process. Taken together these data suggest that the selective pathway is a factor-dependent, energy-requiring cholesteryl ester transport system, in which lipoprotein-donated cholesteryl esters probably flow through vesicles or intracellular membrane sheets and their connections, rather than through the cell cytosol.
Collapse
Affiliation(s)
- E Reaven
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | |
Collapse
|
50
|
Reaven E, Tsai L, Azhar S. Cholesterol uptake by the ‘selective’ pathway of ovarian granulosa cells: early intracellular events. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39746-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|