1
|
Monson C, Goetz G, Forsgren K, Swanson P, Young G. In vivo treatment with a non-aromatizable androgen rapidly alters the ovarian transcriptome of previtellogenic secondary growth coho salmon (Onchorhynchus kisutch). PLoS One 2024; 19:e0311628. [PMID: 39383164 PMCID: PMC11463792 DOI: 10.1371/journal.pone.0311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence suggests that androgens are a potent driver of growth during late the primary stage of ovarian follicle development in teleosts. We have previously shown that the non-aromatizable androgen, 11-ketotestosterone (11-KT), both advances ovarian follicle growth in vivo and dramatically alters the primary growth ovarian transcriptome in coho salmon. Many of the transcriptomic changes pointed towards 11-KT driving process associated with the transition to a secondary growth phenotype. In the current study, we implanted previtellogenic early secondary growth coho salmon with cholesterol pellets containing 11-KT and performed RNA-Seq on ovarian tissue after 3 days in order to identify alterations to the ovarian transcriptome in early secondary growth. We identified 8,707 contiguous sequences (contigs) that were differentially expressed (DE) between control and 11-KT implanted fish and were able to collapse those to 3,853 gene-level IDs, more than a 3-fold more DE contigs than at the primary growth stage we reported previously. These contigs included genes encoding proteins involved in steroidogenesis, vitellogenin and lipid uptake, follicle stimulating hormone signaling, growth factor signaling, and structural proteins, suggesting androgens continue to promote previtellogenic secondary growth.
Collapse
Affiliation(s)
- Christopher Monson
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giles Goetz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Kristy Forsgren
- Department of Biological Science, California State University, Fullerton, Fullerton, California, United States of America
| | - Penny Swanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Graham Young
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
2
|
Simchick C, Bolstad K, Simeon A, Planas JV. Endocrine patterns associated with ovarian development in female Pacific halibut (Hippoglossus stenolepis). Gen Comp Endocrinol 2024; 347:114425. [PMID: 38101488 DOI: 10.1016/j.ygcen.2023.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The Pacific halibut (Hippoglossus stenolepis) is a large migratory demersal flatfish species that occupies a top trophic role in the North Pacific Ocean and Bering Sea ecosystems, where it also supports various fisheries. As a first attempt to characterize the endocrine mechanisms driving sexual maturation in this important species, we collected pituitary, ovarian and blood samples from Pacific halibut females captured in the wild that were classified histologically into various female developmental stages. We conducted gene expression analyses of gonadotropin beta subunits in the pituitary and observed that mRNA expression levels of fshb gradually increased throughout vitellogenesis, remained elevated until before ovulation and declined after spawning. In contrast, the mRNA expression levels of lhb markedly increased during oocyte maturation and remained elevated until after spawning. Ovarian mRNA expression levels of the gonadotropin receptor genes fshr and lhr peaked during oocyte maturation and before spawning, respectively, immediately following the developmental stage at which pituitary fshb and lhb mRNA expression first reached maximum levels. The ovarian gene expression patterns of steroidogenic enzyme genes cyp19a1 and hsd20b2 paralleled those of fshr and lhr, respectively. Testosterone and 17β-estradiol (E2) plasma levels increased concomitantly with fshr and cyp19a1 mRNA expression levels, and vitellogenin plasma levels increased throughout vitellogenesis and reached maximum levels prior to spawning. These results are consistent with the notion that in female Pacific halibut, as in other teleosts, vitellogenesis and oocyte maturation and ovulation are likely under the control of pituitary gonadotropic hormones Fsh and Lh, respectively.
Collapse
Affiliation(s)
- Crystal Simchick
- International Pacific Halibut Commission, 2320 W. Commodore Way, Seattle, WA 98199, USA
| | - Kennedy Bolstad
- International Pacific Halibut Commission, 2320 W. Commodore Way, Seattle, WA 98199, USA
| | - Anna Simeon
- International Pacific Halibut Commission, 2320 W. Commodore Way, Seattle, WA 98199, USA
| | - Josep V Planas
- International Pacific Halibut Commission, 2320 W. Commodore Way, Seattle, WA 98199, USA.
| |
Collapse
|
3
|
Perelmuter JT, Hom KN, Mohr RA, Demis L, Kim S, Chernenko A, Timothy M, Middleton MA, Sisneros JA, Forlano PM. Testosterone Treatment Mimics Seasonal Downregulation of Dopamine Innervation in the Auditory System of Female Midshipman Fish. Integr Comp Biol 2021; 61:269-282. [PMID: 33974077 DOI: 10.1093/icb/icab070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In seasonally breeding vertebrates, hormones coordinate changes in nervous system structure and function to facilitate reproductive readiness and success. Steroid hormones often exert their effects indirectly via regulation of neuromodulators, which in turn can coordinate the modulation of sensory input with appropriate motor output. Female plainfin midshipman fish (Porichthys notatus) undergo increased peripheral auditory sensitivity in time for the summer breeding season, improving their ability to detect mates, which is regulated by steroid hormones. Reproductive females also show differences in catecholaminergic innervation of auditory circuitry compared with winter, non-reproductive females as measured by tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholaminergic synthesis. Importantly, catecholaminergic input to the inner ear from a dopaminergic-specific forebrain nucleus is decreased in the summer and dopamine inhibits the sensitivity of the inner ear, suggesting that gonadal steroids may alter auditory sensitivity by regulating dopamine innervation. In this study, we gonadectomized non-reproductive females, implanted them with estradiol (E2) or testosterone (T), and measured TH immunoreactive (TH-ir) fibers in auditory nuclei where catecholaminergic innervation was previously shown to be seasonally plastic. We found that treatment with T, but not E2, reduced TH-ir innervation in the auditory hindbrain. T-treatment also reduced TH-ir fibers in the forebrain dopaminergic cell group that projects to the inner ear, and likely to the auditory hindbrain. Higher T plasma in the treatment group was correlated with reduced-ir TH terminals in the inner ear. These T-treatment induced changes in TH-ir fibers mimic the seasonal downregulation of dopamine in the midshipman inner ear and provide evidence that steroid hormone regulation of peripheral auditory sensitivity is mediated, in part, by dopamine.
Collapse
Affiliation(s)
- Jonathan T Perelmuter
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.,Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA
| | - Kelsey N Hom
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Doctoral Program in Biology, The Graduate Center, The City University of New York, New York, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA
| | - Robert A Mohr
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Lina Demis
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Spencer Kim
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Alena Chernenko
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Miky Timothy
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Mollie A Middleton
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA.,Virginia Merrill Bloedel Hearing Research Center, Seattle, WA, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Ecology, Evolutionary Biology, and Behavior, The Graduate Center, City University of New York, New York, NY, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY, USA
| |
Collapse
|
4
|
Lent EM, Babbitt KJ, Pinkney AE. Effects of Environmental Contaminants at Great Bay National Wildlife Refuge on Anuran Development, Gonadal Histology, and Reproductive Steroidogenesis: A Comparison of In Situ and Laboratory Exposures. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:663-679. [PMID: 32444957 DOI: 10.1007/s00244-020-00741-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/02/2020] [Indexed: 05/06/2023]
Abstract
Previous monitoring at Great Bay National Wildlife Refuge (NWR), Newington, New Hampshire documented high prevalence of amphibian malformations at sites contaminated with potential endocrine active compounds. In the present study, a combination of in situ and laboratory experiments were used to determine whether contaminants present in the sites affect amphibian growth and reproductive development. Wood frog (Rana sylvatica) tadpoles were exposed in situ at four sites (Ferry Way, Beaver Pond, Lower Peverly, and Stubbs Pond) at Great Bay NWR and northern leopard frog (Rana pipiens) tadpoles were exposed in the lab to sediments collected from three sites (Beaver Pond, Ferry Way, Stubbs Pond) at Great Bay NWR as well as a positive (estradiol) and negative control. High mortality was observed at Stubbs Pond and extended larval period at Beaver Pond in the in situ exposure. Only three malformations were noted in the lab experiment, whereas there was a 63% prevalence of rounded femurs in Beaver Pond metamorphs in the in situ exposure. Only 2.4% (5 of 207) of R. sylvatica metamorphs exhibited abnormal reproductive development, whereas intersex metamorphs occurred in treatments and controls in the lab experiment at rates as high as 26%. Reproductive development was more advanced and estradiol to androgen ratios reduced in male metamorphs from Beaver Pond in both the in situ and lab exposures. DDT, PCBs, and PAHs were detected in sediments at Great Bay NWR at concentrations that exceed regulatory or guidance values, with concentrations of PAHs being highest at Lower Peverly Pond and DDT highest at Stubbs Pond. The effects on anuran development may be attributable to the primary contaminants-DDT and PCBs-acting on the thyroid and gonadal axes.
Collapse
Affiliation(s)
- Emily May Lent
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA.
- US Army Public Health Center, MCHB-PH-TEV, 8252 Blackhawk Road, E-5158, Aberdeen Proving Ground, MD, 21010, USA.
| | - Kimberly J Babbitt
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Alfred E Pinkney
- Chesapeake Bay Field Office, U.S. Fish and Wildlife Service, Annapolis, MD, USA
| |
Collapse
|
5
|
Kraskura K, Hardison EA, Little AG, Dressler T, Prystay TS, Hendriks B, Farrell AP, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Sex-specific differences in swimming, aerobic metabolism and recovery from exercise in adult coho salmon ( Oncorhynchus kisutch) across ecologically relevant temperatures. CONSERVATION PHYSIOLOGY 2021; 9:coab016. [PMID: 34840800 PMCID: PMC8611523 DOI: 10.1093/conphys/coab016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
Adult female Pacific salmon can have higher migration mortality rates than males, particularly at warm temperatures. However, the mechanisms underlying this phenomenon remain a mystery. Given the importance of swimming energetics on fitness, we measured critical swim speed, swimming metabolism, cost of transport, aerobic scope (absolute and factorial) and exercise recovery in adult female and male coho salmon (Oncorhynchus kisutch) held for 2 days at 3 environmentally relevant temperatures (9°C, 14°C, 18°C) in fresh water. Critical swimming performance (U crit) was equivalent between sexes and maximal at 14°C. Absolute aerobic scope was sex- and temperature-independent, whereas factorial aerobic scope decreased with increasing temperature in both sexes. The full cost of recovery from exhaustive exercise (excess post-exercise oxygen consumption) was higher in males compared to females. Immediately following exhaustive exercise (i.e. 1 h), recovery was impaired at 18°C for both sexes. At an intermediate time scale (i.e. 5 h), recovery in males was compromised at 14°C and 18°C compared to females. Overall, swimming, aerobic metabolism, and recovery energetics do not appear to explain the phenomenon of increased mortality rates in female coho salmon. However, our results suggest that warming temperatures compromise recovery following exhaustive exercise in both male and female salmon, which may delay migration progression and could contribute to en route mortality.
Collapse
Affiliation(s)
- K Kraskura
- Department of Ecology, Evolution and Marine Biology, University of
California, Santa Barbara, California 93106, USA
| | - E A Hardison
- Department of Ecology, Evolution and Marine Biology, University of
California, Santa Barbara, California 93106, USA
| | - A G Little
- Department of Biology Biosciences Complex, Queens
University, Kingston, Ontario K7L 3N6, Canada
| | - T Dressler
- Department of Ecology, Evolution and Marine Biology, University of
California, Santa Barbara, California 93106, USA
| | - T S Prystay
- Department of Biology and Institute of Environmental and Interdisciplinary
Science, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - B Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and
Conservation Sciences, University of British Columbia, Vancouver,
British Columbia V6T 1Z4, Canada
| | - A P Farrell
- Department of Zoology, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Faculty of Land and Food Systems, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - S J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary
Science, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - D A Patterson
- Fisheries and Oceans Canada, Science Branch, Pacific Region, School of Resource
and Environmental Management, Simon Fraser University, Burnaby,
British Columbia V5A 1S6, Canada
| | - S G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and
Conservation Sciences, University of British Columbia, Vancouver,
British Columbia V6T 1Z4, Canada
| | - E J Eliason
- Department of Ecology, Evolution and Marine Biology, University of
California, Santa Barbara, California 93106, USA
| |
Collapse
|
6
|
Little AG, Hardison E, Kraskura K, Dressler T, Prystay TS, Hendriks B, Pruitt JN, Farrell AP, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Reduced lactate dehydrogenase activity in the heart and suppressed sex hormone levels are associated with female-biased mortality during thermal stress in Pacific salmon. J Exp Biol 2020; 223:jeb214841. [PMID: 32561626 DOI: 10.1242/jeb.214841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/10/2020] [Indexed: 11/20/2022]
Abstract
Female-biased mortality has been repeatedly reported in Pacific salmon during their upriver migration in both field studies and laboratory holding experiments, especially in the presence of multiple environmental stressors, including thermal stress. Here, we used coho salmon (Oncorhynchus kisutch) to test whether females exposed to elevated water temperatures (18°C) (i) suppress circulating sex hormones (testosterone, 11-ketotestosterone and estradiol), owing to elevated cortisol levels, (ii) have higher activities of enzymes supporting anaerobic metabolism (e.g. lactate dehydrogenase, LDH), (iii) have lower activities of enzymes driving oxidative metabolism (e.g. citrate synthase, CS) in skeletal and cardiac muscle, and (iv) have more oxidative stress damage and reduced capacity for antioxidant defense [lower catalase (CAT) activity]. We found no evidence that a higher susceptibility to oxidative stress contributes to female-biased mortality at warm temperatures. We did, however, find that females had significantly lower cardiac LDH and that 18°C significantly reduced plasma levels of testosterone and estradiol, especially in females. We also found that relative gonad size was significantly lower in the 18°C treatment regardless of sex, whereas relative liver size was significantly lower in females held at 18°C. Further, relative spleen size was significantly elevated in the 18°C treatments across both sexes, with larger warm-induced increases in females. Our results suggest that males may better tolerate bouts of cardiac hypoxia at high temperature, and that thermal stress may also disrupt testosterone- and estradiol-mediated protein catabolism, and the immune response (larger spleens), in migratory female salmon.
Collapse
Affiliation(s)
- A G Little
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - E Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - K Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - T Dressler
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - T S Prystay
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - B Hendriks
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - J N Pruitt
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - A P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - D A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - S G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - E J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Yi S, Liu LF, Zhou LF, Zhao BW, Wang WM, Gao ZX. Screening of Biomarkers Related to Ovarian Maturation and Spawning in Blunt Snout Bream (Megalobrama amblycephala) Based on Metabolomics and Transcriptomics. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:180-193. [PMID: 32006128 DOI: 10.1007/s10126-019-09943-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
In fish breeding practices, gamete maturity of females is vital to reproductive success. For some species, it is possible to estimate the female maturation status based on abdomen observation, but quite difficult for some species which mature at big size. To screen out the potential biomarker in fish blood relating to female maturation, we employed the approach integrating the UPLC-MS/MS and RNA-seq techniques to investigate the metabolites and genes reflecting the sexual maturation and spawning of female blunt snout bream Megalobrama amblycephala. The study included four groups, 1-year-old immature female individuals, 2-year-old immature female individuals, 2-year-old sexually mature female individuals, and 2-year-old sexually mature female individuals after 24 h of successful spawning. The upregulated metabolites in mature females were involved in "steroid hormone biosynthesis," "metabolic pathways," "glycerophospholipid metabolism," etc. compared with those of immature individuals. As the key intermediate of steroid hormone biosynthesis, 17α-hydroxypregnenolone exhibited the highest level in 2-year-old mature females than in the immature females. Meanwhile, the metabolites (i.e., dodecanoic acid and myristic acid) participating in fatty acid synthesis exhibited much lower levels in the females after spawning than those before spawning. In addition to the metabolites, the genes involved in ovarian steroidogenesis were significantly upregulated in the 2-year-old immature females compared to the 1-year-old immature females, indicating that the ovarian steroidogenesis plays important roles in ovarian development of M. amblycephala at the early stages. The significant upregulation of genes (i.e., itpr1, camk2, and mekk2) involved in the "GnRH signaling pathway" was observed in the mature females compared with the immature females, which indicated that the estrogen levels increased after female maturation in M. amblycephala. Moreover, many genes (e.g., gck, creb1, tf2-9, ryr2, asgr1, and creb1) regulating insulin secretion and thyroid hormone synthesis were significantly downregulated after female spawning. The dynamics of gene expression and metabolites observed in this study provide novel cues for guiding fish practical artificial reproduction.
Collapse
Affiliation(s)
- Shaokui Yi
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Li-Fang Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Lai-Fang Zhou
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Bo-Wen Zhao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
- Engineering Research Center of Green development for conventional aquatic biological industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
8
|
Monson C, Young G, Schultz I. In vitro exposure of vitellogenic rainbow trout ovarian follicles to endocrine disrupting chemicals can alter basal estradiol-17β production and responsiveness to a gonadotropin challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105346. [PMID: 31704580 DOI: 10.1016/j.aquatox.2019.105346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Endogenous estrogens play major roles in many aspects of female reproductive development in fish. In order to develop a relatively high-throughput assay to determine the potential impact on reproductive development, vitellogenic rainbow trout ovarian follicles were exposed to a suite of contaminants in vitro and then assessed for the ability to produce estradiol-17β (E2) after a 500 ng/ml salmon gonadotropin (sGTH) challenge. There was a positive correlation between ovarian follicle size and E2 production, but an inverse correlation between size and responsiveness to sGTH. Significant impacts on E2 levels were observed following treatment with different endocrine disrupting chemicals, such as 17α-ethinylestradiol (EE2), prochloraz, or trenbolone. EE2 was remarkably potent and significantly reduced ovarian follicle responsiveness to sGTH at concentrations as low as 0.1 nM. Of the other contaminants tested, only tamoxifen impacted E2 levels, and only at concentrations near the limits of solubility. Flutamide, fluoxetine, 4-hydroxy tamoxifen, hydroxyflutamide, and norfluoxetine had little or no impact. Quantitative PCR analyses of steroidogenesis-related genes were carried out on EE2 treated ovarian follicles, but significant transcriptional responses to EE2 were not observed. Overall, this study suggests that xenoestrogens and anti-estrogens are more likely to interfere with ovarian E2 synthesis than other classes of EDCs. This also provides a template for further testing of the effects of EDCs on ovarian function.
Collapse
Affiliation(s)
- Christopher Monson
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Graham Young
- School or Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Irvin Schultz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Association, 2725 Mountlake Blvd E, Seattle, WA 98112, USA
| |
Collapse
|
9
|
Guellard T, Kalamarz-Kubiak H, Kulczykowska E. Concentrations of melatonin, thyroxine, 17β-estradiol and 11-ketotestosterone in round goby (Neogobius melanostomus) in different phases of the reproductive cycle. Anim Reprod Sci 2019; 204:10-21. [DOI: 10.1016/j.anireprosci.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
|
10
|
Hausken KN, Marquis TJ, Sower SA. Expression of two glycoprotein hormone receptors in larval, parasitic phase, and adult sea lampreys. Gen Comp Endocrinol 2018; 264:39-47. [PMID: 29157942 DOI: 10.1016/j.ygcen.2017.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/18/2022]
Abstract
All jawed vertebrates have three canonical glycoprotein hormones (GpHs: luteinizing hormone, LH; follicle stimulating hormone, FSH; and thyroid stimulating hormone, TSH) with three corresponding GpH receptors (GpH-Rs: LH-R, FSH-R, and TSH-R). In contrast, we propose that the jawless vertebrate, the sea lamprey (Petromyzon marinus), only has two pituitary glycoprotein hormones, lamprey (l)GpH and l-thyrostimulin, and two functional glycoprotein receptors, lGpH-R I and II. It is not known at this time whether there is a specific receptor for lGpH and l-thyrostimulin, or if both GpHs can differentially activate the lGpH-Rs. In this report, we determined the RNA expression of lGpH-R I and II in the gonads and thyroids of larval, parasitic phase, and adult lampreys. A highly sensitive dual-label fluorescent in situ hybridization technique (RNAScope™) showed lGpH-R I expression in the ovaries of larval lamprey, and co-localization and co-expression of lGpH-R I and II in the ovaries of parasitic phase and adult lampreys. Both receptors were also highly co-localized and co-expressed in the endostyle of larval lamprey and thyroid follicles of parasitic and adult lampreys. In addition, we performed in vivo studies to determine the actions of lamprey gonadotropin releasing hormones (lGnRHs) on lGpH-R I and II expression by real time PCR, and determined plasma concentrations of estradiol and thyroxine. Administration of lGnRH-III significantly (p ≤ 0.01) increased lGpHR II expression in the thyroid follicles of adult female lampreys but did not cause a significant increase in RNA expression of lGpH-R I and II in ovaries. Concomitantly, there was a significant increase (p ≤ 0.01) of plasma estradiol without any significant changes of plasma thyroxine concentrations in response to treatment to lGnRH-I, -II, or -III. In summary, our results provide supporting evidence that the lamprey pituitary glycoprotein hormones may differentially activate the lamprey GpH-Rs in regulating both thyroid and gonadal activities during each of the three life stages of the sea lamprey.
Collapse
Affiliation(s)
- Krist N Hausken
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Timothy J Marquis
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Stacia A Sower
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
11
|
Nakamoto M, Shibata Y, Ohno K, Usami T, Kamei Y, Taniguchi Y, Todo T, Sakamoto T, Young G, Swanson P, Naruse K, Nagahama Y. Ovarian aromatase loss-of-function mutant medaka undergo ovary degeneration and partial female-to-male sex reversal after puberty. Mol Cell Endocrinol 2018; 460:104-122. [PMID: 28711606 DOI: 10.1016/j.mce.2017.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
Abstract
Although estrogens have been generally considered to play a critical role in ovarian differentiation in non-mammalian vertebrates, the specific functions of estrogens during ovarian differentiation remain unclear. We isolated two mutants with premature stops in the ovarian aromatase (cyp19a1) gene from an N-ethyl-N-nitrosourea-based gene-driven mutagenesis library of the medaka, Oryzias latipes. In XX mutants, gonads first differentiated into normal ovaries containing many ovarian follicles that failed to accumulate yolk. Subsequently, ovarian tissues underwent extensive degeneration, followed by the appearance of testicular tissues on the dorsal side of ovaries. In the newly formed testicular tissue, strong expression of gsdf was detected in sox9a2-positive somatic cells surrounding germline stem cells suggesting that gsdf plays an important role in testicular differentiation during estrogen-depleted female-to-male sex reversal. We conclude that endogenous estrogens synthesized after fertilization are not essential for early ovarian differentiation but are critical for the maintenance of adult ovaries.
Collapse
Affiliation(s)
- Masatoshi Nakamoto
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8777, Japan
| | - Yasushi Shibata
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA
| | - Kaoru Ohno
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Usami
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Tokyo 181-8611, Japan
| | - Takeshi Todo
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Sakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8777, Japan
| | - Graham Young
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7521, USA
| | - Penny Swanson
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7521, USA; Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112-2097, USA
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | - Yoshitaka Nagahama
- Institution for Collaborative Relations, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
12
|
Monson C, Forsgren K, Goetz G, Harding L, Swanson P, Young G. A teleost androgen promotes development of primary ovarian follicles in coho salmon and rapidly alters the ovarian transcriptome†. Biol Reprod 2017; 97:731-745. [DOI: 10.1093/biolre/iox124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022] Open
|
13
|
Bussy U, Chung-Davidson YW, Buchinger TJ, Li K, Li W. High-sensitivity determination of estrogens in fish plasma using chemical derivatization upstream UHPLC-MSMS. Steroids 2017; 123:13-19. [PMID: 28456451 DOI: 10.1016/j.steroids.2017.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
This article describes the development and validation of a sensitive LC-MSMS method for determination of estrogen in fish plasma. Dansyl chloride derivatization of the phenol functional group in estrogen was used to enhance the response to atmospheric pressure ionization leading to improve the sensitivity. Individual 13C internal standards were selected after comparison with deuterated standards. Liquid-liquid extraction (ethyl acetate or methyl tert-butyl ether) and protein precipitation (acetonitrile, methanol or acetone) were compared for the extraction and clean-up of estrogens from fish plasma. Ethyl acetate was selected as the best alternative with recovery ranging from 61 to 96% and matrix effect ranging from 88 to 106%. Limits of quantification ranged from 0.5 to 1pg/mL showing a gain in sensitivity of 10,000 times over electrospray ionization of underivatized estrogens. Accuracy and precision were validated over three consecutive days and the method was applied to measure estrogen in sea lamprey (Petromyzon marinus) and lake trout (Salvelinus namaycush) plasma. Estrone and estriol were detected in fish below 1ng/mL in plasma, justifying the need of a highly sensitive LC-MSMS quantification method.
Collapse
Affiliation(s)
- Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Ke Li
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Grieshaber CA, Midway SR, Scharf FS, Koopman H, Luckenbach JA, Middleton MA. Seasonal physiological dynamics of maturing female southern flounder ( Paralichthys lethostigma). CONSERVATION PHYSIOLOGY 2016; 4:cow043. [PMID: 29657716 PMCID: PMC5890467 DOI: 10.1093/conphys/cow043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 06/08/2023]
Abstract
Physiological information is rarely used in descriptions of maturity for managed, wild fish species; however, the use of physiological data holds great promise to provide important detail on the complexities of oocyte development and maturity. Investigating southern flounder (Paralichthys lethostigma)-an overfished commercial and recreational fishery resource-we examined pre-spawn physiological changes in females to provide further detail of the maturation process. Given that adults of this species complete maturation and spawn in unknown offshore locations, information on pre-spawn physiological changes is particularly informative for both size- and age-based patterns of maturity. We evaluated seasonal and ontogenetic changes in hormone concentrations in blood plasma that are commonly associated with sexual maturation, in addition to quantifying and classifying lipid stored in liver tissue. We found a strong positive relationship between body weight and lipid content during all months, as well as evidence for mobilization of lipids among larger females in September and October, presumably for gonadal development. Throughout the sampling period, the lipid content of smaller individuals was dominated by structural lipids (as opposed to storage lipids). In contrast, larger individuals possessed greater amounts of storage lipids. This suggests that larger, putatively maturing individuals were accumulating storage lipids for later production of vitellogenin. Females sampled for blood sex steroids and ovarian histology showed different testosterone and estradiol concentrations between putatively maturing and immature fish, and temporal variation with peaks in October and November. Overall, emerging patterns of liver lipid content and composition and blood steroid concentrations describe a multi-month maturation process that is often managed one dimensionally over short time periods. Insights from this work will improve our understanding of the life history of southern flounder, with the potential for better understanding of the dynamics of offshore spawning migration and informing subsequent species management.
Collapse
Affiliation(s)
- Casey A Grieshaber
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Stephen R Midway
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Frederick S Scharf
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Heather Koopman
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Mollie A Middleton
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA
| |
Collapse
|
15
|
Battiprolu PK, Rodnick KJ. Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout. Am J Physiol Heart Circ Physiol 2014; 307:H1401-11. [PMID: 25217653 PMCID: PMC4233302 DOI: 10.1152/ajpheart.00755.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
Cardiac tissue from female rainbow trout demonstrates a sex-specific preference for exogenous glucose and glycolysis, impaired Ca(2+) handling, and a greater tolerance for hypoxia and reoxygenation than cardiac tissue from male rainbow trout. We tested the hypothesis that dichloroacetate (DCA), an activator of pyruvate dehydrogenase, enhances cardiac energy metabolism and Ca(2+) handling in female preparations and provide cardioprotection for hypoxic male tissue. Ventricle strips from sexually immature fish with very low (male) and nondetectable (female) plasma sex steroids were electrically paced in oxygenated or hypoxic Ringer solution with or without 1 mM DCA. In the presence of 5 mM glucose, aerobic tissue from male trout could be paced at a higher frequency (1.79 vs. 1.36 Hz) with lower resting tension and less contractile dysfunction than female tissue. At 0.5 Hz, DCA selectively reduced resting tension below baseline values and lactate efflux by 75% in aerobic female ventricle strips. DCA improved the functional recovery of developed twitch force, reduced lactate efflux by 50%, and doubled citrate in male preparations after hypoxia-reoxygenation. Independent of female sex steroids, reduced myocardial pyruvate dehydrogenase activity and impaired carbohydrate oxidation might explain the higher lactate efflux, compromised function of the sarcoplasmic reticulum, and reduced mechanical performance of aerobic female tissue. Elevated oxidative metabolism and reduced glycolysis might also underlie the beneficial effects of DCA on the mechanical recovery of male cardiac tissue after hypoxia-reoxygenation. These results support the use of rainbow trout as an experimental model of sex differences of cardiovascular energetics and function, with the potential for modifying metabolic phenotypes and cardioprotection independent of sex steroids.
Collapse
Affiliation(s)
- Pavan K Battiprolu
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| |
Collapse
|
16
|
Bond MH, Beckman BR, Rohrbach L, Quinn TP. Differential growth in estuarine and freshwater habitats indicated by plasma IGF1 concentrations and otolith chemistry in Dolly Varden Salvelinus malma. JOURNAL OF FISH BIOLOGY 2014; 85:1429-1445. [PMID: 25131145 DOI: 10.1111/jfb.12493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
This study employed a combination of otolith microchemistry to indicate the recent habitat use, and plasma concentrations of the hormone insulin-like growth factor 1 (IGF1) as an index of recent growth rate, to demonstrate differences in growth and habitat use by Dolly Varden Salvelinus malma occupying both freshwater and estuarine habitats in south-west Alaska. Extensive sampling in all habitats revealed that fish had higher IGF1 levels in estuarine compared to lake habitats throughout the summer, and that the growth rates in different habitats within the estuary varied seasonally. In addition, otolith microchemistry indicated differentiation in estuarine habitat use among individual S. malma throughout summer months. Although growth in the estuary was higher than in fresh water in nearly all sites and months, the benefits and use of the estuarine habitats varied on finer spatial scales. Therefore, this study further illustrates the diverse life histories of S. malma and indicates an evaluation of the benefits of marine waters needs to include sub-estuary scale habitat use.
Collapse
Affiliation(s)
- M H Bond
- School of Aquatic and Fishery Sciences, University of Washington Box 355020, Seattle, WA 998195, U.S.A
| | | | | | | |
Collapse
|
17
|
Lavado R, Aparicio-Fabre R, Schlenk D. Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:267-278. [PMID: 23925894 PMCID: PMC3946875 DOI: 10.1007/s10695-013-9842-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Phase I biotransformation enzymes are critically important in the disposition of xenobiotics within biota and are regulated by multiple environmental cues, particularly in anadromous fish species. Given the importance of these enzyme systems in xenobiotic/endogenous chemical bioactivation and detoxification, the current study was designed to better characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch) and the effects of salinity acclimation on those enzymes. Livers, gills, and olfactory tissues were collected from coho salmon (O. kisutch) after they had undergone acclimation from freshwater to various salinity regimes of seawater (8, 16 and 32 g/L). Using immunoblot techniques coupled with testosterone hydroxylase catalytic activities, 4 orthologs of cytochrome P450 (CYP1A, CYP2K1, CYP2M1, and CYP3A27) were measured in each tissue. Also, the expression of 2 transcripts of flavin-containing monooxygenases (FMO A and B) and associated activities were measured. With the exception of CYP1A, which was down-regulated in liver, protein expression of the other 3 enzymes was induced at higher salinity, with the greatest increase observed in CYP2M1 from olfactory tissues. In liver and gills, 6β- and 16β-hydroxylation of testosterone was also significantly increased after hypersaline acclimation. Similarly, FMO A was up-regulated in all 3 tissues in a salinity-dependent pattern, whereas FMO B mRNA was down-regulated. FMO-catalyzed benzydamine N-oxygenase and methyl p-tolyl sulfoxidation were significantly induced in liver and gills by hypersalinity, but was either unchanged or not detected in olfactory tissues. These data demonstrate that environmental conditions may significantly alter the toxicity of environmental chemicals in salmon during freshwater/saltwater acclimation.
Collapse
Affiliation(s)
- Ramon Lavado
- Department of Environmental Sciences, University of California, 2258 Geology Building, 900 University Ave, Riverside, CA, 92521, USA,
| | | | | |
Collapse
|
18
|
Guzmán JM, Adam Luckenbach J, Swanson P. Molecular characterization and quantification of sablefish (Anoplopoma fimbria) gonadotropins and their receptors: reproductive dysfunction in female captive broodstock. Gen Comp Endocrinol 2013; 193:37-47. [PMID: 23892013 DOI: 10.1016/j.ygcen.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 01/27/2023]
Abstract
Efforts to establish an aquaculture industry for sablefish (Anoplopoma fimbria) are constrained by reproductive dysfunction in wild-caught fish and by lack of reproduction of F1 females. Toward a better understanding of the reproductive dysfunction of captive broodstock, full-length cDNAs encoding the sablefish gonadotropin subunits (fshb, lhb and cga) and their receptors (fshr and lhcgr) were cloned, sequenced and quantitative real-time PCR assays developed. Sablefish gonadotropin subunits display some unique features, such as two additional Cys residues in the N-terminal region of Fshb and a lack of potential N-glycosylation sites in Fshb and Lhb, whereas Fshr and Lhcgr possess conserved structural characteristics described in other vertebrates. Wild females captured in fall completed gametogenesis in captivity the next spawning season, whereas females captured three months earlier, during summer, failed to mature. Interestingly, these wild non-maturing females exhibited similar reproductive features as prepubertal F1 females, including low levels of pituitary gonadotropin and ovarian receptor mRNAs and plasma sex steroids, and ovarian follicles arrested at the perinucleolus stage. In conclusion, this study described the cloning, molecular characterization and development of qPCRs for sablefish gonadotropins and their receptors. Rearing conditions may impair vitellogenic growth of ovarian follicles in sablefish, compromising the reproductive success of broodstock.
Collapse
Affiliation(s)
- José M Guzmán
- Resource Enhancement and Utilization Technologies Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA.
| | | | | |
Collapse
|
19
|
Baker MR, Swanson P, Young G. Injuries from non-retention in gillnet fisheries suppress reproductive maturation in escaped fish. PLoS One 2013; 8:e69615. [PMID: 23894510 PMCID: PMC3722223 DOI: 10.1371/journal.pone.0069615] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Exploitation of fisheries resources has unintended consequences, not only in the bycatch and discard of non-target organisms, but also in damage to targeted fish that are injured by gear but not landed (non-retention). Delayed mortality due to non-retention represents lost reproductive potential in exploited stocks, while not contributing to harvest. Our study examined the physiological mechanisms by which delayed mortality occurs and the extent to which injuries related to disentanglement from commercial gear compromise reproductive success in spawning stocks of Pacific salmon (Oncorhynchus spp.). We found evidence for elevated stress in fish injured via non-retention in gillnet fisheries. Plasma cortisol levels correlated with the severity of disentanglement injury and were elevated in fish that developed infections related to disentanglement injuries. We also analyzed sex steroid concentrations in females (estradiol-17β and 17,20β-dihydroxy-4-pregnen-3-one) to determine whether non-retention impairs reproductive potential in escaped individuals. We demonstrate evidence for delayed or inhibited maturation in fish with disentanglement injuries. These findings have important implications for effective conservation and management of exploited fish stocks and suggest means to improve spawning success in such stocks if retention in commercial fisheries is improved and incidental mortality reduced.
Collapse
Affiliation(s)
- Matthew R Baker
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America.
| | | | | |
Collapse
|
20
|
Blazer VS, Pinkney AE, Jenkins JA, Iwanowicz LR, Minkkinen S, Draugelis-Dale RO, Uphoff JH. Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:198-209. [PMID: 23384644 DOI: 10.1016/j.scitotenv.2012.12.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
Reduced recruitment of yellow perch has been noted for a number of years in certain urbanized watersheds (South and Severn Rivers) of the Chesapeake Bay. Other rapidly developing watersheds such as Mattawoman Creek are more recently showing evidence of reduced recruitment of anadromous fishes. In this study, we used a battery of biomarkers to better document the reproductive health of adult yellow perch collected during spring spawning in 2007-2009. Perch were collected in the South and Severn Rivers, Mattawoman Creek and the less developed Choptank and Allen's Fresh watersheds for comparison. Gonadosomatic indices, plasma reproductive hormone concentrations, plasma vitellogenin concentrations and gonad histology were evaluated in mature perch of both sexes. In addition, sperm quantity (cell counts) and quality (total and progressive motility, spermatogenic stage and DNA integrity), were measured in male perch. Many of these biomarkers varied annually and spatially, with some interesting statistical results and trends. Male perch from the Choptank and Allen's Fresh had generally higher sperm counts. In 2008 counts were significantly lower in the perch from the Severn when compared to other sites. The major microscopic gonadal abnormality in males was the proliferation of putative Leydig cells, observed in testes from Severn and less commonly, Mattawoman Creek perch. Observations that could significantly impact egg viability were an apparent lack of final maturation, abnormal yolk and thin, irregular zona pellucida. These were observed primarily in ovaries from Severn, South and less commonly Mattawoman Creek perch. The potential association of these observations with urbanization, impervious surface and chemical contaminants is discussed.
Collapse
Affiliation(s)
- Vicki S Blazer
- U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Blazer VS, Iwanowicz LR, Henderson H, Mazik PM, Jenkins JA, Alvarez DA, Young JA. Reproductive endocrine disruption in smallmouth bass (Micropterus dolomieu) in the Potomac River basin: spatial and temporal comparisons of biological effects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:4309-34. [PMID: 21814719 PMCID: PMC3374114 DOI: 10.1007/s10661-011-2266-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 07/15/2011] [Indexed: 05/06/2023]
Abstract
A high prevalence of intersex or testicular oocytes (TO) in male smallmouth bass within the Potomac River drainage has raised concerns as to the health of the river. Studies were conducted to document biomarker responses both temporally and spatially to better understand the influence of normal physiological cycles, as well as water quality and land-use influences. Smallmouth bass were collected over a 2-year period from three tributaries of the Potomac River: the Shenandoah River, the South Branch Potomac and Conococheague Creek, and an out-of-basin reference site on the Gauley River. The prevalence of TO varied seasonally with the lowest prevalence observed in July, post-spawn. Reproductive maturity and/or lack of spawning the previous spring, as well as land-use practices such as application of manure and pesticides, may influence the seasonal observations. Annual, seasonal, and site differences were also observed in the percentage of males with measurable concentrations of plasma vitellogenin, mean concentration of plasma vitellogenin in females, and plasma concentrations of 17β-estradiol and testosterone in both sexes. Bass collected in the South Branch Potomac (moderate to high prevalence of TO) had less sperm per testes mass with a lower percentage of those sperm being motile when compared to those from the Gauley River (low prevalence of TO). An inverse relationship was noted between TO severity and sperm motility. An association between TO severity and wastewater treatment plant flow, percent of agriculture, total number of animal feeding operations, the number of poultry houses, and animal density within the catchment was observed.
Collapse
Affiliation(s)
- Vicki S Blazer
- National Fish Health Research Laboratory, U.S. Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Iwanowicz LR, Blazer VS, Hitt NP, McCormick SD, DeVault DS, Ottinger CA. Histologic, immunologic and endocrine biomarkers indicate contaminant effects in fishes of the Ashtabula River. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:165-182. [PMID: 21882039 DOI: 10.1007/s10646-011-0776-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
The use of fish as sentinels of aquatic ecosystem health is a biologically relevant approach to environmental monitoring and assessment. We examined the health of the Ashtabula River using histologic, immunologic, and endocrine biomarkers in brown bullhead (BB; Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) and compared fish collected from a reference site (Conneaut Creek). Seasonal analysis was necessary to distinguish differences in fish between the two rivers. Overall BB from the Ashtabula River had a lower condition factor and significantly more macrophage aggregates than those from the reference site. Reduced bactericidal and cytotoxic-cell activity was observed in anterior kidney leukocytes from both BB and largemouth bass from the Ashtabula River. Lower plasma thyroxine and triiodo-L-thyronine in both species in the Ashtabula River indicated disruption of the thyroid axis. Differences in physiological biomarker responses were supported by body burden chemical concentrations when data were analyzed on a seasonal basis. The use of two fish species added a level of rigor that demonstrated biological effects were not exclusive to a single species. The results provide strong evidence that contaminants have affected fish in the Ashtabula River, a Great Lakes Area of Concern, and provide a baseline by which to evaluate remediation activities.
Collapse
Affiliation(s)
- Luke R Iwanowicz
- US Geological Survey, Leetown Science Center, Fish Health Branch, Kearneysville, WV 25430, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Yamamoto Y, Luckenbach JA, Middleton MA, Swanson P. The spatiotemporal expression of multiple coho salmon ovarian connexin genes and their hormonal regulation in vitro during oogenesis. Reprod Biol Endocrinol 2011; 9:52. [PMID: 21501524 PMCID: PMC3094281 DOI: 10.1186/1477-7827-9-52] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Throughout oogenesis, cell-cell communication via gap junctions (GJs) between oocytes and surrounding follicle cells (theca and granulosa cells), and/or amongst follicle cells is required for successful follicular development. To gain a fundamental understanding of ovarian GJs in teleosts, gene transcripts encoding GJ proteins, connexins (cx), were identified in the coho salmon, Oncorhynchus kisutch, ovary. The spatiotemporal expression of four ovarian cx transcripts was assessed, as well as their potential regulation by follicle-stimulating hormone (FSH), luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1). METHODS Salmonid ovarian transcriptomes were mined for cx genes. Four gene transcripts designated cx30.9, cx34.3, cx43.2, and cx44.9 were identified. Changes in gene expression across major stages of oogenesis were determined with real-time, quantitative RT-PCR (qPCR) and cx transcripts were localized to specific ovary cell-types by in situ hybridization. Further, salmon ovarian follicles were cultured with various concentrations of FSH, LH and IGF1 and effects of each hormone on cx gene expression were determined by qPCR. RESULTS Transcripts for cx30.9 and cx44.9 were highly expressed at the perinucleolus (PN)-stage and decreased thereafter. In contrast, transcripts for cx34.3 and cx43.2 were low at the PN-stage and increased during later stages of oogenesis, peaking at the mid vitellogenic (VIT)-stage and maturing (MAT)-stage, respectively. In situ hybridization revealed that transcripts for cx34.3 were only detected in granulosa cells, but other cx transcripts were detected in both oocytes and follicle cells. Transcripts for cx30.9 and cx44.9 were down-regulated by FSH and IGF1 at the lipid droplet (LD)-stage, whereas transcripts for cx34.3 were up-regulated by FSH and IGF1 at the LD-stage, and LH and IGF1 at the late VIT-stage. Transcripts for cx43.2 were down-regulated by IGF1 at the late VIT-stage and showed no response to gonadotropins. CONCLUSION Our findings demonstrate the presence and hormonal regulation of four different cx transcripts in the salmon ovary. Differences in the spatiotemporal expression profile and hormonal regulation of these cx transcripts likely relate to their different roles during ovarian follicle differentiation and development.
Collapse
Affiliation(s)
- Yoji Yamamoto
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA 98195, USA
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| | - Mollie A Middleton
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA 98195, USA
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| | - Penny Swanson
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| |
Collapse
|
24
|
Luckenbach JA, Dickey JT, Swanson P. Follicle-stimulating hormone regulation of ovarian transcripts for steroidogenesis-related proteins and cell survival, growth and differentiation factors in vitro during early secondary oocyte growth in coho salmon. Gen Comp Endocrinol 2011; 171:52-63. [PMID: 21187099 DOI: 10.1016/j.ygcen.2010.12.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/17/2022]
Abstract
Little is known about follicle-stimulating hormone (FSH) function during oocyte growth in fishes. The goal of this study was to gain a fundamental understanding of FSH action on ovarian follicles during early secondary oocyte growth by examining changes in ovarian gene expression and steroidogenesis in response to FSH. Coho salmon (Oncorhynchus kisutch) mid to late cortical alveolus stage follicles were incubated with or without salmon FSH in time-course and concentration-response experiments. Steroid levels were determined in the culture medium by immunoassay and levels of target ovarian mRNAs were determined by quantitative RT-PCR. Medium estradiol-17β (E2) levels increased in response to FSH and plateaued by 36h, while testosterone levels increased similarly but were lower and more variable than E2. Gonadotropin receptor transcripts were differentially regulated, with fshr and lhcgr being down- and up- regulated, respectively. Transcripts encoding proteins involved in steroidogenesis, such as star and hsd3b were significantly upregulated by FSH, whereas aromatase (cyp19a1a) mRNA was unaffected by FSH and declined over time in culture. A recently identified teleost gene, bmp16, was suppressed by FSH and an anti-apoptotic factor, clusterin 1 (clu1), was upregulated by FSH. Lesser FSH effects were observed on igf2, cyp11a1 and cyp17a1, which were stimulated, and igf1ra, inhbb, amh and apoe, which were suppressed. As evident by the significant increases in steroid production and transcripts for specific steroidogenesis-related proteins, FSH influences steroidogenesis during early secondary growth and may be a critical signal for puberty onset. Effects of FSH on ovarian anti-apoptotic and growth factor genes suggest roles for FSH in cell survival, growth and differentiation in teleosts.
Collapse
Affiliation(s)
- J Adam Luckenbach
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA.
| | | | | |
Collapse
|
25
|
Sower SA, Balz E, Aquilina-Beck A, Kavanaugh SI. Seasonal changes of brain GnRH-I, -II, and -III during the final reproductive period in adult male and female sea lamprey. Gen Comp Endocrinol 2011; 170:276-82. [PMID: 20709062 DOI: 10.1016/j.ygcen.2010.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 11/30/2022]
Abstract
Sea lampreys are anadromous and semelparous, i.e., they spawn only once in their lifetime, after which they die. Sexual maturation is thus a synchronized process coordinated with the life stages of the lamprey. Recently, a novel gonadotropin-releasing hormone, lamprey GnRH-II (lGnRH-II), was identified in lampreys and suggested to have a hypothalamic role in reproduction (Kavanaugh et al., 2008). To further understand the role of lGnRH-II, changes in ovarian morphology, brain gonadotropin-releasing hormone (lGnRH-I, -II, and -III), and plasma estradiol were examined during the final two months of the reproductive season of adult male and female sea lamprey. The results showed significant correlations between water temperature, fluctuation of brain GnRHs, plasma estradiol and reproductive stages during this time. In males, lGnRH-I concentration increased early in the season, peaked, then declined with a subsequent increase with the final maturational stages. In comparison, lGnRH-II and -III concentrations were also elevated early in the season in males, dropped and then peaked in mid-season with a subsequent decline of lGnRH-II or increase of lGnRH-III at spermiation. In females, lGnRH-III concentration peaked in mid-season with a drop at ovulation while lGnRH-I remained unchanged during the season. In contrast, lGnRH-II concentrations in females were elevated at the beginning of the season and then dropped and remained low during the rest of the season. In summary, these data provide evidence that there are seasonal and differential changes of the three GnRHs during this final reproductive period suggesting specific roles for each of the GnRHs in male and female reproduction.
Collapse
Affiliation(s)
- Stacia A Sower
- Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824, USA.
| | | | | | | |
Collapse
|
26
|
Wingfield JC, Romero LM. Adrenocortical Responses to Stress and Their Modulation in Free‐Living Vertebrates. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070411] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Bykova L, Archer-Hartmann SA, Holland LA, Iwanowicz LR, Blazer VS. Steroid determination in fish plasma using capillary electrophoresis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:1950-1956. [PMID: 20821652 DOI: 10.1002/etc.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A capillary separation method that incorporates pH-mediated stacking is employed for the simultaneous determination of circulating steroid hormones in plasma from Perca flavescens (yellow perch) collected from natural aquatic environments. The method can be applied to separate eight steroid standards: progesterone, 17alpha,20beta-dihydroxypregn-4-en-3-one, 17alpha-hydroxyprogesterone, testosterone, estrone, 11-ketotestosterone, ethynyl estradiol, and 17beta-estradiol. Based on screening of plasma, the performance of the analytical method was determined for 17alpha,20beta-dihydroxypregn-4-en-3-one, testosterone, 11-ketotestosterone, and 17beta-estradiol. The within-day reproducibility in migration time for these four steroids in aqueous samples was < or =2%. Steroid quantification was accomplished using a calibration curve obtained with external standards. Plasma samples from fish collected from the Choptank and Severn Rivers, Maryland, USA, stored for up to one year were extracted with ethyl acetate and then further processed with anion exchange and hydrophobic solid phase extraction cartridges. The recovery of testosterone and 17beta-estradiol from yellow perch plasma was 84 and 85%, respectively. Endogenous levels of testosterone ranged from 0.9 to 44 ng/ml, and when detected 17alpha,20beta-dihydroxypregn-4-en-3-one ranged from 5 to 34 ng/ml. The reported values for testosterone correlated well with the immunoassay technique. Endogenous concentrations of 17beta-estradiol were < or =1.7 ng/ml. 11-Ketotestosterone was not quantified because of a suspected interferant. Higher levels of 17alpha,20beta-dihydroxypregn-4-en-3-one were found in male and female fish in which 17beta-estradiol was not detected. Monitoring multiple steroids can provide insight into hormonal fluctuations in fish.
Collapse
Affiliation(s)
- Liliya Bykova
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506 USA
| | | | | | | | | |
Collapse
|
28
|
Mylonas CC, Fostier A, Zanuy S. Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endocrinol 2010; 165:516-34. [PMID: 19318108 DOI: 10.1016/j.ygcen.2009.03.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/12/2009] [Accepted: 03/16/2009] [Indexed: 11/17/2022]
Abstract
Control of reproductive function in captivity is essential for the sustainability of commercial aquaculture production, and in many fishes it can be achieved by manipulating photoperiod, water temperature or spawning substrate. The fish reproductive cycle is separated in the growth (gametogenesis) and maturation phase (oocyte maturation and spermiation), both controlled by the reproductive hormones of the brain, pituitary and gonad. Although the growth phase of reproductive development is concluded in captivity in most fishes-the major exemption being the freshwater eel (Anguilla spp.), oocyte maturation (OM) and ovulation in females, and spermiation in males may require exogenous hormonal therapies. In some fishes, these hormonal manipulations are used only as a management tool to enhance the efficiency of egg production and facilitate hatchery operations, but in others exogenous hormones are the only way to produce fertilized eggs reliably. Hormonal manipulations of reproductive function in cultured fishes have focused on the use of either exogenous luteinizing hormone (LH) preparations that act directly at the level of the gonad, or synthetic agonists of gonadotropin-releasing hormone (GnRHa) that act at the level of the pituitary to induce release of the endogenous LH stores, which, in turn act at the level of the gonad to induce steroidogenesis and the process of OM and spermiation. After hormonal induction of maturation, broodstock should spawn spontaneously in their rearing enclosures, however, the natural breeding behavior followed by spontaneous spawning may be lost in aquaculture conditions. Therefore, for many species it is also necessary to employ artificial gamete collection and fertilization. Finally, a common question in regards to hormonal therapies is their effect on gamete quality, compared to naturally maturing or spawning broodfish. The main factors that may have significant consequences on gamete quality-mainly on eggs-and should be considered when choosing a spawning induction procedure include (a) the developmental stage of the gonads at the time the hormonal therapy is applied, (b) the type of hormonal therapy, (c) the possible stress induced by the manipulation necessary for the hormone administration and (d) in the case of artificial insemination, the latency period between hormonal stimulation and stripping for in vitro fertilization.
Collapse
Affiliation(s)
- Constantinos C Mylonas
- Institute of Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece.
| | | | | |
Collapse
|
29
|
Sandblom E, Clark TD, Hinch SG, Farrell AP. Sex-specific differences in cardiac control and hematology of sockeye salmon (Oncorhynchus nerka) approaching their spawning grounds. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1136-43. [PMID: 19675278 DOI: 10.1152/ajpregu.00363.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some male salmonids (e.g., rainbow trout) display profound cardiovascular adjustments during sexual maturation, including cardiac growth and hypertension, and tachycardia has been observed in free-ranging male salmonids near their spawning grounds. In the present study, we investigated cardiac control, dorsal aortic blood pressure, cardiac morphometrics, and hematological variables in wild, sexually maturing sockeye salmon (Oncorhynchus nerka) with a particular aim to decipher any sex-specific differences. Routine heart rate (f(H)) was significantly higher in females (52 vs. 43 beats/min), which was due to significantly lower cholinergic tone (28 vs. 46%), because there were no differences in adrenergic tone or intrinsic heart rate between sexes. No differences in blood pressure were observed despite males possessing an 11% greater relative ventricular mass. Concomitant with higher routine heart rates, female sockeye had significantly higher levels of cortisol, testosterone, and 17beta-estradiol, whereas the level of 11-ketotestosterone was higher in males. There were no differences in hematocrit or hemoglobin concentration between the sexes. The findings of this study highlight the importance of considering sex as a variable in research fields such as conservation biology and when modeling the consequences of local and global climate change. Indeed, this study helps to provide a mechanistic basis for the significantly higher rates of female mortality observed in previous studies of wild-caught sockeye salmon.
Collapse
Affiliation(s)
- Erik Sandblom
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
30
|
Robertson LS, Iwanowicz LR, Marranca JM. Identification of centrarchid hepcidins and evidence that 17beta-estradiol disrupts constitutive expression of hepcidin-1 and inducible expression of hepcidin-2 in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2009; 26:898-907. [PMID: 19376234 DOI: 10.1016/j.fsi.2009.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 03/25/2009] [Accepted: 03/30/2009] [Indexed: 05/02/2023]
Abstract
Hepcidin is a highly conserved antimicrobial peptide and iron-regulatory hormone. Here, we identify two hepcidin genes (hep-1 and hep-2) in largemouth bass (Micropterus salmoides) and smallmouth bass (Micropterus dolomieu). Hepcidin-1 contains a putative ATCUN metal-binding site in the amino-terminus that is missing in hepcidin-2, suggesting that hepcidin-1 may function as an iron-regulatory hormone. Both hepcidins are predominately expressed in the liver of largemouth bass, similar to other fish and mammals. Experimental exposure of pond-raised largemouth bass to 17beta-estradiol and/or the bacteria Edwardsiella ictaluri led to distinct changes in expression of hep-1 and hep-2. Estradiol reduced the constitutive expression of hep-1 in the liver. Bacterial exposure induced expression of hep-2, suggesting that hepcidin-2 may have an antimicrobial function, and this induction was abolished by estradiol. To our knowledge, this is the first report of the regulation of hepcidin expression by estradiol in either fish or mammals.
Collapse
Affiliation(s)
- Laura S Robertson
- Leetown Science Center, U.S. Geological Survey, 11649 Leetown Road, Kearneysville, WV 25430, USA.
| | | | | |
Collapse
|
31
|
Stickney RR, Liu HW. Culture of Atlantic halibut (Hippoglossus hippoglossus) and Pacific halibut (Hippoglossus stenolepis). ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641269309388546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Sol SY, Johnson LL, Boyd D, Olson OP, Lomax DP, Collier TK. Relationships between anthropogenic chemical contaminant exposure and associated changes in reproductive parameters in male English sole (Parophrys vetulus) collected from Hylebos Waterway, Puget Sound, Washington. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 55:627-638. [PMID: 18274819 DOI: 10.1007/s00244-008-9140-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 01/21/2008] [Indexed: 05/25/2023]
Abstract
Effects of chemical contaminant exposure on gonadal development in adult male English sole (Parophrys vetulus) from Hylebos Waterway and Colvos Passage, Puget Sound, Washington were investigated. Hylebos Waterway sediment is contaminated with polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs), and Colvos Passage, a nearby nonurban area, is minimally contaminated. Fish from Hylebos Waterway had higher concentrations of both PAHs and OCs in tissues than fish from Colvos Passage. Overall, little correlation was observed between PAH exposure and biological parameters, but strong correlations were observed between OCs and the biological parameters. Migration of fish from less contaminated areas into the Hylebos Waterway during the reproductive season might have influenced these results, based on temporal changes in fish age and contaminant concentrations.
Collapse
Affiliation(s)
- Sean Y Sol
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Environmental Conservation Division, 2725 Montlake Blvd. E, Seattle, WA 98112, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Cheng CL, Flamarique IN. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. J Exp Biol 2007; 210:4123-35. [DOI: 10.1242/jeb.009217] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe retinas of salmonid fishes have single and double cones arranged in square to row formations termed mosaics. The square mosaic unit is formed by four double cones that make the sides of the square with a single (centre)cone in the middle, and a single (corner) cone at each corner of the square when present. Previous research using coho salmon-derived riboprobes on four species of anadromous Pacific salmon has shown that all single cones express a SWS1 (UV sensitive) visual pigment protein (opsin) at hatching, and that these cones switch to a SWS2 (blue light sensitive) opsin during the juvenile period. Whether this opsin switch applies to non-anadromous species, like the rainbow trout, is under debate as species-specific riboprobes have not been used to study opsin expression during development of a trout. As well, a postulated recovery of SWS1 opsin expression in the retina of adult rainbow trout, perhaps via a reverse process to that occurring in the juvenile, has not been investigated. Here, we used in situhybridization with species-specific riboprobes and microspectrophotometry on rainbow trout retina to show that: (1) single cones in the juvenile switch opsin expression from SWS1 to SWS2, (2) this switch is not reversed in the adult, i.e. all single cones in the main retina continue to express SWS2 opsin, and (3) opsin switches do not occur in double cones: each member expresses one opsin, maximally sensitive to green (RH2) or red (LWS) light. The opsin switch in the single cones of salmonid fishes may be a general process of chromatic organization that occurs during retinal development of most vertebrates.
Collapse
Affiliation(s)
- Christiana L. Cheng
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| |
Collapse
|
34
|
Cheng CL, Flamarique IN. Photoreceptor distribution in the retina of adult Pacific salmon: corner cones express blue opsin. Vis Neurosci 2007; 24:269-76. [PMID: 17592670 DOI: 10.1017/s0952523807070137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/29/2007] [Indexed: 11/06/2022]
Abstract
The retina of salmonid fishes has two types of cone photoreceptors: single and double cones. At the nuclear level, these cones are distributed in a square mosaic such that the double cones form the sides of the square and the single cones occupy positions at the centre and at the corners of the square. Double cones consist of two members, one having visual pigment protein maximally sensitive to green light (RH2 opsin), the other maximally sensitive to red light (LWS opsin). Single cones can have opsins maximally sensitive to ultraviolet (UV) or blue light (SWS1 and SWS2 opsins, respectively). In Pacific salmonids, all single cones express UV opsin at hatching. Around the time of yolk sac absorption, single cones start switching opsin expression from UV to blue, in an event that proceeds from the ventral to the dorsal retina. This transformation is accompanied by a loss of single corner cones such that the large juvenile shows corner cones and UV opsin expression in the dorsal retina only. Previous research has shown that adult Pacific salmon have corner cones over large areas of retina suggesting that these cones may be regenerated and that they may express UV opsin. Here we used in-situ hybridization with cRNA probes and RT-PCR to show that: (1) all single cones in non-growth zone areas of the retina express blue opsin and (2) double cone opsin expression alternates around the square mosaic unit. Our results indicate that single cone driven UV sensitivity in adult salmon must emanate from stimulation of growth zone areas.
Collapse
Affiliation(s)
- Christiana L Cheng
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| | | |
Collapse
|
35
|
Sbaihi M, Kacem A, Aroua S, Baloche S, Rousseau K, Lopez E, Meunier F, Dufour S. Thyroid hormone-induced demineralisation of the vertebral skeleton of the eel, Anguilla anguilla. Gen Comp Endocrinol 2007; 151:98-107. [PMID: 17280664 DOI: 10.1016/j.ygcen.2006.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 11/22/2006] [Accepted: 12/18/2006] [Indexed: 11/26/2022]
Abstract
The role of thyroid hormones (TH) in bone remodelling is controversial. Indeed, in humans, while they are necessary for normal growth and development, their overproduction can induce important mineral bone loss and osteoporosis. Intense bone resorption is a natural phenomenon also observed in some teleosts, during reproductive migration and fasting. Our work aimed at investigating the effects of chronic treatments with TH (thyroxin, T4 or triiodothyronine, T3) on bone resorption in a migratory fish, the European eel (Anguilla anguilla), a representative species of an ancient group of teleosts (Elopomorphs). The incineration method showed that TH induced a significant mineral loss in eel vertebral skeleton. Histology and histophysical (qualitative and quantitative microradiographs) methods were then applied to vertebral sections to determine which types of resorption were induced by TH. Quantitative image analysis of microradiographs showed that TH significantly increased the porosity of the vertebrae, demonstrating the induction of a severe bone loss. Histology revealed the appearance of large osteoclastic lacunae, indicating a stimulation of osteoclastic resorption. Quantitative image analysis of ultrathin microradiographs showed a significant increase of the size of osteocytic lacunae, indicating a stimulation of periosteocytic osteolysis. Finally, quantitative microradiographs indicated a significant fall of mineralisation degree. TH treatments did not stimulate the production of the calcium-bonded lipo-phospho-protein vitellogenin, indicating that TH-induced bone demineralisation was not mediated by any indirect effect on vitellogenesis. Our study demonstrates that TH may participate in the mobilisation of bone mineral stores in the eel, by inducing different types of vertebral bone resorption, such as osteoclastic resorption and periosteocytic osteolysis. These data suggest that the stimulatory action of TH on bone resorption may be an ancient regulatory mechanism in vertebrates.
Collapse
Affiliation(s)
- Miskal Sbaihi
- Muséum National d'Histoire Naturelle, Département des Milieux et Peuplements Aquatiques, USM 0401, UMR 5178 CNRS, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Powell ML, Kavanaugh S, Sower SA. Identification of a functional corpus luteum in the Atlantic hagfish, Myxine glutinosa. Gen Comp Endocrinol 2006; 148:95-101. [PMID: 16483574 DOI: 10.1016/j.ygcen.2006.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/30/2005] [Accepted: 01/02/2006] [Indexed: 11/19/2022]
Abstract
Hagfish represent the oldest extant craniates and are an important link between invertebrates and vertebrates. However, key elements of the reproductive system have not been elucidated in hagfish. There is new evidence from our recent studies that Atlantic hagfish may have a seasonal reproductive cycle. These data include seasonal changes in gonadotropin-releasing hormone, gonadal steroids, estradiol, and progesterone, corresponding to gonadal reproductive stages along with the putative identification of a functional corpus luteum. The corpus luteum in non-mammalian vertebrates secretes mainly progesterone thought to be involved in the retention of eggs and down regulation of vitellogenin synthesis. The most ancient vertebrate that is known to have a functional corpus luteum is the dogfish, Squalus acanthias. However, brown bodies, hypothesized to be corpora lutea, have been observed by scientists for over 100 years in the gonad of the hagfish. To date, data in support of these brown bodies acting as corpora lutea have consisted mainly of observational studies. Therefore, we examined the putative corpora lutea (post-ovulatory follicles) in hagfish by histology, electron microscopy, and production of progesterone and estradiol. Progesterone concentrations from post-ovulatory follicles were significantly higher (12+/-1.5 pg/mg gonad tissue wet weight) compared to controls containing only gonadal tissues and oocytes (3.6+/-1.5 pg/mg gonad tissue wet weight) (p<0.05). Estradiol was detected in seven of the 13 samples containing only gonadal tissue with oocytes and ranged between 0.6 and 0.18 pg/mg gonad tissue wet weight and was not detected in any of the media containing only corpora lutea samples. Light and electron microscopy analysis supported that these structures were corpora lutea like structures (post-ovulatory follicles). From these results, we hypothesize that hagfish have functional corpora lutea like structures that produce progesterone.
Collapse
Affiliation(s)
- Mickie L Powell
- Department of Biochemistry and Molecular Biology, University of New Hampshire, College of Life Sciences and Agriculture, 46 College Road, Durham, NH 03824-2617, USA
| | | | | |
Collapse
|
37
|
Webb MAH, Feist GW, Fitzpatrick MS, Foster EP, Schreck CB, Plumlee M, Wong C, Gundersen DT. Mercury concentrations in gonad, liver, and muscle of white sturgeon Acipenser transmontanus in the lower Columbia River. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:443-51. [PMID: 16446999 DOI: 10.1007/s00244-004-0159-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 03/06/2005] [Indexed: 05/06/2023]
Abstract
This study determined the partitioning of total mercury in liver, gonad, and cheek muscle of white sturgeon (Acipenser transmonatus) in the lower Columbia River. The relationship between tissue mercury concentrations and various physiologic parameters was assessed. White sturgeon were captured in commercial fisheries in the estuary and Bonneville, The Dalles, and John Day Reservoirs. Condition factor (CF), relative weight (Wr), and gonadosomatic index (GSI) were determined for each fish (n = 57). Gonadal tissue was examined histologically to determine sex and stage of maturity. Liver (n = 49), gonad (n = 49), and cheek muscle (n = 57) were analyzed for total mercury using cold-vapor atomic fluorescence spectrophotometry. Tissue protein concentrations were measured by ultraviolet-visible spectroscopy. Plasma was analyzed for testosterone (T), 11-ketotestosterone (KT), and 17ss-estradiol (E2) using radioimmunoassay. Mean tissue mercury concentrations were higher in muscle compared with liver and gonad at all sampling locations, except Bonneville Reservoir where mean liver mercury content was the highest tissue concentration observed in the study. Significant negative correlations between plasma androgens (T and KT) and muscle mercury content and plasma E2 and liver mercury content were found. A significant positive linear relationship between white sturgeon age and liver mercury concentrations was evident. Significant negative correlations between CF and relative weight and gonad and liver mercury content were found. In addition, immature male sturgeon with increased gonad mercury content had decreased GSIs. These results suggest that mercury, in the form of methylmercury, may have an effect on the reproductive potential of white sturgeon.
Collapse
Affiliation(s)
- M A H Webb
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon 97331, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Feist GW, Webb MAH, Gundersen DT, Foster EP, Schreck CB, Maule AG, Fitzpatrick MS. Evidence of detrimental effects of environmental contaminants on growth and reproductive physiology of white sturgeon in impounded areas of the Columbia River. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1675-82. [PMID: 16330346 PMCID: PMC1314904 DOI: 10.1289/ehp.8072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study sought to determine whether wild white sturgeon from the Columbia River (Oregon) were exhibiting signs of reproductive endocrine disruption. Fish were sampled in the free-flowing portion of the river (where the population is experiencing reproductive success) and from three reservoirs behind hydroelectric dams (where fish have reduced reproductive success). All of the 18 pesticides and almost all of the 28 polychlorinated biphenyls (PCBs) that were analyzed in livers and gonads were detected in at least some of the tissue samples. Metabolites of p,p -dichlorodiphenyltrichloroethane (DDT) [p,p -dichlorodiphenyldichloroethylene (DDE) and p,p -1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD)]were consistently found at relatively high levels in fish. Some males and immature females showed elevated plasma vitellogenin; however, concentrations were not correlated with any of the pesticides or PCBs analyzed. Negative correlations were found between a number of physiologic parameters and tissue burdens of toxicants. Plasma triglycerides and condition factor were negatively correlated with total DDT (DDD + DDE + DDT), total pesticides (all pesticides detected - total DDT), and PCBs. In males, plasma androgens and gonad size were negatively correlated with total DDT, total pesticides, and PCBs. Fish residing in the reservoir behind the oldest dam had the highest contaminant loads and incidence of gonadal abnormalities, and the lowest triglycerides, condition factor, gonad size, and plasma androgens. These data suggest that endocrine-disrupting chemicals may be accumulating behind dams over time. Overall, results of this study indicate that exposure to environmental contaminants may be affecting both growth and reproductive physiology of sturgeon in some areas of the Columbia River.
Collapse
Affiliation(s)
- Grant W Feist
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331-3803, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Root AR, Sanford JD, Kavanaugh SI, Sower SA. In vitro and in vivo effects of GABA, muscimol, and bicuculline on lamprey GnRH concentration in the brain of the sea lamprey (Petromyzon marinus). Comp Biochem Physiol A Mol Integr Physiol 2005; 138:493-501. [PMID: 15369839 DOI: 10.1016/j.cbpb.2004.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 06/16/2004] [Accepted: 06/17/2004] [Indexed: 11/28/2022]
Abstract
gamma-Aminobutyric acid (GABA) is a neurotransmitter with a demonstrated neuroregulatory role in reproduction in most representative species of vertebrate classes via the hypothalamus. The role of GABA on the hypothalamus-pituitary axis in lampreys has not been fully elucidated. Recent immunocytochemical and in situ hybridization studies suggest that there may be a neuroregulatory role of GABA on the gonadotropin-releasing hormone (GnRH) system in lampreys. To assess possible GABA-GnRH interactions, the effects of GABA and its analogs on lamprey GnRH in vitro and in vivo were studied in adult female sea lampreys (Petromyzon marinus). In vitro perfusion of GABA and its analogs at increasing concentrations (0.1-100 microM) was performed over a 3-h time course. There was a substantial increase of GnRH-I and GnRH-III following treatment of muscimol at 100 microM. In in vivo studies, GABA or muscimol injected at 200 microg/kg significantly increased lamprey GnRH concentration in the brain 0.5 h after treatment compared to controls in female sea lampreys. No significant change in lamprey GnRH-I or GnRH-III was observed following treatment with bicuculline. These data provide novel physiological data supporting the hypothesis that GABA may influence GnRH in the brain of sea lamprey.
Collapse
Affiliation(s)
- Adam R Root
- Department of Biochemistry and Molecular Biology, University of New Hampshire, 46 College Road, Room 310, Durham, NH 03824, USA
| | | | | | | |
Collapse
|
40
|
Iwamatsu T, Kobayashi H, Hamaguchi S, Sagegami R, Shuo T. Estradiol-17? content in developing eggs and induced sex reversal of the medaka (Oryzias latipes). ACTA ACUST UNITED AC 2005; 303:161-7. [PMID: 15662665 DOI: 10.1002/jez.a.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To clarify the effect of exogenous estradiol-17beta (E2) on sex differentiation, the E2 content of developing eggs of Oryzias latipes was measured by radioimmunoassay. Endogenous E2 was present in lower concentrations in ovulated, mature eggs in the ovarian cavity than in intrafollicular oocytes. The E2 content of eggs precipitously declined to a minimum level by 2 days post-fertilization. The E2 content of eggs was affected by 24 hr of incubation in medium containing exogenous E2 at concentrations above 10 ng/ml. Short (24 hr) exposure of fertilized eggs in the early developmental stage to exogenous E2 at concentrations of 10 ng/ml induced sex reversal of some genotypic males to functional females. However, endogenous E2 levels in fertilized eggs might not influence sexual differentiation in embryogenesis. The present results suggest the possibility that concentrations of exogenous E2 higher than that of endogenous E2 triggers a priming step in the cascade of sex differentiation toward the female, and this effect is maintained.
Collapse
Affiliation(s)
- Takashi Iwamatsu
- Department of Biology, Aichi University of Education, Kariya 448-8542, Japan
| | | | | | | | | |
Collapse
|
41
|
Flamarique IN. Temporal shifts in visual pigment absorbance in the retina of Pacific salmon. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 191:37-49. [PMID: 15549325 DOI: 10.1007/s00359-004-0573-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 09/07/2004] [Accepted: 09/18/2004] [Indexed: 11/28/2022]
Abstract
The visual pigments and photoreceptor types in the retinas of three species of Pacific salmon (coho, chum, and chinook) were examined using microspectrophotometry and histological sections for light microscopy. All three species had four cone visual pigments with maximum absorbance in the UV (lambda(max): 357-382 nm), blue (lambda(max): 431-446 nm), green (lambda(max): 490-553 nm) and red (lambda(max): 548-607 nm) parts of the spectrum, and a rod visual pigment with lambda(max): 504-531 nm. The youngest fish (yolk-sac alevins) did not have blue visual pigment, but only UV pigment in the single cones. Older juveniles (smolts) had predominantly single cones with blue visual pigment. Coho and chinook smolts (>1 year old) switched from a vitamin A1- to a vitamin A2-dominated retina during the spring, while the retina of chum smolts and that of the younger alevin-to-parr coho did not. Adult spawners caught during the Fall had vitamin A2-dominated retinas. The central retina of all species had three types of double cones (large, medium and small). The small double cones were situated toward the ventral retina and had lower red visual pigment lambda(max) than that of medium and large double cones, which were found more dorsally. Temperature affected visual pigment lambda(max) during smoltification.
Collapse
Affiliation(s)
- Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
42
|
Farrar RS, Rodnick KJ. Sex-dependent effects of gonadal steroids and cortisol on cardiac contractility in rainbow trout. J Exp Biol 2004; 207:2083-93. [PMID: 15143142 DOI: 10.1242/jeb.00996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The purpose of this study was to determine whether steroid hormones modulate cardiac function in rainbow trout (Oncorhynchus mykissWalbaum). We assessed the effects of exogenously administered steroids on isolated ventricle strips and report that physiological concentrations of androgens, 17β-estradiol and cortisol rapidly (<10 min) enhance inotropism (30–40%) in a sex-specific manner. These effects were specific to the hormones studied, absent if animals were anesthetized chemically and dependent upon steroid concentration and contraction frequency. Based on the use of specific steroid receptor antagonists and key enzyme inhibitors, it appears that testosterone, 11-ketotestosterone and cortisol each act through specific intracellular receptors in males and that the positive inotropism requires the synthesis of polyamines and nitric oxide. Cortisol and 17β-estradiol, but not androgens, had similar effects in females and also involved similar signaling pathways. Androgen and cortisol effects were additive in males but cortisol and 17β-estradiol were not additive in females, suggesting sex differences in the pathways through which these hormones stimulate inotropism. In summary, gonadal steroids and cortisol promote ventricular contractility in a sex-dependent manner through mechanisms that appear multifaceted. Ultimately, steroid-mediated improvements in cardiac performance might involve non-genomic pathways and be physiologically important during migration, spawning or stressful periods.
Collapse
Affiliation(s)
- Richard S Farrar
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | |
Collapse
|
43
|
Powell ML, Kavanaugh SI, Sower SA. Seasonal concentrations of reproductive steroids in the gonads of the atlantic hagfish,Myxine glutinosa. ACTA ACUST UNITED AC 2004; 301:352-60. [PMID: 15039994 DOI: 10.1002/jez.a.20043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes in gonadal morphology, gonadal estradiol, and progesterone were examined in Atlantic hagfish, Myxine glutinosa, during a period of 17 months, beginning in April, 2001. Atlantic hagfish were captured from the ocean on a monthly basis. A total of 60 hagfish were divided into three different size classes of twenty hagfish each (small 20-35 cm, medium 35-45 cm, large 45-55+cm) and transported to the University of New Hampshire for sampling. Overall, in the medium and large size hagfish, estradiol and progesterone had significantly elevated peaks in January, 2001. There were significant increases in estradiol concentrations in January, with relatively low fluctuations in levels for the rest of the sampling period. Progesterone concentrations increased significantly in January, 2002, in medium and large hagfish, and remained elevated until June and April, 2002, for the two size classes respectively. The majority of hagfish sampled were females or hermaphrodites; few true males were identified in any of the samples. The number of females with large eggs increased following the estradiol peak in January and hermaphrodites with mature sperm were identified in the July, 2002, sample. These data represent the first evidence for a seasonal reproductive cycle in M. glutinosa and only the second seasonal reproductive cycle identified in any hagfish species.
Collapse
Affiliation(s)
- Mickle L Powell
- Department of Biochemistry and Molecular Biology, University of New Hampshire College of Life Sciences and Agriculture, Durham, New Hampshire 03824-2617, USA
| | | | | |
Collapse
|
44
|
Milston RH, Fitzpatrick MS, Vella AT, Clements S, Gundersen D, Feist G, Crippen TL, Leong J, Schreck CB. Short-term exposure of Chinook salmon (Oncoryhnchus tshawytscha) to o,p-DDE or DMSO during early life-history stages causes long-term humoral immunosuppression. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:1601-7. [PMID: 14551037 PMCID: PMC1241681 DOI: 10.1289/ehp.6171] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We evaluated the effect of short-term exposures to a xenobiotic chemical during early life-history stages on the long-term immune competence of chinook salmon (Oncoryhnchus tshawytscha). Immersion of chinook salmon eggs in a nominal concentration of o,p-dichlorodiphenyldichloroethylene (o,p-DDE; 10 ppm) for 1 hr at fertilization followed by immersion in the same dose for 2 hr at hatch resulted in a significant reduction in the ability of splenic leukocytes from fish 1 year after treatment to undergo blastogenesis upon in vitro stimulation with lipopolysaccharide. We also observed that the vehicle, dimethyl sulfoxide (DMSO), caused a significant reduction in the ability of the splenic leukocytes to express surface immunoglobin M (SIgM) at this time. The concentration of o,p-DDE in a pooled sample of whole fry from this treatment was 0.53 microg/g lipid 1 month after first feeding but was undetectable in all other treatments. Mortality rate, time to hatch, fish length, and weight were unaffected by treatment with o,p-DDE. Similarly, sex ratios, gonadal development, and concentrations of plasma estradiol and 11-ketotestosterone were not affected by the treatment. In addition, we found no evidence that plasma lysozyme concentrations or the mitogenic responses of splenic leukocytes to concanavalin A or polyinosinic-polycytidylic acid were influenced by the treatment. In this experiment, a brief period of exposure to o,p-DDE or DMSO during early development was able to induce long-term effects on humoral immune competence of chinook salmon. Such immunosuppression may increase susceptibility to disease, which may in turn be critical to regulating the population.
Collapse
Affiliation(s)
- Ruth H Milston
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331-3803, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McQuillan HJ, Lokman PM, Young G. Effects of sex steroids, sex, and sexual maturity on cortisol production: an in vitro comparison of chinook salmon and rainbow trout interrenals. Gen Comp Endocrinol 2003; 133:154-63. [PMID: 12899856 DOI: 10.1016/s0016-6480(03)00163-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sex steroids appear to be responsible for hyperactivation of the hypothalamus-pituitary-interrenal (HPI) axis that occurs in mature semelparous Pacific salmon as a prelude to post-spawning (programmed) death. This study was undertaken to examine the direct effects of sex steroids on interrenal activity of semelparous (chinook salmon) and iteroparous (rainbow trout) salmonids using an in vitro incubation system. In addition, phenotypic sex differences in cortisol production by interrenals of sexually mature (spawning) rainbow trout and chinook salmon were investigated. Interrenal tissue from juvenile and sexually mature chinook salmon and rainbow trout was incubated for 48 h in culture medium containing either no steroid (controls), 1 microM estradiol (E2) or 1 microM 11-ketotestosterone (11-KT). This tissue was then challenged for 3h with either pregnenolone, dibutyryladenosine 3('):5(')-cyclic monophosphate (dbcAMP) or forskolin, or synthetic human adrenocorticotropic hormone (ACTH(1-24)). Sex differences in in vitro interrenal cortisol production were assessed using separate tissue pools challenged with the same agents. Cortisol in media was measured by radioimmunoassay. E2 suppressed the ability of juvenile chinook salmon interrenals to utilize pregnenolone as substrate for cortisol synthesis. In mature female chinook salmon the suppressive effect of E2 was less pronounced, but was observed as a reduced response of interrenals to both pregnenolone and dbcAMP. E2 did not affect ACTH(1-24) stimulated cortisol production. Immature and mature rainbow trout interrenals were both relatively insensitive to E2. 11-KT did not affect cortisol production by juvenile chinook salmon and juvenile or mature rainbow trout, and had only minor effects in male and female spawning chinook salmon. In mature chinook salmon and rainbow trout, the interrenals of females were more responsive to ACTH stimulation and showed a greater utilization of pregnenolone as a substrate than interrenals of males. Mature female rainbow trout were also more responsive to dbcAMP stimulation than males. The results of this study suggest that the onset of sexual maturation and gonadal steroid production may contribute to sexually dimorphic cortisol responses in vitro.
Collapse
|
46
|
Abstract
Environmental and social stresses have deleterious effects on reproductive function in vertebrates. Global climate change, human disturbance and endocrine disruption from pollutants are increasingly likely to pose additional stresses that could have a major impact on human society. Nonetheless, some populations of vertebrates (from fish to mammals) are able to temporarily resist environmental and social stresses, and breed successfully. A classical trade-off of reproductive success for potential survival is involved. We define five examples. (i) Aged individuals with minimal future reproductive success that should attempt to breed despite potential acute stressors. (ii) Seasonal breeders when time for actual breeding is so short that acute stress should be resisted in favour of reproductive success. (iii) If both members of a breeding pair provide parental care, then loss of a mate should be compensated for by the remaining individual. (iv) Semelparous species in which there is only one breeding period followed by programmed death. (v) Species where, because of the transience of dominance status in a social group, individuals may only have a short window of opportunity for mating. We suggest four mechanisms underlying resistance of the gonadal axis to stress. (i) Blockade at the central nervous system level, i.e. an individual no longer perceives the perturbation as stressful. (ii) Blockade at the level of the hypothalamic-pituitary-adrenal axis (i.e. failure to increase secretion of glucocorticosteroids). (iii) Blockade at the level of the hypothalamic-pituitary-gonad axis (i.e. resistance of the reproductive system to the actions of glucocorticosteroids). (iv) Compensatory stimulation of the gonadal axis to counteract inhibitory glucocorticosteroid actions. Although these mechanisms are likely genetically determined, their expression may depend upon a complex interaction with environmental factors. Future research will provide valuable information on the biology of stress and how organisms cope. Such mechanisms would be particularly insightful as the spectre of global change continues to unfold.
Collapse
Affiliation(s)
- J C Wingfield
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
47
|
Estay F, Díaz A, Pedrazza R, Colihueque N. Oogenesis and plasma levels of sex steroids in cultured females of brown trout (Salmo trutta linnaeus, 1758) in Chile. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 298:60-6. [PMID: 12840840 DOI: 10.1002/jez.a.10278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Naturalized brown trout populations in Chile are a valuable genetic resource with aquaculture potential. The oogenesis of a three-year-old brown trout cultured population was studied in southern Chile. Gonadosomatic index (GSI), oocyte growth, gonadal microscopic characteristics, and plasma levels of estradiol-17beta (E2), testosterone (T), and 17alpha-hydroxyprogesterone (17alpha-HP) were measured bimonthly for a nine-month period before spawning. The maximum GSI level (22%) was similar to that described for other salmonids, although it was reached in May, more than one month before the population started spawning. Oocyte growth increases strongly from January when diameter reaches more than 1 mm. The vitellogenic period (six-seven months) is consistent with the long vitellogenesis, described for salmonid females maturing at three years old. E2 shows a slow increase from November, reaching its peak value in March (65.2+/-0.7 ng/ml), during maximal vitellogenic activity. T increases as oogenesis progresses, reaching a maximum of 90+/-20 ng/ml during May, and falling considerably during ovulation. Following a typical pattern of progestogens in salmonid oogenesis, 17alpha-HP stays at basal levels during most of oogenesis, but experiences a strong surge (2.0+/-0.4 ng/ml) just before ovulation.
Collapse
|
48
|
Saito D, Ota Y, Hiraoka S, Hyodo S, Ando H, Urano K. Effect of Oceanographic Environments on Sexual Maturation, Salinity Tolerance, and Vasotocin Gene Expression in Homing Chum Salmon. Zoolog Sci 2001. [DOI: 10.2108/zsj.18.389] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Novales Flamarique I. The ontogeny of ultraviolet sensitivity, cone disappearance and regeneration in the sockeye salmon Oncorhynchus nerka. J Exp Biol 2000; 203:1161-72. [PMID: 10708637 DOI: 10.1242/jeb.203.7.1161] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study examines the spectral sensitivity and cone topography of the sockeye salmon Oncorhynchus nerka throughout its life history with special emphasis on ultraviolet sensitivity. Electrophysiological recordings from the optic nerve show that ultraviolet sensitivity is greatly diminished at the smolt stage but reappears in adult fish weighing about 201 g. Concomitantly, light microscopy observations of the retina show that ultraviolet cones disappear from the dorsal and temporal retina at the smolt stage but reappear at the adult stage. These changes occur for sockeye salmon raised in fresh water or salt water after smoltification. In contrast to this ultraviolet cycle, the other cone mechanisms (short-, middle- and long-wavelength-sensitive) and the rod mechanism remain present throughout ontogeny. The natural appearance and disappearance of ultraviolet cones in salmonid retinas follows surges in blood thyroxine at critical developmental periods. Their presence coincides with times of prominent feeding on zooplankton and/or small fish that may be more visible under ultraviolet light. It is proposed that the primary function of ultraviolet cones in salmonids is to improve prey contrast.
Collapse
Affiliation(s)
- I Novales Flamarique
- Department of Biology, University of Victoria, PO Box 3020, Victoria, British Columbia, Canada V8W 3N5.
| |
Collapse
|
50
|
Afonso LO, Iwama GK, Smith J, Donaldson EM. Effects of the aromatase inhibitor Fadrozole on plasma sex steroid secretion and ovulation rate in female coho salmon, Oncorhynchus kisutch, close to final maturation. Gen Comp Endocrinol 1999; 113:221-9. [PMID: 10082624 DOI: 10.1006/gcen.1998.7198] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma levels of 17beta-estradiol, 17alpha, 20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-P), and testosterone were measured in adult female coho salmon in late vitellogenesis, approximately 1.5 months before spawning and just before and following intraperitoneal injection with the aromatase inhibitor (AI) Fadrozole. Injection at dosages of 0.1, 1.0, and 10.0 mg AI/kg body wt caused a significant drop in plasma 17beta-estradiol levels relative to preinjection values within 3 or 6 h. Injection of 10 mg AI/kg body wt caused a significant increase in plasma 17alpha-20beta-P levels within 3 h. Ten days after injection 67% of the fish treated with 10 mg AI/kg body wt had ovulated in contrast with 0% in the group injected with 0.1 mg AI/kg body wt. The fertilization rate of the eggs varied between 96% in the control group and 85% in the groups injected with AI. We conclude that the shift from 17beta-estradiol to 17alpha,20beta-P biosynthesis, which is characteristic of maturing Oncorhynchus sp., was advanced significantly by treatment with AI and that Fadrozole can be used as a tool to investigate periovulatory endocrine changes in salmon.
Collapse
Affiliation(s)
- L O Afonso
- West Vancouver Laboratory, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, V7V 1N6
| | | | | | | |
Collapse
|