1
|
Gualandris D, Rotondo D, Lorusso C, La Terza A, Calisi A, Dondero F. The Metallothionein System in Tetrahymena thermophila Is Iron-Inducible. TOXICS 2024; 12:725. [PMID: 39453145 PMCID: PMC11511230 DOI: 10.3390/toxics12100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Metallothioneins are multifunctional proteins implicated in various cellular processes. They have been used as biomarkers of heavy metal exposure and contamination due to their intrinsic ability to bind heavy metals and their transcriptional response to both physiological and noxious metal ions such as cadmium (Cd) and mercury (Hg). In this study, we aimed to clarify the role of iron and reactive oxygen species (ROSs) in the induction of the metallothionein system (Mtt) in the ciliate protozoan Tetrahymena thermophila. We investigated the relative mRNA abundances of the metallothionein genes Mtt1, Mtt2/4, and Mtt5, revealing for the first time their responsiveness to iron exposure. Furthermore, by using inhibitors of superoxide dismutase (SOD) and catalase (CAT), alone or in combination with iron, we highlighted the roles of superoxide ion and endogenous hydrogen peroxide, as well as the complex interplay between the metal and ROSs. These results enhance our understanding of the metallothionein system in ciliates and suggest that ROSs may be a primary evolutionary driver for the selection of these proteins in nature.
Collapse
Affiliation(s)
- Davide Gualandris
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| | - Davide Rotondo
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| | - Candida Lorusso
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| | - Antonietta La Terza
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Antonio Calisi
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| | - Francesco Dondero
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| |
Collapse
|
2
|
Yadav VS, Bhatia A, Yadav R, Makker K, Singh DK, Mir RA. Effect of initial periodontal therapy on metallothionein levels in smokers and non-smokers with periodontitis. Odontology 2024; 112:1353-1360. [PMID: 38587608 DOI: 10.1007/s10266-024-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
The aim of this study was to determine the effect of non-surgical periodontal therapy (NSPT) on mRNA expression of metallothionein (MT) and its levels in serum, saliva and gingival crevicular fluid (GCF) of smokers (S) and non-smokers (NS) with periodontitis (P).A total of 100 participants were included: 48 periodontally healthy (PH) subjects (24 S [PH + S] and 24 NS [PH + NS]) and 52 patients with P (27 S [P + S] and 25 NS [P + NS]). Clinical parameters were recorded, and biofluids (serum, saliva and GCF) and gingival tissue samples were obtained at baseline in all groups and 3 months after NSPT in P groups. MT levels in biofluids were determined by ELISA. In gingival tissues, MT-mRNA expression was quantified using real-time PCR. mRNA expression of MT and its levels in biofluids were significantly higher in P + S compared to other groups, and the differences between P + NS and PH + S were non-significant. A significant decrease was observed for MT levels in biofluids, and MT-mRNA expression in periodontitis patients after NSPT. In conclusion, smoking and periodontitis are associated with higher MT expression which decreases after NSPT. MT as an oxidative stress biomarker and its therapeutic role in periodontitis should be investigated in future studies.Clinical trial registration: The study was prospectively registered at Clinical Trials Registry-India (ctri.nic.in) as CTRI/2018/08/015427 on August 23, 2018.
Collapse
Affiliation(s)
- Vikender Singh Yadav
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Anu Bhatia
- PRIMSR Hospital, SRM University, Sonipat, Haryana, India
| | - Rakhee Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kanika Makker
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Dhiraj Kumar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Riyaz Ahmad Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
4
|
Yang R, Roshani D, Gao B, Li P, Shang N. Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants (Basel) 2024; 13:825. [PMID: 39061894 PMCID: PMC11273490 DOI: 10.3390/antiox13070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Metallothionein is a cysteine-rich protein with a high metal content that is widely found in nature. In addition to heavy metal detoxification, metallothionein is well known as a potent antioxidant. The high sulfhydryl content of metallothionein confers excellent antioxidant activity, enabling it to effectively scavenge free radicals and mitigate oxidative stress damage. In addition, metallothionein can play a neuroprotective role by alleviating oxidative damage in nerve cells, have an anticancer effect by enhancing the ability of normal cells to resist unfavorable conditions through its antioxidant function, and reduce inflammation by scavenging reactive oxygen species. Due to its diverse biological functions, metallothionein has a broad potential for application in alleviating environmental heavy metal pollution, predicting and diagnosing diseases, and developing skin care products and health foods. This review summarizes the recent advances in the classification, structure, biological functions, and applications of metallothionein, focusing on its powerful antioxidant effects and related functions.
Collapse
Affiliation(s)
- Ruoqiu Yang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Dumila Roshani
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| | - Boya Gao
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Pinglan Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China; (R.Y.); (B.G.)
| | - Nan Shang
- College of Engineering, China Agricultural University, No, 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| |
Collapse
|
5
|
Feng Y, Zhao X, Ruan Z, Li Z, Mo H, Lu F, Shi D. Zinc improves the developmental ability of bovine in vitro fertilization embryos through its antioxidative action. Theriogenology 2024; 221:47-58. [PMID: 38554613 DOI: 10.1016/j.theriogenology.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Zinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism. The results revealed a significant decline in zygote cleavage and blastocyst development rates when zinc deficiency was induced using zinc chelator N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) in culture medium during embryo in vitro culture. The influence of zinc-deficiency was time-dependent. Conversely, supplementing 0.8 μg/mL zinc sulfate to culture medium (CM) increased the cleavage and blastocyst formation rate significantly. Moreover, this supplementation reduced reactive oxygen species (ROS) levels, elevated the glutathione (GSH) levels in blastocysts, upregulated the mRNA expression of antioxidase-related genes, and activated the Nrf2-Keap1-ARE signaling pathways. Furthermore, 0.8 μg/mL zinc sulfate enhanced mitochondrial membrane potential, maintained DNA stability, and enhanced the quality of bovine (in vitro fertilization) IVF blastocysts. In conclusion, the addition of 0.8 μg/mL zinc sulfate to CM could enhance the antioxidant capacity, activates the Nrf2-Keap1-ARE signaling pathways, augment mitochondrial membrane potential, and stabilizes DNA, ultimately improving blastocyst quality and in vitro bovine embryo development.
Collapse
Affiliation(s)
- Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Zhengda Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Hongfang Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
6
|
Vargas DA, Gregory DJ, Koren RN, Zilberstein D, Belew AT, El-Sayed NM, Gómez MA. Macrophage metallothioneins participate in the antileishmanial activity of antimonials. FRONTIERS IN PARASITOLOGY 2023; 2:1242727. [PMID: 38239429 PMCID: PMC10795579 DOI: 10.3389/fpara.2023.1242727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Host cell functions that participate in the pharmacokinetics and pharmacodynamics (PK/PD) of drugs against intracellular pathogen infections are critical for drug efficacy. In this study, we investigated whether macrophage mechanisms of xenobiotic detoxification contribute to the elimination of intracellular Leishmania upon exposure to pentavalent antimonials (SbV). Primary macrophages from patients with cutaneous leishmaniasis (CL) (n=6) were exposed ex vivo to L. V. panamensis infection and SbV, and transcriptomes were generated. Seven metallothionein (MT) genes, potent scavengers of heavy metals and central elements of the mammalian cell machinery for xenobiotic detoxification, were within the top 20 up-regulated genes. To functionally validate the participation of MTs in drug-mediated killing of intracellular Leishmania, tandem knockdown (KD) of MT2-A and MT1-E, MT1-F, and MT1-X was performed using a pan-MT shRNA approach in THP-1 cells. Parasite survival was unaffected in tandem-KD cells, as a consequence of strong transcriptional upregulation of MTs by infection and SbV, overcoming the KD effect. Gene silencing of the metal transcription factor-1 (MTF-1) abrogated expression of MT1 and MT2-A genes, but not ZnT-1. Upon exposure to SbV, intracellular survival of Leishmania in MTF-1KD cells was significantly enhanced. Results from this study highlight the participation of macrophage MTs in Sb-dependent parasite killing.
Collapse
Affiliation(s)
- Deninson Alejandro Vargas
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - David J. Gregory
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Roni Nitzan Koren
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ashton Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| | - María Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad Icesi, Cali, Colombia
| |
Collapse
|
7
|
Gale JR, Hartnett-Scott K, Ross MM, Rosenberg PA, Aizenman E. Copper induces neuron-sparing, ferredoxin 1-independent astrocyte toxicity mediated by oxidative stress. J Neurochem 2023; 167:277-295. [PMID: 37702109 PMCID: PMC10591933 DOI: 10.1111/jnc.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Copper is an essential enzyme cofactor in oxidative metabolism, anti-oxidant defenses, and neurotransmitter synthesis. However, intracellular copper, when improperly buffered, can also lead to cell death. Given the growing interest in the use of copper in the presence of the ionophore elesclomol (CuES) for the treatment of gliomas, we investigated the effect of this compound on the surround parenchyma-namely neurons and astrocytes in vitro. Here, we show that astrocytes were highly sensitive to CuES toxicity while neurons were surprisingly resistant, a vulnerability profile that is opposite of what has been described for zinc and other toxins. Bolstering these findings, a human astrocytic cell line was similarly sensitive to CuES. Modifications of cellular metabolic pathways implicated in cuproptosis, a form of copper-regulated cell death, such as inhibition of mitochondrial respiration or knock-down of ferredoxin 1 (FDX1), did not block CuES toxicity to astrocytes. CuES toxicity was also unaffected by inhibitors of apoptosis, necrosis or ferroptosis. However, we did detect the presence of lipid peroxidation products in CuES-treated astrocytes, indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Indeed, treatment with anti-oxidants mitigated CuES-induced cell death in astrocytes indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Lastly, prior induction of metallothioneins 1 and 2 in astrocytes with zinc plus pyrithione was strikingly protective against CuES toxicity. As neurons express high levels of metallothioneins basally, these results may partially account for their resistance to CuES toxicity. These results demonstrate a unique toxic response to copper in glial cells which contrasts with the cell selectivity profile of zinc, another biologically relevant metal.
Collapse
Affiliation(s)
- Jenna R. Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Karen Hartnett-Scott
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Madeline M. Ross
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Paul A. Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States, 02115
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| |
Collapse
|
8
|
Yoshikawa Y, Nasuno R, Takaya N, Takagi H. Metallothionein Cup1 attenuates nitrosative stress in the yeast Saccharomyces cerevisiae. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:170-177. [PMID: 37545644 PMCID: PMC10399457 DOI: 10.15698/mic2023.08.802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Metallothionein (MT), which is a small metal-binding protein with cysteine-rich motifs, functions in the detoxification of heavy metals in a variety of organisms. Even though previous studies suggest that MT is involved in the tolerance mechanisms against nitrosative stress induced by toxic levels of nitric oxide (NO) in mammalian cells, the physiological functions of MT in relation to NO have not been fully understood. In this study, we analyzed the functions of MT in nitrosative stress tolerance in the yeast Saccharomyces cerevisiae. Our phenotypic analyses showed that deletion or overexpression of the MT-encoding gene, CUP1, led to higher sensitivity or tolerance to nitrosative stress in S. cerevisiae cells, respectively. We further examined whether the yeast MT Cup1 in the cell-free lysate scavenges NO. These results showed that the cell-free lysate containing a higher level of Cup1 degraded NO more efficiently. On the other hand, the transcription level of CUP1 was not affected by nitrosative stress treatment. Our findings suggest that the yeast MT Cup1 contributes to nitrosative stress tolerance, possibly as a constitutive rather than an inducible defense mechanism.
Collapse
Affiliation(s)
- Yuki Yoshikawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Present address: Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University, 241-438 Kaidoubata-Nishi, Shimoshinjo-Nakano, Akita, Akita 010-0195, Japan
| | - Ryo Nasuno
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Present address: Engineering Biology Research Center, Kobe University, 7-1-48, Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
9
|
Yan K, Ablimit M, Liu S, Liu Z, Wang Y. A novel metallothionein gene HcMT from halophyte shrub Halostachys caspica respond to cadmium and sodium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107763. [PMID: 37301187 DOI: 10.1016/j.plaphy.2023.107763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/23/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) and sodium (Na) are two of the most phytotoxic metallic elements causing environmental and agricultural problems. Metallothioneins (MTs) play an important role in the adaptation to abiotic stress. We previously isolated a novel type 2 MT gene from Halostachys caspica (H. caspica), named HcMT, which responded to metal and salt stress. To understand the regulatory mechanisms controlling HcMT expression, we cloned the HcMT promoter and characterized its tissue-specific and spatiotemporal expression patterns. β-Glucuronidase (GUS) activity analysis showed that the HcMT promoter was responsive to CdCl2, CuSO4, ZnSO4 and NaCl stress. Therefore, we further investigated the function of HcMT under abiotic stress in yeast and Arabidopsis thaliana (Arabidopsis). In CdCl2, CuSO4 or ZnSO4 stress, HcMT significantly enhanced the metal ions tolerance and accumulation in yeast through function as a metal chelator. Moreover, the HcMT protein also protected yeast cells from NaCl, PEG and hydrogen peroxide (H2O2) toxicity with less effectiveness. However, transgenic Arabidopsis carrying HcMT gene only displayed tolerance to CdCl2 and NaCl, accompanying by higher content of Cd2+ or Na+ and lower H2O2, compared to wild-type (WT) plants. Next, we demonstrated that the recombinant HcMT protein has the ability to bind Cd2+ and the potential of scavenging ROS (reactive oxygen species) in vitro. This result further confirmed that the role of HcMT to influence plants to CdCl2 and NaCl stress may bind metal ions and scavenge ROS. Overall, we described the biological functions of HcMT and developed a metal- and salt-inducible promoter system for using in genetic engineering.
Collapse
Affiliation(s)
- Kexin Yan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Mehriban Ablimit
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Sai Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Zhongyuan Liu
- School of Chemical Engineering, Sichuan University of Science and Engineering, Sichuan, 643000, China.
| | - Yan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
10
|
Matsuura Y. First principles study of coherent electron/spin transport across metallothionein: A cadmium-binding protein. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Korkola NC, Stillman MJ. Structural Role of Cadmium and Zinc in Metallothionein Oxidation by Hydrogen Peroxide: The Resilience of Metal-Thiolate Clusters. J Am Chem Soc 2023; 145:6383-6397. [PMID: 36914167 DOI: 10.1021/jacs.2c13578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Oxidative stress is a state involving an imbalance of reactive oxygen species in a cell and is linked to a variety of diseases. The metal-binding protein metallothionein (MT) may play a role in protection due to its high cysteine content. Many studies have shown that oxidative stress will cause MT to both form disulfide bonds and release bound metals. However, studies on the more biologically relevant partially metalated MTs have been largely neglected. Additionally, most studies to date have used spectroscopic methods that cannot detect specific intermediate species. In this paper, we describe the oxidation and the subsequent metal displacement pathway of fully and partially metalated MTs with hydrogen peroxide. The rates of the reactions were monitored using electrospray ionization mass spectrometry (ESI-MS) techniques, which resolved and characterized the individual intermediate Mx(SH)yMT species. The rate constants were calculated for each species formation. Through ESI-MS and circular dichroism spectroscopy, it was found that the three metals in the β-domain were the first to be released from the fully metalated MTs. The Cd(II) in the partially metalated Cd(II)-bound MTs rearranged to form a protective Cd4MT cluster structure upon exposure to oxidation. The partially metalated Zn(II)-bound MTs oxidized at a faster rate as the Zn(II) did not rearrange in response to oxidation. Additionally, density functional theory calculations showed that the terminally bound cysteines were more negative and thus more susceptible to oxidation than the bridging cysteines. The results of this study highlight the importance of metal-thiolate structures and metal identity in MT's response to oxidation.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| |
Collapse
|
12
|
Acharya P, Saha R, Quadri JA, Sarwar S, Khan MA, Sati HC, Gauniyal N, Shariff A, Swaroop S, Pathak P, Shalimar. Quantitative plasma proteomics identifies metallothioneins as a marker of acute-on-chronic liver failure associated acute kidney injury. Front Immunol 2023; 13:1041230. [PMID: 36776389 PMCID: PMC9909472 DOI: 10.3389/fimmu.2022.1041230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
Background Acute kidney injury (AKI) considerably increases the risk of short-term mortality in acute-on-chronic liver failure (ACLF) but predicting AKI is not possible with existing tools. Our study aimed at de novo discovery of AKI biomarkers in ACLF. Methods This observational study had two phases- (A) Discovery phase in which quantitative proteomics was carried-out with day-of-admission plasma from ACLF patients who initially had no-AKI but either progressed to AKI (n=10) or did not (n=9) within 7 days of admission and, (B) Validation phase in which selected biomarkers from the discovery phase were validated by ELISA in a larger set of ACLF plasma samples (n=93) followed by sub-group analyses. Results Plasma proteomics revealed 56 differentially expressed proteins in ACLF patients who progressed to AKI vs those who did not. The metallothionein protein-family was upregulated in patients who progressed to AKI and was validated by ELISA as significantly elevated in both- (i) ACLF-AKI vs no-AKI (p-value ≤ 0.0001) and (ii) progression to AKI vs no-progression to AKI (p-value ≤ 0.001). AUROC for AKI vs no-AKI was 0.786 (p-value ≤0.001) and for progression to AKI vs no-progression to AKI was 0.7888 (p-value ≤0.001). Kaplan-Meier analysis revealed that ACLF patients with plasma MT concentration >5.83 ng/mL had a high probability of developing AKI by day 7 (p-value ≤0.0001). High expression of metallothionein genes was found in post-mortem liver biopsies of ACLF patients. Conclusion Day-of-admission measurements of plasma metallothionein can act as predictive biomarkers of AKI in ACLF.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India,*Correspondence: Pragyan Acharya,
| | - Rohini Saha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Javed Ahsan Quadri
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saba Sarwar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Maroof Ahmad Khan
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Hem Chandra Sati
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Nidhi Gauniyal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ahmadullah Shariff
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shekhar Swaroop
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Piyush Pathak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Takahashi N, Yamaguchi S, Ohtsuka R, Takeda M, Yoshida T, Kosaka T, Harada T. Gene expression analysis of antioxidant and DNA methylation on the rat liver after 4-week wood preservative chromated copper arsenate exposure. J Toxicol Pathol 2023; 36:31-43. [PMID: 36683727 PMCID: PMC9837468 DOI: 10.1293/tox.2022-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 01/13/2023] Open
Abstract
Our previous 4-week repeated dose toxicity study showed that wood preservative chromated copper arsenate (CCA) induced hepatocellular hypertrophy accompanied by biochemical hepatic dysfunction and an increase in oxidative stress marker, 8-hydroxydeoxyguanosine, in female rats. To further explore the molecular mechanisms of CCA hepatotoxicity, we analyzed 10%-buffered formalin-fixed liver samples from female rats for cell proliferation, apoptosis, and protein glutathionylation and conducted microarray analysis on frozen liver samples from female rats treated with 0 or 80 mg/kg/day of CCA. Chemical analysis revealed that dimethylated arsenical was the major metabolite in liver tissues of male and female rats. CCA increase labeling indices of proliferating cell nuclear antigen and decrease terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling accompanied with increased expression of protein glutathionylation, indicating a decrease in glutathione (GSH) in hepatocytes of female rats. Microarray analysis revealed that CCA altered gene expression of antioxidants, glutathione-S-transferase (GST), heat shock proteins and ubiquitin-proteasome pathway, cell proliferation, apoptosis, DNA methylation, cytochrome P450, and glucose and lipid metabolism in female rats. Increased expression of GSTs, including Gsta2, Gsta3, Mgst1, and Cdkn1b (p27), and decreased expression of the antioxidant Mt1, and DNA methylation Dnmt1, Dnmt3a, and Ctcf were confirmed in the liver of female rats in a dose-dependent manner. Methylation status of the promoter region of the Mt1 was not evidently changed between control and treatment groups. The results suggested that CCA decreased GSH and altered the expression of several genes, including antioxidants, GST, and DNA methylation, followed by impaired cell proliferation in the liver of female rats.
Collapse
Affiliation(s)
- Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan,*Corresponding author: N Takahashi (e-mail: )
| | - Satoru Yamaguchi
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Ryouichi Ohtsuka
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Makio Takeda
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of
Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tadashi Kosaka
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Takanori Harada
- The Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| |
Collapse
|
14
|
Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA. Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status. Animals (Basel) 2022; 13:ani13010115. [PMID: 36611723 PMCID: PMC9817535 DOI: 10.3390/ani13010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
A total of 180 broiler chickens (Cobb500) were randomly allotted to five experimental groups consisting of six replicates and six birds in each pen. Each group was fed a basal diet supplemented with 100 mg/kg ZnO (control) and 10, 40, 70, and 100 mg/kg ZnO NPs for 35 days. Resultantly, Zn uptake and accumulation in serum, breast muscle, tibia bone, and liver were linearly and significantly (p < 0.05) increased with increasing dietary ZnO NPs supplementation at 100 mg/kg compared to the control group (dietary 100 mg/kg ZnO), implying effective absorption capacity of ZnO NPs. This was followed by lower Zn excretion in feces in broilers fed ZnO NPs compared to controls (p < 0.05). Furthermore, dietary ZnO NPs at 40, 70, and 100 mg/kg levels improved broiler tibia bone morphological traits, such as weight, length, and thickness. Similarly, tibia bone mineralization increased in broilers fed ZnO NPs at 100 mg/kg compared to the control (p < 0.05), as demonstrated by tibia ash, Zn, Ca, and P retention. Antioxidative status in serum and liver tissue was also increased in broilers fed dietary ZnO NPs at 70 and 100 mg/kg compared to the control (p < 0.05). In conclusion, dietary ZnO NPs increased Zn absorption in broiler chickens and had a positive influence on tibia bone development and antioxidative status in serum and liver tissue, with dietary ZnO NPs supplementation at 70 and 100 mg/kg showing the optimum effects.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor’Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (N.A.R.); (A.A.S.)
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anjas Asmara Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (N.A.R.); (A.A.S.)
| |
Collapse
|
15
|
Wächter K, Gohde B, Szabó G, Simm A. Rye Bread Crust as an Inducer of Antioxidant Genes and Suppressor of NF-κB Pathway In Vivo. Nutrients 2022; 14:nu14224790. [PMID: 36432475 PMCID: PMC9697834 DOI: 10.3390/nu14224790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Heat-processed food, like bread, containing high amounts of advanced glycation end products (AGEs), is controversially discussed regarding the effects on health and disease. In in vitro and in vivo experiments, AGEs can induce proinflammatory NF-κB and/or the anti-inflammatory NRF2 pathways. The aim of this study was to investigate how gene expression is influenced in vivo upon short as well as long-term feeding of mice with control and bread crust-food (BC). For that, the liver, kidney and heart from two days- and eight days-fed mice were isolated and gene arrays were performed. Fewer genes were affected in terms of expression after two days of BC feeding than after eight days. We observed, especially in the heart and to lesser extent in the liver, an induction of antioxidant response by BC. Among the significantly up-regulated genes identified in the heart were transcripts encoding for cardioprotective and antioxidative proteins like metallothionein 2, uncoupling protein 3 and pyruvate dehydrogenase kinase 4. In contrast, in the liver, genes encoding for inflammatory drivers like thioredoxin-interacting protein, lncRNA Mtss1 and ubiquitin-specific protease 2 were down-modulated. However, an increased expression of immunoglobulins was observed in the kidney. Furthermore, in vivo imaging analyses with NF-κB-luciferase-reporter mice uncovered a rather anti-inflammatory response, especially after three and seven days of the feeding study. Our results suggest that bread crust exerts antioxidant and anti-inflammatory effects in the model organism mouse in an organ-specific manner.
Collapse
Affiliation(s)
- Kristin Wächter
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University, Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-345-557-7068
| | - Birte Gohde
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University, Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gábor Szabó
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University, Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Andreas Simm
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University, Halle-Wittenberg, 06120 Halle (Saale), Germany
- Center for Medical Basic Research, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
16
|
Wang S, Tian C, Gao Z, Zhang B, Zhao L. Research status and trends of the diabetic cardiomyopathy in the past 10 years (2012–2021): A bibliometric analysis. Front Cardiovasc Med 2022; 9:1018841. [PMID: 36337893 PMCID: PMC9630656 DOI: 10.3389/fcvm.2022.1018841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Background Diabetic cardiomyopathy is one of the most life-threatening diabetic complications. However, the previous studies only discuss a particular aspect or characteristic of DCM, the current state and trends were explored by limited research. We aimed to perform a systemically bibliometric study of DCM research progress status in the past decade, visualize the internal conceptual structure and potential associations, and further explore the prospective study trends. Methods Articles related to DCM published from January 2012 to December 2021 were collected in the Web of Science core collection (WoSCC) database on June 24, 2022. We exported all bibliographic records, including titles, abstracts, keywords, authorship, institutions, addresses, publishing sources, references, citation times, and year of publication. In addition, the journal Impact Factor and Hirsch index were obtained from the Journal Citation Report. We conducted the data screening, statistical analysis, and visualization via the Bibliometrix R package. VOS viewer software was employed to generate the collaboration network map among countries and institutions for better performance in visualization. Results In total, 1,887 original research articles from 2012 to 2021 were identified. The number of annual publications rapidly increased from 107 to 278, and a drastic increase in citation times was observed in 2017–2019. As for global contributions, the United States was the most influential country with the highest international collaboration, while China was the most productive country. Professor Cai Lu was the most prolific author. Shandong University published the most articles. Cardiovascular Diabetology journal released the most DCM-related articles. “Metabolic Stress-induced Activation of FoxO1 Triggers Diabetic Cardiomyopathy in Mice” Battiprolu PK et al., J Clin Invest, 2012. was the most top-cited article regarding local citations. The top three keywords in terms of frequency were apoptosis, oxidative stress, and fibrosis. The analysis of future topic trends indicated that “Forkhead box protein O1,” “Heart failure with preserved ejection fraction,” “Dapagliflozin,” “Thioredoxin,” “Mitochondria dysfunction,” “Glucose,” “Pyroptosis,” “Cardiac fibroblast” and “Long non-coding RNA” could be promising hotspots. Conclusion This study provides meaningful insights into DCM, which is expected to assist cardiologists and endocrinologists in exploring frontiers and future research directions in the domain through a refined and concise summary.
Collapse
Affiliation(s)
- Sicheng Wang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanxi Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Boxun Zhang,
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Linhua Zhao,
| |
Collapse
|
17
|
Karhib MM, El-Sayed RA, Ghanem NF, El-Demerdash FM. Nephroprotective role of Echinacea purpurea against potassium dichromate-induced oxidative stress, inflammation, and apoptosis in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2324-2334. [PMID: 35670025 DOI: 10.1002/tox.23599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Environmental and occupational exposure to chromium compounds, especially hexavalent chromium [Cr(VI)], is widely recognized as a potential nephrotoxic in humans and animals. Its toxicity is associated with the overproduction of free radicals, which induces oxidative damage. Echinacea purpurea (L.) Moench is an herbaceous perennial plant rich in phenolic components and frequently used for its medicinal benefits. The current work evaluated the effectiveness of E. purpurea (EP) against oxidative stress and nephrotoxicity induced by potassium dichromate in male rats. Male Wistar rats were divided into four groups: control, E. purpurea (EP; 50 mg/kg; once daily for 3 weeks), hexavalent chromium (Cr(VI); 15 mg/kg; single intraperitoneal dose), and EP + Cr(VI) where rats were pretreated with EP for 3 weeks before receiving CrVI, respectively. Results revealed that rats exposed to Cr(VI) showed a significant increase in PC, TBARS, and H2 O2 , kidney function biomarkers (Urea, creatinine, and uric acid), lactate dehydrogenase activity (LDH), TNF-α, IL-18, nuclear factor kappa B (NFκB), and IGF-1 (Insulin-like growth factor-1) levels as well as a considerable decline in metallothionein (MT), glutathione (GSH) content, enzymatic antioxidants (SOD, CAT, GPx, GR, and GST), alkaline phosphatase (ALP) activities, and protein content. Cr(VI) induced apoptosis in kidney tissues as revealed by upregulation of Bax and caspase 3 and downregulation of Bcl-2. Furthermore, EP treatment ameliorated the Cr(VI)-induced histopathological and ultrastructure variations of kidney tissue, which was confirmed by the biochemical and molecular data. It is clear from the results of this study that EP exerts nephroprotective effects by improving the redox state, suppressing inflammatory reaction and cell apoptosis as well as ameliorating the performance of kidney tissue architecture, which is eventually reflected by the improvement of kidney function in rats.
Collapse
Affiliation(s)
- Mustafa M Karhib
- Department of Medical Laboratory Technique, Al-Mustaqbal University College, Babylon, Hillah, Iraq
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nora F Ghanem
- Department of Zoology, Faculty of Science, Kafr ElSheikh University, Kafr ElSheikh, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother 2022; 154:113591. [PMID: 36007276 DOI: 10.1016/j.biopha.2022.113591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (MA) is a extremely addictive psychostimulant drug with a significant abuse potential. Long-term MA exposure can induce neurotoxic effects through oxidative stress, mitochondrial functional impairment, endoplasmic reticulum stress, the activation of astrocytes and microglial cells, axonal transport barriers, autophagy, and apoptosis. However, the molecular and cellular mechanisms underlying MA-induced neurotoxicity remain unclear. MA abuse increases the chances of developing neurotoxic conditions such as Parkinson's disease (PD), Alzheimer's disease (AD) and other neurotoxic diseases. MA increases the risk of PD by increasing the expression of alpha-synuclein (ASYN). Furthermore, MA abuse is linked to high chances of developing AD and subsequent neurodegeneration due to biological variations in the brain region or genetic and epigenetic variations. To date, there is no Food and Drug Administration (FDA)-approved therapy for MA-induced neurotoxicity, although many studies are being conducted to develop effective therapeutic strategies. Most current studies are now focused on developing therapies to diminish the neurotoxic effects of MA, based on the underlying mechanism of neurotoxicity. This review article highlights current research on several therapeutic techniques targeting multiple pathways to reduce the neurotoxic effects of MA in the brain, as well as the putative mechanism of MA-induced neurotoxicity.
Collapse
|
19
|
Hagras MA, Marek RA, Hatahet F, Trout BL. Computational Modeling for the Oxidation Reactions of the Cysteine Residues with the Superoxide and the Organic Radical Species. J Phys Chem B 2022; 126:5972-5981. [PMID: 35895909 DOI: 10.1021/acs.jpcb.2c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current computational study analyzes the oxidation reactions of the superoxide and hydroxyl radicals with cysteine residues due to their importance as natural targets to neutralize the harmful reactive oxygen species. Due to the high reactivity of the hydroxyl radicals with the surrounding environment, we also studied the oxidation reactions of organic radicals with cysteine. In addition, we explored the different reaction pathways between cysteine and the superoxide radicals in both anionic and protonated forms. All calculations were performed at the integrated quantum mechanical/molecular mechanical level in an explicit water box under periodic boundary conditions. Higher energy barriers were observed for the organic radicals than the hydroxyl radical, where the chemical nature of the organic radical and the branching pattern are the main factors contributing to the Gibbs energy barriers. The superoxide radical oxidation pathway exhibits a more complex nature due to the complicated interplay of various factors such as the underlying reaction mechanism, the involved oxidizing agent, the kinetic accessibility of the oxidation reaction, and the thermodynamics favorability of those oxidation reactions. We also examined the effect of the solvent-assisted hydrogen atom transfer on the different reaction barriers, which was found to be kinetically unfavorable.
Collapse
Affiliation(s)
- Muhammad A Hagras
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
| | - Ryan A Marek
- MMD, Merck & Co Inc., West Point, Pennsylvania 19486, United States
| | - Feras Hatahet
- MMD, Merck & Co Inc., West Point, Pennsylvania 19486, United States.,Amgen Research, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Bernhardt L Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Kumar S, Fathima E, Khanum F, Malini SS. Significance of the Wnt canonical pathway in radiotoxicity via oxidative stress of electron beam radiation and its molecular control in mice. Int J Radiat Biol 2022; 99:459-473. [PMID: 35758974 DOI: 10.1080/09553002.2022.2094018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Radiation triggers cell death events through signaling proteins, but the combined mechanism of these events is unexplored The Wnt canonical pathway, on the other hand, is essential for cell regeneration and cell fate determination. AIM The relationship between the Wnt pathway's response to radiation and its role in radiotoxicity is overlooked, even though it is a critical molecular control of the cell. The Wnt pathway has been predicted to have radioprotective properties in some reports, but the overall mechanism is unknown. We intend to investigate how this combined cascade works throughout the radiation process and its significance over radiotoxicity. MATERIALS AND METHODS Thirty adult mice were irradiated with electron beam radiation, and 5 served as controls. Mice were sacrificed after 24 h and 30 days of irradiation. We assessed DNA damage studies, oxidative stress parameters, mRNA profiles, protein level (liver, kidney, spleen, and germ cells), sperm viability, and motility. OBSERVATION The mRNA profile helps to understand how the combined cascade of the Wnt pathway and NHEJ work together during radiation to combat oxidative response and cell survival. The quantitative examination of mRNA uncovers unique critical changes in all mRNA levels in all cases, particularly in germ cells. Recuperation was likewise seen in post-30 day's radiation in the liver, spleen, and kidney followed by oxidative stress parameters, however not in germ cells. It proposes that reproductive physiology is exceptionally sensitive to radiation, even at the molecular level. It also suggests the suppression of Lef1/Axin2 could be the main reason for the permanent failure of the sperm function process. Post-irradiation likewise influences the morphology of sperm. The decrease in mRNA levels of Lef1, Axin2, Survivin, Ku70, and XRCC6 levels suggests radiation inhibits the Wnt canonical pathway and failure in DNA repair mechanisms in a coupled manner. An increase in Bax, Bcl2, and caspase3 suggests apoptosis activation followed by the decreased expression of enzymatic antioxidants. CONCLUSION Controlled several interlinked such as the Wnt canonical pathway, NHEJ pathway, and intrinsic apoptotic pathway execute when the whole body is exposed to radiation. These pathways decide the cell fate whether it will survive or will go to apoptosis which may further be used in a study to counterpart and better comprehend medication focus on radiation treatment.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Reproductive and Human Genetics Laboratory, Department of Zoology, University of Mysore, Mysuru, India
| | - Eram Fathima
- Defense Food Research Laboratory, Defense Research Development Organisation, Mysuru, India
| | - Farhath Khanum
- Defense Food Research Laboratory, Defense Research Development Organisation, Mysuru, India
| | - Suttur S Malini
- Molecular Reproductive and Human Genetics Laboratory, Department of Zoology, University of Mysore, Mysuru, India
| |
Collapse
|
21
|
Impact of Zinc on Oxidative Signaling Pathways in the Development of Pulmonary Vasoconstriction Induced by Hypobaric Hypoxia. Int J Mol Sci 2022; 23:ijms23136974. [PMID: 35805984 PMCID: PMC9266543 DOI: 10.3390/ijms23136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pressure of gases, particularly oxygen (PO2), decreases. This condition triggers several physiological and molecular responses. One of the principal responses is pulmonary vascular contraction, which seeks to optimize gas exchange under this condition, known as hypoxic pulmonary vasoconstriction (HPV); however, when this physiological response is exacerbated, it contributes to the development of high-altitude pulmonary hypertension (HAPH). Increased levels of zinc (Zn2+) and oxidative stress (known as the “ROS hypothesis”) have been demonstrated in the vasoconstriction process. Therefore, the aim of this review is to determine the relationship between molecular pathways associated with altered Zn2+ levels and oxidative stress in HPV in hypobaric hypoxic conditions. The results indicate an increased level of Zn2+, which is related to increasing mitochondrial ROS (mtROS), alterations in nitric oxide (NO), metallothionein (MT), zinc-regulated, iron-regulated transporter-like protein (ZIP), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-induced protein kinase C epsilon (PKCε) activation in the development of HPV. In conclusion, there is an association between elevated Zn2+ levels and oxidative stress in HPV under different models of hypoxia, which contribute to understanding the molecular mechanism involved in HPV to prevent the development of HAPH.
Collapse
|
22
|
Reprint of: Oxygen Free Radicals and Iron in Relation to Biology and Medicine: Some Problems and Concepts. Arch Biochem Biophys 2022; 726:109246. [PMID: 35680438 DOI: 10.1016/j.abb.2022.109246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Wei S, Yu X, Wen X, Zhang M, Lang Q, Zhong P, Huang B. Genetic Variations in Metallothionein Genes and Susceptibility to Hypertensive Disorders of Pregnancy: A Case-Control Study. Front Genet 2022; 13:830446. [PMID: 35734434 PMCID: PMC9208279 DOI: 10.3389/fgene.2022.830446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/19/2022] [Indexed: 01/07/2023] Open
Abstract
Background: The involvement of oxidative stress in the pathological process of hypertensive disorders of pregnancy (HDP) gives rise to the interest in exploring the association of genetic variations in antioxidant metallothionein (MT) genes with HDP susceptibility. Methods: Seventeen single-nucleotide polymorphisms(SNPs) in MT genes were selected to conduct genotyping based on a case-control study consisting of 371 HDP cases (pregnancy with chronic hypertension (66), gestational hypertension (172), and preeclampsia or preeclampsia superimposed on chronic hypertension (133)) and 479 controls. The association between SNPs in MTs and the risk of HDP was estimated with unconditional logistic regression analysis and further tested with the false-positive report probability (FPRP) procedure. The joint effects of SNPs on the HDP risk were assessed by haplotype analysis. Results: After the adjustment for age and pre-pregnancy body mass index (pre-BMI) in the logistic regress analysis and followed by the FPRP test, the genetic variation rs10636 (OR = 0.46, 95% CI: 0.30–0.71 for GG vs. CC, p = 0.000 and OR = 0.48, 95% CI: 0.32–0.73 for GG vs. CG/CC, p = 0.001) in MT2A was associated with gestational hypertension. Other four SNPs, that is, rs11076161 (OR = 1.89, 95% CI: 1.35–2.63 for GG vs. GA/AA, p = 0.000) in MT1A; rs7191779 (OR = 1.54, 95% CI: 1.11–2.13 for CC vs. CG/GG, p = 0.010) in MT1B; rs8044719 (OR = 0.57, 95% CI: 0.40–0.80 for GT vs. GG, p = 0.001) in MT1DP; and rs8052334 (OR = 1.52, 95% CI: 1.10–2.11 for TT vs. TC/CC, p = 0.012) in MT1B were significantly associated with the susceptibility of HDP. The haplotype analysis among 11, 10, 10, and seven SNPs in MT (MT1A, MT2A, MT1M, MT1B, and MT1DP) genes showed that eight (A-C-G-T-C-G-A-G-C-G-C, OR = 4.559; A-C-T-C-C-C-A-G-C-G-C, OR = 5.777; A-C-T-T-C-G-A-G-C-G-C, OR = 4.590; G-A-T-C-C-G-C-G-G-C-C, OR = 4.065; G-A-T-C-G-C-C-G-G-C-C, OR = 4.652; G-A-T-T-C-C-C-G-G-C-C, OR = 0.404; G-C-T-C-C-C-A-G-G-C-C, OR = 1.901; G-C-T-T-C-C-A-G-G-C-C, and OR = 3.810), five (C-G-A-T-C-A-C-C-G-G, OR = 2.032; C-G-A-T-C-G-C-C-G-G, OR = 2.077; G-A-C-T-C-A-C-C-T-G, OR = 0.564; G-G-A-G-C-A-C-C-G-G, OR = 5.466; G-G-A-T-T-A-G-C-G-G, and OR = 0.284), five (A-C-G-T-C-G-A-G-C-C, OR = 2.399; A-C-T-C-C-C-C-T-G-G, OR = 0.259; G-A-T-C-C-C-C-G-G-C, OR = 1.572; G-A-T-C-G-C-C-G-G-C, OR = 0.001; G-C-T-C-G-C-A-G-G-C, and OR = 2.512), and five (A-C-T-C-C-C-G, OR = 0.634; G-A-G-C-C-C-G, OR = 4.047; G-A-T-T-G-C-G, OR = 0.499; G-C-G-T-C-A-G, and OR = 7.299; G-C-T-C-C-A-G, OR = 1.434) haplotypes were significantly associated with pregnancy with chronic hypertension, gestational hypertension, preeclampsia, or preeclampsia superimposed on chronic hypertension and HDP. Conclusion: These variant MT alleles and their combination patterns may be used as genetic markers for predicting HDP susceptibility.
Collapse
Affiliation(s)
- Shudan Wei
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Xiangyuan Yu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Xiaolan Wen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Min Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Qi Lang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
| | - Ping Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bo Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, China
- *Correspondence: Bo Huang,
| |
Collapse
|
24
|
Tu C, Lu H, Zhou T, Zhang W, Deng L, Cao W, Yang Z, Wang Z, Wu X, Ding J, Xu F, Gao C. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 2022; 286:121597. [DOI: 10.1016/j.biomaterials.2022.121597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
|
25
|
Wu B, Yun P, Zhou H, Xia D, Gu Y, Li P, Yao J, Zhou Z, Chen J, Liu R, Cheng S, Zhang H, Zheng Y, Lou G, Chen P, Wan S, Zhou M, Li Y, Gao G, Zhang Q, Li X, Lian X, He Y. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality. THE PLANT CELL 2022; 34:1912-1932. [PMID: 35171272 PMCID: PMC9048946 DOI: 10.1093/plcell/koac057] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/09/2022] [Indexed: 05/11/2023]
Abstract
Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza rufipogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.
Collapse
Affiliation(s)
- Bian Wu
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peng Yun
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Zhou
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Duo Xia
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuan Gu
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jialing Yao
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuqing Zhou
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianxian Chen
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rongjia Liu
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shiyuan Cheng
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Zhang
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanyuan Zheng
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pingli Chen
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shanshan Wan
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingsong Zhou
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
26
|
Kateryna T, Monika L, Beata J, Joanna R, Edyta R, Marcin B, Agnieszka KW, Ewa J. Cadmium and breast cancer – current state and research gaps in the underlying mechanisms. Toxicol Lett 2022; 361:29-42. [DOI: 10.1016/j.toxlet.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023]
|
27
|
Zhou W, Young JL, Men H, Zhang H, Yu H, Lin Q, Xu H, Xu J, Tan Y, Zheng Y, Cai L. Sex differences in the effects of whole-life, low-dose cadmium exposure on postweaning high-fat diet-induced cardiac pathogeneses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152176. [PMID: 34875320 DOI: 10.1016/j.scitotenv.2021.152176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
We previously showed the development of cardiac remodeling (hypertrophy or fibrosis) in mice with either post-weaning high-fat diet (HFD, 60% kcal fat) feeding or exposure to chronic low-dose cadmium. Here, we determined whether whole-life exposure to environmentally relevant, low-dose cadmium affects the susceptibility of offspring to post-weaning HFD-induced cardiac pathologies and function. Besides, we also determined whether these effects are sex-dependent. Male and female mice were exposed to cadmium-containing (0, 0.5, or 5 parts per million [ppm]) drinking water before breeding; the pregnant mice and dams with offspring continually drank the same cadmium-containing water. After weaning, the offspring were continued on the same regime as their parents and fed either a HFD or normal fat diet for 24 weeks. Cardiac function was examined with echocardiography. Cardiac tissues were used for the histopathological and biochemical (gene and protein expression by real-time PCR and Western blotting) assays. Results showed a dose-dependent cadmium accumulation in the hearts of male and female mice along with decreased cardiac zinc and copper levels only in female offspring. Exposure to 5 ppm, but not 0.5 ppm, cadmium significantly enhanced HFD cardiac effects only in female mice, shown by worsened cardiac systolic and diastolic dysfunction (ejection fraction, mitral E-to-annular e' ratio), increased fibrosis (collagen, fibronectin, collagen1A1), hypertrophy (cardiomyocyte size, atrial natriuretic peptide, β-myosin heavy chain), and inflammation (intercellular adhesion molecule-1, tumor necrosis factor-α, plasminogen activator inhibitor type 1), compared to the HFD group. These synergistic effects were associated with activation of the p38 mitogen-activated protein kinases (MAPK) signaling pathway and increased oxidative stress, shown by 3-nitrotyrosine and malondialdehyde, along with decreased metallothionein expression. These results suggest that whole-life 5 ppm cadmium exposure significantly increases the susceptibility of female offspring to HFD-induced cardiac remodeling and dysfunction. The underlying mechanism and potential intervention will be further explored in the future.
Collapse
Affiliation(s)
- Wenqian Zhou
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Jamie L Young
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA..
| | - Hongbo Men
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Haina Zhang
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Haitao Yu
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Lin
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.
| | - He Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University (Eastern Division), Changchun 130031, China.
| | - Jianxiang Xu
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.
| | - Yi Tan
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Wendy L. Novak Diabetes Care Center, Louisville, KY, USA.
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Wendy L. Novak Diabetes Care Center, Louisville, KY, USA.
| |
Collapse
|
28
|
Yiwen W, Xiaohan T, Chunfeng Z, Xiaoyu Y, Yaodong M, Huanhuan Q. Genetics of metallothioneins in Drosophilamelanogaster. CHEMOSPHERE 2022; 288:132562. [PMID: 34653491 DOI: 10.1016/j.chemosphere.2021.132562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Metallothioneins (MTs) are ubiquitous metal-chelating proteins involved in cellular metal homeostasis. MTs were found to be related with almost all the biological processes and their malfunctioning is responsible for a lot of important human diseases. Invertebrate MTs were also used broadly as biomarkers of metal contamination due to their inducible expression by metal exposure. MT system plays a significant role in maintaining human health and ecological stability. Drosophila melanogaster, the vinegar fly, is a perfect model for studying insect MT systems. Six MTs were identified in D. melanogaster, and were designated MtnA to F. All the MTs are considered as Cu-thioneins except for MtnF, which is putatively a Zn-thionein. Expression of all the MTs are regulated by MTF-1/MRE system, thus being able to be induced by heavy metal exposure. The expression pattern and function of separated MTs are partially overlapped and partially distinct. In this work, we made a summary of all the studies on D. melanogaster MTs. From this review, we noted that, compared with studies on mammalian MTs, the understanding of the MT system of D. melanogaster and other invertebrates, especially the regulation mechanism for MT expression and protein-protein interaction with them, is still in a low level.
Collapse
Affiliation(s)
- Wang Yiwen
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Tian Xiaohan
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Zhu Chunfeng
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Yu Xiaoyu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Miao Yaodong
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China
| | - Qiao Huanhuan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
29
|
Xiao B, Wang J, Liao B, Zheng H, Yang X, Xie Z, Li D, Li C. Combined effects of copper and microplastics on physiological parameters of Tubastrea aurea corals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14393-14399. [PMID: 34611802 DOI: 10.1007/s11356-021-16665-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have been a serious environmental problem because it can carry pollution like heavy metals and organic pollutants. However, the combined effect of MPs and bivalent copper ion (Cu(II)) on the coral azooxanthellate has been rarely studied. In the present study, the combined effects of PVC and Cu(II) on the physiological responses of Tubastrea aurea were studied. Our results showed that MPs alone enhanced the activity of catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH). The mixture groups had the same effects on the CAT and GSH, which enhanced CAT and GSH activity by 97% and 53% respectively. MPs alone and the combined treatment groups decreased the activity of lipid peroxide (LPO) and the content of metallothionein (MT) by 45% and 20% of the coral Tubastrea aurea. Cu(II) exposure always had negative effect on the physiological parameters of coral, and MPs decreased the toxicity of Cu(II) in the combined groups. This work is the first time to report the combined effects of Cu(II) and microplastics on azooxanthellate coral, which will provide important preliminary data for the following research.
Collapse
Affiliation(s)
- Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
- School of Chemistry and Environment, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junjie Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Baolin Liao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Xiaodong Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Ziqiang Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Dongdong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China.
- School of Chemistry and Environment, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
30
|
Zięba S, Maciejczyk M, Zalewska A. Ethanol- and Cigarette Smoke-Related Alternations in Oral Redox Homeostasis. Front Physiol 2022; 12:793028. [PMID: 35153810 PMCID: PMC8832011 DOI: 10.3389/fphys.2021.793028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Alcohol abuse as well as smoking cigarettes has been proven to negatively affect the oral environment. The aim of this work was to provide a systematic review of the literature on the influence of ethanol and cigarette smoking on oral redox homeostasis. A search was performed for scientific articles indexed in the PubMed, Medline and Web of Science databases. We identified 32,300 articles, of which 54 were used for the final review, including the results from 2000 to 2021. Among the publications used to write this article, n = 14 were related to the influence of alcohol consumption (clinical studies n = 6, experimental studies n = 8) and n = 40 were related to the influence of smoking (clinical studies n = 33, experimental studies n = 7) on oral redox homeostasis. The reviewed literature indicates that alcohol abusers and smokers are more likely to suffer from salivary gland dysfunction, as well as develop precancerous lesions due to DNA damage. Compared to alcohol abstainers and non-smokers, alcohol drinkers and smokers are also characterized by a deterioration in periodontal health measured by various indicators of periodontal status. In summary, alcohol abuse and smoking are associated with disrupted oral redox homeostasis, which may lead not only to tooth loss, but also contribute to various adverse effects related to mental health, digestive processes and chronic inflammation throughout the human body.
Collapse
Affiliation(s)
- Sara Zięba
- Doctoral School, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Sara Zięba, ;
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Bialystok, Poland
- Department of Restorative Dentistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
31
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
32
|
Ramnarine TJS, Grath S, Parsch J. Natural variation in the transcriptional response of Drosophila melanogaster to oxidative stress. G3-GENES GENOMES GENETICS 2021; 12:6409858. [PMID: 34747443 PMCID: PMC8727983 DOI: 10.1093/g3journal/jkab366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Broadly distributed species must cope with diverse and changing environmental conditions, including various forms of stress. Cosmopolitan populations of Drosophila melanogaster are more tolerant to oxidative stress than those from the species’ ancestral range in sub-Saharan Africa, and the degree of tolerance is associated with an insertion/deletion polymorphism in the 3′ untranslated region of the Metallothionein A (MtnA) gene that varies clinally in frequency. We examined oxidative stress tolerance and the transcriptional response to oxidative stress in cosmopolitan and sub-Saharan African populations of D. melanogaster, including paired samples with allelic differences at the MtnA locus. We found that the effect of the MtnA polymorphism on oxidative stress tolerance was dependent on the genomic background, with the deletion allele increasing tolerance only in a northern, temperate population. Genes that were differentially expressed under oxidative stress included MtnA and other metallothioneins, as well as those involved in glutathione metabolism and other genes known to be part of the oxidative stress response or the general stress response. A gene coexpression analysis revealed further genes and pathways that respond to oxidative stress including those involved in additional metabolic processes, autophagy, and apoptosis. There was a significant overlap among the genes induced by oxidative and cold stress, which suggests a shared response pathway to these two stresses. Interestingly, the MtnA deletion was associated with consistent changes in the expression of many genes across all genomic backgrounds, regardless of the expression level of the MtnA gene itself. We hypothesize that this is an indirect effect driven by the loss of microRNA binding sites within the MtnA 3′ untranslated region.
Collapse
Affiliation(s)
- Timothy J S Ramnarine
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried 82152, Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried 82152, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
33
|
Francis Stuart SD, Villalobos AR. GSH and Zinc Supplementation Attenuate Cadmium-Induced Cellular Stress and Stimulation of Choline Uptake in Cultured Neonatal Rat Choroid Plexus Epithelia. Int J Mol Sci 2021; 22:ijms22168857. [PMID: 34445563 PMCID: PMC8396310 DOI: 10.3390/ijms22168857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Choroid plexus (CP) sequesters cadmium and other metals, protecting the brain from these neurotoxins. These metals can induce cellular stress and modulate homeostatic functions of CP, such as solute transport. We previously showed in primary cultured neonatal rat CP epithelial cells (CPECs) that cadmium induced cellular stress and stimulated choline uptake at the apical membrane, which interfaces with cerebrospinal fluid in situ. Here, in CPECs, we characterized the roles of glutathione (GSH) and Zinc supplementation in the adaptive stress response to cadmium. Cadmium increased GSH and decreased the reduced GSH-to-oxidized GSH (GSSG) ratio. Heat shock protein-70 (Hsp70), heme oxygenase (HO-1), and metallothionein (Mt-1) were induced along with the catalytic and modifier subunits of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis. Inhibition of GCL by l-buthionine sulfoximine (BSO) enhanced stress protein induction and stimulation of choline uptake by cadmium. Zinc alone did not induce Hsp70, HO-1, or GCL subunits, or modulate choline uptake. Zinc supplementation during cadmium exposure attenuated stress protein induction and stimulation of choline uptake; this effect persisted despite inhibition of GSH synthesis. These data indicated up-regulation of GSH synthesis promotes adaptation to cadmium-induced cellular stress in CP, but Zinc may confer cytoprotection independent of GSH.
Collapse
Affiliation(s)
- Samantha D. Francis Stuart
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Alice R. Villalobos
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-806-743-2057
| |
Collapse
|
34
|
Castaldo G, Nguyễn T, Town RM, Bervoets L, Blust R, De Boeck G. Common carp exposed to binary mixtures of Cd(II) and Zn(II): A study on metal bioaccumulation and ion-homeostasis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105875. [PMID: 34098373 DOI: 10.1016/j.aquatox.2021.105875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The aquatic environment receives a wide variety of contaminants that interact with each other, influencing their mutual toxicity. Therefore, studies of mixtures are needed to fully understand their deleterious effects on aquatic organisms. In the present experiment, we aimed to assess the effects of Cd and Zn mixtures in common carp during a one-week exposure. The used nominal waterborne metal levels were 0.02, 0.05 and 0.10 µM for Cd and 3, 7.5 and 15 µM for Zn. Our results showed on the one hand a fast Cd increase and on the other hand a delayed Zn accumulation. In the mixture scenario an inhibition of Cd accumulation due to Zn was marked in the liver but temporary in the gills. For Zn, the delayed accumulation gives an indication of the efficient homeostasis of this essential metal. Between the different mixtures, a stimulation of Zn accumulation by Cd rather than an inhibition was seen in the highest metal mixtures. However, when compared to an earlier single Zn exposure, a reduced Zn accumulation was observed. Metallothionein gene expression was quickly activated in the analysed tissues suggesting that the organism promptly responded to the stressful situation. Finally, the metal mixture did not alter tissue electrolyte levels.
Collapse
Affiliation(s)
- G Castaldo
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - T Nguyễn
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - R M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - L Bervoets
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - R Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - G De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
35
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
36
|
Xuan R, Wu H, Li Y, Wei B, Wang L. Comparative responses of Sinopotamon henanense to acute and sub-chronic Cd exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35038-35050. [PMID: 33665691 DOI: 10.1007/s11356-021-13230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Studies on the freshwater crab Sinopotamon henanense have shown that acute and sub-chronic Cd2+ exposure induced differential alterations in the respiratory physiology and gill morphology. To elucidate Cd2+ toxicity under these two exposure conditions, crabs were acutely exposed to 7.14, 14.28, and 28.55 mg/L Cd2+ for 96 h and sub-chronically exposed to 0.71, 1.43, and 2.86 mg/L Cd2+ for 3 weeks. The Cd2+ accumulation, total metallothionein (MT), superoxide dismutase, and malondialdehyde (MDA) contents in the gill tissues were detected. Moreover, the glucose-6-phosphate dehydrogenase (G6PDH) activity, NADPH content, reduced glutathione (GSH), oxidized glutathione (GSSG), and GSH/GSSG ratio in the hepatopancreas were determined. The morphology of the X-organ-sinus gland complex was also observed. The results showed that sub-chronical Cd2+ exposure induced lower MT content and higher MDA level in the gills than in the acute exposure. In the hepatopancreas, acute Cd2+ exposure decreased the pentose phosphate pathway activity and NADPH content; however, an increased G6PDH activity and NADPH content were detected in sub-chronic Cd2+ exposure (2.86 mg/L). Morphological changes occurred in the sinus gland in crabs exposed to 2.86 mg/L Cd2+ for 3 weeks. The tightly packed structure composed by the axons, enlarged terminals, and glial cells, became loose and porous. Ultra-structurally, a large number of vacuoles and few neurosecretory granules were observed in the axon terminal. These effects added to our understanding of the toxic effects of Cd2+ and provide biochemical and histopathological evidence for S. henanense as a biomarker of acute or long-term waterborne Cd2+ pollution.
Collapse
Affiliation(s)
- Ruijing Xuan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hao Wu
- Basic Medical School, Shanxi Medical University, Taiyuan, 030001, China
| | - Yingjun Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Bingyan Wei
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
37
|
Jagoda SV, Dixon KM. Protective effects of 1,25 dihydroxyvitamin D 3 and its analogs on ultraviolet radiation-induced oxidative stress: a review. Redox Rep 2021; 25:11-16. [PMID: 32093585 PMCID: PMC7054951 DOI: 10.1080/13510002.2020.1731261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The active vitamin D compound, 1,25-dihydroxyvitamin D3 (1,25D) is produced in skin cells following exposure to ultraviolet radiation (UV) from the sun. However, there are many harmful effects of UV which include DNA damage caused by direct absorption of UV, as well as that caused indirectly via UV-induced reactive oxygen species (ROS). Interestingly, 1,25D and analogs have been shown to reduce both direct and indirect UV-induced DNA damage in skin cells. This was accompanied by reductions in ROS and in nitric oxide products with 1,25D following UV. Moreover, following acute UV exposure, 1,25D has been demonstrated to increase p53 levels in skin, which would presumably allow for repair of cells with damaged DNA, or apoptosis of cells with irreparably damaged DNA. Previous studies have also shown that p53 reduces intracellular ROS. Furthermore, 1,25D has been shown to induce metallothioneins, which are potent free radical scavengers. In addition to these protective effects, 1,25D has been demonstrated to inhibit stress-activated c-Jun N-terminal kinases following UV exposure, and to increase levels of the stress-induced protein heme oxygenase-1 in a model of oxidative stress. Herein, we discuss the protective effects of 1,25D and analogs in the context of UV, oxidative stress and skin cancer.
Collapse
Affiliation(s)
- Shemani Vishalya Jagoda
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Katie Marie Dixon
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| |
Collapse
|
38
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
39
|
Meng C, Wang K, Zhang X, Zhu X. Purification and structure analysis of zinc-binding protein from Mizuhopecten yessoensis. J Food Biochem 2021; 45:e13756. [PMID: 33993503 DOI: 10.1111/jfbc.13756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022]
Abstract
Zn-binding protein was obtained after purification from scallops (Mizuhopecten yessoensis) using gel permeation and ion-exchange chromatography. Amino acid determination showed that the cysteine of the zinc-binding protein accounted for one-third of the total amino acids, which is a typical feature of metallothionein (MT). The spectra of Fourier Transform Infrared Spectroscopy (FTIR) and Circular Dichroism (CD) were analyzed to predict the secondary structure information of zinc-binding protein: the α-helix was 46.55%, the β-sheets was 27.07%, the random coil was 16.48%, and the β-turns was 9.89%. Using a commercial kit to measure its antioxidant activity in vitro, the result showed that it had good scavenging ability to 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (·OH), and reducing the ability to ferrous iron ions. With the process provided by this study, zinc-binding protein can be prepared in large quantities, which is the basis for its future commercialization. PRACTICAL APPLICATIONS: According to the extraction and purification process established in this study, a large amount of zinc-bound MT from the viscera of scallops can be obtained. And the zinc-bound MT had good antioxidant activity. In addition, the yield of each purification step has been calculated. The zinc-bound MTs from scallop' viscera can be prepared in large quantities by directly using the process in this manuscript or by equal magnification of this process. In the future, large-scale production can be considered to increase the economic value of scallops' viscera.
Collapse
Affiliation(s)
- Chunying Meng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China.,Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan, P.R. China
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Xiaojun Zhang
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan, P.R. China
| | - Xinyue Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
40
|
Metallothioneins in Inflammatory Bowel Diseases: Importance in Pathogenesis and Potential Therapy Target. Can J Gastroenterol Hepatol 2021; 2021:6665697. [PMID: 33987146 PMCID: PMC8093040 DOI: 10.1155/2021/6665697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Immunological disorders, increased oxidative stress, and damage to the epithelial barrier play an important role in the pathogenesis of inflammatory bowel diseases (IBDs). In the treatment of patients with Crohn's disease (CD) and ulcerative colitis (UC), it is increasingly common to use biological drugs that selectively affect individual components of the inflammatory cascade. However, administering the medicines currently available does not always result in obtaining and maintaining remission, and it may also lead to the development of resistance to a given agent over time. Metallothioneins (MTs) belong to the group of low molecular weight proteins, which, among others, regulate the inflammation and homeostasis of heavy metals as well as participating in the regulation of the intensity of oxidative stress. The results of the studies conducted so far do not clearly indicate the role of MTs in the process of inflammation in patients with IBD. However, there are reports that suggest the possibility of using MTs as a potential target in the treatment of this group of patients.
Collapse
|
41
|
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. BIOLOGY 2021; 10:biology10030176. [PMID: 33652748 PMCID: PMC7996892 DOI: 10.3390/biology10030176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing negative effects and discuss the possible underlying mechanisms. We expose in parallel findings from other medical research fields and underscore unsettled questions. Then, we propose some future research directions to improve knowledge in the field. Abstract Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins whose precise biological roles have not been fully characterized. Existing evidence implicated MTs in heavy metal detoxification, metal ion homeostasis and antioxidant defense. MTs were thus categorized as protective effectors that contribute to cellular homeostasis and survival. This view has, however, been challenged by emerging evidence in different medical fields revealing novel pathophysiological roles of MTs, including inflammatory bowel disease, neurodegenerative disorders, carcinogenesis and diabetes. In the present focused review, we discuss the evidence for the role of MTs in pancreatic beta-cell biology and insulin secretion. We highlight the pattern of specific isoforms of MT gene expression in rodents and human beta-cells. We then discuss the mechanisms involved in the regulation of MTs in islets under physiological and pathological conditions, particularly type 2 diabetes, and analyze the evidence revealing adaptive and negative roles of MTs in beta-cells and the potential mechanisms involved. Finally, we underscore the unsettled questions in the field and propose some future research directions.
Collapse
|
42
|
Transcriptome Profiling of Human Follicle Dermal Papilla Cells in response to Porphyra-334 Treatment by RNA-Seq. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6637513. [PMID: 33519944 PMCID: PMC7817261 DOI: 10.1155/2021/6637513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Porphyra-334 is a kind of mycosporine-like amino acid absorbing ultraviolet-A. Here, we characterized porphyra-334 as a potential antiaging agent. An in vitro assay revealed that porphyra-334 dramatically promoted collagen synthesis in fibroblast cells. The effect of porphyra-334 on cell proliferation was dependent on the cell type, and the increase of cell viability by porphyra-334 was the highest in keratinocyte cells among the three tested cell types. An in vivo clinical test with 22 participants demonstrated the possible role of porphyra-334 in the improvement of periorbital wrinkles. RNA-sequencing using human follicle dermal papilla (HFDP) cells upon porphyra-334 treatment identified the upregulation of metallothionein- (MT-) associated genes, confirming the antioxidant role of porphyra-334 with MT. Moreover, the expression of genes involved in nuclear chromosome segregation and the encoding of components of kinetochores was upregulated by porphyra-334 treatment. Furthermore, we found that several genes associated with the hair follicle cycle, the hair follicle structure, the epidermal structure, and stem cells were upregulated by porphyra-334 treatment, suggesting the potential role of porphyra-334 in hair follicle growth and maintenance. In summary, we provided several new pieces of evidence of porphyra-334 as a potential antiaging cosmetic agent and elucidated the expression network in HFDP cells upon porphyra-334.
Collapse
|
43
|
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants (Basel) 2021; 10:89. [PMID: 33440661 PMCID: PMC7826537 DOI: 10.3390/antiox10010089] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The human eye, the highly specialized organ of vision, is greatly influenced by oxidants of endogenous and exogenous origin. Oxidative stress affects all structures of the human eye with special emphasis on the ocular surface, the lens, the retina and its retinal pigment epithelium, which are considered natural barriers of antioxidant protection, contributing to the onset and/or progression of eye diseases. These ocular structures contain a complex antioxidant defense system slightly different along the eye depending on cell tissue. In addition to widely studied enzymatic antioxidants, including superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxins and selenoproteins, inter alia, metallothioneins (MTs) are considered antioxidant proteins of growing interest with further cell-mediated functions. This family of cysteine rich and low molecular mass proteins captures and neutralizes free radicals in a redox-dependent mechanism involving zinc binding and release. The state of the art of MTs, including the isoforms classification, the main functions described to date, the Zn-MT redox cycle as antioxidant defense system, and the antioxidant activity of Zn-MTs in the ocular surface, lens, retina and its retinal pigment epithelium, dependent on the number of occupied zinc-binding sites, will be comprehensively reviewed.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Montserrat García
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Rosario Pereiro
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| |
Collapse
|
44
|
Ooi TC, Chan KM, Sharif R. Zinc L-Carnosine Protects CCD-18co Cells from L-Buthionine Sulfoximine-Induced Oxidative Stress via the Induction of Metallothionein and Superoxide Dismutase 1 Expression. Biol Trace Elem Res 2020; 198:464-471. [PMID: 32146577 DOI: 10.1007/s12011-020-02108-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Zinc L-carnosine (ZnC) is the chelate form of zinc and L-carnosine and is one of the zinc supplements available in the market. This study aims to determine the protective effects of ZnC against L-buthionine sulfoximine (BSO)-induced oxidative stress in CCD-18co human normal colon fibroblast cell line. CCD-18co cells were pretreated with ZnC (0-100 μM) for 24 h before the induction of oxidative stress by BSO (1 mM) for another 24 h. Results from this present study demonstrated that ZnC up to the concentration of 100 μM was not cytotoxic to CCD-18co cells. Induction with BSO significantly increased the intracellular reactive oxygen species (ROS) levels and reduced the intracellular glutathione (GSH) levels in CCD-18co cells. Pretreatment with ZnC was able to attenuate the increment in intracellular ROS level in CCD-18co cells significantly in a concentration-dependent manner. However, ZnC did not have any effects on intracellular GSH levels and Nrf2 activation. Mechanistically, pretreatment with ZnC was able to upregulate the expression of metallothionein (MT) and superoxide dismutase 1 (SOD1) in CCD-18co cells. Results from dual-luciferase reporter gene assay reported that ZnC was able to increase the MRE-mediated relative luciferase activities in a concentration-dependent manner, suggesting that the induction of MT expression by ZnC was due to the activation of MTF-1 signaling pathway. Taken together, our current findings suggest that ZnC can protect CCD-18co cells from BSO-induced oxidative stress via the induction of MT and SOD1 expression.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Kok Meng Chan
- Environmental Health and Industrial Safety Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
- Biocompatibility Laboratory, Centre for Research and Instrumentation, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
45
|
Yadav VS, Mir RA, Bhatia A, Yadav R, Shadang M, Chauhan SS, Dhingra K, Kharbanda OP, Yadav R, Garg R. Metallothionein levels in gingival crevicular fluid, saliva and serum of smokers and non-smokers with chronic periodontitis. J Periodontol 2020; 92:1329-1338. [PMID: 33107036 DOI: 10.1002/jper.20-0314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Metallothionein (MT), a cysteine rich protein is involved as a radical scavenger in several pathological conditions associated with oxidative stress; however, its role in periodontal disease still remains elusive. The aim of this cross-sectional study is to determine the serum, saliva and gingival crevicular fluid (GCF) levels of MT in smokers (S) and non-smokers (NS) with chronic periodontitis (CP), and compare them with those of periodontally healthy (PH) individuals. METHODS A total of 85 participants were enrolled: 45 patients with CP (23 S [CP+S] and 22 NS [CP+NS]) and 40 PH individuals (20 S [PH+S] and 20 NS [PH+NS]). In all the study participants, clinical periodontal parameters (plaque index, gingival index, sulcus bleeding index, probing depth, and clinical attachment level) were recorded and samples of serum, saliva and GCF were collected. Enzyme-linked immunosorbent assay was used to determine the levels of MT in the samples. RESULTS All periodontal clinical parameters were significantly higher in the CP groups as compared to PH groups (P < 0.05). MT levels in CP+S group were significantly raised in comparison to other three groups. There was no statistically significant difference in MT levels among CP+NS and PH+S groups (P > 0.05); however, relatively higher levels were observed in GCF and saliva in CP+NS group. When all the study groups were observed together, MT levels were positively correlated with clinical parameters. CONCLUSIONS Results of present study suggest that smoking and CP can induce the synthesis of MT owing to increased oxidative stress and heavy metals intoxication. Further longitudinal studies with large sample size and an interventional arm are needed to substantiate the role of MT as a potential biomarker in periodontitis.
Collapse
Affiliation(s)
- Vikender S Yadav
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical, Sciences, New Delhi, India
| | - Riyaz A Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anu Bhatia
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical, Sciences, New Delhi, India
| | - Rakhee Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mahaiwon Shadang
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunaal Dhingra
- Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical, Sciences, New Delhi, India
| | - Om P Kharbanda
- Division of Orthodontics, Centre for Dental Education and Research, All India Institute of Medical, Sciences, New Delhi, India
| | - Renu Yadav
- Department of Prosthodontics, Surendera Dental College and Research Institute, Sriganganagar, Rajasthan, India
| | - Rahul Garg
- Department of Dental Surgery, Haryana Civil Dental Services, General Hospital, Sirsa, Haryana, India
| |
Collapse
|
46
|
Protection from Ultraviolet Damage and Photocarcinogenesis by Vitamin D Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:227-253. [PMID: 32918222 DOI: 10.1007/978-3-030-46227-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds.
Collapse
|
47
|
Ogushi S, Yoshida Y, Nakanishi T, Kimura T. CpG Site-Specific Regulation of Metallothionein-1 Gene Expression. Int J Mol Sci 2020; 21:E5946. [PMID: 32824906 PMCID: PMC7503544 DOI: 10.3390/ijms21175946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 01/13/2023] Open
Abstract
Metal-binding inducible proteins called metallothioneins (MTs) protect cells from heavy-metal toxicity. Their transcription is regulated by metal response element (MRE)-binding transcription factor-1 (MTF1), which is strongly recruited to MREs in the MT promoters, in response to Zn and Cd. Mouse Mt1 gene promoter contains 5 MREs (a-e), and MTF1 has the highest affinity to MREd. Epigenetic changes like DNA methylation might affect transcription and, therefore, the cytoprotective function of MT genes. To reveal the CpG site(s) critical for Mt1 transcription, we analyzed the methylation status of CpG dinucleotides in the Mt1 gene promoter through bisulfite sequencing in P1798 mouse lymphosarcoma cells, with high or low MT expression. We found demethylated CpG sites near MREd and MREe, in cells with high expression. Next, we compared Mt1 gene-promoter-driven Lucia luciferase gene expression in unmethylated and methylated reporter vectors. To clarify the effect of complete and partial CpG methylation, we used M.SssI (CG→5mCG) and HhaI (GCGC→G5mCGC)-methylated reporter vectors. Point mutation analysis revealed that methylation of a CpG site near MREd and MREe strongly inhibited Mt1 gene expression. Our results suggest that the methylation status of this site is important for the regulation of Mt1 gene expression.
Collapse
Affiliation(s)
- Shoko Ogushi
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa 572-8508, Japan;
| | - Yuya Yoshida
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan;
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan;
| | - Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa 572-8508, Japan;
| |
Collapse
|
48
|
Ma J, Cao H, Rodrigues RM, Xu M, Ren T, He Y, Hwang S, Feng D, Ren R, Yang P, Liangpunsakul S, Sun J, Gao B. Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis via ASK1/p38MAPKα-dependent mechanisms. JCI Insight 2020; 5:136496. [PMID: 32544093 DOI: 10.1172/jci.insight.136496] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol-associated liver disease is a spectrum of liver disorders with histopathological changes ranging from simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Recent data suggest that chronic-plus-binge ethanol intake induces steatohepatitis by promoting release by hepatocytes of proinflammatory mitochondrial DNA-enriched (mtDNA-enriched) extracellular vesicles (EVs). The aim of the present study was to investigate the role of the stress kinase apoptosis signal-regulating kinase 1 (ASK1) and p38 mitogen-activated protein kinase (p38) in chronic-plus-binge ethanol-induced steatohepatitis and mtDNA-enriched EV release. Microarray analysis revealed the greatest hepatic upregulation of metallothionein 1 and 2 (Mt1/2), which encode 2 of the most potent antioxidant proteins. Genetic deletion of the Mt1 and Mt2 genes aggravated ethanol-induced liver injury, as evidenced by elevation of serum ALT, neutrophil infiltration, oxidative stress, and ASK1/p38 activation in the liver. Inhibition or genetic deletion of Ask1 or p38 ameliorated ethanol-induced liver injury, inflammation, ROS levels, and expression of phagocytic oxidase and ER stress markers in the liver. In addition, inhibition of ASK1 or p38 also attenuated ethanol-induced mtDNA-enriched EV secretion from hepatocytes. Taken together, these findings indicate that induction of hepatic mtDNA-enriched EVs by ethanol is dependent on ASK1 and p38, thereby promoting alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Peixin Yang
- Department of Obstetrics and Gynecology Science, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, and.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Balzano S, Sardo A, Blasio M, Chahine TB, Dell’Anno F, Sansone C, Brunet C. Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Front Microbiol 2020; 11:517. [PMID: 32431671 PMCID: PMC7216689 DOI: 10.3389/fmicb.2020.00517] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
The persistence of heavy metals (HMs) in the environment causes adverse effects to all living organisms; HMs accumulate along the food chain affecting different levels of biological organizations, from cells to tissues. HMs enter cells through transporter proteins and can bind to enzymes and nucleic acids interfering with their functioning. Strategies used by microalgae to minimize HM toxicity include the biosynthesis of metal-binding peptides that chelate metal cations inhibiting their activity. Metal-binding peptides include genetically encoded metallothioneins (MTs) and enzymatically produced phytochelatins (PCs). A number of techniques, including genetic engineering, focus on increasing the biosynthesis of MTs and PCs in microalgae. The present review reports the current knowledge on microalgal MTs and PCs and describes the state of art of their use for HM bioremediation and other putative biotechnological applications, also emphasizing on techniques aimed at increasing the cellular concentrations of MTs and PCs. In spite of the broad metabolic and chemical diversity of microalgae that are currently receiving increasing attention by biotechnological research, knowledge on MTs and PCs from these organisms is still limited to date.
Collapse
Affiliation(s)
- Sergio Balzano
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
- NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | - Martina Blasio
- Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | | | | | | | | |
Collapse
|
50
|
Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, Bonini MG. Mitochondrial Superoxide Dismutase: What the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch. Antioxid Redox Signal 2020; 32:701-714. [PMID: 31968997 PMCID: PMC7047081 DOI: 10.1089/ars.2019.7962] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) are now widely recognized as central mediators of cell signaling. Mitochondria are major sources of ROS. Recent Advances: It is now clear that mitochondrial ROS are essential to activate responses to cellular microenvironmental stressors. Mediators of these responses reside in large part in the cytosol. Critical Issues: The primary form of ROS produced by mitochondria is the superoxide radical anion. As a charged radical anion, superoxide is restricted in its capacity to diffuse and convey redox messages outside of mitochondria. In addition, superoxide is a reductant and not particularly efficient at oxidizing targets. Because there are many opportunities for superoxide to be neutralized in mitochondria, it is not completely clear how redox cues generated in mitochondria are converted into diffusible signals that produce transient oxidative modifications in the cytosol or nucleus. Future Directions: To efficiently intervene at the level of cellular redox signaling, it seems that understanding how the generation of superoxide radicals in mitochondria is coupled with the propagation of redox messages is essential. We propose that mitochondrial superoxide dismutase (SOD2) is a major system converting diffusion-restricted superoxide radicals derived from the electron transport chain into highly diffusible hydrogen peroxide (H2O2). This enables the coupling of metabolic changes resulting in increased superoxide to the production of H2O2, a diffusible secondary messenger. As such, to determine whether there are other systems coupling metabolic changes to redox messaging in mitochondria as well as how these systems are regulated is essential.
Collapse
Affiliation(s)
- Flavio R Palma
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chenxia He
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeanne M Danes
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Veronica Paviani
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Diego R Coelho
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin N Gantner
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marcelo G Bonini
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|