1
|
Pawar A, Pardasani KR. Study of disorders in regulatory spatiotemporal neurodynamics of calcium and nitric oxide. Cogn Neurodyn 2023; 17:1661-1682. [PMID: 37974582 PMCID: PMC10640555 DOI: 10.1007/s11571-022-09902-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Experimental studies have reported the dependence of nitric oxide (NO) on the regulation of neuronal calcium ([Ca2+]) dynamics in neurons. But, there is no model available to estimate the disorders caused by various parameters in their regulatory dynamics leading to various neuronal disorders. A mathematical model to analyze the impacts due to alterations in various parameters like buffer, ryanodine receptor, serca pump, source influx, etc. leading to regulation and dysregulation of the spatiotemporal calcium and NO dynamics in neuron cells is constructed using a system of reaction-diffusion equations. The numerical simulation is performed with the finite element approach. The disturbances in the different constitutive processes of [Ca2+] and nitric oxide including source influx, buffer mechanism, ryanodine receptor, serca pump, IP3 receptor, etc. can be responsible for the dysregulation in the [Ca2+] and NO dynamics in neurons. Also, the results reveal novel information about the magnitude and intensity of disorders in response to a range of alterations in various parameters of this neuronal dynamics, which can cause dysregulation leading to neuronal diseases like Parkinson's, cerebral ischemia, trauma, etc.
Collapse
Affiliation(s)
- Anand Pawar
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| | - Kamal Raj Pardasani
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| |
Collapse
|
2
|
Brzozowska M, Całka J. Acetylsalicylic Acid Supplementation Affects the Neurochemical Phenotyping of Porcine Duodenal Neurons. Int J Mol Sci 2023; 24:9871. [PMID: 37373019 DOI: 10.3390/ijms24129871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Aspirin (ASA) is a popular nonsteroidal anti-inflammatory drug (NSAID), which exerts its therapeutic properties through the inhibition of cyclooxygenase (COX) isoform 2 (COX-2), while the inhibition of COX-1 by ASA results in the formation of gastrointestinal side effects. Due to the fact that the enteric nervous system (ENS) is involved in the regulation of digestive functions both in physiological and pathological states, the aim of this study was to determine the influence of ASA on the neurochemical profile of enteric neurons in the porcine duodenum. Our research, conducted using the double immunofluorescence technique, proved an increase in the expression of selected enteric neurotransmitters in the duodenum as a result of ASA treatment. The mechanisms of the visualized changes are not entirely clear but are probably related to the enteric adaptation to inflammatory conditions resulting from aspirin supplementation. A detailed understanding of the role of the ENS in the development of drug-induced inflammation will contribute to the establishment of new strategies for the treatment of NSAID-induced lesions.
Collapse
Affiliation(s)
- Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland
| |
Collapse
|
3
|
The Comparison of the Influence of Bisphenol A (BPA) and Its Analogue Bisphenol S (BPS) on the Enteric Nervous System of the Distal Colon in Mice. Nutrients 2022; 15:nu15010200. [PMID: 36615857 PMCID: PMC9824883 DOI: 10.3390/nu15010200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Bisphenol A (BPA), commonly used as a plasticizer in various branches of industry has a strong negative effect on living organisms. Therefore, more and more often it is replaced in production of plastics by other substances. One of them is bisphenol S (BPS). This study for the first time compares the impact of BPA and BPS on the enteric neurons using double immunofluorescence technique. It has been shown that both BPA and BPS affect the number of enteric neurons containing substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), neuronal isoform of nitric oxide synthase (nNOS-a marker of nitrergic neurons) and/or vesicular acetylcholine transporter (VAChT- a marker of cholinergic neurons). The changes noted under the impact of both bisphenols are similar and consisted of an increase in the number of enteric neurons immunoreactive to all neuronal factors studied. The impact of BPS on some populations of neurons was stronger than that noted under the influence of BPA. The obtained results clearly show that BPS (similarly to BPA) administered for long time is not neutral for the enteric neurons even in relatively low doses and may be more potent than BPA for certain neuronal populations.
Collapse
|
4
|
Cairns BR, Jevans B, Chanpong A, Moulding D, McCann CJ. Automated computational analysis reveals structural changes in the enteric nervous system of nNOS deficient mice. Sci Rep 2021; 11:17189. [PMID: 34433854 PMCID: PMC8387485 DOI: 10.1038/s41598-021-96677-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS) neurons play a fundamental role in inhibitory neurotransmission, within the enteric nervous system (ENS), and in the establishment of gut motility patterns. Clinically, loss or disruption of nNOS neurons has been shown in a range of enteric neuropathies. However, the effects of nNOS loss on the composition and structure of the ENS remain poorly understood. The aim of this study was to assess the structural and transcriptional consequences of loss of nNOS neurons within the murine ENS. Expression analysis demonstrated compensatory transcriptional upregulation of pan neuronal and inhibitory neuronal subtype targets within the Nos1-/- colon, compared to control C57BL/6J mice. Conventional confocal imaging; combined with novel machine learning approaches, and automated computational analysis, revealed increased interconnectivity within the Nos1-/- ENS, compared to age-matched control mice, with increases in network density, neural projections and neuronal branching. These findings provide the first direct evidence of structural and molecular remodelling of the ENS, upon loss of nNOS signalling. Further, we demonstrate the utility of machine learning approaches, and automated computational image analysis, in revealing previously undetected; yet potentially clinically relevant, changes in ENS structure which could provide improved understanding of pathological mechanisms across a host of enteric neuropathies.
Collapse
Affiliation(s)
- Ben R Cairns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Atchariya Chanpong
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Dale Moulding
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK.
| |
Collapse
|
5
|
Moattari CR, Granstein RD. Neuropeptides and neurohormones in immune, inflammatory and cellular responses to ultraviolet radiation. Acta Physiol (Oxf) 2021; 232:e13644. [PMID: 33724698 DOI: 10.1111/apha.13644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Humans are exposed to varying amounts of ultraviolet radiation (UVR) through sunlight. UVR penetrates into human skin leading to release of neuropeptides, neurotransmitters and neuroendocrine hormones. These messengers released from local sensory nerves, keratinocytes, Langerhans cells (LCs), mast cells, melanocytes and endothelial cells (ECs) modulate local and systemic immune responses, mediate inflammation and promote differing cell biologic effects. In this review, we will focus on both animal and human studies that elucidate the roles of calcitonin gene-related peptide (CGRP), substance P (SP), nerve growth factor (NGF), nitric oxide and proopiomelanocortin (POMC) derivatives in mediating immune and inflammatory effects of exposure to UVR as well as other cell biologic effects of UVR exposure.
Collapse
|
6
|
Neurochemical Plasticity of nNOS-, VIP- and CART-Immunoreactive Neurons Following Prolonged Acetylsalicylic Acid Supplementation in the Porcine Jejunum. Int J Mol Sci 2020; 21:ijms21062157. [PMID: 32245119 PMCID: PMC7139762 DOI: 10.3390/ijms21062157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Aspirin, also known as acetylsalicylic acid (ASA), is a commonly used anti-inflammatory drug that has analgesic and antipyretic properties. The side effects are well known, however, knowledge concerning its influence on gastric and intestinal innervation is limited. The enteric nervous system (ENS) innervates the whole gastrointestinal tract (GIT) and is comprised of more than one hundred million neurons. The capacity of neurons to adapt to microenvironmental influences, termed as an enteric neuronal plasticity, is an essential adaptive response to various pathological stimuli. Therefore, the goal of the present study was to determine the influence of prolonged ASA supplementation on the immunolocalization of neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP) and cocaine- and amphetamine- regulated transcript peptide (CART) in the porcine jejunum. The experiment was performed on 8 Pietrain × Duroc immature gilts. Using routine double-labelling immunofluorescence, we revealed that the ENS nerve cells underwent adaptive changes in response to the induced inflammation, which was manifested by upregulated or downregulated expression of the studied neurotransmitters. Our results suggest the participation of nNOS, VIP and CART in the development of inflammation and may form the basis for further neuro-gastroenterological research.
Collapse
|
7
|
Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 2019; 8. [PMID: 31559013 PMCID: PMC6743256 DOI: 10.12688/f1000research.18039.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Mari Iwasaki
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Departments of Medicine and Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
8
|
Bulc M, Palus K, Dąbrowski M, Całka J. Hyperglycaemia-Induced Downregulation in Expression of nNOS Intramural Neurons of the Small Intestine in the Pig. Int J Mol Sci 2019; 20:ijms20071681. [PMID: 30987291 PMCID: PMC6480956 DOI: 10.3390/ijms20071681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
Diabetic autonomic peripheral neuropathy (PN) involves a broad spectrum of organs. One of them is the gastrointestinal (GI) tract. The molecular mechanisms underlying the pathogenesis of digestive complications are not yet fully understood. Digestion is controlled by the central nervous system (CNS) and the enteric nervous system (ENS) within the wall of the GI tract. Enteric neurons exert regulatory effects due to the many biologically active substances secreted and released by enteric nervous system (ENS) structures. These include nitric oxide (NO), produced by the neural nitric oxide synthase enzyme (nNOS). It is a very important inhibitory factor, necessary for smooth muscle relaxation. Moreover, it was noted that nitrergic innervation can undergo adaptive changes during pathological processes. Additionally, nitrergic neurons function may be regulated through the synthesis of other active neuropeptides. Therefore, in the present study, using the immunofluorescence technique, we first examined the influence of hyperglycemia on the NOS- containing neurons in the porcine small intestine and secondly the co-localization of nNOS with vasoactive intestinal polypeptide (VIP), galanin (GAL) and substance P (SP) in all plexuses studied. Following chronic hyperglycaemia, we observed a reduction in the number of the NOS-positive neurons in all intestinal segments studied, as well as an increased in investigated substances in nNOS positive neurons. This observation confirmed that diabetic hyperglycaemia can cause changes in the neurochemical characteristics of enteric neurons, which can lead to numerous disturbances in gastrointestinal tract functions. Moreover, can be the basis of an elaboration of these peptides analogues utilized as therapeutic agents in the treatment of GI complications.
Collapse
Affiliation(s)
- Michał Bulc
- Department of Clinical Physiology Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland.
| | - Katarzyna Palus
- Department of Clinical Physiology Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland.
| | - Jarosław Całka
- Department of Clinical Physiology Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland.
| |
Collapse
|
9
|
Cobine CA, McKechnie M, Brookfield RJ, Hannigan KI, Keef KD. Comparison of inhibitory neuromuscular transmission in the Cynomolgus monkey IAS and rectum: special emphasis on differences in purinergic transmission. J Physiol 2018; 596:5319-5341. [PMID: 30198065 DOI: 10.1113/jp275437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS Inhibitory neuromuscular transmission (NMT) was compared in the internal anal sphincter (IAS) and rectum of the Cynomolgus monkey, an animal with high gene sequence identity to humans. Nitrergic NMT was present in both muscles while purinergic NMT was limited to the rectum and VIPergic NMT to the IAS. The profile for monkey IAS more closely resembles humans than rodents. In both muscles, SK3 channels were localized to PDGFRα+ cells that were closely associated with nNOS+ /VIP+ nerves. Gene expression levels of P2RY subtypes were the same in IAS and rectum while KCNN expression levels were very similar. SK3 channel activation and inhibition caused faster/greater changes in contractile activity in rectum than IAS. P2Y1 receptor activation inhibited contraction in rectum while increasing contraction in IAS. The absence of purinergic NMT in the IAS may be due to poor coupling between P2Y1 receptors and SK3 channels on PDGFRα+ cells. ABSTRACT Inhibitory neuromuscular transmission (NMT) was compared in the internal anal sphincter (IAS) and rectum of the Cynomolgus monkey, an animal with a high gene sequence identity to humans. Electrical field stimulation produced nitric oxide synthase (NOS)-dependent contractile inhibition in both muscles whereas P2Y1-dependent purinergic NMT was restricted to rectum. An additional NOS-independent, α-chymotrypsin-sensitive component was identified in the IAS consistent with vasoactive intestinal peptide-ergic (VIPergic) NMT. Microelectrode recordings revealed slow NOS-dependent inhibitory junction potentials (IJPs) in both muscles and fast P2Y1-dependent IJPs in rectum. The basis for the difference in purinergic NMT was investigated. PDGFRα+ /SK3+ cells were closely aligned with nNOS+ /VIP+ neurons in both muscles. Gene expression of P2RY was the same in IAS and rectum (P2RY1>>P2RY2-14) while KCNN3 expression was 32% greater in rectum. The SK channel inhibitor apamin doubled contractile activity in rectum while having minimal effect in the IAS. Contractile inhibition elicited with the SK channel agonist CyPPA was five times faster in rectum than in the IAS. The P2Y1 receptor agonist MRS2365 inhibited contraction in rectum but increased contraction in the IAS. In conclusion, both the IAS and the rectum have nitrergic NMT whereas purinergic NMT is limited to rectum and VIPergic NMT to the IAS. The profile in monkey IAS more closely resembles that of humans than rodents. The lack of purinergic NMT in the IAS cannot be attributed to the absence of PDGFRα+ cells, P2Y1 receptors or SK3 channels. Rather, it appears to be due to poor coupling between P2Y1 receptors and SK3 channels on PDGFRα+ cells.
Collapse
Affiliation(s)
- C A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - M McKechnie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - R J Brookfield
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - K I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - K D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
10
|
Bódi N, Szalai Z, Chandrakumar L, Bagyánszki M. Region-dependent effects of diabetes and insulin-replacement on neuronal nitric oxide synthase- and heme oxygenase-immunoreactive submucous neurons. World J Gastroenterol 2017; 23:7359-7368. [PMID: 29151690 PMCID: PMC5685842 DOI: 10.3748/wjg.v23.i41.7359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the intestinal segment-specific effects of diabetes and insulin replacement on the density of different subpopulations of submucous neurons.
METHODS Ten weeks after the onset of type 1 diabetes samples were taken from the duodenum, ileum and colon of streptozotocin-induce diabetic, insulin-treated diabetic and sex- and age-matched control rats. Whole-mount preparations of submucous plexus were prepared from the different gut segments for quantitative fluorescent immunohistochemistry. The following double-immunostainings were performed: neuronal nitric oxide synthase (nNOS) and HuC/D, heme oxygenase (HO) 1 and peripherin, as well as HO2 and peripherin. The density of nNOS-, HO1- and HO2-immunoreactive (IR) neurons was determined as a percentage of the total number of submucous neurons.
RESULTS The total number of submucous neurons and the proportion of nNOS-, HO1- and HO2-IR subpopulations were not affected in the duodenal ganglia of control, diabetic and insulin-treated rats. While the total neuronal number did not change in either the ileum or the colon, the density of nitrergic neurons exhibited a 2- and 3-fold increase in the diabetic ileum and colon, respectively, which was further enhanced after insulin replacement. The presence of HO1- and HO2-IR submucous neurons was robust in the colon of controls (38.4%-50.8%), whereas it was significantly lower in the small intestinal segments (0.0%-4.2%, P < 0.0001). Under pathophysiological conditions the only alteration detected was an increase in the ileum and a decrease in the colon of the proportion of HO-IR neurons in insulin-treated diabetic animals.
CONCLUSION Diabetes and immediate insulin replacement induce the most pronounced region-specific alterations of nNOS-, HO1- and HO2-IR submucous neuronal density in the distal parts of the gut.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Lalitha Chandrakumar
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
11
|
Chen H, Zhu W, Lu J, Fan J, Sun L, Feng X, Liu H, Zhang Z, Wang Y. The Effects of Auricular Electro-Acupuncture on Ameliorating the Dysfunction of Interstitial Cells of Cajal Networks and nNOSmRNA Expression in Antrum of STZ-Induced Diabetic Rats. PLoS One 2016; 11:e0166638. [PMID: 27930657 PMCID: PMC5145159 DOI: 10.1371/journal.pone.0166638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUD Interstitial cells of Cajal (ICCs) and nNOS play a crucial role in diabetic gastrointestinal dysmotility(DGD). Our previous study found that electro-acupuncture(EA) on ear point 'stomach' could repair the gastric dysrhythmias in rats induced by rectal distention(RD) after meal. However, little were known about the possible effect of auricular electro-acupuncture (AEA) on diabetic rats. Thus, we designed this study to investigate the effect of AEA on streptozotocin(STZ)-induced diabetic rats. METHOD Forty male Sprague_Dawley (SD) rats were injected with STZ, at the end of 8th week after injection, animals were randomly divided into four groups and received 2 weeks-treatment(10 times) respectively: control group(CON,n = 10, no stimulation), sham auricular electro-acupuncture group(SEA,n = 10, low frequency EA on earlobes), auricular eletro-acupuncture group(AEA,n = 10, low frequency EA on ear point 'stomach'), and ST-36 group(ST-36,n = 10, low frequency EA on ST-36). Gastrointestinal (GI) motility was measured by GI transit rate. ICCs(c-kit+ expression) in antrum were analyzed by Immunohistochemistry and western blotting. NO level in blood serum were detected by Griess Reagent, and nNOSmRNA expression in antrum were determined by Real-time PCR. RESULTS GI transit rate and ICCs(c-kit+ expression) in antrum of AEA group have the tendency to increase compared with CON group, but had no statistics difference (P>0.05). nNOSmRNA expression in antrum of AEA group was dramatically increased compared with CON group (P = 0.037). CONCLUSIONS Low frequency EA on ear 'stomach' point could significantly up-regulate nNOS mRNA expression and ameliorate the ICCs networks partly in gastric antrum of STZ -induced diabetic rats, which may has benefits on regulating the GI motility.
Collapse
Affiliation(s)
- Huan Chen
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijian Zhu
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Lu
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinqing Fan
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Luning Sun
- Department of Pharmacy, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhaohui Zhang
- Department of Acupuncture, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongqing Wang
- Department of Pharmacy, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Nagy JI, Urena-Ramirez V, Ghia JE. Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons. FEBS Lett 2014; 588:1480-90. [PMID: 24548563 PMCID: PMC4043341 DOI: 10.1016/j.febslet.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 02/02/2023]
Abstract
Neurons in the enteric nervous system utilize numerous neurotransmitters to orchestrate rhythmic gut smooth muscle contractions. We examined whether electrical synapses formed by gap junctions containing connexin36 also contribute to communication between enteric neurons in mouse colon. Spontaneous contractility properties and responses to electrical field stimulation and cholinergic agonist were altered in gut from connexin36 knockout vs. wild-type mice. Immunofluorescence revealed punctate labelling of connexin36 that was localized at appositions between somata of enteric neurons immunopositive for the enzyme nitric oxide synthase. There is indication for a possible functional role of gap junctions between inhibitory nitrergic enteric neurons.
Collapse
Affiliation(s)
- James Imre Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Viridiana Urena-Ramirez
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada; Department of Immunology and Internal Medicine section of Gastroenterology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Department of Immunology and Internal Medicine section of Gastroenterology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
13
|
Noorian AR, Taylor GM, Annerino DM, Greene JG. Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J Comp Neurol 2012; 519:3387-401. [PMID: 21618236 DOI: 10.1002/cne.22679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the neurochemical composition of the enteric nervous system (ENS) is critical for elucidating neurological function in the gastrointestinal (GI) tract in health and disease. Despite their status as the closest models of human neurological systems, relatively little is known about enteric neurochemistry in nonhuman primates. We describe neurochemical coding of the enteric nervous system, specifically the myenteric plexus, of the rhesus monkey (Macaca mulatta) by immunohistochemistry and directly compare it to human tissues. There are considerable differences in the myenteric plexus along different segments of the monkey GI tract. While acetylcholine neurons make up the majority of myenteric neurons in the stomach (70%), they are a minority in the rectum (47%). Conversely, only 22% of gastric myenteric neurons express nitric oxide synthase (NOS) compared to 52% in the rectum. Vasoactive intestinal peptide (VIP) is more prominent in the stomach (37%) versus the rest of the GI tract (≈10%), and catecholamine neurons are rare (≈1%). There is significant coexpression of NOS and VIP in myenteric neurons that is more prominent in the proximal GI tract. Taken as a whole, these data provide insight into the neurochemical anatomy underlying GI motility. While overall similarity to other mammalian species is clear, there are some notable differences between the ENS of rhesus monkeys, humans, and other species that will be important to take into account when evaluating models of human diseases in animals.
Collapse
Affiliation(s)
- Ali Reza Noorian
- Department of Neurology and the Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
14
|
Bellier JP, Kimura H. Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanat 2011; 42:225-35. [PMID: 21382474 DOI: 10.1016/j.jchemneu.2011.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 01/29/2023]
Abstract
The peripheral type of choline acetyltransferase (pChAT) is an isoform of the well-studied common type of choline acetyltransferase (cChAT), the synthesizing enzyme of acetylcholine. Since pChAT arises by exons skipping, its amino acid sequence is similar to that of cChAT, except the lack of a continuous peptide sequence encoded by all the four exons from 6 to 9. While cChAT expression has been observed in both the central and peripheral nervous systems, pChAT is preferentially expressed in the peripheral nervous system. pChAT appears to be a reliable marker for the visualization of peripheral cholinergic neurons and their processes, whereas other conventional markers including cChAT have not been used successfully for it. In mammals like rodents, pChAT immunoreactivity has been observed in most, if not all, physiologically identified peripheral cholinergic structures such as all parasympathetic postganglionic neurons and most neurons of the enteric nervous system. In addition, pChAT has been found in many peripheral neurons that are derived from the neural crest. These include sensory neurons of the trigeminal ganglion and the dorsal root ganglion, and sympathetic postganglionic neurons. Recent studies moreover indicate that pChAT, as well as cChAT, appears ubiquitously expressed among various species not only of vertebrate mammals but also of invertebrate mollusks. This finding implies that the alternative splicing mechanism to generate pChAT and cChAT has been preserved during evolution, probably for some functional benefits.
Collapse
Affiliation(s)
- J-P Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | |
Collapse
|
15
|
Okano-Matsumoto S, McRoberts JA, Taché Y, Adelson DW. Electrophysiological evidence for distinct vagal pathways mediating CCK-evoked motor effects in the proximal versus distal stomach. J Physiol 2011; 589:371-93. [PMID: 21078593 PMCID: PMC3043539 DOI: 10.1113/jphysiol.2010.196832] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 11/09/2010] [Indexed: 12/26/2022] Open
Abstract
Intravenous cholecystokinin octapeptide (CCK-8) elicits vago-vagal reflexes that inhibit phasic gastric contractions and reduce gastric tone in urethane-anaesthetized rats. A discrete proximal subdivision of the ventral gastric vagus nerve (pVGV) innervates the proximal stomach, but the fibre populations within it have not been characterized previously.We hypothesized that I.V. CCK-8 injection would excite inhibitory efferent outflow in the pVGV, in contrast to its inhibitory effect on excitatory efferent outflow in the distal subdivision (dVGV), which supplies the distal stomach. In each VGV subdivision, a dual-recording technique was used to record afferent and efferent activity simultaneously, while also monitoring intragastric pressure (IGP). CCK-8 dose dependently (100-1000 pmol kg(-1), I.V.) reduced gastric tone, gastric contractile activity and multi-unit dVGV efferent discharge, but increased pVGV efferent firing. Single-unit analysis revealed a minority of efferent fibres in each branch whose response differed in direction from the bulk response. Unexpectedly, efferent excitation in the pVGV was significantly shorter lived and had a significantly shorter decay half-time than did efferent inhibition in the dVGV, indicating that distinct pathways drive CCK-evoked outflow to the proximal vs. the distal stomach. Efferent inhibition in the dVGV began several seconds before, and persisted significantly longer than, simultaneously recorded dVGV afferent excitation.Thus, dVGV afferent excitation could not account for the pattern of dVGV efferent inhibition. However, the time course of dVGV afferent excitation paralleled that of pVGV efferent excitation. Similarly, the duration of CCK-8-evoked afferent responses recorded in the accessory celiac branch of the vagus (ACV) matched the duration of dVGV efferent responses. The observed temporal relationships suggest that postprandial effects on gastric complicance of CCK released from intestinal endocrine cells may require circulating concentrations to rise to levels capable of exciting distal gastric afferent fibres, in contrast to more immediate effects on distal gastric contractile activity mediated via vago-vagal reflexes initiated by paracrine excitation of intestinal afferents.
Collapse
|
16
|
Misawa R, Girotti PA, Mizuno MS, Liberti EA, Furness JB, Castelucci P. Effects of protein deprivation and re-feeding on P2X 2 receptors in enteric neurons. World J Gastroenterol 2010; 16:3651-63. [PMID: 20677337 PMCID: PMC2915425 DOI: 10.3748/wjg.v16.i29.3651] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of malnutrition and re-feeding on the P2X2 receptor, nitric oxide synthase (NOS), calretinin, calbindin and choline acetyltransferase (ChAT) in neurons of the rat ileum.
METHODS: We analyzed the co-localization, numbers and sizes of P2X2-expressing neurons in relation to NOS-immunoreactive (IR), calbindin-IR, ChAT-IR, and calretinin-IR neurons of the myenteric and submucosal plexus. The experimental groups consisted of: (1) rats maintained on normal feed throughout pregnancy until 42 d post-parturition (N); (2) rats deprived of protein throughout pregnancy and 42 d post-parturition (D); and (3) rats undernourished for 21 d post-parturition and then given a protein diet from days 22 to 42 (DR). The myenteric and submucosal plexuses were evaluated by double labeling by immunohistochemical methods for P2X2 receptor, NOS, ChAT, calbindin and calretinin.
RESULTS: We found similar P2X2 receptor immunoreactivity in the cytoplasm and surface membranes of myenteric and submucosal neurons from the N, D and DR groups. Double labeling of the myenteric plexus demonstrated that approximately 100% of NOS-IR, calbindin-IR, calretinin-IR and ChAT-IR neurons in all groups also expressed the P2X2 receptor. In the submucosal plexus, the calretinin-IR, ChAT-IR and calbindin-IR neurons were nearly all immunoreactive for the P2X2 receptor. In the myenteric plexus, there was a 19% increase in numbers per cm2 for P2X2 receptor-IR neurons, 64% for NOS-IR, 84% for calretinin-IR and 26% for ChAT-IR neurons in the D group. The spatial density of calbindin-IR neurons, however, did not differ among the three groups. The submucosal neuronal density increased for calbindin-IR, calretinin-IR and ChAT-IR neurons. The average size of neurons in the myenteric plexus neurons in the D group was less than that in the controls and, in the re-fed rats; there was a 34% reduction in size only for the calretinin-IR neurons.
CONCLUSION: This work demonstrates that expression of the P2X2 receptor is present in inhibitory, intrinsic primary afferent, cholinergic secretomotor and vasomotor neurons. Undernutrition affected P2X2 receptor expression in the submucosal plexus, and neuronal and size. These changes were rescued in the re-fed rats.
Collapse
|
17
|
Nitric oxide neurons and neurotransmission. Prog Neurobiol 2010; 90:246-55. [DOI: 10.1016/j.pneurobio.2009.10.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 04/22/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022]
|
18
|
Lu Y, Owyang C. Secretin-induced gastric relaxation is mediated by vasoactive intestinal polypeptide and prostaglandin pathways. Neurogastroenterol Motil 2009; 21:754-e47. [PMID: 19239625 PMCID: PMC2743409 DOI: 10.1111/j.1365-2982.2009.01271.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Secretin has been shown to delay gastric emptying and inhibit gastric motility. We have demonstrated that secretin acts on the afferent vagal pathway to induce gastric relaxation in the rat. However, the efferent pathway that mediates the action of secretin on gastric motility remains unknown. We recorded the response of intragastric pressure to graded doses of secretin administered intravenously to anaesthetized rats using a balloon attached to a catheter and placed in the body of the stomach. Secretin evoked a dose-dependent decrease in intragastric pressure. The threshold dose of secretin was 1.4 pmol kg(-1) h(-1) and the effective dose, 50% was 5.6 pmol kg(-1) h(-1). Pretreatment with hexamethonium markedly reduced gastric relaxation induced by secretin (5.6 pmol kg(-1) h(-1)). Bilateral vagotomy also significantly reduced gastric motor responses to secretin. Administration of N(G)-nitro-L-arginine methyl ester (10 mg kg(-1)) did not affect gastric relaxation induced by secretin. In contrast, intravenous administration of a vasoactive intestinal polypeptide (VIP) antagonist (30 nmol kg(-1)) reduced the gastric relaxation response to secretin (5.6 pmol kg(-1) h(-1)) by 89 +/- 5%. Indomethacin (2 mg kg(-1)) reduced gastric relaxation induced by secretin (5.6 pmol kg(-1) h(-1)) by 87 +/- 5%. Administration of prostaglandin (48 mg kg(-1) h(-1)) prevented this inhibitory effect. Indomethacin also reduced gastric relaxation induced by VIP (300 pmol kg(-1)) by 90 +/- 7%. These observations indicate that secretin acts through stimulation of presynaptic cholinergic neurons in a vagally mediated pathway. Through nicotinic synapses, secretin stimulates VIP release from postganglionic neurons in the gastric myenteric plexus, which in turn induces gastric relaxation through a prostaglandin-dependent pathway.
Collapse
Affiliation(s)
- Y Lu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0362, USA
| | | |
Collapse
|
19
|
Abstract
The enteric nervous system follows a similar overall arrangement in all vertebrate groups. In fish, the majority of nerve cell bodies are found in the myenteric plexus, innervating muscles, blood vessels and glands. In this review, I describe similarities and differences in size, shape and transmitter content in enteric neurons in different fish species and also in comparison with other vertebrates, foremost mammals. The use of different histological and immunochemical methods is reviewed in a historical perspective including advantages and disadvantages of different methods. Lately, zebrafish have become an important model species for developmental studies of the nervous system, including the enteric nervous system, and this is briefly discussed. Finally, examples of how the enteric nervous system controls gut activity in fish is presented, focussing on the effect on gastrointestinal motility.
Collapse
|
20
|
Patel BA, Galligan JJ, Swain GM, Bian X. Electrochemical monitoring of nitric oxide released by myenteric neurons of the guinea pig ileum. Neurogastroenterol Motil 2008; 20:1243-50. [PMID: 18694441 PMCID: PMC2585606 DOI: 10.1111/j.1365-2982.2008.01177.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric oxide (NO) released by myenteric neurons in isolated segments of guinea pig ileum was monitored in vitro using continuous amperometry. NO was detected as an oxidation current recorded with a boron-doped diamond microelectrode held at 1 V vs a Ag|AgCl reference electrode. This potential was sufficient to oxidize NO. Longitudinal muscle-myenteric plexus (LMMP) and circular muscle strip preparations were used. In the LMMP preparation, NO release was evoked by superfusion of 1 mumol L(-1) nicotine, which activates nicotinic acetylcholine receptors expressed by myenteric neurons and myenteric nerve endings. The oxidation current was ascribed to NO based on the following observations: (i) no response was detected at less positive potentials (0.75 V) at which only catecholamines and biogenic amines are oxidized, (ii) the current was abolished in the presence of the nitric oxide synthase antagonist, N-nitro-l-arginine (l-NNA) and (iii) oxidation currents were attenuated by addition of the NO scavenger, myoglobin, to the superfusing solution. In the LMMP preparation, stimulated release produced a maximum current that corresponded nominally to 46 nmol L(-1) of NO. The oxidation currents decreased to 10 and 2 nmol L(-1), respectively, when the tissue was perfused with tetrodotoxin and l-NNA. Oxidation currents recorded from circular muscle strips (stimulated using nicotine) were threefold larger than those recorded from the LMMP. This study shows that NO release can be detected from various in vitro preparations of the guinea pig ileum using real-time electroanalytical techniques.
Collapse
Affiliation(s)
- Bhavik Anil Patel
- Department of Bioengineering, Imperial College London, London, SW7 2AZ,Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - James J. Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824,Neuroscience Program, Michigan State University, East Lansing, MI 48824
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824,Neuroscience Program, Michigan State University, East Lansing, MI 48824
| | - Xiaochun Bian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824,Neuroscience Program, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
21
|
Kestler C, Neuhuber WL, Raab M. Distribution of P2X(3) receptor immunoreactivity in myenteric ganglia of the mouse esophagus. Histochem Cell Biol 2008; 131:13-27. [PMID: 18810483 DOI: 10.1007/s00418-008-0498-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2008] [Indexed: 02/07/2023]
Abstract
Intraganglionic laminar endings (IGLEs) represent the major vagal afferent terminals throughout the gut. Electrophysiological experiments revealed a modulatory role of ATP in the IGLE-mechanotransduction process and the P2X(2)-receptor has been described in IGLEs of mouse, rat and guinea pig. Another purinoceptor, the P2X(3)-receptor, was found in IGLEs of the rat esophagus. These findings prompted us to investigate occurrence and distribution of the P2X(3)-receptor in the mouse esophagus. Using multichannel immunofluorescence and confocal microscopy, P2X(3)-immunoreactivity (-iry) was found colocalized with the vesicular glutamate transporter 2 (VGLUT2), a specific marker for IGLEs, on average in three-fourths of esophageal IGLEs. The distribution of P2X(3) immunoreactive (-ir) IGLEs was similar to that of P2X(2)-iry and showed increasing numbers towards the abdominal esophagus. P2X(3)/P2X(2)-colocalization within IGLEs suggested the occurrence of heteromeric P2X(2/3) receptors. In contrast to the rat, where only a few P2X(3)-ir perikarya were described, P2X(3) stained perikarya in ~80% of myenteric ganglia in the mouse. Detailed analysis revealed P2X(3)-iry in subpopulations of nitrergic (nNOS) and cholinergic (ChAT) myenteric neurons and ganglionic neuropil of the mouse esophagus. We conclude that ATP might act as a neuromodulator in IGLEs via a (P2X(2))-P2X(3) receptor-mediated pathway especially in the abdominal portion of the mouse esophagus.
Collapse
Affiliation(s)
- Christine Kestler
- Institut für Anatomie, Lehrstuhl I, Universität Erlangen-Nürnberg, Krankenhausstr. 9, 91054 Erlangen, Germany
| | | | | |
Collapse
|
22
|
Phillips RJ, Walter GC, Wilder SL, Baronowsky EA, Powley TL. Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: autonomic pathway implicated in Parkinson's disease? Neuroscience 2008; 153:733-50. [PMID: 18407422 DOI: 10.1016/j.neuroscience.2008.02.074] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/15/2008] [Accepted: 02/08/2008] [Indexed: 01/25/2023]
Abstract
The protein alpha-synuclein is implicated in the development of Parkinson's disease. The molecule forms Lewy body aggregates that are hallmarks of the disease, has been associated with the spread of neuropathology from the peripheral to the CNS, and appears to be involved with the autonomic disorders responsible for the gastrointestinal (GI) symptoms of individuals afflicted with Parkinson's. To characterize the normative expression of alpha-synuclein in the innervation of the GI tract, we examined both the postganglionic neurons and the preganglionic projections by which the disease is postulated to retrogradely invade the CNS. Specifically, in Fischer 344 and Sprague-Dawley rats, immunohistochemistry in conjunction with injections of the tracer Dextran-Texas Red was used to determine, respectively, the expression of alpha-synuclein in the myenteric plexus and in the vagal terminals. Alpha-synuclein is expressed in a subpopulation of myenteric neurons, with the proportion of positive somata increasing from the stomach (approximately 3%) through duodenum (proximal, approximately 6%; distal, approximately 13%) to jejunum (approximately 22%). Alpha-synuclein is co-expressed with the nitrergic enzyme nitric oxide synthase (NOS) or the cholinergic markers calbindin and calretinin in regionally specific patterns: approximately 90% of forestomach neurons positive for alpha-synuclein express NOS, whereas approximately 92% of corpus-antrum neurons positive for alpha-synuclein express cholinergic markers. Vagal afferent endings in the myenteric plexus and the GI smooth muscle do not express alpha-synuclein, whereas, virtually all vagal preganglionic projections to the gut express alpha-synuclein, both in axons and in terminal varicosities in apposition with myenteric neurons. Vagotomy eliminates most, but not all, alpha-synuclein-positive neurites in the plexus. Some vagal preganglionic efferents expressing alpha-synuclein form varicose terminal rings around myenteric plexus neurons that are also positive for the protein, thus providing a candidate alpha-synuclein-expressing pathway for the retrograde transport of putative Parkinson's pathogens or toxins from the ENS to the CNS.
Collapse
Affiliation(s)
- R J Phillips
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, USA.
| | | | | | | | | |
Collapse
|
23
|
Kraus T, Neuhuber WL, Raab M. Distribution of vesicular glutamate transporter 1 (VGLUT1) in the mouse esophagus. Cell Tissue Res 2007; 329:205-19. [PMID: 17508221 DOI: 10.1007/s00441-007-0392-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 12/12/2006] [Indexed: 01/22/2023]
Abstract
In rat and mouse esophagus, vesicular glutamate transporter 2 (VGLUT2) has been demonstrated to identify vagal intraganglionic laminar endings (IGLEs); this has recently also been shown for VGLUT1 in rat esophagus. In this study, we have investigated the distribution of VGLUT1 in the mouse esophagus and compared these results with the recently published data from the rat esophagus. Unexpectedly, we have discovered that VGLUT1 mostly fails to identify IGLEs in the mouse esophagus. This is surprising, since the distribution of VGLUT2 shows comparable results in both species. Confocal imaging has revealed substantial colocalization of VGLUT1 immunoreactivity (-ir) with cholinergic and nitrergic/peptidergic markers within the myenteric neuropil and in both cholinergic and nitrergic myenteric neuronal cell bodies. VGLUT1 and cholinergic markers have also been colocalized in fibers of the muscularis mucosae, whereas VGLUT1 and nitrergic markers have never been colocalized in fibers of the muscularis mucosae, although this does occur in fibers of the muscularis running to motor endplates. Thus, VGLUT1 is contained in the nitrergic innervation of mouse esophageal motor endplates, another difference from the rat esophagus. VGLUT1-ir is therefore present in extrinsic and intrinsic innervation of the mouse esophagus, but the significant differences from the rat indicate species variations concerning the distribution of VGLUTs in the peripheral nervous system.
Collapse
Affiliation(s)
- T Kraus
- Department of Anatomy I, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
24
|
Raab M, Neuhuber WL. Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:223-75. [PMID: 17241909 DOI: 10.1016/s0074-7696(07)56007-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamate has been identified as the main transmitter of primary afferent neurons. This was established based on biochemical, electrophysiological, and immunohistochemical data from studies on glutamatergic receptors and their agonists/antagonists. The availability of specific antibodies directed against glutamate and, more recently, vesicular glutamate transporters corroborated this and led to significant new discoveries. In particular, peripheral endings of various classes of afferents contain vesicular glutamate transporters, suggesting vesicular storage in and exocytotic release of glutamate from peripheral afferent endings. This suggests that autocrine mechanisms regulate sensory transduction processes. However, glutamate release from peripheral sensory terminals could also enable afferent neurons to influence various cells associated with them. This may be particularly relevant for vagal intraganglionic laminar endings, which could represent glutamatergic sensor-effector components of intramural reflex arcs in the gastrointestinal tract. Thus, morphological analysis of the relationships of putative glutamatergic primary afferents with associated tissues may direct forthcoming studies on their functions.
Collapse
Affiliation(s)
- Marion Raab
- Institut für Anatomie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
25
|
Cserni T, Paran S, Puri P. The effect of age on colocalization of acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining in enteric neurons in an experimental model. J Pediatr Surg 2007; 42:300-4. [PMID: 17270539 DOI: 10.1016/j.jpedsurg.2006.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Cholinergic and nitrergic neurons form 2 main subpopulations of the myenteric neurons, and they have been the targets of detailed morphological investigations in bowel motility disorders. However, little is known regarding the colocalization of neurotransmitters within the same enteric neurons. The aim of this study was to determine the histochemical colocalization of cholinergic and nitrergic neurons in the porcine distal large bowel myenteric plexus from fetal to adulthood. METHODS Distal large bowel specimens were taken from 6 randomly selected age groups (3 animals in each group) from midway of gestation to adulthood. The myenteric plexus was exposed using whole-mount technique. After nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) staining, cells per ganglion were counted. Then the specimens were stained with acetylcholinesterase (AChE), and the cells that were stained with individual enzymes and with both enzymes were counted. RESULTS Colocalization of AChE and NADPH-d was seen in all age groups, and it was highest during the mid part of gestation (30%) and decreased steadily thereafter into adulthood (8%). The individual number of NADPH-d- and AChE-positive neurons per ganglion remained constant till 4 weeks of age and significantly increased thereafter into adulthood. CONCLUSION The use of double-labeling histochemical technique shows for the first time the colocalization of cholinergic and nitrergic activity in a large population of enteric neurons in the late fetal and newborn period. Age-related loss of cholinergic and nitrergic colocalization in the myenteric plexus is most likely a maturational process.
Collapse
Affiliation(s)
- Tamas Cserni
- Children's Research Centre, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12, Ireland
| | | | | |
Collapse
|
26
|
Vohra BP, Tsuji K, Nagashimada M, Uesaka T, Wind D, Armon J, Enomoto H, Heuckeroth RO. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Dev Biol 2006; 298:259-71. [PMID: 16904662 PMCID: PMC1952185 DOI: 10.1016/j.ydbio.2006.06.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/17/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.
Collapse
Affiliation(s)
- Bhupinder P.S. Vohra
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Keiji Tsuji
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mayumi Nagashimada
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Uesaka
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daniel Wind
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Jennifer Armon
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Hideki Enomoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Robert O. Heuckeroth
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| |
Collapse
|
27
|
Sung TS, La JH, Kim TW, Yang IS. Alteration of nitrergic neuromuscular transmission as a result of acute experimental colitis in rat. J Vet Sci 2006; 7:143-50. [PMID: 16645339 PMCID: PMC3242106 DOI: 10.4142/jvs.2006.7.2.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide (NO) is a non-adrenergic, non-cholinergic neurotransmitter found in the enteric nervous system that plays a role in a variety of enteropathies, including inflammatory bowel disease. Alteration of nitrergic neurons has been reported to be dependent on the manner by which inflammation is caused. However, this observed alteration has not been reported with acetic acid-induced colitis. Therefore, the purpose of the current study was to investigate changes in nitrergic neuromuscular transmission in experimental colitis in a rat model. Distal colitis was induced by intracolonic administration of 4 % acetic acid in the rat. Animals were sacrificed at 4 h and 48 h postacetic acid treatment. Myeloperoxidase activity was significantly increased in the acetic acid-treated groups. However, the response to 60 mM KCl was not significantly different in the three groups studied. The amplitude of phasic contractions was increased by Nomega-nitro-L-arginine methyl ester (L-NAME) in the normal control group, but not in the acetic acid-treated groups. Spontaneous contractions disappeared during electrical field stimulation (EFS) in normal group. However, for the colitis groups, these contractions initially disappeared, and then reappeared during EFS. Moreover, the observed disappearance was diminished by L-NAME; this suggests that these responses were NO-mediated. In addition, the number of NADPH-diaphorase positive nerve cell bodies, in the myenteric plexus, was not altered in the distal colon; whereas the area of NADPH-diaphorase positive fibers, in the circular muscle layer, was decreased in the acetic acidtreated groups. These results suggest that NO-mediated inhibitory neural input, to the circular muscle, was decreased in the acetic acid-treated groups.
Collapse
Affiliation(s)
- Tae-Sik Sung
- Department of Physiology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
28
|
Fuder H, Muscholl E. Heteroreceptor-mediated modulation of noradrenaline and acetylcholine release from peripheral nerves. Rev Physiol Biochem Pharmacol 2006; 126:265-412. [PMID: 7886380 DOI: 10.1007/bfb0049778] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H Fuder
- IKP-AKP, Professo Lücker GmbH, Grünstadt, Germany
| | | |
Collapse
|
29
|
Ewald P, Neuhuber WL, Raab M. Vesicular glutamate transporter 1 immunoreactivity in extrinsic and intrinsic innervation of the rat esophagus. Histochem Cell Biol 2005; 125:377-95. [PMID: 16231188 DOI: 10.1007/s00418-005-0083-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2005] [Indexed: 01/19/2023]
Abstract
Encouraged by the recent finding of vesicular glutamate transporter 2 (VGLUT2) immunoreactivity (-ir) in intraganglionic laminar endings (IGLEs) of the rat esophagus, we investigated also the distribution and co-localization patterns of VGLUT1. Confocal imaging revealed substantial co-localization of VGLUT1-ir with selective markers of IGLEs, i.e., calretinin and VGLUT2, indicating that IGLEs contain both VGLUT1 and VGLUT2 within their synaptic vesicles. Besides IGLEs, we found VGLUT1-ir in both cholinergic and nitrergic myenteric neuronal cell bodies, in fibers of the muscularis mucosae, and in esophageal motor endplates. Skeletal neuromuscular junctions, in contrast, showed no VGLUT1-ir. We also tested for probable co-localization of VGLUT1-ir with markers of extrinsic and intrinsic esophageal innervation and glia. Within the myenteric neuropil we found, besides co-localization of VGLUT1 and substance P, no further co-localization of VGLUT1-ir with any of these markers. In the muscularis mucosae some VGLUT1-ir fibers were shown to contain neuronal nitric oxide synthase (nNOS)-ir. VGLUT1-ir in esophageal motor endplates was partly co-localized with vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT)-ir, but VGLUT1-ir was also demonstrated in separately terminating fibers at motor endplates co-localized neither with ChAT/VAChT-ir nor with nNOS-ir, suggesting a hitherto unknown glutamatergic enteric co-innervation. Thus, VGLUT1-ir was found in extrinsic as well as intrinsic innervation of the rat esophagus.
Collapse
Affiliation(s)
- P Ewald
- Department of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstr. 9, 91054, Erlangen, Germany
| | | | | |
Collapse
|
30
|
Raab M, Neuhuber WL. Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse. Histochem Cell Biol 2004; 122:445-59. [PMID: 15378379 DOI: 10.1007/s00418-004-0703-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2004] [Indexed: 12/15/2022]
Abstract
Intraganglionic laminar endings (IGLEs) represent the only vagal mechanosensory terminals in the tunica muscularis of the esophagus and may be involved in local reflex control. We recently detected extensive though not complete colocalization of the vesicular glutamate transporter 2 (VGLUT2) with markers for IGLEs. To elucidate this colocalization mismatch, this study aimed at identifying markers for nitrergic, cholinergic, peptidergic, and adrenergic neurons and glial cells, which may colocalize with VGLUT2 outside of IGLEs. Confocal imaging revealed, besides substantial colocalization of VGLUT2 and substance P (SP), no other significant colocalizations of VGLUT2 and immunoreactivity for any of these markers within the same varicosities. However, we found close contacts of VGLUT2-positive structures to vesicular acetylcholine transporter, choline acetyltransferase, neuronal nitric oxide synthase, galanin, neuropeptide Y, and vasoactive intestinal peptide immunoreactive cell bodies and varicosities, as well as to glial cells. Neuronal perikarya were never positive for VGLUT2. Thus, VGLUT2 was almost exclusively found in IGLEs and may serve as a specific marker for them. In addition, many IGLEs also contained SP. The close contacts established by IGLEs to myenteric cell bodies, dendrites, and varicose fibers suggest that IGLEs modulate various types of enteric neurons and vice versa.
Collapse
Affiliation(s)
- M Raab
- Department of Anatomy I, University of Erlangen-Nuremberg, Lehrstuhl I, Krankenhausstrasse 9, 91054, Erlangen, Germany.
| | | |
Collapse
|
31
|
Van Geldre LA, Fraeyman NH, Peeters TL, Timmermans JP, Lefebvre RA. Further characterisation of particulate neuronal nitric oxide synthase in rat small intestine. Auton Neurosci 2004; 110:8-18. [PMID: 14766320 DOI: 10.1016/j.autneu.2003.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Revised: 05/19/2003] [Accepted: 05/25/2003] [Indexed: 11/23/2022]
Abstract
Neuronal NO-synthase (nNOS) was investigated in rat longitudinal muscle/myenteric plexus (LM/MP) tissue at the cellular and subcellular level. Using preparations and double immune staining and light and electron microscopy, we concluded that, in these preparations, nNOS is only present in neuronal cells. However, in spite of numerous attempts to morphologically identify the NOS-containing subcellular structure, no firm conclusions were possible. Consequently, the problem was approached by biochemical methods including gradient centrifugation followed by analysis of the fractions. Using a protocol involving gentle homogenisation of the tissue, we found that about 10% of the nNOS immune reactivity was particle-bound confirming previous results (Biochem. Pharmacol. 60 (2000) 145). However, applying a different protocol including strong homogenisation, we now demonstrated that about 50% of the immune reactive nNOS was sedimentable. The results suggested that particulate nNOS is associated with one single subcellular structure, which is different from the plasma membrane, rough and smooth endoplasmic reticulum, mitochondria and lysosomes. The equilibrium sedimentation characteristics of the nNOS containing particles corresponded partly to those containing vasoactive intestinal polypeptide (VIP) or synaptobrevin. Application of non-equilibrium centrifugation conditions, however, demonstrated that almost no co-localisation occurred. We conclude that, in the LM/MP tissue, nNOS is about 50% particle-bound in a subcellular structure, which is different from the VIP-containing particle and from synaptobrevin-containing exocytotic particles.
Collapse
Affiliation(s)
- Lieve A Van Geldre
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
32
|
Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 2003; 130:2187-98. [PMID: 12668632 DOI: 10.1242/dev.00433] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To clarify the role of Ret signaling components in enteric nervous system (ENS) development, we evaluated ENS anatomy and intestinal contractility in mice heterozygous for Ret, GFRalpha1 and Ret ligands. These analyses demonstrate that glial cell line-derived neurotrophic factor (GDNF) and neurturin are important for different aspects of ENS development. Neurturin is essential for maintaining the size of mature enteric neurons and the extent of neuronal projections, but does not influence enteric neuron number. GDNF availability determines enteric neuron number by controlling ENS precursor proliferation. However, we were unable to find evidence of programmed cell death in the wild type ENS by immunohistochemistry for activated caspase 3. In addition, enteric neuron number is normal in Bax(-/-) and Bid(-/-) mice, suggesting that, in contrast to most of the rest of the nervous system, programmed cell death is not important for determining enteric neuron numbers. Only mild reductions in neuron size and neuronal fiber counts occur in Ret(+/-) and Gfra1(+/-) mice. All of these heterozygous mice, however, have striking problems with intestinal contractility and neurotransmitter release, demonstrating that Ret signaling is critical for both ENS structure and function.
Collapse
Affiliation(s)
- Scott Gianino
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
33
|
Wu M, Van Nassauw L, Kroese ABA, Adriaensen D, Timmermans JP. Myenteric nitrergic neurons along the rat esophagus: evidence for regional and strain differences in age-related changes. Histochem Cell Biol 2003; 119:395-403. [PMID: 12721679 DOI: 10.1007/s00418-003-0526-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2003] [Indexed: 12/24/2022]
Abstract
Several studies have suggested an age-related reduction in the number of myenteric neurons in the lower gastrointestinal (GI) tract linked to changes in GI neuromuscular functions. The present study, combining protein gene product 9.5 immunostaining and NADPH-diaphorase histochemistry, aimed at quantifying the proportion of nitrergic neurons compared to the overall number of enteric neurons in the esophagus of young (3-4.5 months) and aged (18-20 months) Sprague-Dawley and Wistar rats. In both strains, the neuron numbers per ganglion in the cervical region were almost twice as high as in the other esophageal regions. Irrespective of age or strain, the esophagus harbored a very high proportion of intrinsic nitrergic neurons (greater than approximately 65%). Both strains showed with aging an overall neuronal loss of approximately 27%. While a significant increase (young: 64-71%; aged: 82-89%) was observed in all esophageal regions in the Wistar strain, the proportion of nitrergic neurons remained stable with aging in the Sprague-Dawley strain (range: 72-82%). In conclusion, the age-related reduction in the overall number of myenteric, nitrergic, and non-nitrergic neurons observed in the rat esophagus, appears to be highly region- and strain-dependent. Therefore, a protective mechanism against neuronal cell loss, selectively present in specific (nitrergic) enteric subpopulations, as suggested in earlier reports, cannot be put forward as a general phenomenon throughout the entire GI tract.
Collapse
Affiliation(s)
- Mei Wu
- Laboratory of Cell Biology and Histology, Department of Biomedical Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
34
|
Nishizaki K, Nakao K, Ishii H, Yamanaka H, Tokunaga A, Nakagawa K, Yamamura T, Noguchi K. Induction of neuronal nitric oxide synthase by sympathetic denervation is mediated via alpha 2-adrenoceptors in the jejunal myenteric plexus. Brain Res 2003; 965:121-9. [PMID: 12591128 DOI: 10.1016/s0006-8993(02)04148-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nitric oxide (NO) is an important nonadrenergic, non-cholinergic (NANC) inhibitory neurotransmitter in the gastrointestinal tract. In previous studies, neuronal nitric oxide synthase (nNOS) in the jejunal myenteric plexus, a key enzyme responsible for the release of NO, has been demonstrated to increase after splanchinic ganglionectomy (sympathetic nerve transection). The alpha2-adrenoceptor is known to be one of the most important receptors which controls intestinal motility. In the present study, we examined the effect of application of the alpha2-adrenoceptor agonist, clonidine hydrochloride, on nNOS expression in the rat jejunal myenteric plexus after splanchinic ganglionectomy. Clonidine (0.1-1 mg/kg, i.p.) or saline was administered for 5 days after the splanchinic ganglionectomy. The nNOS expression and nNOS mRNA were detected by immunohistochemistry and in situ hybridization for nNOS mRNA, respectively. In the rats treated with vehicle after the splanchinic ganglionectomy, nNOS expression in the myenteric plexus significantly increased compared with sham-operated rats. The increases in nNOS protein and mRNA after splanchinic ganglionectomy were significantly reversed by clonidine treatment. Clonidine-treated naive rats showed no difference in nNOS expression compared with sham-operated rats. These data suggest that nNOS expression in the jejunal myenteric plexus after splanchinic ganglionectomy is regulated by the alpha2-adrenoceptor and that the alpha2-adrenoceptor may play an important role in abnormal intestinal motility following splanchinic ganglionectomy in rat jejunum.
Collapse
Affiliation(s)
- Kazushi Nishizaki
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Hyogo Nishinomiya 663-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sayegh AI, Ritter RC. Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:209-16. [PMID: 12552637 DOI: 10.1002/ar.a.10024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the enteric neurons is vital for understanding their physiological role. We have used single and dual label fluorescence and peroxidase-based immunohistochemistry in myenteric and submucosal whole mounts from the rat small intestine to evaluate the morphology and distribution of enteric neurons immunoreactive for the following phenotypic antigens: neuronal nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calretinin (Calr), calbindin (Cal), and neurofilament-M (NF-M). NOS-immunoreactive neurons had Dogiel type I morphology, were abundant in the myenteric plexus compared to the submucosal plexus, and never coexpressed NK-1R immunoreactivity. NK-1R- and Calr-immunoreactive neurons had Dogiel type II morphology and were distributed comparably in both plexuses. NK-1R and Calr-immunoreactivity were coexpressed in many of the same neurons. Calbindin-immunoreactive neurons exhibited four distinct morphologies: small and large Dogiel type II neurons, Dogiel type I neurons, and small elongated neurons. These neurons were significantly fewer in number in the myenteric plexus compared to the submucosal plexus. Neurofilament-M-immunoreactive neurons had three morphologies, Dogiel type II neurons, small Dogiel type II neurons, and a less common subpopulation of small, elongated, multipolar neurons. These neurons were also fewer in number in the myenteric plexus compared to the submucosal plexus. The distribution of these phenotypic markers may assist future work that elucidates the functional activities of these enteric neurons such as control of intestinal motility and adaptation to the entry of gastric contents.
Collapse
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology and Imaging Laboratories, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama, USA.
| | | |
Collapse
|
36
|
Chino Y, Fujimura M, Kitahama K, Fujimiya M. Colocalization of NO and VIP in neurons of the submucous plexus in the rat intestine. Peptides 2002; 23:2245-50. [PMID: 12535705 DOI: 10.1016/s0196-9781(02)00264-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since very few previous studies have carried out the quantitative analysis for the colocalization of nitric oxide (NO) and vasoactive intestinal peptide (VIP) in the submucous neurons in the rat digestive tract, we applied in vivo treatment of colchicine to enhance the immunoreactivity and examined the colocalization of NO synthase (nNOS) and VIP in neurons of the submucous plexus throughout the rat digestive tract. The density of nNOS-containing neurons in the submucous plexus in the stomach corpus (103+/-25 cells/cm(2), n=3) and that in the antrum (157+/-9 cells/cm(2), n=3) were significantly lower than those in small and large intestine. However no difference was detected in the cell density among duodenum (1967+/-188 cells/cm(2), n=3), jejunum (2640+/-140 cells/cm(2), n=3), ileum (2070+/-42 cells/cm(2), n=3), proximal colon (2243+/-138 cells/cm(2), n=3) and distal colon (2633+/-376 cells/cm(2), n=3). The proportion of nNOS-immunoreactive (IR), nNOS/VIP-IR and VIP-IR neurons to the total number of submucous neurons was examined. nNOS/VIP-IR neurons comprised 45-55% of total number of submucous neurons from the duodenum to the proximal colon, however those comprised 66.4+/-5.1% in the distal colon. The results showed that the dense distribution of nNOS-containing neurons was found in the submucous plexus throughout the small and large intestine, and large population of submucous neurons co-stored nNOS and VIP.
Collapse
Affiliation(s)
- Yoshihide Chino
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | |
Collapse
|
37
|
Kurjak M, Sennefelder A, Aigner M, Schusdziarra V, Allescher HD. Characterizing voltage-dependent Ca(2+) channels coupled to VIP release and NO synthesis in enteric synaptosomes. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1027-34. [PMID: 12381515 DOI: 10.1152/ajpgi.00400.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In enteric synaptosomes of the rat, the role of voltage-dependent Ca(2+) channels in K(+)-induced VIP release and nitric oxide (NO) synthesis was investigated. Basal VIP release was 39 +/- 4 pg/mg, and cofactor-substituted NO synthase activity was 7.0 +/- 0.8 fmol. mg(-1). min(-1). K(+) depolarization (65 mM) stimulated VIP release Ca(2+) dependently (basal, 100%; K(+), 172.2 +/- 16.2%; P < 0.05, n = 5). K(+)-stimulated VIP release was reduced by blockers of the P-type (omega-agatoxin-IVA, 3 x 10(-8) M) and N-type (omega-conotoxin-GVIA, 10(-6) M) Ca(2+) channels by ~50 and 25%, respectively, but not by blockers of the L-type (isradipine, 10(-8) M), Q-type (omega-conotoxin-MVIIC, 10(-6) M), or T-type (Ni(2+), 10(-6) M) Ca(2+) channels. In contrast, NO synthesis was suppressed by omega-agatoxin-IVA, omega-conotoxin-GVIA, and isradipine by ~79, 70, and 70%, respectively, whereas Ni(2+) and omega-conotoxin-MVIIC had no effect. These findings are suggestive of a coupling of depolarization-induced VIP release primarily to the P- and N-type Ca(2+) channels, whereas NO synthesis is presumably dependent on Ca(2+) influx not only via the P- and N- but also via the L-type Ca(2+) channel. In contrast, none of the Ca(2+) channel blockers affected VIP release evoked by exogenous NO, suggesting that NO induces VIP secretion by a different mechanism, presumably involving intracellular Ca(2+) stores.
Collapse
Affiliation(s)
- M Kurjak
- Department of Internal Medicine II, Technical University Munich, 81675 Munich, Germany.
| | | | | | | | | |
Collapse
|
38
|
Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances--part 2. Pediatr Dev Pathol 2002; 5:329-49. [PMID: 12016531 DOI: 10.1007/s10024-002-0002-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2001] [Accepted: 08/01/2001] [Indexed: 01/26/2023]
Abstract
This review, which is presented in two parts, summarizes and synthesizes current views on the genetic, molecular, and cell biological underpinnings of the early embryonic phases of enteric nervous system (ENS) formation and its defects. Accurate descriptions of the phenotype of ENS dysplasias, and knowledge of genes which, when mutated, give rise to the disorders (see Part 1 in the previous issue of this journal), are not sufficient to give a real understanding of how these abnormalities arise. The often indirect link between genotype and phenotype must be sought in the early embryonic development of the ENS. Therefore, in this, the second part, we provide a description of the development of the ENS, concentrating mainly on the origin of the ENS precursor cells and on the cell migration by which they become distributed throughout the gastrointestinal tract. This section also includes experimental evidence on the controls of ENS formation derived from classic embryological, cell culture, and molecular genetic approaches. In addition, for reasons of completeness, we also briefly describe the origins of the interstitial cells of Cajal, a cell population closely related anatomically and functionally to the ENS. Finally, a brief sketch is presented of current notions on the developmental processes between the genes and the morphogenesis of the ENS, and of the means by which the known genetic abnormalities might result in the ENS phenotype observed in Hirschsprung's disease.
Collapse
Affiliation(s)
- Donald Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Victoria, Australia.
| | | |
Collapse
|
39
|
Arakawa Y, Takao E, Hirotani Y, Kato I, Li J, Yanaihara N, Yanaihara C, Iwanaga T, Kurokawa N. Immunochemical characterization and measurement of neuronal type nitric oxide synthase in human neuroblastoma NB-OK-1 cell using novel anti-synthetic peptide antibody and specific immunoassay system. REGULATORY PEPTIDES 2002; 106:115-23. [PMID: 12047918 DOI: 10.1016/s0167-0115(02)00059-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We developed a sensitive and specific immunoassay system for human neuronal nitric oxide synthase (hnNOS) using synthetic hnNOS(998-1024) peptide and anti-hnNOS(998-1024) antibody. The novel antibody and radioimmunoassay system revealed a typical nNOS protein in human neuroblastoma NB-OK-1 cell (160 kDa, 180 fmol/10(6) cells). The kinetic parameters of the enzyme were K(m)=4.88 microM and V(max)=4.34 pmol/min/mg protein for L-arginine. On incubation of NB-OK-1 cell for 24 h, betamethasone phosphate decreased both nNOS-immunoreactivity (nNOS-IR) and enzymatic activity in the cell dose-dependently. On the other hand, pituitary adenylate cyclase activating polypeptide(1-38) (PACAP38) increased both nNOS-IR and enzymatic activity at concentrations of 10(-10) and 10(-9) M, but inversely decreased both at 10(-7) M. These suggest the positive and negative implications of endogenous NO in proliferation and differentiation of the cell, which support mitogenic activity of NO generated by nNOS in the cell. The present findings also provided evidence that the quantitative change of nNOS protein controls the integrated activity of the enzyme in the cell and, in turn, substantiate the validity and reliability of the present immunoassay system for hnNOS and its practical usefulness.
Collapse
Affiliation(s)
- Yukio Arakawa
- Laboratory of Pharmaceutical Sciences, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Miampamba M, Maillot C, Million M, Taché Y. Peripheral CRF activates myenteric neurons in the proximal colon through CRF(1) receptor in conscious rats. Am J Physiol Gastrointest Liver Physiol 2002; 282:G857-65. [PMID: 11960782 DOI: 10.1152/ajpgi.00434.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Corticotropin-releasing factor (CRF) injected peripherally induces clustered spike-burst activity in the proximal colon through CRF(1) receptors in rats. We investigated the effect of intraperitoneal CRF on proximal colon ganglionic myenteric cell activity in conscious rats using Fos immunohistochemistry on the colonic longitudinal muscle/myenteric plexus whole mount preparation. In vehicle-pretreated rats, there were only a few Fos immunoreactive (IR) cells per ganglion (1.2 +/- 0.6). CRF (10 microg/kg ip) induced Fos expression in 19.6 +/- 2.1 cells/ganglion. The CRF(1)/CRF(2) antagonist astressin (33 microg/kg ip) and the selective CRF(1) antagonist CP-154,526 (20 mg/kg sc) prevented intraperitoneal CRF-induced Fos expression in the proximal colon (number of Fos-IR cells/ganglion: 2.7 +/- 1.2 and 1.0 +/- 1.0, respectively), whereas atropine (1 mg/kg sc) had no effect. Double labeling of Fos with protein gene product 9.5 revealed the neuronal identity of activated cells that were encircled by varicose fibers immunoreactive to vesicular acetylcholine transporter. Fos immunoreactivity was mainly present in choline acetyltransferase-IR nerve cell bodies but not in the NADPH-diaphorase-positive cells. These results indicate that peripheral CRF activates myenteric cholinergic neurons in the proximal colon through CRF(1) receptor.
Collapse
Affiliation(s)
- Marcel Miampamba
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System and University of California, Los Angeles, California 90073, USA.
| | | | | | | |
Collapse
|
41
|
Bayram Z, Asar M, Cayli S, Demir R. Immunocytochemical detection of neuronal nitric oxide synthase (nNOS)-IR in embryonic rat stomach between days 13 and 21 of gestation. J Histochem Cytochem 2002; 50:671-80. [PMID: 11967278 DOI: 10.1177/002215540205000508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the localization and appearance of neuronal nitric oxide synthase-immunoreactive (nNOS-IR) nerve cells and their relationships with the developing gastric layers were studied by immunocytochemistry techniques and light microscopy in embryonic rat stomach. The stomachs of Wistar rat embryos aged 13-21 days were used. The first nerve cells containing nNOS-IR were seen on embryonic Day 14. The occurrence of mesenchymal cell condensation near nNOS-IR neuroblasts on embryonic Day 15 may reflect an active nerve element-specific mesenchymal cell induction causing the morphogenesis of muscle cells. Similarly, the appearance of glandular structures after nNOS-IR neuroblasts, on embryonic Day 18, suggests that the epithelial differentiation may depend on inputs coming from nNOS-IR neuroblasts, as well as other factors. Observation of nNOS-IR nerve fibers on embryonic Day 21 demonstrates that at this stage they contribute to nonadrenergic noncholinergic relaxation. In conclusion, depending on this study's results, it can be said that cells and tissues might be affected by NO secreted by nNOS-IR nerve cells during the development and differentiation of embryonic rat stomach.
Collapse
Affiliation(s)
- Zübeyde Bayram
- Department of Histology and Embryology, Medicine Faculty, Akdeniz University, Antalya, Turkey
| | | | | | | |
Collapse
|
42
|
Olsson C. Distribution and effects of PACAP, VIP, nitric oxide and GABA in the gut of the African clawed frog Xenopus laevis. J Exp Biol 2002; 205:1123-34. [PMID: 11919271 DOI: 10.1242/jeb.205.8.1123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The distribution and possible effects on gastrointestinal motility of pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide and γ-amino-butyric acid(GABA) were investigated in the African clawed frog (Xenopus laevis)using immunohistochemistry and in vitro strip preparations. PACAP-and VIP-immunoreactive nerve fibres were common in the myenteric plexus as well as in the longitudinal and circular muscle layers all along the gastrointestinal tract. Double labelling demonstrated a close correlation between PACAP and VIP immunoreactivities, indicating that the two neurotransmitters are colocalised within the enteric nervous system. Occasionally, PACAP- and VIP-positive nerve cell bodies were seen in the myenteric or submucous plexa. In addition, VIP immunoreactivity coexisted with helospectin immunoreactivity. Nitric oxide synthase (NOS)-immunoreactive nerve cells were found in the myenteric plexus at an average density for the whole gastrointestinal tract of 4584±540 cells cm-2. The NOS-immunoreactive nerve cells were usually multipolar with an average size of 11.3±3.7 × 23.2±6.6 μm. Some NOS-immunoreactive nerve fibres were VIP-immunoreactive but not all VIP-positive fibres showed NOS immunoreactivity. GABA immunoreactivity was found in nerve fibres and nerve cells in the myenteric plexus of all regions of the gut. Few GABA-immunoreactive nerve fibres were VIP-immunoreactive. PACAP 27, VIP,sodium nitroprusside (a nitric oxide donor; NaNP) and GABA caused similar responses on spontaneously contracting circular preparations of the cardiac stomach of X. laevis. The mean force developed was decreased, mainly by a reduction in resting tension, while the amplitude of contractions was not necessarily affected. The NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) increased the mean force developed, indicating a nitrergic tone in the preparations. In contrast, PACAP 27, VIP, NaNP, GABA and L-NAME had no significant effect on longitudinal strip preparations from the duodenum. These results indicate that PACAP, VIP, nitric oxide and GABA, which are known to be important inhibitory neurotransmitters in other vertebrates, are widely spread in the enteric nervous system of Xenopus laevis and may be involved in the inhibitory control of gastric motility. Although no effect of PACAP,VIP, nitric oxide or GABA on the longitudinal strips of the duodenum was seen in this study, this does not rule out the possibility that they might play an important role in controlling intestinal motility as well.
Collapse
Affiliation(s)
- Catharina Olsson
- Department of Zoophysiology, Göteborg University, Box 463, S-405 30 Göteborg, Sweden.
| |
Collapse
|
43
|
Yoneda S, Kadowaki M, Kuramoto H, Fukui H, Takaki M. Enhanced colonic peristalsis by impairment of nitrergic enteric neurons in spontaneously diabetic rats. Auton Neurosci 2001; 92:65-71. [PMID: 11570705 DOI: 10.1016/s1566-0702(01)00317-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Changes in enteric neurons containing various neurotransmitters in the colon have been described in diabetic rats; however, how these changes are related to colonic motility disorders remains unclear. Nitric oxide (NO) is known to be an important inhibitory neurotransmitter in the enteric nervous system. In the present study, we investigated the peristaltic reflex using our modified Trendelenburg's method to evaluate the differences in enteric nitrergic neurons of the distal colon between spontaneously diabetic rats and their sibling control rats. We measured maximum intraluminal pressure, threshold pressure and propagation distance of the reflex contraction. These diabetic rats showed a greater maximum intraluminal pressure than that in the control rats. NG nitro-L-arginine methyl ester (L-NAME) significantly increased the maximum pressure in the control rats. Although L-arginine did not change the maximum pressure, sodium nitroprusside (SNP) significantly decreased it in these diabetic rats. Nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase reactivities in the myenteric plexus were much weaker in the diabetic rats than those in the control rats. These results indicate that the colonic peristaltic reflex is enhanced by impairment of enteric nitrergic inhibitory neurons in spontaneously diabetic rats.
Collapse
Affiliation(s)
- S Yoneda
- Department of Physiology II, Nara Medical University, Kashihara, Japan
| | | | | | | | | |
Collapse
|
44
|
Abstract
Neurotrophin-3 (NT-3) promotes enteric neuronal development in vitro; nevertheless, an enteric nervous system (ENS) is present in mice lacking NT-3 or TrkC. We thus analyzed the physiological significance of NT-3 in ENS development. Subsets of neurons developing in vitro in response to NT-3 became NT-3 dependent; NT-3 withdrawal led to apoptosis, selectively in TrkC-expressing neurons. Antibodies to NT-3, which blocked the developmental response of enteric crest-derived cells to exogenous NT-3, did not inhibit neuronal development in cultures of isolated crest-derived cells but did so in mixed cultures of crest- and non-neural crest-derived cells; therefore, the endogenous NT-3 that supports enteric neuronal development is probably obtained from noncrest-derived mesenchymal cells. In mature animals, retrograde transport of (125)I-NT-3, injected into the mucosa, labeled neurons in ganglia of the submucosal but not myenteric plexus; injections of (125)I-NT-3 into myenteric ganglia, the tertiary plexus, and muscle, labeled neurons in underlying submucosal and distant myenteric ganglia. The labeling pattern suggests that NT-3-dependent submucosal neurons may be intrinsic primary afferent and/or secretomotor, whereas NT-3-dependent myenteric neurons innervate other myenteric ganglia and/or the longitudinal muscle. Myenteric neurons were increased in number and size in transgenic mice that overexpress NT-3 directed to myenteric ganglia by the promoter for dopamine beta-hydroxylase. The numbers of neurons were regionally reduced in both plexuses in mice lacking NT-3 or TrkC. A neuropoietic cytokine (CNTF) interacted with NT-3 in vitro, and if applied sequentially, compensated for NT-3 withdrawal. These observations indicate that NT-3 is required for the normal development of the ENS.
Collapse
|
45
|
Shah S, Nathan L, Singh R, Fu YS, Chaudhuri G. E2 and not P4 increases NO release from NANC nerves of the gastrointestinal tract: implications in pregnancy. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1546-54. [PMID: 11294780 DOI: 10.1152/ajpregu.2001.280.5.r1546] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In women, during pregnancy, there is decreased motility of the gastrointestinal tract leading to a delay in gastric emptying and an increase in colonic transit time. Whether the rise in estradiol (E2) or progesterone (P4) is responsible for this effect is controversial. As the nitrergic component of the nonadrenergic, noncholinergic (NANC) nerves is responsible for modulating gastrointestinal motility in vivo, the purpose of this study was to evaluate whether the increased release of nitric oxide (NO) from the nitrergic component of the NANC nerves innervating the gastric fundus and colon that occurs during late pregnancy in rats is mediated by E2 or P4. Ovariectomized rats treated with E2 or P4 alone or in combination were used for our studies. We also wanted to assess the cellular and molecular mechanisms involved. The NANC activity was studied by assessing changes in tone after application of electric field stimulation (EFS). The role of NO was determined by observing the effects of EFS in the presence and absence of the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) and the reversibility of the effects of L-NAME by L-arginine. Our studies indicated that there was increased magnitude of relaxation of isolated strips of rat gastric fundus and rat colon after application of EFS to tissues obtained from animals treated with E2 alone or a combination of E2 + P4 but not from those treated with P4 alone. L-NAME attenuated relaxation responses in E2- and E2 + P4-treated animals. To elucidate whether the increased NO release may be due to an increase in neuronal NOS (nNOS) protein, we used both Western blot analysis and immunohistochemistry. We also used RT-PCR to determine whether there was an increase in nNOS mRNA after treatment with sex steroids. In nonpregnant animals, nNOS was detected by Western blot in the fundus and the colon and was barely detectable in the ileum. In pregnancy, there was an increase in nNOS in both the gastric fundus and the colon. The nNOS protein was also increased in ovariectomized animals treated with either E2 alone or E2 + P4 but not P4 alone when compared with ovariectomized animals receiving vehicle. Our results indicated that there was an increase in nNOS protein that was localized to the neurons of the myenteric plexus in the gastric fundus and colon in E2- and E2 + P4-treated animals, but this increase was not observed in animals treated with P4 alone. This increase in nNOS protein was accompanied by an increase in nNOS mRNA. These results suggest the possibility that E2, rather than P4, may be responsible for the delay in gastric emptying and increase in colonic transit time observed in pregnancy.
Collapse
Affiliation(s)
- S Shah
- Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
46
|
Miranda Neto MH, Molinari SL, Natali MR, Sant'Ana DM. Regional differences in the number and type of myenteric neurons of the ileum of rats: a comparison of techniques of the neuronal evidentiation. ARQUIVOS DE NEURO-PSIQUIATRIA 2001; 59:54-9. [PMID: 11299432 DOI: 10.1590/s0004-282x2001000100012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We carried out this study with the purpose of analyzing the density of neurons of the myenteric plexus in the mesenteric, intermediate and antimesenteric regions of the ileum of rats. Whole-mounts stained with four different techniques were employed. Through countings under optic microscope in an area of 8.96 mm2 we found the following neuronal means with the techniques of Giemsa, NADH-diaphorase histochemistry, NADPH-diaphorase and acetylcholinesterase, respectively: mesenteric region 2144.40+/-161.05, 1657.80+/-88.23, 473.80+/-19.62, 905.25+/-22.40; intermediate region 1790.60+/-128.24, 1265.20+/-141.17, 371.30+/-27.84, 770.25+/-33.12; antimesenteric region 1647.0+/-76.67, 981.80+/-68.04, 298.50+/-22.75, 704.50+/-69.38. We conclude that there is a variation of neuronal density around the intestinal circumference and this fact independs on the technique used to stain the neurons, and that in a single region the neuronal density varies with the technique employed. We also call attention for the identification of the site were countings were carried out, so that the results of research in this area are not compromised.
Collapse
Affiliation(s)
- M H Miranda Neto
- Departamento de Ciências Morfofisiólogicas, Universidade Estadual de Maringá, Brazil
| | | | | | | |
Collapse
|
47
|
Takahashi T, Qoubaitary A, Owyang C, Wiley JW. Decreased expression of nitric oxide synthase in the colonic myenteric plexus of aged rats. Brain Res 2000; 883:15-21. [PMID: 11063983 DOI: 10.1016/s0006-8993(00)02867-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitric oxide (NO) is a major non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter in the gastrointestinal tract. NO released from the myenteric plexus enhances colonic transit and facilitates propulsion of the colonic contents by mediating descending relaxation. Although it has been suggested that colonic transit delays with aging, the mechanism of delayed colonic transit in aging remains unclear. We hypothesized that advanced age is associated with decreased expression of neuronal NO synthase (nNOS) and concomitant reduction in synthesis of NO in the rat colon. We studied nNOS mRNA expression, nNOS-immunohistochemistry, nNOS-immunoblotting and NOS catalytic activity in the mid-colon obtained from young (age 4-8 months) and aged (age 22-28 months) Fisher (F344xBN)F1 rats. Western blot analysis of PGP 9.5, a generic neuronal marker, of the colonic tissues were employed to study whether the total number of neurons of the myenteric plexus is reduced with aging. The number of nNOS-immunoreactive cells and nNOS synthesis in the colonic myenteric plexus were significantly reduced in aged rats. In contrast, expression of PGP 9.5 in colonic tissues was not affected in aged rats. Northern blot analysis demonstrated that the expression of neuronal nNOS mRNA was significantly reduced in the colonic tissues in aged rats. Basal and veratridine-induced release of L-[(3)H]citrulline were significantly decreased in colonic tissues from aged rats, compared to young rats. It is suggested that advanced age is associated with diminished gene expression of nNOS, nNOS synthesis and catalytic activity of NOS. This may explain the mechanism of delayed colonic transit observed in advanced age.
Collapse
Affiliation(s)
- T Takahashi
- Department of Internal Medicine, The University of Michigan Medical Center, 6520 MSRB I, Box 0682, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Peptides involved in the endocrine and enteric nervous systems as well as in the central nervous system exert concerted action on gastrointestinal motility. Mechanical and chemical stimuli which induce peptide release from the epithelial endocrine cells are the earliest step in the initiation of peristaltic activities. Gut peptides exert hormonal effects, but peptide-containing stimulatory (Ach/substance P/tachykinin) and inhibitory (VIP/PACAP/NO) neurons are also involved in the induction of ascending contraction and descending relaxation, respectively. The dorsal vagal complex (DVC), located in the medulla of the brainstem, constitutes the basic neural circuitry of vago-vagal reflex control of gastrointestinal motility. Several gut peptides act on the DVC to modify vagal cholinergic reflexes directly (PYY and PP) or indirectly via afferent fibers in the periphery (CCK and GLP-1). The DVC is also a primary site of action of many neuropeptides (such as TRH and NPY) in mediating gastrointestinal motor activities. The identification over the last few years of a number of neuropeptide systems has greatly changed the field of feeding and body weight regulation. By exploring the brain and gut systems that employ recently identified peptidergic molecules, it will be possible to elaborate on the central and peripheral pathways involved in the regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- M Fujimiya
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | |
Collapse
|
49
|
Watkins CC, Sawa A, Jaffrey S, Blackshaw S, Barrow RK, Snyder SH, Ferris CD. Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy. J Clin Invest 2000; 106:373-84. [PMID: 10930440 PMCID: PMC314323 DOI: 10.1172/jci8273] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal dysfunction is common in diabetic patients. In genetic (nonobese diabetic) and toxin-elicited (streptozotocin) models of diabetes in mice, we demonstrate defects in gastric emptying and nonadrenergic, noncholinergic relaxation of pyloric muscle, which resemble defects in mice harboring a deletion of the neuronal nitric oxide synthase gene (nNOS). The diabetic mice manifest pronounced reduction in pyloric nNOS protein and mRNA. The decline of nNOS in diabetic mice does not result from loss of myenteric neurons. nNOS expression and pyloric function are restored to normal levels by insulin treatment. Thus diabetic gastropathy in mice reflects an insulin-sensitive reversible loss of nNOS. In diabetic animals, delayed gastric emptying can be reversed with a phosphodiesterase inhibitor, sildenafil. These findings have implications for novel therapeutic approaches and may clarify the etiology of diabetic gastropathy.
Collapse
MESH Headings
- Animals
- Diabetes Complications
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/enzymology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Gastric Emptying/drug effects
- Gastric Emptying/physiology
- Gene Expression/drug effects
- Humans
- Insulin/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Nitric Oxide/physiology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type I
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stomach Diseases/drug therapy
- Stomach Diseases/enzymology
- Stomach Diseases/etiology
Collapse
Affiliation(s)
- C C Watkins
- Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Moroz LL. Giant identified NO-releasing neurons and comparative histochemistry of putative nitrergic systems in gastropod molluscs. Microsc Res Tech 2000; 49:557-69. [PMID: 10862112 DOI: 10.1002/1097-0029(20000615)49:6<557::aid-jemt6>3.0.co;2-s] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gastropod molluscs provide attractive model systems for behavioral and cellular analyses of the action of nitric oxide (NO), specifically due to the presence of many relatively giant identified nitrergic neurons in their CNS. This paper reviews the data relating to the presence and distribution of NO as well as its synthetic enzyme NO synthase (NOS) in the CNS and peripheral tissues in ecologically and systematically different genera representing main groups of gastropod molluscs. Several species (Lymnaea, Pleurobranchaea, and Aplysia) have been analyzed in greater detail with respect to immunohistochemical, biochemical, biophysical, and physiological studies to further clarify the functional role of NO in these animals.
Collapse
Affiliation(s)
- L L Moroz
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, Florida 32086, USA.
| |
Collapse
|