1
|
Dilsizoglu Senol A, Tagliafierro L, Gorisse-Hussonnois L, Rebeillard F, Huguet L, Geny D, Contremoulins V, Corlier F, Potier MC, Chasseigneaux S, Darmon M, Allinquant B. Protein interacting with Amyloid Precursor Protein tail-1 (PAT1) is involved in early endocytosis. Cell Mol Life Sci 2019; 76:4995-5009. [PMID: 31139847 PMCID: PMC11105537 DOI: 10.1007/s00018-019-03157-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/25/2022]
Abstract
Protein interacting with Amyloid Precursor Protein (APP) tail 1 (PAT1) also called APPBP2 or Ara 67 has different targets such as APP or androgen receptor and is expressed in several tissues. PAT1 is known to be involved in the subcellular trafficking of its targets. We previously observed in primary neurons that PAT1 is poorly associated with APP at the cell surface. Here we show that PAT1 colocalizes with vesicles close to the cell surface labeled with Rab5, Rab4, EEA1 and Rabaptin-5 but not with Rab11 and Rab7. Moreover, PAT1 expression regulates the number of EEA1 and Rab5 vesicles, and endocytosis/recycling of the transferrin receptor. In addition, low levels of PAT1 decrease the size of transferrin-colocalized EEA1 vesicles with time following transferrin uptake. Finally, overexpression of the APP binding domain to PAT1 is sufficient to compromise endocytosis. Altogether, these data suggest that PAT1 is a new actor in transferrin early endocytosis. Whether this new function of PAT1 may have consequences in pathology remains to be determined.
Collapse
Affiliation(s)
- Aysegul Dilsizoglu Senol
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Lidia Tagliafierro
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lucie Gorisse-Hussonnois
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Florian Rebeillard
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Léa Huguet
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - David Geny
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Vincent Contremoulins
- ImagoSeine, Institut Jacques Monod, UMR 7592, CNRS and Université Paris Diderot, Paris, France
| | - Fabian Corlier
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Stéphanie Chasseigneaux
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
- INSERM U1144, Université Paris Descartes and Université Paris Diderot UMR-S 1144, 75006, Paris, France
| | - Michèle Darmon
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France
| | - Bernadette Allinquant
- Faculté de Médecine, UMR_S894 INSERM, Université Paris Descartes, Sorbonne Paris Cité, 102-108 rue de la Santé, 75014, Paris, France.
| |
Collapse
|
2
|
Carbone SE, Veldhuis NA, Gondin AB, Poole DP. G protein-coupled receptor trafficking and signaling: new insights into the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2019; 316:G446-G452. [PMID: 30702900 DOI: 10.1152/ajpgi.00406.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
G protein-coupled receptors (GPCRs) are essential for the neurogenic control of gastrointestinal (GI) function and are important and emerging therapeutic targets in the gut. Detailed knowledge of both the distribution and functional expression of GPCRs in the enteric nervous system (ENS) is critical toward advancing our understanding of how these receptors contribute to GI function during physiological and pathophysiological states. Equally important, but less well defined, is the complex relationship between receptor expression, ligand binding, signaling, and trafficking within enteric neurons. Neuronal GPCRs are internalized following exposure to agonists and under pathological conditions, such as intestinal inflammation. However, the relationship between the intracellular distribution of GPCRs and their signaling outputs in this setting remains a "black box". This review will briefly summarize current knowledge of agonist-evoked GPCR trafficking and location-specific signaling in the ENS and identifies key areas where future research could be focused. Greater understanding of the cellular and molecular mechanisms involved in regulating GPCR signaling in the ENS will provide new insights into GI function and may open novel avenues for therapeutic targeting of GPCRs for the treatment of digestive disorders.
Collapse
Affiliation(s)
- Simona E Carbone
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Parkville, Victoria , Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Parkville, Victoria , Australia
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Parkville, Victoria , Australia
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University , Parkville, Victoria , Australia.,Anatomy and Neuroscience, The University of Melbourne , Parkville, Victoria , Australia
| |
Collapse
|
3
|
Weinberg ZY, Puthenveedu MA. Regulation of G protein-coupled receptor signaling by plasma membrane organization and endocytosis. Traffic 2019; 20:121-129. [PMID: 30536564 PMCID: PMC6415975 DOI: 10.1111/tra.12628] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
The trafficking of G protein coupled-receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine-tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor-receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin-coated pit dynamics, and through the scaffolding adaptor protein β-arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.
Collapse
Affiliation(s)
- Zara Y Weinberg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
4
|
Poole DP, Bunnett NW. G Protein-Coupled Receptor Trafficking and Signalling in the Enteric Nervous System: The Past, Present and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:145-52. [PMID: 27379642 PMCID: PMC11450630 DOI: 10.1007/978-3-319-27592-5_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) enable cells to detect and respond to changes in their extracellular environment. With over 800 members, the GPCR family includes receptors for a diverse range of agonists including olfactants, neurotransmitters and hormones. Importantly, GPCRs represent a major therapeutic target, with approximately 50 % of all current drugs acting at some aspect of GPCR signalling (Audet and Bouvier 2008). GPCRs are widely expressed by all cell types in the gastrointestinal (GI) tract and are major regulators of every aspect of gut function. Many GPCRs are internalised upon activation, and this represents one of the mechanisms through which G protein-signalling is terminated. The latency between the endocytosis of GPCRs and their recycling and resensitization is a major determinant of the cell's ability to respond to subsequent exposure to agonists.
Collapse
Affiliation(s)
- Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
5
|
Fichna J, Poole DP, Veldhuis N, MacEachern SJ, Saur D, Zakrzewski PK, Cygankiewicz AI, Mokrowiecka A, Małecka-Panas E, Krajewska WM, Liedtke W, Steinhoff MS, Timmermans JP, Bunnett NW, Sharkey KA, Storr MA. Transient receptor potential vanilloid 4 inhibits mouse colonic motility by activating NO-dependent enteric neurotransmission. J Mol Med (Berl) 2015; 93:1297-309. [PMID: 26330151 DOI: 10.1007/s00109-015-1336-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/12/2015] [Accepted: 08/17/2015] [Indexed: 01/15/2023]
Abstract
UNLABELLED Recent studies implicate TRPV4 receptors in visceral pain signaling and intestinal inflammation. Our aim was to evaluate the role of TRPV4 in the control of gastrointestinal (GI) motility and to establish the underlying mechanisms. We used immunohistochemistry and PCR to study TRPV4 expression in the GI tract. The effect of TRPV4 activation on GI motility was characterized using in vitro and in vivo motility assays. Calcium and nitric oxide (NO) imaging were performed to study the intracellular signaling pathways. Finally, TRPV4 expression was examined in the colon of healthy human subjects. We demonstrated that TRPV4 can be found on myenteric neurons of the colon and is co-localized with NO synthase (NOS-1). In vitro, the TRPV4 agonist GSK1016790A reduced colonic contractility and increased inhibitory neurotransmission. In vivo, TRPV4 activation slowed GI motility and reduced stool production in mouse models mimicking pathophysiological conditions. We also showed that TRPV4 activation inhibited GI motility by reducing NO-dependent Ca(2+) release from enteric neurons. In conclusion, TRPV4 is involved in the regulation of GI motility in health and disease. KEY MESSAGES • Recent studies implicate TRPV4 in pain signaling and intestinal inflammation. • Our aim was to characterize the role of TRPV4 in the control of GI motility. • We found that TRPV4 activation reduced colonic contractility. • Our studies also showed altered TRPV4 mRNA expression in IBS-C patients. • TRPV4 may be a novel pharmacological target in functional GI diseases.
Collapse
Affiliation(s)
- J Fichna
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - D P Poole
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - N Veldhuis
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - S J MacEachern
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - D Saur
- II Medizinische Klinik, Technische Universität München, Munich, Germany
| | - P K Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - A I Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - A Mokrowiecka
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - E Małecka-Panas
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - W M Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - W Liedtke
- Center for Translational Neuroscience, Duke University, Durham, NC, USA
| | - M S Steinhoff
- Department of Dermatology and Surgery, University of California San Francisco, San Francisco, CA, USA
| | - J-P Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - N W Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.,Department of Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - K A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - M A Storr
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada. .,Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, AB, Canada. .,Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
6
|
Poole DP, Lieu T, Pelayo JC, Eriksson EM, Veldhuis NA, Bunnett NW. Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2015; 309:G248-59. [PMID: 26138465 PMCID: PMC4537929 DOI: 10.1152/ajpgi.00118.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 01/31/2023]
Abstract
Activated G protein-coupled receptors traffic to endosomes and are sorted to recycling or degradative pathways. Endosomes are also a site of receptor signaling of sustained and pathophysiologically important processes, including inflammation. However, the mechanisms of endosomal sorting of receptors and the impact of disease on trafficking have not been fully defined. We examined the effects of inflammation on the subcellular distribution and trafficking of the substance P (SP) neurokinin 1 receptor (NK1R) in enteric neurons. We studied NK1R trafficking in enteric neurons of the mouse colon using immunofluorescence and confocal microscopy. The impact of inflammation was studied in IL10(-/-)-piroxicam and trinitrobenzenesulfonic acid colitis models. NK1R was localized to the plasma membrane of myenteric and submucosal neurons of the uninflamed colon. SP evoked NK1R endocytosis and recycling. Deletion of β-arrestin2, which associates with the activated NK1R, accelerated recycling. Inhibition of endothelin-converting enzyme-1 (ECE-1), which degrades endosomal SP, prevented recycling. Inflammation was associated with NK1R endocytosis in myenteric but not submucosal neurons. Whereas the NK1R in uninflamed neurons recycled within 60 min, NK1R recycling in inflamed neurons was delayed for >120 min, suggesting defective recycling machinery. Inflammation was associated with β-arrestin2 upregulation and ECE-1 downregulation, which may contribute to the defective NK1R recycling. We conclude that inflammation evokes redistribution of NK1R from the plasma membrane to endosomes of myenteric neurons through enhanced SP release and defective NK1R recycling. Defective recycling may be secondary to upregulation of β-arrestin2 and downregulation of ECE-1. Internalized NK1R may generate sustained proinflammatory signals that disrupt normal neuronal functions.
Collapse
Affiliation(s)
- Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia;
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Juan Carlos Pelayo
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Emily M Eriksson
- Population Health & Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and Department of Laboratory Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Anaesthesia and Peri-operative Medicine, Monash University, Victoria, Australia
| |
Collapse
|
7
|
Localisation and activation of the neurokinin 1 receptor in the enteric nervous system of the mouse distal colon. Cell Tissue Res 2014; 356:319-32. [PMID: 24728885 DOI: 10.1007/s00441-014-1822-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
The substance P neurokinin 1 receptor (NK1R) regulates motility, secretion, inflammation and pain in the intestine. The distribution of the NK1R is a key determinant of the functional effects of substance P in the gut. Information regarding the distribution of NK1R in subtypes of mouse enteric neurons is lacking and is the focus of the present study. NK1R immunoreactivity (NK1R-IR) is examined in whole-mount preparations of the mouse distal colon by indirect immunofluorescence and confocal microscopy. The distribution of NK1R-IR within key functional neuronal subclasses was determined by using established neurochemical markers. NK1R-IR was expressed by a subpopulation of myenteric and submucosal neurons; it was mainly detected in large multipolar myenteric neurons and was colocalized with calcitonin gene-related peptide, neurofilament M, choline acetyltransferase and calretinin. The remaining NK1R-immunoreactive neurons were positive for nitric oxide synthase. NK1R was expressed by most of the submucosal neurons and was exclusively co-expressed with vasoactive intestinal peptide, with no overlap with choline acetyltransferase. Treatment with substance P resulted in the concentration-dependent internalisation of NK1R from the cell surface into endosome-like structures. Myenteric NK1R was mainly expressed by intrinsic primary afferent neurons, with minor expression by descending interneurons and inhibitory motor neurons. Submucosal NK1R was restricted to non-cholinergic secretomotor neurons. These findings highlight key differences in the neuronal distribution of NK1R-IR between the mouse, rat and guinea-pig, with important implications for the functional role of NK1R in regulating intestinal motility and secretion.
Collapse
|
8
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
9
|
Arresting inflammation: contributions of plasma membrane and endosomal signalling to neuropeptide-driven inflammatory disease. Biochem Soc Trans 2013; 41:137-43. [PMID: 23356273 DOI: 10.1042/bst20120343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GPCR (G-protein-coupled receptor) signalling at the plasma membrane is under tight control. In the case of neuropeptides such as SP (substance P), plasma membrane signalling is regulated by cell-surface endopeptidases (e.g. neprilysin) that degrade extracellular neuropeptides, and receptor interaction with β-arrestins, which uncouple receptors from heterotrimeric G-proteins and mediate receptor endocytosis. By recruiting GPCRs, kinases and phosphatases to endocytosed GPCRs, β-arrestins assemble signalosomes that can mediate a second wave of signalling by internalized receptors. Endosomal peptidases, such as ECE-1 (endothelin-converting enzyme-1), can degrade SP in acidified endosomes, which destabilizes signalosomes and allows receptors, freed from β-arrestins, to recycle and resensitize. By disassembling signalosomes, ECE-1 terminates β-arrestin-mediated endosomal signalling. These mechanisms have been studied in model cell systems, and the relative importance of plasma membrane and endosomal signalling to complex pathophysiological processes, such as inflammation, pain and proliferation, is unclear. However, deletion or inhibition of metalloendopeptidases that control neuropeptide signalling at the plasma membrane and in endosomes has marked effects on inflammation. Neprilysin deletion exacerbates inflammation because of diminished degradation of pro-inflammatory SP. Conversely, inhibition of ECE-1 attenuates inflammation by preventing receptor recycling/resensitization, which is required for sustained pro-inflammatory signals from the plasma membrane. β-Arrestin deletion also affects inflammation because of the involvement of β-arrestins in pro-inflammatory signalling and migration of inflammatory cells. Knowledge of GPCR signalling in specific subcellular locations provides insights into pathophysiological processes, and can provide new opportunities for therapy. Selective targeting of β-arrestin-mediated endosomal signalling or of mechanisms of receptor recycling/resensitization may offer more effective and selective treatments than global targeting of cell-surface signalling.
Collapse
|
10
|
Li X, DiFiglia M. The recycling endosome and its role in neurological disorders. Prog Neurobiol 2011; 97:127-41. [PMID: 22037413 DOI: 10.1016/j.pneurobio.2011.10.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 02/08/2023]
Abstract
The recycling endosome (RE) is an organelle in the endocytic pathway where plasma membranes (proteins and lipids) internalized by endocytosis are processed back to the cell surface for reuse. Endocytic recycling is the primary way for the cell to maintain constituents of the plasma membrane (Griffiths et al., 1989), i.e., to maintain the abundance of receptors and transporters on cell surfaces. Membrane traffic through the RE is crucial for several key cellular processes including cytokinesis and cell migration. In polarized cells, including neurons, the RE is vital for the generation and maintenance of the polarity of the plasma membrane. Many RE dependent cargo molecules are known to be important for neuronal function and there is evidence that improper function of key proteins in RE-associated pathways may contribute to the pathogenesis of neurological disorders, including Huntington's disease. The function of the RE in neurons is poorly understood. Therefore, there is need to understand how membrane dynamics in RE-associated pathways are affected or participate in the development or progression of neurological diseases. This review summarizes advances in understanding endocytic recycling associated with the RE, challenges in elucidating molecular mechanisms underlying RE function, and evidence for RE dysfunction in neurological disorders.
Collapse
Affiliation(s)
- Xueyi Li
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
11
|
Poole DP, Pelayo JC, Scherrer G, Evans CJ, Kieffer BL, Bunnett NW. Localization and regulation of fluorescently labeled delta opioid receptor, expressed in enteric neurons of mice. Gastroenterology 2011; 141:982-991.e18. [PMID: 21699782 PMCID: PMC4429902 DOI: 10.1053/j.gastro.2011.05.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/19/2011] [Accepted: 05/20/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Opioids and opiates inhibit gastrointestinal functions via μ, δ, and κ receptors. Although agonists of the δ opioid receptor (DOR) suppress motility and secretion, little is known about the localization and regulation of DOR in the gastrointestinal tract. METHODS We studied mice in which the gene that encodes the enhanced green fluorescent protein (eGFP) was inserted into Oprd1, which encodes DOR, to express an approximately 80-kilodalton product (DOReGFP). We used these mice to localize DOR and to determine how agonists regulate the subcellular distribution of DOR. RESULTS DOReGFP was expressed in all regions but was confined to enteric neurons and fibers within the muscularis externa. In the submucosal plexus, DOReGFP was detected in neuropeptide Y-positive secretomotor and vasodilator neurons of the small intestine, but rarely was observed in the large bowel. In the myenteric plexus of the small intestine, DOReGFP was present in similar proportions of excitatory motoneurons and interneurons that expressed choline acetyltransferase and substance P, and in inhibitory motoneurons and interneurons that contained nitric oxide synthase. DOReGFP was present mostly in nitrergic myenteric neurons of colon. DOReGFP and μ opioid receptors often were co-expressed. DOReGFP-expressing neurons were associated with enkephalin-containing varicosities, and enkephalin-induced clathrin- and dynamin-mediated endocytosis and lysosomal trafficking of DOReGFP. DOReGFP replenishment at the plasma membrane was slow, requiring de novo synthesis, rather than recycling. CONCLUSIONS DOR localizes specifically to submucosal and myenteric neurons, which might account for the ability of DOR agonists to inhibit gastrointestinal secretion and motility. Sustained down-regulation of DOReGFP at the plasma membrane of activated neurons could induce long-lasting tolerance to DOR agonists.
Collapse
Affiliation(s)
- Daniel P. Poole
- Department of Surgery, University of California, San Francisco
,Department of Physiology, University of California, San Francisco
| | | | - Gregory Scherrer
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| | - Christopher J. Evans
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles
| | - Brigitte L. Kieffer
- Département de Neurobiologie, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR7104, Université Louis Pasteur, Illkirch, France.
| | - Nigel W. Bunnett
- Department of Surgery, University of California, San Francisco
,Department of Physiology, University of California, San Francisco
| |
Collapse
|
12
|
Pelayo JC, Poole DP, Steinhoff M, Cottrell GS, Bunnett NW. Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones. J Physiol 2011; 589:5213-30. [PMID: 21878523 DOI: 10.1113/jphysiol.2011.214452] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by β-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by β-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and β-arrestin at the plasma membrane, and the SP-NK(1)R-β-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-β-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating β-arrestin-mediated endosomal signalling.
Collapse
Affiliation(s)
- Juan-Carlos Pelayo
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143-0660, USA
| | | | | | | | | |
Collapse
|
13
|
Chronic intermittent hypoxia reduces neurokinin-1 (NK(1)) receptor density in small dendrites of non-catecholaminergic neurons in mouse nucleus tractus solitarius. Exp Neurol 2010; 223:634-44. [PMID: 20206166 DOI: 10.1016/j.expneurol.2010.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/18/2010] [Accepted: 02/21/2010] [Indexed: 12/16/2022]
Abstract
Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK(1)) receptors. Acute hypoxia results in internalization of NK(1) receptors, suggesting that CIH also may affect the subcellular distribution of NK(1) receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK(1) receptor and TH in the cNTS of male mice subjected to 10days or 35days of CIH or intermittent air. Electron microscopy revealed that NK(1) receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK(1) receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35days, P<0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35days, P<0.01, unpaired Student t-test) density of NK(1) immunogold particles exclusively in small (<0.1microm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK(1) receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients.
Collapse
|
14
|
Neurokinin 1 receptors regulate morphine-induced endocytosis and desensitization of mu-opioid receptors in CNS neurons. J Neurosci 2009; 29:222-33. [PMID: 19129399 DOI: 10.1523/jneurosci.4315-08.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
mu-Opioid receptors (MORs) are G-protein-coupled receptors (GPCRs) that mediate the physiological effects of endogenous opioid neuropeptides and opiate drugs such as morphine. MORs are coexpressed with neurokinin 1 receptors (NK1Rs) in several regions of the CNS that control opioid dependence and reward. NK1R activation affects opioid reward specifically, however, and the cellular basis for this specificity is unknown. We found that ligand-induced activation of NK1Rs produces a cell-autonomous and nonreciprocal inhibition of MOR endocytosis induced by diverse opioids. Studies using epitope-tagged receptors expressed in cultured striatal neurons and a neuroblastoma cell model indicated that this heterologous regulation is mediated by NK1R-dependent sequestration of arrestins on endosome membranes. First, endocytic inhibition mediated by wild-type NK1Rs was overcome in cells overexpressing beta-arrestin2, a major arrestin isoform expressed in striatum. Second, NK1R activation promoted sequestration of beta-arrestin2 on endosomes, whereas MOR activation did not. Third, heterologous inhibition of MOR endocytosis was prevented by mutational disruption of beta-arrestin2 sequestration by NK1Rs. NK1R-mediated regulation of MOR trafficking was associated with reduced opioid-induced desensitization of adenylyl cyclase signaling in striatal neurons. Furthermore, heterologous regulation of MOR trafficking was observed in both amygdala and locus ceruleus neurons that naturally coexpress these receptors. These results identify a cell-autonomous mechanism that may underlie the highly specific effects of NK1R on opioid signaling and suggest, more generally, that receptor-specific trafficking of arrestins may represent a fundamental mechanism for coordinating distinct GPCR-mediated signals at the level of individual CNS neurons.
Collapse
|
15
|
Yamaza T, Kido MA, Wang B, Danjo A, Shimohira D, Murata N, Yoshinari M, Tanaka T. Distribution of substance P and neurokinin-1 receptors in the peri-implant epithelium around titanium dental implants in rats. Cell Tissue Res 2008; 335:407-15. [DOI: 10.1007/s00441-008-0720-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022]
|
16
|
Carmichael NME, Dostrovsky JO, Charlton MP. Enhanced vascular permeability in rat skin induced by sensory nerve stimulation: evaluation of the time course and appropriate stimulation parameters. Neuroscience 2008; 153:832-41. [PMID: 18420352 DOI: 10.1016/j.neuroscience.2008.02.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/25/2008] [Accepted: 02/29/2008] [Indexed: 11/29/2022]
Abstract
Activation of nociceptors causes them to secrete neuropeptides. The binding of these peptides to receptors on blood vessels causes vasodilation and increased vascular permeability that allows loss of proteins and fluid (plasma extravasation, PE); this contributes to inflammation. This study defines the relationship between electrical activation of nociceptors and PE and evaluates the time course of this response in the skin of rats. We measured the time course and extent of PE by digital imaging of changes in skin reflectance caused by leakage of Evans Blue (EB) dye infused in the circulatory system before stimulation. Stimulation of the exclusively sensory saphenous nerve caused the skin to become dark blue within 2 min due to accumulation of EB. While PE is usually measured after 5-15 min of electrical stimulation, we found that stimulation for only 1 min at 4 Hz produced maximum PE. This response was dependent on the number of electrical stimuli at least for 4 Hz and 8 Hz stimulation rates. Since accumulation of EB in the skin is only slowly reversible, to determine the duration of enhanced vascular permeability we administered EB at various times after electrical stimulation of the saphenous nerve. PE was only observed when EB was infused within 5 min of electrical stimulation but could still be observed 50 min after capsaicin (1%, 25 microl) injection into the hind paw. These findings indicate that enhanced vascular permeability evoked by electrical stimulation persists only briefly after release of neuropeptides from nociceptors in the skin. Therefore, treatment of inflammation by blockade of neuropeptide release and receptors may be more effective than treatments aimed at epithelial gaps. We propose, in models of stimulation-induced inflammation, the use of a short stimulus train.
Collapse
Affiliation(s)
- N M E Carmichael
- University of Toronto, Department of Physiology, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
17
|
Andersson G, Danielson P, Alfredson H, Forsgren S. Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon. ACTA ACUST UNITED AC 2008; 150:81-7. [PMID: 18394729 DOI: 10.1016/j.regpep.2008.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/31/2008] [Accepted: 02/07/2008] [Indexed: 11/19/2022]
Abstract
Nerve signal substances, such as the tachykinin substance P (SP), may be involved in the changes that occur in response to tendinopathy (tendinosis). It is previously known that the level of SP innervation within tendon tissue is limited, but results of experimental studies have suggested that SP may have stimulatory, angiogenetic and healing effects in injured tendons. Therefore, it would be of interest to know if there is a local SP-supply in tendon tissue. In the present study, the patterns of expression of SP and its preferred receptor, the neurokinin-1 receptor (NK-1 R), in normal and tendinosis human Achilles tendons were analyzed by use of both immunohistochemistry and in situ hybridization. We found that there was expression of SP mRNA in tenocytes, and that tenocytes showed expression of NK-1 R at protein as well as mRNA levels. The observations concerning both SP and NK-1 R were most evident for tenocytes in tendinosis tendons. Our findings suggest that SP is produced in tendinosis tendons, and furthermore that SP has marked effects on the tenocytes via the NK-1 R. It cannot be excluded that the SP effects are of importance concerning the processes of reorganization and healing that occur for tendon tissue in tendinosis. In conclusion, it appears as if SPergic autocrine/paracrine effects occur in tendon tissue during the processes of tendinosis, hitherto unknown effects for human tendons.
Collapse
Affiliation(s)
- Gustav Andersson
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
18
|
Kubale V, Abramović Z, Pogacnik A, Heding A, Sentjurc M, Vrecl M. Evidence for a role of caveolin-1 in neurokinin-1 receptor plasma-membrane localization, efficient signaling, and interaction with beta-arrestin 2. Cell Tissue Res 2007; 330:231-45. [PMID: 17713785 DOI: 10.1007/s00441-007-0462-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/04/2007] [Indexed: 10/22/2022]
Abstract
This study was focused on the relationship between the plasma-membrane localization of neurokinin-1 receptor (NK1-R) and its endocytic and signaling properties. First, we employed electron paramagnetic resonance (EPR) to study the domain structure of HEK-293 cells and NK1-R microlocalization. EPR spectra and the GHOST condensation routine demonstrated that NK1-R was distributed in a well-ordered domain of HEK-293 cells possibly representing lipid raft/caveolae microdomains, whereas the impairment of caveolae changed the NK1-R plasma-membrane distribution. Internalization and second messenger assays combined with bioluminescence resonance energy transfer were employed subsequently to evaluate the functional importance of the NK1-R microlocalization in lipid raft/caveolae microdomains. The internalization pattern was delineated through the use of dominant-negative mutants (DNM) of caveolin-1 S80E (Cav1 S80E), dynamin-1 K44A (Dyn K44A), and beta-arrestin (beta-arr 319-418) and by means of cell lines that expressed various endogenous levels of beta-arrestins. NK1-R displayed rapid internalization that was substantially reduced by DNMs of dynamin-1 and beta-arrestin and even more profoundly in cells lacking both beta-arrestin1 and beta-arrestin2. These internalization data were highly suggestive of the predominant use of the clathrin-mediated pathway by NK1-R, even though NK1-R tended to reside constitutively in lipid raft/caveolae microdomains. Evidence was also obtained that the proper clustering of the receptor in these microdomains was important for effective agonist-induced NK1-R signaling and for its interaction with beta-arrestin2.
Collapse
Affiliation(s)
- Valentina Kubale
- Institute of Anatomy, Histology & Embryology, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1000, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
19
|
Martin-Negrier ML, Charron G, Bloch B. Receptor recycling mediates plasma membrane recovery of dopamine D1 receptors in dendrites and axons after agonist-induced endocytosis in primary cultures of striatal neurons. Synapse 2006; 60:194-204. [PMID: 16739117 DOI: 10.1002/syn.20296] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pharmacological stimulation of G-protein-coupled receptor induces receptor internalization. Receptor's fate after the step of internalization remains poorly characterized despite its incidence on the neuronal responsiveness. In this context, we studied the dopamine (DA) D1 receptor (D1R) trafficking in a model of striatal neuronal culture that endogenously express the D1R. We first characterized by immunohistochemistry the spatial distribution of the compartments involved in the endocytic pathways and then the D1R trafficking in dendrites and axons. In dendrites, immunohistochemical analysis showed that acute stimulation by the D1R agonist SKF 82958 (1 microM) induces an internalization of D1R in early endosomes labeled with Alexa-488-conjugated transferrin. We show that, 20 min after removal of the agonist, the D1R immunolabeling pattern returns to the basal state in dendrites and in axons. Recovery was unaffected by cycloheximide (70 microM) but was prevented by monensin (100 microM) that inhibits endosomal acidification and receptor recycling. These data suggest that dendritic and axonal D1Rs are internalized after agonist stimulation and targeted to the recycling pathway demonstrating that the machinery involved in GPCR endocytosis and recycling is functional both in dendrites and in axons. Temporal characteristics observed for the recovery of D1R density to the basal state and those observed for the resensitization process strongly suggest that D1R recycling supports the receptor resensitization.
Collapse
Affiliation(s)
- Marie-Laure Martin-Negrier
- CNRS-UMR 5541, Université V.Segalen Bordeaux 2, Laboratoire d'Histologie-Embryologie, Bordeaux cedex, France.
| | | | | |
Collapse
|
20
|
Poole DP, Xu B, Koh SL, Hunne B, Coupar IM, Irving HR, Shinjo K, Furness JB. Identification of neurons that express 5-hydroxytryptamine4 receptors in intestine. Cell Tissue Res 2006; 325:413-22. [PMID: 16628410 DOI: 10.1007/s00441-006-0181-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Accepted: 02/01/2006] [Indexed: 01/14/2023]
Abstract
5-Hydroxytryptamine (5-HT) is an endogenous stimulant of intestinal propulsive reflexes. It exerts its effects partly through 5-HT4 receptors; 5-HT4 receptor agonists that are stimulants of intestinal transit are in clinical use. Both pharmacological and recent immunohistochemical studies indicate that 5-HT4 receptors are present on enteric neurons but the specific neurons that express the receptors have not been determined. In the present work, we describe the characterization of an anti-5-HT4 receptor antiserum that reveals immunoreactivity for enteric neurons and other cell types in the gastrointestinal tract. With this antiserum, 5-HT4 receptor immunoreactivity has been found in the muscularis mucosae of the rat oesophagus, a standard assay tissue for 5-HT4 receptors. It is also present in the muscularis mucosae of the guinea-pig and mouse oesophagus. In guinea-pig small intestine and rat and mouse colon, 5-HT4 receptor immunoreactivity occurs in subpopulations of enteric neurons, including prominent large neurons. Double-staining has shown that these large neurons in the guinea-pig small intestine are also immunoreactive for two markers of intrinsic primary afferent neurons, cytoplasmic NeuN and calbindin. Some muscle motor neurons in the myenteric ganglia are immunoreactive for this receptor, whereas it is rarely expressed by secretomotor neurons. Immunoreactivity also occurs in the interstitial cells of Cajal but is faint in the external muscle. Expression of the protein and mRNA has been confirmed in extracts containing enteric neurons. The observations suggest that one site of action of 5-HT4 receptor agonists is the intrinsic primary afferent neurons.
Collapse
Affiliation(s)
- Daniel P Poole
- Department of Anatomy & Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wong BJ, Tublitz NJ, Minson CT. Neurokinin-1 receptor desensitization to consecutive microdialysis infusions of substance P in human skin. J Physiol 2005; 568:1047-56. [PMID: 16123103 PMCID: PMC1464169 DOI: 10.1113/jphysiol.2005.095372] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2005] [Accepted: 08/23/2005] [Indexed: 11/08/2022] Open
Abstract
The neuropeptide substance P is known to be localized in nerve terminals in human skin and substance P-induced vasodilatation is believed to be partially dependent on nitric oxide (NO) and H1 histamine receptor activation. Unlike other neuropeptides investigated in human skin, substance P-induced vasodilatation has been shown to decline during continuous infusion, possibly suggestive of an internalization of neurokinin-1 (NK1) receptors, which are highly specific to substance P. However, questions remain regarding these mechanisms in human skin. Fifteen subjects participated in this series of studies designed to investigate the effect of consecutive infusions and possible mechanisms of substance P-induced vasodilatation in human skin. Two concentrations of substance P (10 microm and 20 microm) were tested via intradermal microdialysis in two groups of subjects. Site 1 served as a control and received substance P only. Site 2 received substance P combined with 10 mm L-NAME to inhibit NO synthase. Site 3 received substance P combined with 500 microm pyrilamine, an H1 receptor antagonist. Site 4 received substance P combined with 10 mm L-NAME plus 500 microm pyrilamine. Red blood cell (RBC) flux was measured via laser-Doppler flowmetry to provide an index of skin blood flow. Cutaneous vascular conductance was calculated as RBC flux/mean arterial pressure and was normalized to maximal vasodilatation via 28 mm sodium nitroprusside. Substance P was perfused through each microdialysis fibre at a rate of 4 microl min(-1) for 15 min. The subsequent increase in skin blood flow was allowed to return to baseline (approximately 45-60 min) and a stable 5 min plateau was used as a new baseline (post-infusion baseline). A second dose of substance P was then delivered to the skin and skin blood flow was monitored for 45-60 min. Substance P produced a dose-dependent increase in skin blood flow with the concentrations of substance P tested, which was significantly attenuated in the presence of L-NAME and the combination of L-NAME plus pyrilamine. However, substance P-induced vasodilatation was unaffected in the presence of pyrilamine. There was no significant difference between the L-NAME-only sites and the L-NAME plus pyrilamine sites. Importantly, the second dose of substance P did not produce a significant increase in skin blood flow compared to the initial baseline or the post-infusion baseline. These data suggest substance P-induced vasodilatation delivered via microdialysis contains an NO component but does not contain an H1 receptor activation component at the doses tested. Additionally, these data provide evidence for NK1 receptor desensitization as there was no observable increase in skin blood flow following a second administration of substance P. This may provide a useful model for studying the role of substance P in the control of skin blood flow in humans.
Collapse
Affiliation(s)
- Brett J Wong
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|
22
|
Forsgren S, Danielson P, Alfredson H. Vascular NK-1 receptor occurrence in normal and chronic painful Achilles and patellar tendons: studies on chemically unfixed as well as fixed specimens. ACTA ACUST UNITED AC 2005; 126:173-81. [PMID: 15664664 DOI: 10.1016/j.regpep.2004.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/31/2004] [Accepted: 09/19/2004] [Indexed: 11/17/2022]
Abstract
It is not known as to whether the Achilles and patellar tendons contain neurokinin-1 (NK-1) receptors. This is a drawback when considering the fact that pain symptoms are frequent in these and as recent studies show that the pain symptoms might be cured via interference with blood vessel function. In the present study, the human Achilles and patellar tendons were examined concerning immunohistochemical expression of the NK-1 receptor. Chemically unfixed and fixed specimens, TRITC and PAP stainings and a battery of NK-1 receptor antibodies, including antibodies against the C-terminus and the N-terminal region, were utilized. NK-1 receptor immunoreaction could be detected in inner parts of the walls of large blood vessels and in the walls of small blood vessels. To some extent, NK-1 immunoreaction was also detectable in small nerve fascicles and in tenocytes. It was found to be of utmost importance to apply both chemically unfixed and fixed specimens. The use of chemically unfixed tissue was found advantageous in order to depict the immunoreactions in the blood vessel walls. The observations represent new findings and are of relevance as substance P (SP) is known to be of importance where neurogenic angiogenesis contributes to diseases and as SP on the whole has profound effects concerning blood vessel regulation.
Collapse
Affiliation(s)
- Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
23
|
Abstract
The major cell types regulating gut motility include enteric neurones, interstitial cells of Cajal (ICC) and their effector smooth muscle cells. These cells are arranged conveniently in nested layers through the gut wall. Our knowledge of how many of these cells in each layer are integrated to produce the various patterns of motility is largely unknown. So far, much of our knowledge of gut motility has usually been obtained by examining point sources of activity (e.g. intracellular recordings from enteric neurones, ICC and smooth muscle cells), rather than the spread of activity through these spatially distributed nerve and ICC networks, or smooth muscle syncitia. Our understanding of how these cells are integrated to produce gut movements would be greatly enhanced if we could image the activity in many of these cells in each layer, or many cells in several layers, simultaneously. Calcium (Ca2+) is a major signalling and regulatory molecule in most cells. In fact, electrical excitability in enteric neurones, ICC and smooth muscle is associated with robust rises in intracellular Ca2+ that long outlast the electrical events (e.g. action potentials in neurones and smooth muscle) that gave rise to them. These prolonged Ca2+ responses, together with the development of several high quality Ca2+ indicators, has provided a unique opportunity to image many cells in intact tissues simultaneously using ICCD video-rate cameras along with conventional microscopy. However, confocal microscopy has also been used, and has several advantages over the above systems. These include reduced photo-toxicity and bleaching and the elimination of out of focus light from different layers within the tissue. So far, despite some limitations with the calcium imaging techniques, the spread of activity through the two layers of smooth muscle, ICC networks and myenteric neurones in intact preparations, or cultured myenteric neuronal networks, is beginning to yield exciting new data about how these different cells interact and process information.
Collapse
Affiliation(s)
- J Tack
- Center for Gastroenterological Research, Catholic University of Leuven, Leuven, Belgium
| | | |
Collapse
|
24
|
Iino S, Ward SM, Sanders KM. Interstitial cells of Cajal are functionally innervated by excitatory motor neurones in the murine intestine. J Physiol 2004; 556:521-30. [PMID: 14754997 PMCID: PMC1664950 DOI: 10.1113/jphysiol.2003.058792] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent studies have demonstrated that intramuscular interstitial cells of Cajal (ICC) are preferential targets for neurotransmission in the stomach. Terminals of enteric motor neurones also form tight, synaptic-like contacts with ICC in the small intestine and colon, but little is known about the role of these cells in neurotransmission. ICC at the deep muscular plexus (ICC-DMP) of the small intestine express neurokinin 1 receptors (NK1R) and internalize these receptors in response to exogenous substance P. We used NK1R internalization as an assay of functional innervation of ICC-DMP in the murine small intestine. Under basal conditions NK1R-like immunoreactivity (NK1R-LI) was mainly observed in ICC-DMP (519 cells counted, 100% were positive) and myenteric neurones. ICC-DMP were closely apposed to substance P-containing nerve fibres. Of 338 ICC-DMP examined, 65% were closely associated with at least one substance P-positive nerve fibre, 32% were associated with at least two, 2% were associated with more than two nerve fibres and 1% with none. After electrical field stimulation (EFS, 10 Hz; 1 min) NK1R-LI was internalized in more than 80% of ICC-DMP, as compared to 10% of cells before EFS. Internalization of NK1R was not observed in myenteric ICC or smooth muscle cells in response to nerve stimulation. Internalization of NK1R-LI was blocked by the specific NK1 receptor antagonist WIN 62577 (1 microm) and by tetrodotoxin (0.3 microm), suggesting that internalization resulted from stimulation of receptors with neurally released neurokinins. These data suggest that ICC-DMP are primary targets for neurokinins released from enteric motor neurones in the intestine.
Collapse
Affiliation(s)
- Satoshi Iino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | |
Collapse
|
25
|
Shafer AM, Bennett VJ, Kim P, Voss JC. Probing the binding pocket and endocytosis of a G protein-coupled receptor in live cells reported by a spin-labeled substance P agonist. J Biol Chem 2003; 278:34203-10. [PMID: 12821667 DOI: 10.1074/jbc.m212712200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To probe the molecular nature of the binding pocket of a G protein-coupled receptor and the events immediately following the binding and activation, we have modified the substance P peptide, a potent agonist for the neurokinin-1 receptor, with a nitroxide spin probe specifically attached at Lys-3. The agonist properties and binding affinity of the spin-labeled substance P are similar to the native peptide. Using electron paramagnetic resonance (EPR) spectroscopy, the substance P analogue is capable of reporting the microenvironment found in the binding pocket of the receptor. The EPR spectrum of bound peptide indicates that the Lys-3 portion of the agonist is highly flexible. In addition, we detect a slight increase in the mobility of the bound peptide in the presence of a non-hydrolyzable analogue of GTP, indicative of the alternate conformational states described for this class of receptor. The down-regulation of neurokinin-tachykinin receptors is accomplished by a rapid internalization of the activated protein. Thus, it was also of interest to establish whether spin-labeled substance P could serve as a real time reporter for endocytosis. Our findings show the receptor agonist is efficiently endocytosed and the loss of EPR signal upon internalization provides a real time monitor of endocytosis. The rapid loss of signal suggests that endosomal trafficking vesicles maintain a reductive environment. Whereas the reductive capacity of the lysosome has been established, our findings indicate this capacity in early endosomes as well.
Collapse
Affiliation(s)
- Aaron M Shafer
- Department of Biological Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
26
|
Minnis JG, Patierno S, Kohlmeier SE, Brecha NC, Tonini M, Sternini C. Ligand-induced mu opioid receptor endocytosis and recycling in enteric neurons. Neuroscience 2003; 119:33-42. [PMID: 12763066 DOI: 10.1016/s0306-4522(03)00135-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunohistochemistry and confocal microscopy were used to investigate endocytosis and recycling of the native mu opioid receptor (muOR) in enteric neurons. Isolated segments of the guinea-pig ileum were exposed to increasing concentrations of muOR agonists at 4 degrees C to allow ligand binding and warming to 37 degrees C for 0 min (baseline) to 6 h in ligand-free medium to allow receptor internalization and recycling. The endogenous ligand, [Met]enkephalin, and [D-Ala(2),MePhe(4),Gly-ol(5)] enkephalin (DAMGO), an opioid analog, and the alkaloids, etorphine and fentanyl, induced rapid internalization of muOR immunoreactivity in enteric neurons, whereas morphine did not. muOR internalization was prevented by muOR antagonists. Basal levels of muOR immunoreactivity in the cytoplasm were 10.52+/-2.05%. DAMGO (1 nM-100 microM) induced a concentration-dependent increase of muOR immunofluorescence density in the cytoplasm to a maximum of 84.37+/-2.26%. Translocation of muOR immunoreactivity in the cytoplasm was detected at 2 min, reached the maximum at 15-30 min, remained at similar levels for 2 h, began decreasing at 4 h, and was at baseline values at 6 h. A second exposure to DAMGO (100 nM) following recovery of internalized muOR immunoreactivity at the cell surface induced a translocation of muOR immunoreactivity in the cytoplasm comparable to the one observed following the first exposure (46.89+/-3.11% versus 43.31+/-3.80%). muOR internalization was prevented by hyperosmolar sucrose, phenylarsine oxide or potassium depletion, which inhibit clathrin-mediated endocytosis. muOR recycling was prevented by pre-treatment with bafilomycin A1, an acidotropic agent that inhibits endosomal acidification, but not by the protein synthesis inhibitor, cycloheximide. This study shows that native muOR in enteric neurons undergoes ligand-selective endocytosis, which is primarily clathrin-mediated, and recycles following endosomal acidification. Following recycling, muOR is activated and internalized by DAMGO indicating that recycled receptors are functional.
Collapse
Affiliation(s)
- J G Minnis
- CURE Digestive Diseases Research Center, Building 115, Veterans Administration Greater Los Angeles Healthcare System, Digestive Diseases Division, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
27
|
Escriche M, Burgueño J, Ciruela F, Canela EI, Mallol J, Enrich C, Lluís C, Franco R. Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Exp Cell Res 2003; 285:72-90. [PMID: 12681288 DOI: 10.1016/s0014-4827(02)00090-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The involvement of caveolae in the internalization of A(1) adenosine receptors (A(1)R) and the receptor sorting and recycling was studied in the smooth muscle cell line DDT(1)MF-2, by binding assays, by confocal microscopy, and at the structural level. The use of cholera toxin-binding subunit adsorbed to gold as a specific probe for labeling the ganglioside GM(1) and immunoelectron microscopy techniques showed that agonist stimulation produced a clustering and sequestration of adenosine receptors in caveolae. Furthermore, pull-down experiments showed there to be a direct interaction between the C-terminal domain of A(1)R and caveolin-1. Addition of exogenous adenosine deaminase (ADA), a protein that binds to A(1)R and acts as a receptor activity modifying protein (RAMP) stimulated R-PIA-induced A(1) receptor internalization. Finally, the sorting and recycling of A(1)R/ADA complexes was analyzed. Detailed electron microscopy revealed that A(1)R/ADA complexes internalize together through caveolae, are differentially sorted in endosomes, and are recycled back to the cell surface by different groups of recycling endosomes. These results give insight into the spatiotemporal regulation and traffic of A(1)R and RAMPs.
Collapse
Affiliation(s)
- Marisol Escriche
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Barcelona, 08028, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Reed DE, Barajas-Lopez C, Cottrell G, Velazquez-Rocha S, Dery O, Grady EF, Bunnett NW, Vanner SJ. Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J Physiol 2003; 547:531-42. [PMID: 12562962 PMCID: PMC2342663 DOI: 10.1113/jphysiol.2002.032011] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mast cells that are in close proximity to autonomic and enteric nerves release several mediators that cause neuronal hyperexcitability. This study examined whether mast cell tryptase evokes acute and long-term hyperexcitability in submucosal neurons from the guinea-pig ileum by activating proteinase-activated receptor 2 (PAR2) on these neurons. We detected the expression of PAR2 in the submucosal plexus using RT-PCR. Most submucosal neurons displayed PAR2 immunoreactivity, including those colocalizing VIP. Brief (minutes) application of selective PAR2 agonists, including trypsin, the activating peptide SL-NH2 and mast cell tryptase, evoked depolarizations of the submucosal neurons, as measured with intracellular recording techniques. The membrane potential returned to resting values following washout of agonists, but most neurons were hyperexcitable for the duration of recordings (> 30 min-hours) and exhibited an increased input resistance and amplitude of fast EPSPs. Trypsin, in the presence of soybean trypsin inhibitor, and the reverse sequence of the activating peptide (LR-NH2) had no effect on neuronal membrane potential or long-term excitability. Degranulation of mast cells in the presence of antagonists of established excitatory mast cell mediators (histamine, 5-HT, prostaglandins) also caused depolarization, and following washout of antigen, long-term excitation was observed. Mast cell degranulation resulted in the release of proteases, which desensitized neurons to other agonists of PAR2. Our results suggest that proteases from degranulated mast cells cleave PAR2 on submucosal neurons to cause acute and long-term hyperexcitability. This signalling pathway between immune cells and neurons is a previously unrecognized mechanism that could contribute to chronic alterations in visceral function.
Collapse
Affiliation(s)
- David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The potential for administering substance P (SP) nocitoxins for the treatment of chronic pain has been identified. To characterize treatment protocols for the spinal cord or elsewhere, binding/internalization of these compounds at the cellular targets must be understood quantitatively. Thus, a kinetic model of SP binding and intracellular trafficking has been developed from data. The eight differential equation model describes surface binding between SP and neurokinin 1 receptor, clathrin-mediated endocytosis followed by spatial translation to a perinuclear endosome where SP is sorted from its receptor, SP degradation in late endosomes/early lysosomes, and return of sorted receptor to plasma membrane via recycling endosomes. With suitably optimized parameters, the model accounts for the kinetics of total, membrane-associated, and internalized SP in cells continuously exposed to SP, as well as the fractions of internalized SP remaining intact at 30 and 60 min. Simultaneously, the model accounts for the kinetics of internalization and receptor recycling after SP preloading of membrane and subsequent exposure to SP-free media. Rate constants (min(-1)) are: 0.034 +/- 0.004 (receptor off-rate), 0.15 +/- 0.03 (internalization), 0.048 +/- 0.003 (exit from sorting endosome), 0.062 +/- 0.008 (exit of labeled SP amino acids from prelysosome), and 0.029 +/- 0.004 (receptor return from recycling endosome to plasma membrane). The SP kinetics resemble those of transferrin and its receptor at the internalization step, but are several-fold slower in the sorting and recycling steps.
Collapse
Affiliation(s)
- M Sarntinoranont
- Division of Bioengineering and Physical Science ORS/OD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
30
|
Sarret P, Gendron L, Kilian P, Nguyen HMK, Gallo-Payet N, Payet MD, Beaudet A. Pharmacology and Functional Properties of NTS2 Neurotensin Receptors in Cerebellar Granule Cells. J Biol Chem 2002; 277:36233-43. [PMID: 12084713 DOI: 10.1074/jbc.m202586200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding and signaling properties of neuronal NTS2 neurotensin (NT) receptors were examined in cultured rat cerebellar granule cells. As shown by reverse transcription-PCR, receptor autoradiography, and confocal microscopic localization of fluorescent NT, these cells selectively express the NTS2 receptor subtype. Accordingly, a single apparent class of (125)I-NT-binding sites, with an affinity of 3.1 nm, was detected in cerebellar granule cell cultures. This binding was competed for with high affinity (IC(50) = 5.7 nm) by the NTS2 ligand levocabastine and with low affinity (IC(50) = 203 nm) by the NTS1 antagonist SR48692. Hypertonic acid stripping of surface-bound ligand and hyperosmolar sucrose treatment revealed that 64% of specifically bound (125)I-NT was internalized at equilibrium via a clathrin-dependent pathway. In cells loaded with the Ca(2+)-sensitive fluorescent dye Fluo4, SR48692, but neither NT nor levocabastine, triggered a marked increase in cytosolic [Ca(2+)](i). By contrast, both NT and levocabastine, but not SR48692, induced a sustained (>60 min) activation of the mitogen-activated protein kinases, p42/p44, indicating functional coupling of NTS2 receptors. Complementary experiments carried out on synaptosomes from adult rat cerebellum demonstrated the presence of presynaptic NTS2 receptors. However, in contrast to perikaryal NTS2 sites, these presynaptic receptors did not internalize in response to NT stimulation. Taken together, the present results demonstrate that NTS2 receptors are present both presynaptically and postsynaptically in central neurons and that NT and levocabastine act as agonists on these receptors.
Collapse
Affiliation(s)
- Philippe Sarret
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang X, Marvizón JCG. Time-course of the internalization and recycling of neurokinin 1 receptors in rat dorsal horn neurons. Brain Res 2002; 944:239-47. [PMID: 12106686 DOI: 10.1016/s0006-8993(02)02918-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons is important for intracellular signaling in nociception. Since the rates of NK1R internalization and recycling vary substantially, particularly between cultured and native cells, it is imperative to characterize them in dorsal horn neurons. When rat spinal cord slices were incubated at 35 degrees C with 1 microM substance P (SP), NK1Rs in lamina I neurons internalized rapidly following apparent exponential association kinetics (half-life=71 s). Confocal images of neuronal somas at different incubation times revealed that NK1Rs were uniformly distributed at the cell surface up to 30 s and formed aggregates at the membrane by 60 s. NK1R-containing endosomes migrated to the cell interior at 90-120 s, and were found throughout the cytoplasm at 300 s and thereafter. Upon elimination of SP, NK1Rs recycled back to the cell surface following an apparent linear time-course. Recycling was slower than internalization, being completed in 60-90 min. Confocal microscopy revealed that NK1R-containing endosomes docked at the cell surface 45 min after the elimination of SP. NK1Rs still formed aggregates at the cell surface at 60 min, but were once again uniformly distributed along the membrane by 90 min. NK1R internalization and recycling also occurred in lamina I dendrites. NK1R-containing endosomes in dendrites did not migrate to the cytoplasm. These results show that NK1R internalization and recycling are considerably faster in dorsal horn neurons than in cultured cells, and that most NK1Rs in dorsal horn neurons are internalized when NK1R-mediated hyperalgesia is more severe.
Collapse
Affiliation(s)
- Xueren Wang
- Neuroenteric Disease Program, CURE: Digestive Diseases Research Center, Department of Medicine, University of California at Los Angeles, 90095, USA
| | | |
Collapse
|
32
|
Abstract
Tachykinins are neuropeptides that are widely distributed in the body and function as neurotransmitters and neuromodulators. Five tachykinin subtypes: substance P (SP), neurokinin A, neurokinin B, neuropeptide K, and neuropeptide gamma; and three receptor subtypes: neurokinin-1, -2, and -3 receptors, have been identified. SP was the first peptide of the tachykinin family to be identified. It is considered to be an important neuropeptide, and to function in the nervous system and intestine. However, recent advances in the analysis of SP receptors, particularly neurokinin-1 receptors (NK(1)-Rs) that have high affinity for SP, have demonstrated that NK(1)-Rs are distributed not only in neurons and immune cells, but also in other peripheral cells, including bone cells. This article reviews the current understanding of the distribution of SP and other tachykinins in bone, and the function of tachykinins, through neurokinin receptors. The distribution of tachykinin-immunoreactive axons and neurokinin receptors suggests that tachykinins may directly modulate bone metabolism through neurokinin receptors.
Collapse
Affiliation(s)
- Tetsuya Goto
- Department of Oral Anatomy, Kyushu Dental College, Kitakyushu, 803-8580, Japan.
| | | |
Collapse
|
33
|
Schmidlin F, Déry O, Bunnett NW, Grady EF. Heterologous regulation of trafficking and signaling of G protein-coupled receptors: beta-arrestin-dependent interactions between neurokinin receptors. Proc Natl Acad Sci U S A 2002; 99:3324-9. [PMID: 11880656 PMCID: PMC122517 DOI: 10.1073/pnas.052161299] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells express multiple G protein-coupled receptors that are simultaneously or sequentially activated by agonists. The consequences of activating one receptor on signaling and trafficking of another receptor are unknown. We examined the effects of selective activation of the neurokinin 1 receptor (NK1R) on signaling and trafficking of the NK3R and vice versa. Selective agonists of NK1R and NK3R induced membrane translocation of beta-arrestins (beta-ARRs). Dominant negative beta-ARR(319-418) inhibited endocytosis of NK1R and NK3R. Whereas an NK1R agonist caused sequestration of NK1R with beta-ARR in the same endosomes, thereby depleting them from the cytosol, beta-ARRs did not prominently sequester with the activated NK3R and rapidly returned to the cytosol. In cells coexpressing both receptors, prior activation of the NK1R inhibited endocytosis and homologous desensitization of the NK3R, which was dose-dependently reversed by overexpression of beta-ARR1. Similar results were obtained in enteric neurons that naturally coexpress the NK1R and NK3R. In contrast, activation of the NK3R did not affect NK1R endocytosis or desensitization. Thus, the high-affinity and prolonged interaction of the NK1R with beta-ARRs depletes beta-ARRs from the cytosol and limits their role in desensitization and endocytosis of the NK3R. Because beta-ARRs are critical for desensitization, endocytosis, and mitogenic signaling of many receptors, this sequestration is likely to have important and widespread implications.
Collapse
Affiliation(s)
- Fabien Schmidlin
- Department of Surgery, University of California, 521 Parnassus Avenue, San Francisco, CA 94143-0660, USA
| | | | | | | |
Collapse
|
34
|
Cuffe JE, Bertog M, Velázquez-Rocha S, Dery O, Bunnett N, Korbmacher C. Basolateral PAR-2 receptors mediate KCl secretion and inhibition of Na+ absorption in the mouse distal colon. J Physiol 2002; 539:209-22. [PMID: 11850514 PMCID: PMC2290120 DOI: 10.1113/jphysiol.2001.013159] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Proteinase-activated receptor-2 (PAR-2) may participate in epithelial ion transport regulation. Here we examined the effect of mouse activating peptide (mAP), a specific activator of PAR-2, on electrogenic transport of mouse distal colon using short-circuit current (I(SC)) measurements. Under steady-state conditions, apical application of amiloride (100 microM) revealed a positive I(SC) component of 74.3 +/- 6.8 microA x cm(-2) indicating the presence of Na+ absorption, while apical Ba2+ (10 mM) identified a negative I(SC) component of 26.2 +/- 1.8 microA x cm(-2) consistent with K+ secretion. Baseline Cl- secretion was minimal. Basolateral addition of 20 microM mAP produced a biphasic I(SC) response with an initial transient peak increase of 11.2 +/- 0.9 microA x cm(-2), followed by a sustained fall to a level 31.2 +/- 2.6 microA x cm(-2) (n = 43) below resting I(SC). The peak response was due to Cl- secretion as it was preserved in the presence of amiloride but was largely reduced in the presence of basolateral bumetanide (20 microM) or in the absence of extracellular Cl-. The secondary decline of I(SC) was also attenuated by bumetanide and by Ba2+, indicating that it is partly due to a stimulation of K+ secretion. In addition, the amiloride-sensitive I(SC) was slightly reduced by mAP, suggesting that inhibition of Na+ absorption also contributes to the I(SC) decline. Expression of PAR-2 in mouse distal colon was confirmed using RT-PCR and immunocytochemistry. We conclude that functional basolateral PAR-2 is present in mouse distal colon and that its activation stimulates Cl- and K+ secretion while inhibiting baseline Na+ absorption.
Collapse
Affiliation(s)
- John E Cuffe
- University Laboratory of Physiology, Oxford University, Parks Road, Oxford, OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
35
|
Sabino MAC, Honore P, Rogers SD, Mach DB, Luger NM, Mantyh PW. Tooth extraction-induced internalization of the substance P receptor in trigeminal nucleus and spinal cord neurons: imaging the neurochemistry of dental pain. Pain 2002; 95:175-86. [PMID: 11790480 DOI: 10.1016/s0304-3959(01)00397-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although pains arising from the craniofacial complex can be severe and debilitating, relatively little is known about the peripheral and central mechanisms that generate and maintain orofacial pain. To better understand the neurons in the trigeminal complex and spinal cord that are activated following nociceptive stimuli to the orofacial complex, we examined substance P (SP) induced internalization of substance P receptors (SPR) in neurons following dental extraction in the rat. Unilateral gingival reflection or surgical extraction of a rat maxillary incisor or molar was performed and tissues harvested at various time points post-extraction. Immunohistochemical analysis of brainstem and cervical spinal cord sections was performed using an anti-SPR antibody and confocal imaging. Both the number and location of neurons showing SPR internalization was dependent on the location and extent of tissue injury. Whereas extraction of the incisor induced internalization of SPR in neurons bilaterally in nucleus caudalis and the spinal cord, extraction of the molar induced strictly unilateral internalization of SPR-expressing neurons in the same brain structures. Minor tissue injury (retraction of the gingiva) activated SPR neurons located in lamina I whereas more extensive and severe tissue injury (incisor or molar extraction) induced extensive SPR internalization in neurons located in both laminae I and III-V. The rostrocaudal extent of the SPR internalization was also correlated with the extent of tissue injury. Thus, following relatively minor tissue injury (gingival reflection) neurons showing SPR internalization were confined to the nucleus caudalis while procedures which cause greater tissue injury (incisor or molar extraction), neurons showing SPR internalization extended from the interpolaris/caudalis transition zone through the C7 spinal level. Defining the population of neurons activated in orofacial pain and whether analgesics modify the activation of these neurons should provide insight into the mechanisms that generate and maintain acute and chronic orofacial pain.
Collapse
Affiliation(s)
- Mary Ann C Sabino
- Department of Preventive Sciences, University of Minnesota, 18-208 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
36
|
Rameshwar P, Zhu G, Donnelly RJ, Qian J, Ge H, Goldstein KR, Denny TN, Gascón P. The dynamics of bone marrow stromal cells in the proliferation of multipotent hematopoietic progenitors by substance P: an understanding of the effects of a neurotransmitter on the differentiating hematopoietic stem cell. J Neuroimmunol 2001; 121:22-31. [PMID: 11730936 DOI: 10.1016/s0165-5728(01)00443-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Communication within the hematopoietic-neuroendocrine-immune axis is partly mediated by neurotransmitters (e.g. substance P, SP) and cytokines. SP mediates neuromodulation partly through the stimulation of bone marrow (BM) progenitors. This study shows that SP, through the neurokinin-1 receptor, stimulates the proliferation of primitive hematopoietic progenitors: cobblestone-forming cells (CAFC, CD34+). This effect is optimal when macrophage is included within the fibroblast support. Indirect induction of IL-1 could be important in the proliferation of CAFC colonies by SP. Phenotypic and functional studies suggest that SP might directly interact with the CD34+/CD45(dim) population. These studies indicate that SP can initiate a cascade of biological responses in the BM stroma and stem cells to stimulate hematopoiesis.
Collapse
Affiliation(s)
- P Rameshwar
- Department of Medicine-Hematology, UMDNJ-New Jersey Medical School, 185 South Orange Ave, MSB-Rm. E-585, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schmidlin F, Dery O, DeFea KO, Slice L, Patierno S, Sternini C, Grady EF, Bunnett NW. Dynamin and Rab5a-dependent trafficking and signaling of the neurokinin 1 receptor. J Biol Chem 2001; 276:25427-37. [PMID: 11306580 DOI: 10.1074/jbc.m101688200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the molecular mechanisms of agonist-induced trafficking of G-protein-coupled receptors is important because of the essential role of trafficking in signal transduction. We examined the role of the GTPases dynamin 1 and Rab5a in substance P (SP)-induced trafficking and signaling of the neurokinin 1 receptor (NK1R), an important mediator of pain, depression, and inflammation, by studying transfected cells and enteric neurons that naturally express the NK1R. In unstimulated cells, the NK1R colocalized with dynamin at the plasma membrane, and Rab5a was detected in endosomes. SP induced translocation of the receptor into endosomes containing Rab5a immediately beneath the plasma membrane and then in a perinuclear location. Expression of the dominant negative mutants dynamin 1 K44E and Rab5aS34N inhibited endocytosis of SP by 45 and 32%, respectively. Dynamin K44E caused membrane retention of the NK1R, whereas Rab5aS34N also impeded the translocation of the receptor from superficially located to perinuclear endosomes. Both dynamin K44E and Rab5aS34N strongly inhibited resensitization of SP-induced Ca(2+) mobilization by 60 and 85%, respectively, but had no effect on NK1R desensitization. Dynamin K44E but not Rab5aS34N markedly reduced SP-induced phosphorylation of extracellular signal regulated kinases 1 and 2. Thus, dynamin mediates the formation of endosomes containing the NK1R, and Rab5a mediates both endosomal formation and their translocation from a superficial to a perinuclear location. Dynamin and Rab5a-dependent trafficking is essential for NK1R resensitization but is not necessary for desensitization of signaling. Dynamin-dependent but not Rab5a-dependent trafficking is required for coupling of the NK1R to the mitogen-activated protein kinase cascade. These processes may regulate the nociceptive, depressive, and proinflammatory effects of SP.
Collapse
Affiliation(s)
- F Schmidlin
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94143-0660, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sternini C. Receptors and transmission in the brain-gut axis: potential for novel therapies. III. Mu-opioid receptors in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2001; 281:G8-15. [PMID: 11408250 DOI: 10.1152/ajpgi.2001.281.1.g8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
G protein-coupled receptors are cell surface signal-transducing proteins, which elicit a variety of biological functions by the activation of different intracellular effector systems. Many of these receptors, including the mu-opioid receptor (mu OR), have been localized in the gastrointestinal tract. mu OR is the target of opioids and alkaloids, potent analgesic drugs with high potential for abuse. mu OR is expressed by enteric neurons, and it undergoes ligand-selective endocytosis. It is of clinical importance because it mediates tolerance and other major side effects of opiate analgesics, including impairment of gastrointestinal propulsion. An important observation of mu OR is its differential trafficking and desensitization properties in response to individual agonists, which might have long-term physiological consequences and be involved in the development of opiate side effects. Receptor activation by agonists is the basis for signaling, and alterations of the mechanisms controlling cellular responses of G protein-coupled receptors to agonists might be the basis of several diseases, including gastrointestinal diseases. Therefore, understanding these basic cellular mechanisms is important for developing appropriate therapeutic agents.
Collapse
Affiliation(s)
- C Sternini
- CURE Digestive Diseases Research Center, Department of Veterans Affairs Greater Los Angeles Healthcare System, Digestive Diseases Division, Department of Medicine, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
39
|
Portbury AL, Grkovic I, Young HM, Furness JB. Relationship between postsynaptic NK(1) receptor distribution and nerve terminals innervating myenteric neurons in the guinea-pig ileum. THE ANATOMICAL RECORD 2001; 263:248-54. [PMID: 11455533 DOI: 10.1002/ar.1088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The amounts of neurokinin 1 (NK(1)) receptor immunolabelling on the membranes of myenteric cell bodies at appositions with tachykinin-immunoreactive nerve terminals, other nerve terminals, and glial cells were compared at the ultrastructural level using pre-embedding, double-label immunocytochemistry. NK(1) receptor immunoreactivity was revealed using silver-intensified, 1 nm gold, and tachykinin-immunoreactive nerve terminals were revealed using diaminobenzidine. The density of NK(1) receptor immunolabelling (silver particles per length of cell membrane) on the membrane at appositions with tachykinin-immunoreactive nerve terminals was not significantly different from that at appositions with other (nonimmunoreactive) nerve terminals or with glial cells. Synaptic specializations ("active zones") were present at a small proportion of the appositions between NK(1) receptor-immunoreactive cell bodies and tachykinin-immunoreactive or other nerve terminals. The density of NK(1) receptor immunolabelling at synaptic specializations was lower than that at regions of appositions where no synaptic specializations were present. The presence of NK(1) receptor on the cell surface in areas not directly apposed to tachykinin-containing nerve terminals suggests that tachykinins that diffuse away from their site of release may still exert an action via NK(1) receptors. Although NK(1) receptors do not appear to be targetted to particular sites on the surfaces of myenteric nerve cell bodies and proximal dendrites, they are reduced in density at regions of the membrane-forming synaptic specializations.
Collapse
Affiliation(s)
- A L Portbury
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, VIC, Australia
| | | | | | | |
Collapse
|
40
|
Southwell BR, Furness JB. Immunohistochemical demonstration of the NK(1) tachykinin receptor on muscle and epithelia in guinea pig intestine. Gastroenterology 2001; 120:1140-51. [PMID: 11266378 DOI: 10.1053/gast.2001.23251] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND AIMS Previous immunohistochemical studies failed to reveal neurokinin (NK)(1) tachykinin receptors on intestinal muscle, despite convincing pharmacologic data indicating their presence. This study aimed to apply optimal immunohistochemical methods to reveal the receptors. METHODS NK(1)-receptor immunoreactivity was examined by confocal microscopy in tissue incubated with or without 10(-7) mol/L substance P (SP), 10(-7) mol/L SP plus 10(-6) mol/L NK(1) receptor antagonist (CP99994), or with fluorescent cyanine 3.18 (Cy3) SP. RESULTS Without incubation, NK(1)-receptor immunoreactivity was strong on muscle of the rectum and distal colon and weak in proximal colon and small intestine. NK(1) receptor was located on the surface of muscle cells in all gut regions. Exposure to SP increased the intensity of immunoreactivity, and the receptor moved into the cytoplasm. Mobilization of the receptor by SP was blocked by the NK(1)-receptor antagonist CP99994. Cy3-SP was internalized by muscle cells and colocalized with the receptor. NK(1)-receptor immunoreactivity occurred on crypt epithelial cells in the small intestine and the base of glands in the proximal colon. CONCLUSIONS The NK(1) receptor occurs on the external muscle throughout the small and large intestines. SP binds and triggers NK(1)-receptor aggregation and internalization in the muscle.
Collapse
MESH Headings
- Animals
- Carbocyanines/metabolism
- Carbocyanines/pharmacology
- Colon/cytology
- Colon/innervation
- Endocytosis/drug effects
- Epithelial Cells/chemistry
- Epithelial Cells/metabolism
- Female
- Fluorescent Dyes/metabolism
- Fluorescent Dyes/pharmacology
- Guinea Pigs
- Immunohistochemistry
- Intestinal Mucosa/chemistry
- Intestinal Mucosa/cytology
- Intestinal Mucosa/innervation
- Intestine, Small/cytology
- Intestine, Small/innervation
- Male
- Muscle, Smooth/chemistry
- Muscle, Smooth/innervation
- Nerve Fibers/chemistry
- Neurokinin-1 Receptor Antagonists
- Piperidines/pharmacology
- Receptors, Neurokinin-1/analysis
- Receptors, Neurokinin-1/metabolism
- Receptors, Neurokinin-2/analysis
- Receptors, Neurokinin-2/metabolism
- Receptors, Neurokinin-3/analysis
- Receptors, Neurokinin-3/metabolism
- Rectum/drug effects
- Rectum/physiology
- Substance P/pharmacology
Collapse
Affiliation(s)
- B R Southwell
- Department of Gastroenterology, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
41
|
Sagan S, Lavielle S. Internalization of [3H]Substance P Analogues in NK-1 Receptor Transfected CHO Cells. Biochem Biophys Res Commun 2001; 282:958-64. [PMID: 11352645 DOI: 10.1006/bbrc.2001.4687] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The internalization of [3H]propionyl[Met(O2)11]SP(7-11) which binds one binding site and of [3H][Pro9]SP which binds the two binding sites associated with the NK-1 receptor has been examined in CHO cells. The quantity of [3H][Pro9]SP measured inside the cytoplasm in kinetic experiments is fully temperature-dependent. In contrast, [3H]propionyl[Met(O2)11]SP(7-11) internalization reaches the same extent whatever the temperature, although the rate slowed down with lower temperature. The extent of internalization of [3H][Pro(9)]SP relative to the total specific bound is biphasic, when the extent of internalization of [3H]propionyl[Met(O2)11]SP(7-11) remains constant. For [3H][Pro9]SP, a high-affinity high-yield component inhibited in the presence of propionyl[Met(O2)11]SP(7-11) and a low-affinity low-yield component in the internalization process could be determined. Saturation studies show that [3H][Pro9]SP-binding parameters are insensitive to both phenylarsine oxide and monensin treatment, whereas [3H]propionyl[Met(O2)11]SP(7-11) maximal binding is decreased in both cases. Altogether, these data suggest that the two radiolabeled peptides should not follow the same internalization pathway.
Collapse
Affiliation(s)
- S Sagan
- Unité Mixte de Recherches CNRS 7613, Chimie Organique Biologique, Université Pierre & Marie Curie, Aile 44-45, Bo $$;ite courrier 182, 4 place Jussieu, Paris cedex 05, 75252, France.
| | | |
Collapse
|
42
|
Jenkinson KM, Mann PT, Southwell BR, Furness JB. Independent endocytosis of the NK(1) and NK(3) tachykinin receptors in neurons of the rat myenteric plexus. Neuroscience 2001; 100:191-9. [PMID: 10996469 DOI: 10.1016/s0306-4522(00)00259-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the myenteric plexus of rat ileum, NK(1) and NK(3) receptors are co-located almost exclusively on neurons of a single population. This study compares endocytosis of NK(1) and NK(3) receptors in these neurons. In the absence of agonist, 26.2+/-2.8% of NK(1) receptor and 29.1+/-1.1% of NK(3) receptor was located in the cytoplasm of the neurons; the remaining receptor was on the surface. The tachykinin neurotransmitters, substance P (10 pM-10 microM) and neurokinin A (10 pM-100 microM), both induced concentration-dependent endocytosis of NK(1) and NK(3) receptors. The selective NK(1) receptor agonist, [Sar(9),Met(O(2))(11)]-substance P (1 microM), induced endocytosis of NK(1) receptor (64.2+/-1.5% in cytoplasm) but not NK(3) receptor (32.9+/-5.0%). The NK(1) receptor endocytosis was reduced by the selective NK(1) receptor antagonist, CP-99994 (100 nM), but not by the selective NK(3) receptor antagonist, SR-142801 (1 microM). The selective NK(3) receptor agonist, senktide (10 nM), induced endocytosis of NK(3) receptor (61.2+/-5.4%) but not NK(1) receptor (34.0+/-4.5%). The NK(3) receptor endocytosis was blocked by SR-142801 but not by CP-99994. We also investigated the effects of monensin, which generally blocks recycling of endocytosed receptor. In the absence or presence of exogenous agonist, monensin caused a build-up of NK(1) receptor, but not NK(3) receptor, in the cytoplasm of neurons.The results demonstrate independent, agonist-induced endocytosis of NK(1) and NK(3) receptors in neurons of the myenteric plexus of rat ileum and suggest that the mechanisms of recycling of NK(1) and NK(3) receptors differ.
Collapse
Affiliation(s)
- K M Jenkinson
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Victoria, Australia.
| | | | | | | |
Collapse
|
43
|
Martin-Negrier M, Charron G, Bloch B. Agonist stimulation provokes dendritic and axonal dopamine D(1) receptor redistribution in primary cultures of striatal neurons. Neuroscience 2000; 99:257-66. [PMID: 10938431 DOI: 10.1016/s0306-4522(00)00187-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate the influence of neurotransmitter on G-protein-coupled receptor trafficking and compartimentalization in neurons, we have developed a model of primary neuronal cultures from fetal rat striatum on which we have studied the cellular and subcellular distribution and trafficking of the D(1) dopaminergic receptor. This receptor is known to be somatodendritic and axonal targeted in vivo, mostly to extrasynaptic locations. Immunohistochemical studies at the light and electron microscopic levels showed that, in cultures, the D(1) dopaminergic receptor is expressed in the absence of dopamine stimulation. The pattern of D(1) dopaminergic receptor immunostaining after stimulation by the D(1) dopaminergic receptor agonist SKF 82958 (1 microM) is dramatically modified with a decrease of the number of labeled D(1) dopaminergic receptor puncta (-40%) and an increase of their size in both dendrites (+120%) and axons (+240%). Seven hours after removal of the agonist, return to normal pattern was observed. The D(1) dopaminergic receptor antagonist SCH 23390 (2 microM) abolishes the effect of SKF 82958. Electron microscopy demonstrated, in dendrites, a translocation of the labeling from the plasma membrane to endosomes. Axonal D(1) dopaminergic receptor redistribution after acute stimulation indicates that the D(1) dopaminergic receptor is membrane targeted and responsive to stimulation. These results validate primary culture of striatal neurons to study subcellular localization and intraneuronal trafficking of G-protein-coupled receptors. This preparation will be useful to address various questions concerning the behavior and the trafficking of these receptors in neurons in relation to the neurotransmitter environment.
Collapse
Affiliation(s)
- M Martin-Negrier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5541, Laboratoire d'Histologie-Embryologie, Universite V. Segalen-Bordeaux II, 146 rue Leo Saignat, 33076 Cedex, Bordeaux, France.
| | | | | |
Collapse
|
44
|
Saban R, Nguyen N, Saban MR, Gerard NP, Pasricha PJ. Nerve-mediated motility of ileal segments isolated from NK(1) receptor knockout mice. Am J Physiol Gastrointest Liver Physiol 2000; 277:G1173-9. [PMID: 10600814 DOI: 10.1152/ajpgi.1999.277.6.g1173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Tachykinins such as substance P (SP) and neurokinin A (NKA) acting on neurokinin (NK) receptors modulate the nonadrenergic noncholinergic (NANC) neurotransmission in the gastrointestinal tract of several species, but the information about the mouse small intestine is scanty. Both SP and NKA induced concentration-dependent contractions of ileal segments isolated from wild-type mice that were blocked by NK(1) and NK(2) antagonists, respectively. In contrast, segments isolated from NK(1) receptor (NK(1)-R) knockout mice responded only to elevated concentrations of SP. To reveal the inhibitory NANC (iNANC) responses, tissues were pretreated with atropine and guanethidine. Under these conditions, a tetrodotoxin-sensitive relaxation in response to electrical field stimulation (EFS) was observed. NK(1)-R knockout mice presented a trend toward an increase in iNANC responses, whereas the NK(1)-R antagonist significantly potentiated iNANC relaxation in tissues isolated from wild-type mice. N(G)-nitro-L-arginine methyl ester (100 microM) transformed the relaxant response to EFS into a tetrodotoxin-sensitive, frequency-dependent contraction characteristic of an excitatory NANC (eNANC) system. A NK(1)-R antagonist abolished the contractile responses of the mouse ileum to EFS, whereas a NK(2) receptor antagonist had a trend toward reducing EFS-induced contraction. The eNANC component was absent in NK(1)-R knockout mice. Measurement of SP-like immunoreactivity indicated similar amounts of SP per gram of tissue isolated from wild-type and NK(1)-R knockout mice, indicating that the observed differences in response to EFS were not due to a differential peptide content. It is concluded that, in the mouse ileum, both NK(1) and NK(2) receptors modulated the responses to exogenous tachykinins, whereas NK(1) is the primary tachykinin receptor involved in both iNANC and eNANC transmission.
Collapse
Affiliation(s)
- R Saban
- The Enteric Neuromuscular Diseases and Pain Laboratory, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, Texas 77555-0632, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Enteric ganglia can maintain integrated functions, such as the peristaltic reflex, in the absence of input from the central nervous system, which has a modulatory role. Several clinical and experimental observations suggest that homeostatic control of gut function in a changing environment may be achieved through adaptive changes occurring in the enteric ganglia. A distinctive feature of enteric ganglia, which may be crucial during the development of adaptive responses, is the vicinity of the final effector cells, which are an important source of mediators regulating cell growth. The aim of this review is to focus on the possible mechanisms underlying neuronal plasticity in the enteric nervous system and to consider approaches to the study of plasticity in this model. These include investigations of neuronal connectivity during development, adaptive mechanisms that maintain function after suppression of a specific neural input, and the possible occurrence of activity-dependent modifications of synaptic efficacy, which are thought to be important in storage of information in the brain. One of the applied aspects of the study of plasticity in the enteric nervous system is that knowledge of the underlying mechanisms may eventually enable us to develop strategies to correct neuronal alterations described in several diseases.
Collapse
Affiliation(s)
- C Giaroni
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | | | | | | |
Collapse
|
46
|
Snyman CJ, Raidoo DM, Bhoola KD. Localization of proteases and peptide receptors by confocal microscopy. Methods Enzymol 1999; 307:368-94. [PMID: 10506985 DOI: 10.1016/s0076-6879(99)07024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- C J Snyman
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Natal, Congella, South Africa
| | | | | |
Collapse
|
47
|
Steinhoff M, Corvera CU, Thoma MS, Kong W, McAlpine BE, Caughey GH, Ansel JC, Bunnett NW. Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 1999; 8:282-94. [PMID: 10439226 DOI: 10.1111/j.1600-0625.1999.tb00383.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteinase-activated receptor-2 (PAR-2) is a G-protein coupled receptor. Tryptic proteases cleave PAR-2 exposing a tethered ligand (SLIGKV), which binds and activates the receptor. Although PAR-2 is highly expressed by cultured keratinocytes and is an inflammatory mediator, its precise localization in the normal and inflamed human skin is unknown, and the proteases that activate PAR-2 in the skin have not been identified. We localized PAR-2 in human skin by immunohistochemistry, examined PAR-2 expression by RT-PCR and RNA blotting, and investigated PAR-2 activation by mast cell tryptase. PAR-2 was localized to keratinocytes, especially in the granular layer, to endothelial cells, hair follicles, myoepithelial cells of sweat glands, and dermal dendritic-like cells. PAR-2 was also highly expressed in keratinocytes and endothelial cells of inflamed skin. PAR-2 mRNA was detected in normal human skin by RT-PCR, and in cultured human keratinocytes and dermal microvascular endothelial cells by Northern hybridization. Trypsin, tryptase and a peptide corresponding to the tethered ligand (SLIGKVNH2) increased [Ca2+]i in keratinocytes, measured using Fura-2/AM. Although tryptase-containing mast cells were sparsely scattered in the normal dermis, they were numerous in the dermis in atopic dermatitis, and in the dermis, dermal-epidermal border, and occasionally within the lower epidermis in psoriasis. Tryptase may activate PAR-2 on keratinocytes and endothelial cells during inflammation.
Collapse
MESH Headings
- Biological Transport/physiology
- Blotting, Northern
- Calcium/metabolism
- Cells, Cultured
- Chymases
- Dermatitis, Atopic/enzymology
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Humans
- Immunohistochemistry
- Keratinocytes/physiology
- Mast Cells/enzymology
- Microcirculation/physiology
- Receptor, PAR-2
- Receptors, Thrombin/metabolism
- Receptors, Thrombin/physiology
- Reference Values
- Reverse Transcriptase Polymerase Chain Reaction
- Serine Endopeptidases/metabolism
- Serine Endopeptidases/physiology
- Skin/blood supply
- Skin/metabolism
- Skin/pathology
- Tissue Distribution/physiology
- Tryptases
Collapse
Affiliation(s)
- M Steinhoff
- Department of Surgery, University of California, San Francisco, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
McConalogue K, Déry O, Lovett M, Wong H, Walsh JH, Grady EF, Bunnett NW. Substance P-induced trafficking of beta-arrestins. The role of beta-arrestins in endocytosis of the neurokinin-1 receptor. J Biol Chem 1999; 274:16257-68. [PMID: 10347182 DOI: 10.1074/jbc.274.23.16257] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced redistribution of G-protein-coupled receptors (GPCRs) and beta-arrestins determines the subsequent cellular responsiveness to agonists and is important for signal transduction. We examined substance P (SP)-induced trafficking of beta-arrestin1 and the neurokinin-1 receptor (NK1R) in KNRK cells in real time using green fluorescent protein. Green fluorescent protein did not alter function or localization of the NK1R or beta-arrestin1. SP induced (a) striking and rapid (<1 min) translocation of beta-arrestin1 from the cytosol to the plasma membrane, which preceded NK1R endocytosis; (b) redistribution of the NK1R and beta-arrestin1 into the same endosomes containing SP and the transferrin receptor (2-10 min); (c) prolonged colocalization of the NK1R and beta-arrestin1 in endosomes (>60 min); (d) gradual resumption of the steady state distribution of the NK1R at the plasma membrane and beta-arrestin1 in the cytosol (4-6 h). SP stimulated a similar redistribution of immunoreactive beta-arrestin1 and beta-arrestin2. In contrast, SP did not affect Galphaq/11 distribution, which remained at the plasma membrane. Expression of the dominant negative beta-arrestin319-418 inhibited SP-induced endocytosis of the NK1R. Thus, SP induces rapid translocation of beta-arrestins to the plasma membrane, where they participate in NK1R endocytosis. beta-Arrestins colocalize with the NK1R in endosomes until the NK1R recycles and beta-arrestins return to the cytosol.
Collapse
Affiliation(s)
- K McConalogue
- Department of Surgery, University of California, San Francisco, California 94143-0660, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Mann PT, Southwell BR, Furness JB. Internalization of the neurokinin 1 receptor in rat myenteric neurons. Neuroscience 1999; 91:353-62. [PMID: 10336084 DOI: 10.1016/s0306-4522(98)00595-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Immunoreactivity for the neurokinin 1 receptor is contained in nerve cell bodies that have been deduced to be intrinsic primary afferent neurons in the myenteric plexus of the rat ileum. This study shows that neurokinin 1 receptor immunoreactivity on these neurons represents receptors that can bind agonist and undergo endocytosis, and explores the properties of that endocytosis. Segments of rat ileum were incubated in Hanks' balanced salt solution for 1 h at 4 degrees C, followed by 1 h at 37 degrees C in physiological saline solution with nicardipine and tetrodotoxin, in the presence or absence of substance P. Tissue was then fixed and whole-mount preparations were processed for fluorescence immunohistochemistry, using antibodies raised against the C-terminus of the neurokinin 1 receptor. The intracellular and surface distributions of receptor immunoreactivity were analysed using confocal microscopy and quantified by computer analysis. In tissue not exposed to substance P, most neurokinin 1 receptor immunoreactivity was confined to the surfaces of nerve cells, and 29% was intracellular. Exogenous substance P (10(-6) M) caused an increase in the amount of intracellular receptor to 72%. This internalization was concentration dependent, and maximum receptor internalization was achieved between 10(-6) M and 10(-5) M substance P (EC50 = 4.9 +/-1.6 x 10(-7) M). The specific neurokinin 1 receptor antagonist, SR104333 (10(-6) M), inhibited substance P-induced endocytosis. In tissue that was incubated in 5 x 10(-5) M monensin (to trap endocytosed receptor in the cell), without the addition of substance P, a high level of intracellular neurokinin 1 receptor immunoreactivity (81%) was also present. We deduce that endocytosis in the presence of monensin was stimulated by the release of tachykinins from intrinsic nerve endings, based on the following evidence: when endogenous release of tachykinin was blocked using a high magnesium/low calcium solution, or binding of tachykinins to the receptor was prevented using 10(-6) M SR140333, the intracellular receptor immunoreactivity remained at approximately 40%. Incubation with hypertonic sucrose also trapped receptors on the cell surface. Use of these protocols that modify receptor trafficking showed that agonist induced the neurokinin 1 receptors to aggregate, accumulate in endocytotic vesicles, move to perinuclear organelles and recycle to the surface in less than 1 h. This study indicates that there is sufficient release of endogenous tachykinins in the rat ileum to cause receptor internalization and implies that these intrinsic primary afferent neurons are likely to be under continuous influence from tachykinins in the normal intestine.
Collapse
Affiliation(s)
- P T Mann
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
50
|
McConalogue K, Grady EF, Minnis J, Balestra B, Tonini M, Brecha NC, Bunnett NW, Sternini C. Activation and internalization of the mu-opioid receptor by the newly discovered endogenous agonists, endomorphin-1 and endomorphin-2. Neuroscience 1999; 90:1051-9. [PMID: 10218804 PMCID: PMC4472477 DOI: 10.1016/s0306-4522(98)00514-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The multiple effects of opiate alkaloids, important therapeutic drugs used for pain control, are mediated by the neuronal miro-opioid receptor. Among the side effects of these drugs is a profound impairment of gastrointestinal transit. Endomorphins are opioid peptides recently isolated from the nervous system, which have high affinity and selectivity for micro-opioid receptors. Since the miro-opioid receptor undergoes ligand-induced receptor endocytosis in an agonist-dependent manner, we compared the ability of endomorphin-1, endomorphin-2 and the micro-opioid receptor peptide agonist, [D-Ala2,MePhe4,Gly-ol5]-enkephalin (DAMGO), to induce receptor endocytosis in cells transfected with epitope-tagged micro-opioid receptor complementary DNA, and in myenteric neurons of the guinea-pig ileum, which naturally express this receptor. Immunohistochemistry with antibodies to the FLAG epitope or to the native receptor showed that the micro-opioid receptor was mainly located at the plasma membrane of unstimulated cells. Endomorphins and DAMGO induced micro-opioid receptor endocytosis into early endosomes, a process that was inhibited by naloxone. Quantification of surface receptors by flow cytometry indicated that endomorphins' and DAMGO stimulated endocytosis with similar time-course and potency. They inhibited with similar potency electrically induced cholinergic contractions in the longitudinal muscle-myenteric plexus preparation through an action antagonized by naloxone. The apparent affinity estimate of naloxone (pA2 approximately 8.4) is consistent with antagonism at the micro-opioid receptor in myenteric neurons. These results indicate that endomorphins directly activate the micro-opioid receptor in neurons, thus supporting the hypothesis that they are ligands mediating opioid actions in the nervous system. Endomorphin-induced micro-opioid receptor activation can be visualized by receptor endocytosis.
Collapse
Affiliation(s)
- K McConalogue
- Department of Surgery, University of California, San Francisco 94143-0660, USA
| | | | | | | | | | | | | | | |
Collapse
|