1
|
Campione E, Artosi F, Shumak RG, Giunta A, Argenziano G, Assorgi C, Balato A, Bernardini N, Brunasso AMG, Burlando M, Caldarola G, Campanati A, Carugno A, Castelli F, Conti A, Costanzo A, Cuccia A, Dapavo P, Dattola A, De Simone C, Di Lernia V, Dini V, Donini M, Errichetti E, Esposito M, Fargnoli MC, Foti A, Fiorella C, Gargiulo L, Gisondi P, Guarneri C, Legori A, Lembo S, Loconsole F, Malagoli P, Marzano AV, Mercuri SR, Megna M, Micali G, Mortato E, Musumeci ML, Narcisi A, Offidani AM, Orsini D, Paolino G, Pellacani G, Peris K, Potenza C, Prignano F, Quaglino P, Ribero S, Richetta AG, Romanelli M, Rossi A, Strippoli D, Trovato E, Venturini M, Bianchi L. Fast Clinical Response of Bimekizumab in Nail Psoriasis: A Retrospective Multicenter 36-Week Real-Life Study. Pharmaceuticals (Basel) 2024; 17:1378. [PMID: 39459016 PMCID: PMC11510175 DOI: 10.3390/ph17101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background/Objectives: Nail psoriasis (NP) is a chronic and difficult-to-treat disease, which causes significant social stigma and impairs the patients' quality of life. Moreover, nail psoriasis is a true therapeutic challenge for clinicians. The presence of nail psoriasis can be part of a severe form of psoriasis and can have predictive value for the development of psoriatic arthritis. Our real-world-evidence multicenter study aims to evaluate the efficacy of bimekizumab in nail psoriasis. (2) Methods: A retrospective analysis of a multicenter observational study included 834 patients affected by moderate-to-severe psoriasis, in 33 Dermatologic Units in Italy, treated with bimekizumab from December 2022 to September 2023. Clinimetric assessments were based on Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI), and Physician's Global Assessment of Fingernail Psoriasis (PGA-F) for the severity of nail psoriasis at 0, 12, 24, and 36 weeks. (3) Results: Psoriatic nail involvement was present in 27.95% of patients. The percentage of patients who achieved a complete clearance of NP in terms of PGA-F 0 was 31.7%, 57%, and 88.5% at week 4, 16, and 36, respectively. PASI 100 was achieved by 32.03% of patients at week 4, by 61.8% at week 16, and by 78.92% of patients at week 36. The mean baseline PASI was 16.24. The mean DLQI values for the entire group of patients at baseline, at week 4, at week 16, and at week 36 were 14.62, 3.02, 0.83, and 0.5, respectively. (4) Conclusions: Therapies that promote the healing of both the skin and nails in a short time can also ensure a lower risk of subsequently developing arthritis which is disabling over time. Bimekizumab proved to be particularly effective to treat NP, with a fast response in terms of complete clearance, with over 88.5% of patients free from NP after 36 weeks. The findings of our real-world study showed that patients with moderate-to-severe PsO and concomitant NP had significantly faster and more substantial improvements in NP up to 36 weeks with respect to previous research findings. Considering the rapid healing of the nail, the dual inhibition of IL17 A and F might have a great value in re-establishing the dysregulation of keratin 17 at the nail level.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| | - Fabio Artosi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| | - Ruslana Gaeta Shumak
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| | - Alessandro Giunta
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| | - Giuseppe Argenziano
- Dermatology Unit, University of Campania L. Vanvitelli, 80131 Naples, Italy; (G.A.); (A.B.)
| | - Chiara Assorgi
- Daniele Innocenzi, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University Dermatology ASL, 04100 Latina, Italy; (C.A.); (N.B.); (C.P.)
| | - Anna Balato
- Dermatology Unit, University of Campania L. Vanvitelli, 80131 Naples, Italy; (G.A.); (A.B.)
| | - Nicoletta Bernardini
- Daniele Innocenzi, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University Dermatology ASL, 04100 Latina, Italy; (C.A.); (N.B.); (C.P.)
| | | | - Martina Burlando
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60100 Ancona, Italy; (M.B.); (A.C.); (A.M.O.)
| | - Giacomo Caldarola
- Dermatology, Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00185 Rome, Italy; (G.C.); (C.D.S.); (K.P.)
- Dermatology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60100 Ancona, Italy; (M.B.); (A.C.); (A.M.O.)
| | - Andrea Carugno
- Dermatology Unit, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Franco Castelli
- Section of Dermatology, Koelliker Hospital, 47923 Turin, Italy; (F.C.); (A.C.)
| | - Andrea Conti
- Section of Dermatology, Koelliker Hospital, 47923 Turin, Italy; (F.C.); (A.C.)
| | - Antonio Costanzo
- Dermatology Unit, IRCCS Humanitas Research Hospital, 10134 Rozzano, Italy; (A.C.); (L.G.)
| | - Aldo Cuccia
- Unit of Dermatology, San Donato Hospital, 52100 Arezzo, Italy;
| | - Paolo Dapavo
- Second Dermatologic Clinic, Department of Biomedical Science and Human Oncology, University of Turin, 10124 Turin, Italy;
| | - Annunziata Dattola
- Dermatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Science, University of La Sapienza, 00161 Rome, Italy; (A.D.); (G.P.); (A.G.R.); (A.R.)
| | - Clara De Simone
- Dermatology, Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00185 Rome, Italy; (G.C.); (C.D.S.); (K.P.)
- Dermatology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vito Di Lernia
- Dermatology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Valentina Dini
- Dermatology Unit, Department of Clinical and Experimental Medicine Ospedale Santa Chiara, 56126 Pisa, Italy; (V.D.); (M.R.)
| | - Massimo Donini
- Dermatology Unit, Department of Medicine, Hospital S.S. Giovanni e Paolo, AULSS−3-Serenissima, 30122 Venezia, Italy;
| | - Enzo Errichetti
- Institute of Dermatology, Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Maria Esposito
- Section of Dermatology, Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy; (M.E.); (M.C.F.)
| | - Maria Concetta Fargnoli
- Section of Dermatology, Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy; (M.E.); (M.C.F.)
| | - Antonio Foti
- Unit of Dermatology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (S.R.M.); (G.P.)
| | - Carmen Fiorella
- Section of Dermatology, Oncology and Ematology Department Asl Bat, P.O. M.R. Dimiccoli, 70051 Barletta, Italy;
| | - Luigi Gargiulo
- Dermatology Unit, IRCCS Humanitas Research Hospital, 10134 Rozzano, Italy; (A.C.); (L.G.)
| | - Paolo Gisondi
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, 37129 Verona, Italy;
| | - Claudio Guarneri
- Department of Biomedical and Dental Sciences and Morpho Functional Imaging, Section of Dermatology, University of Messina, 98121 Verona, Italy;
| | - Agostina Legori
- UO Dermatologia IRCCS Ospedale Galeazzi & Università degli Studi di Milano, 20157 Milan, Italy;
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, 84084 Salerno, Italy;
| | - Francesco Loconsole
- Department of Dermatology, University of Bari, 70121 Bari, Italy; (F.L.); (E.M.)
| | - Piergiorigio Malagoli
- Department of Dermatology, Dermatology Unit Azienda Ospedaliera San Donato Milanese, 20097 Milan, Italy;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Santo Raffaele Mercuri
- Unit of Dermatology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (S.R.M.); (G.P.)
- Unit of Dermatologic Clinic, Università Vita-Salute, San Raffaele, 20132 Milan, Italy
| | - Matteo Megna
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naple, Italy;
| | - Giuseppe Micali
- UOC Dermatologia, University of Catania, PO “G. Rodolico”, AOU Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy; (G.M.); (M.L.M.)
| | - Edoardo Mortato
- Department of Dermatology, University of Bari, 70121 Bari, Italy; (F.L.); (E.M.)
| | - Maria Letizia Musumeci
- UOC Dermatologia, University of Catania, PO “G. Rodolico”, AOU Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy; (G.M.); (M.L.M.)
| | - Alessandra Narcisi
- Dermatology Unit, IRCCS Humanitas Research Hospital, 10134 Rozzano, Italy; (A.C.); (L.G.)
| | - Anna Maria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, 60100 Ancona, Italy; (M.B.); (A.C.); (A.M.O.)
| | - Diego Orsini
- Clinical Dermatology Unit, San Gallicano Dermatological Institute IRCCS, 00167 Rome, Italy;
| | - Giovanni Paolino
- Unit of Dermatology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (S.R.M.); (G.P.)
| | - Giovanni Pellacani
- Dermatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Science, University of La Sapienza, 00161 Rome, Italy; (A.D.); (G.P.); (A.G.R.); (A.R.)
| | - Ketty Peris
- Dermatology, Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00185 Rome, Italy; (G.C.); (C.D.S.); (K.P.)
- Dermatology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Concetta Potenza
- Daniele Innocenzi, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University Dermatology ASL, 04100 Latina, Italy; (C.A.); (N.B.); (C.P.)
| | - Francesca Prignano
- Department of Dermatological Sciences, Dermatology Section, University of Florence, 50121 Florence, Italy;
| | - Pietro Quaglino
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Torino, Italy; (P.Q.); (S.R.)
| | - Simone Ribero
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Torino, Italy; (P.Q.); (S.R.)
| | - Antonio Giovanni Richetta
- Dermatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Science, University of La Sapienza, 00161 Rome, Italy; (A.D.); (G.P.); (A.G.R.); (A.R.)
| | - Marco Romanelli
- Dermatology Unit, Department of Clinical and Experimental Medicine Ospedale Santa Chiara, 56126 Pisa, Italy; (V.D.); (M.R.)
| | - Antonio Rossi
- Dermatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Science, University of La Sapienza, 00161 Rome, Italy; (A.D.); (G.P.); (A.G.R.); (A.R.)
| | - Davide Strippoli
- Dermatology Unit, Manzoni Hospital, ASST-Lecco, 23900 Lecco, Italy;
| | - Emanuele Trovato
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy;
| | - Marina Venturini
- Department of Clinical and Experimental Sciences, Section of Dermatology, University of Brescia, 25123 Brescia, Italy;
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (F.A.); (R.G.S.); (A.G.); (L.B.)
| |
Collapse
|
2
|
Dos Santos Dias L, Lionakis MS. IL-17: A Critical Cytokine for Defense against Oral Candidiasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1049-1051. [PMID: 39374468 DOI: 10.4049/jimmunol.2400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
This Pillars of Immunology article is a commentary on "Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis," a pivotal article written by H. R. Conti, F. Shen, N. Nayyar, E. Stocum, J. N. Sun, M. J. Lindemann, A. W. Ho, J. H. Hai, J. J . Yu, J. W. Jung, S. G. Filler, P. Masso-Welch, M. Edgerton, and S. L. Gaffen, and published in The Journal of Experimental Medicine in 2009. https://doi.org/10.1084/jem.20081463.
Collapse
Affiliation(s)
- Lucas Dos Santos Dias
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
García-Patiño MG, Marcial-Medina MC, Ruiz-Medina BE, Licona-Limón P. IL-17 in skin infections and homeostasis. Clin Immunol 2024; 267:110352. [PMID: 39218195 DOI: 10.1016/j.clim.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Interleukin (IL) 17 is a proinflammatory cytokine belonging to a structurally related group of cytokines known as the IL-17 family. It has been profoundly studied for its contribution to the pathology of autoimmune diseases. However, it also plays an important role in homeostasis and the defense against extracellular bacteria and fungi. IL-17 is important for epithelial barriers, including the skin, where some of its cellular targets reside. Most of the research work on IL-17 has focused on its effects in the skin within the context of autoimmune diseases or sterile inflammation, despite also having impact on other skin conditions. In recent years, studies on the role of IL-17 in the defense against skin pathogens and in the maintenance of skin homeostasis mediated by the microbiota have grown in importance. Here we review and discuss the cumulative evidence regarding the main contribution of IL-17 in the maintenance of skin integrity as well as its protective or pathogenic effects during some skin infections.
Collapse
Affiliation(s)
- M G García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M C Marcial-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - B E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - P Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
4
|
Velcicky J, Bauer MR, Schlapbach A, Lapointe G, Meyer A, Vögtle M, Blum E, Ngo E, Rolando C, Nimsgern P, Teixeira-Fouchard S, Lehmann H, Furet P, Berst F, Schümann J, Stringer R, Larger P, Schmid C, Prendergast CT, Riek S, Schmutz P, Lehmann S, Berghausen J, Scheufler C, Rondeau JM, Burkhart C, Knoepfel T, Gommermann N. Discovery and In Vivo Exploration of 1,3,4-Oxadiazole and α-Fluoroacrylate Containing IL-17 Inhibitors. J Med Chem 2024; 67:16692-16711. [PMID: 39276085 DOI: 10.1021/acs.jmedchem.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
IL-17, a pro-inflammatory cytokine produced mainly by Th17 cells, is involved in the immune response to fungal and bacterial infections, whereas its aberrant production is associated with autoimmune and inflammatory diseases. IL-17 blocking antibodies like secukinumab (Cosentyx) have been developed and are used to treat conditions like psoriasis, psoriatic arthritis, and ankylosing spondylitis. Recently, the low molecular weight IL-17 inhibitor LY3509754 entered the clinic but was discontinued in Phase 1 due to adverse effects. In this study, we explored the replacements of furazan moiety posing a potential toxicology risk in LY3509754. By exploring replacements such as heterocycles as amide-isosteres as well as α-F-acrylamides, two compounds (18 and 26) were identified. Both compounds effectively reduced knee swelling in a rat arthritis model. However, early rat and dog toxicity studies revealed adverse findings, preventing their further development and indicating that furazan might not be responsible for the adverse effects of LY3509754.
Collapse
Affiliation(s)
- Juraj Velcicky
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | | | | | | | - Arndt Meyer
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | - Markus Vögtle
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | - Ernst Blum
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | - Estelle Ngo
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | | | | | | | | | - Pascal Furet
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | - Frédéric Berst
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | - Jens Schümann
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | - Rowan Stringer
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | - Patrice Larger
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | - Cindy Schmid
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | | | - Simone Riek
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | | | - Sylvie Lehmann
- Novartis Biomedical Research, Basel CH-4002, Switzerland
| | | | | | | | | | | | | |
Collapse
|
5
|
Van Emmenis L. Sarah Gaffen: I thrive on turning my vision for the lab into reality. J Exp Med 2024; 221:e20241418. [PMID: 39158588 PMCID: PMC11334327 DOI: 10.1084/jem.20241418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Sarah Gaffen, PhD, is a professor of medicine and rheumatology and holds the Gerald P. Rodnan endowed chair at the University of Pittsburgh. Her lab explores the biological function of IL-17 and its receptor in the context of fungal host defense and autoimmunity. We spoke to Sarah about where her interest in cytokines began, the importance of saying no in your career, and her interest in paleogenetics.
Collapse
Affiliation(s)
- Lucie Van Emmenis
- Senior Scientific Editor, JEM, Rockefeller University Press, New York, NY, USA
| |
Collapse
|
6
|
Mukhopadhyay SS, Swan KF, Pridjian G, Kolls JK, Zhuang Y, Yin Q, Lasky JA, Flemington E, Morris CA, Lin Z, Morris GF. Gammaherpesvirus Infection Stimulates Lung Tumor-Promoting Inflammation. Pathogens 2024; 13:747. [PMID: 39338937 PMCID: PMC11434807 DOI: 10.3390/pathogens13090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Lung tumor-promoting environmental exposures and γherpesvirus infections are associated with Type 17 inflammation. To test the effect of γherpesvirus infection in promoting lung tumorigenesis, we infected mutant K-Ras-expressing (K-RasLA1) mice with the murine γherpesvirus MHV68 via oropharyngeal aspiration. After 7 weeks, the infected mice displayed a more than 2-fold increase in lung tumors relative to their K-RasLA1 uninfected littermates. Assessment of cytokines in the lung revealed that expression of Type 17 cytokines (Il-6, Cxcl1, Csf3) peaked at day 7 post-infection. These observations correlated with the post-infection appearance of known immune mediators of tumor promotion via IL-17A in the lungs of tumor-bearing mice. Surprisingly, Cd84, an immune cell marker mRNA, did not increase in MHV68-infected wild-type mice lacking lung tumors. Csf3 and Cxcl1 protein levels increased more in the lungs of infected K-RasLA1 mice relative to infected wild-type littermates. Flow cytometric and transcriptomic analyses indicated that the infected K-RasLA1 mice had increased Ly6Gdim/Ly6Chi immune cells in the lung relative to levels seen in uninfected control K-RasLA1 mice. Selective methylation of adenosines (m6A modification) in immune-cell-enriched mRNAs appeared to correlate with inflammatory infiltrates in the lung. These observations implicate γherpesvirus infection in lung tumor promotion and selective accumulation of immune cells in the lung that appears to be associated with m6A modification of mRNAs in those cells.
Collapse
Affiliation(s)
- Sudurika S. Mukhopadhyay
- Departments of Microbiology & Immunology and Pathology & Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Kenneth F. Swan
- Department of Obstetrics & Gynecology, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (K.F.S.); (G.P.)
| | - Gabriella Pridjian
- Department of Obstetrics & Gynecology, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (K.F.S.); (G.P.)
| | - Jay K. Kolls
- Departments of Medicine & Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Yan Zhuang
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Qinyan Yin
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Joseph A. Lasky
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Erik Flemington
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| | - Cindy A. Morris
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Zhen Lin
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| | - Gilbert F. Morris
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| |
Collapse
|
7
|
Kong B, Lai Y. IL-17 family cytokines in inflammatory or autoimmune skin diseases. Adv Immunol 2024; 163:21-49. [PMID: 39271258 DOI: 10.1016/bs.ai.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
As potent pro-inflammatory mediators, IL-17 family cytokines play crucial roles in the pathogenesis of various inflammatory and autoimmune skin disorders. Although substantial progress has been achieved in understanding the pivotal role of IL-17A signaling in psoriasis, leading to the development of highly effective biologics, the functions of other IL-17 family members in inflammatory or autoimmune skin diseases remain less explored. In this review, we provide a comprehensive overview of IL-17 family cytokines and their receptors, with a particular focus on the recent advancements in identifying cellular sources, receptors and signaling pathways regulated by these cytokines. At the end, we discuss how the aberrant functions of IL-17 family cytokines contribute to the pathogenesis of diverse inflammatory or autoimmune skin diseases.
Collapse
Affiliation(s)
- Baida Kong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
8
|
Ni Q, Li G, Chen Y, Bao C, Wang T, Li Y, Ruan X, Wang H, Sun W. LECs regulate neutrophil clearance through IL-17RC/CMTM4/NF-κB axis at sites of inflammation or infection. Mucosal Immunol 2024; 17:723-738. [PMID: 38754839 DOI: 10.1016/j.mucimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The lymphatic system plays a vital role in the regulation of tissue fluid balance and the immune response to inflammation or infection. The effects of lymphatic endothelial cells (LECs) on the regulation of neutrophil migration have not been well-studied. In three murine models: imiquimod-induced skin inflammation, Staphylococcus aureus-induced skin infection, and ligature-induced periodontitis, we show that numerous neutrophils migrate from inflamed or infected tissues to the draining lymph nodes via lymphatic vessels. Moreover, inflamed or infected tissues express a high level of interleukin (IL)-17A and tumor necrosis factor (TNF)-α, simultaneously with a significant increase in the release of neutrophil attractors, including CXCL1, CXCL2, CXCL3, and CXCL5. Importantly, in vitro stimulation of LECs with IL-17A plus TNF-α synergistically promoted these chemokine secretions. Mechanistically, tetra-transmembrane protein CMTM4 directly binds to IL-17RC in LECs. IL-17A plus TNF-α stimulates CXC chemokine secretion by promoting nuclear factor-kappa B signaling. In contrast, knockdown of CMTM4 abrogates IL-17A plus TNF-α activated nuclear factor-kappa B signaling pathways. Lastly, the local administration of adeno-associated virus for CMTM4 in Prox1-CreERT2 mice, mediating LEC-specific overexpression of CMTM4, promotes the drainage of neutrophils by LECs and alleviates immune pathological responses. Thus, our findings reveal the vital role of LECs-mediated neutrophil attraction and clearance at sites of inflammation or infection.
Collapse
Affiliation(s)
- Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Gen Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Chen Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyi Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
9
|
Elahi R, Nazari M, Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. IL-17 in type II diabetes mellitus (T2DM) immunopathogenesis and complications; molecular approaches. Mol Immunol 2024; 171:66-76. [PMID: 38795686 DOI: 10.1016/j.molimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Chronic inflammation has long been considered the characteristic feature of type II diabetes mellitus (T2DM) Immunopathogenesis. Pro-inflammatory cytokines are considered the central drivers of the inflammatory cascade leading to β-cell dysfunction and insulin resistance (IR), two major pathologic events contributing to T2DM. Analyzing the cytokine profile of T2DM patients has also introduced interleukin-17 (IL-17) as an upstream regulator of inflammation, regarding its role in inducing the nuclear factor-kappa B (NF-κB) pathway. In diabetic tissues, IL-17 induces the expression of inflammatory cytokines and chemokines. Hence, IL-17 can deteriorate insulin signaling and β-cell function by activating the JNK pathway and inducing infiltration of neutrophils into pancreatic islets, respectively. Additionally, higher levels of IL-17 expression in patients with diabetic complications compared to non-complicated individuals have also proposed a role for IL-17 in T2DM complications. Here, we highlight the role of IL-17 in the Immunopathogenesis of T2DM and corresponding pathways, recent advances in preclinical and clinical studies targeting IL-17 in T2DM, and corresponding challenges and possible solutions.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
10
|
Kitaya K, Yasuo T, Yamaguchi T. Bridging the Diagnostic Gap between Histopathologic and Hysteroscopic Chronic Endometritis with Deep Learning Models. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:972. [PMID: 38929589 PMCID: PMC11205857 DOI: 10.3390/medicina60060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Chronic endometritis (CE) is an inflammatory pathologic condition of the uterine mucosa characterized by unusual infiltration of CD138(+) endometrial stromal plasmacytes (ESPCs). CE is often identified in infertile women with unexplained etiology, tubal factors, endometriosis, repeated implantation failure, and recurrent pregnancy loss. Diagnosis of CE has traditionally relied on endometrial biopsy and histopathologic/immunohistochemistrical detection of ESPCs. Endometrial biopsy, however, is a somewhat painful procedure for the subjects and does not allow us to grasp the whole picture of this mucosal tissue. Meanwhile, fluid hysteroscopy has been recently adopted as a less-invasive diagnostic modality for CE. We launched the ARCHIPELAGO (ARChival Hysteroscopic Image-based Prediction for histopathologic chronic Endometritis in infertile women using deep LeArninG mOdel) study to construct the hysteroscopic CE finding-based prediction tools for histopathologic CE. The development of these deep learning-based novel models and computer-aided detection/diagnosis systems potentially benefits infertile women suffering from this elusive disease.
Collapse
Affiliation(s)
- Kotaro Kitaya
- Infertility Center, Iryouhoujin Kouseikai Mihara Hospital, 6-8 Kamikatsura Miyanogo-cho, Nishikyo-ku, Kyoto 615-8227, Japan
- Iryouhoujin Kouseikai Katsura-ekimae Mihara Clinic, 103 Katsura OS Plaza Building, 133 Katsura Minamitatsumi-cho, Nishikyo-ku, Kyoto 615-8074, Japan
| | - Tadahiro Yasuo
- Department of Obstetrics and Gynecology, Otsu City Hospital, 2-9-9 Motomiya, Otsu 520-0804, Japan
| | - Takeshi Yamaguchi
- Infertility Center, Daigo Watanabe Clinic, 30-15 Daigo Takahata-cho, Fushimi-ku, Kyoto 601-1375, Japan
| |
Collapse
|
11
|
Jiang K, Xu Y, Wang Y, Yin N, Huang F, Chen M. Unveiling the role of IL-17: Therapeutic insights and cardiovascular implications. Cytokine Growth Factor Rev 2024; 77:91-103. [PMID: 38735805 DOI: 10.1016/j.cytogfr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Interleukin-17 (IL-17), a pivotal cytokine in immune regulation, has attracted significant attention in recent years due to its roles in various physiological and pathological processes. This review explores IL-17 in immunological context, emphasizing its structure, production, and signaling pathways. Specifically, we explore its involvement in inflammatory diseases and autoimmune diseases, with a notable focus on its emerging implications in cardiovascular system. Through an array of research insights, IL-17 displays multifaceted functions yet awaiting comprehensive discovery. Highlighting therapeutic avenues, we scrutinize the efficacy and clinical application of four marketed IL-17 mAbs along other targeted therapies, emphasizing their potential in immune-mediated disease management. Additionally, we discussed the novel IL-17D-CD93 axis, elucidating recent breakthroughs in their biological function and clinical implications, inviting prospects for transformative advancements in immunology and beyond.
Collapse
Affiliation(s)
- Kexin Jiang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjiani Xu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Yuan SSF, Su CW, Chan LP, Nguyen HDH, Chen YK, Du JK, Cheng KH, Wang YY. IL17RB expression is associated with malignant cancer behaviors and poor prognosis in oral cancer. Oral Dis 2024; 30:2027-2038. [PMID: 37448179 DOI: 10.1111/odi.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES Previously, we demonstrated that IL17RB plays an essential role in lung cancer progression. This study aimed to determine whether IL17RB correlates with oral cancer and promotes oral cancer progression. SUBJECTS AND METHODS IL17RB expression in oral cancer tissues and normal tissues was determined by immunohistochemistry staining, while the association of IL17RB expression with the clinicopathological characteristics of oral squamous cell carcinoma (OSCC) patients was analyzed and its correlation with progression-free survival and response to radiotherapy and chemotherapy in OSCC patients was also explored. Western blotting was performed to investigate the expression of IL17RB in various OSCC cell lines; moreover, transwell assay was performed to evaluate the effect of IL17RB expression on cell migration ability. RESULTS In this study, we found that IL17RB was expressed higher in OSCC tissues compared to normal oral mucosa tissues and its expression was positively correlated with tumor size, lymph node metastasis, advanced cancer stage, and poor prognosis. In vitro study showed that IL17RB expression in OSCC cell lines as determined by Western blotting, was positively correlated with their migration ability. CONCLUSION Clinical and in vitro studies suggest that IL17RB might serve as an independent risk factor and a therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Shyng-Shiou F Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chang-Wei Su
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hieu D H Nguyen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Je-Kang Du
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Budania S, Kadian SK, Kanagarajadurai K, Yadav V, Kumar A, Gupta AK. Molecular and Structural Insights into Buffalo Interleukin-17A. J Interferon Cytokine Res 2024; 44:221-231. [PMID: 38530079 DOI: 10.1089/jir.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Interleukin-17A is a pro-inflammatory cytokine that plays a key role in the immune response to many pathogens and implicated in autoimmune diseases. This molecule is also involved in providing protection to many bacterial and fungal infections of gastro-intestinal tract and respiratory mucosa. Although molecular aspect of IL-17A has been studied in few species, no data are available for buffalo, which is one of the major sources of milk production in India. Therefore, in the present study, IL-17A gene of Indian Murrah Buffalo origin was cloned, expressed, and analyzed using bioinformatic tools. The coding sequence of buffalo IL-17A gene was cloned in prokaryotic expression vector (pET-28a) followed by its expression, purification, and characterization. A computational analysis was performed to understand the sequence, structure, and evolutionary relationship of buIL-17A. It revealed that the length of buIL-17A sequence without signal peptide is 132 amino acids as in cattle. However, sequence identity is found to be 99% due to one amino substitution difference between buffalo and cattle. After analysis, it can be concluded that buIL-17A recombinant protein can be used as a potential immunobiological reagent for diagnostic and therapeutic purpose.
Collapse
Affiliation(s)
- Savita Budania
- Department of Veterinary Microbiology and Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Surinder Kumar Kadian
- Department of Veterinary Microbiology and Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Karuppiah Kanagarajadurai
- Veterinary University Training and Diagnostic Centre, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Madurai, Tamil Nadu, India
| | - Vikas Yadav
- Department of Veterinary Microbiology and Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Aman Kumar
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Akhil Kumar Gupta
- Department of Veterinary Microbiology and Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, India
| |
Collapse
|
14
|
Wong MTJ, Anuar NS, Noordin R, Tye GJ. Generation of IgG antibodies against Strongyloides stercoralis in mice via immunization with recombinant antigens A133 and Ss-IR. Acta Trop 2024; 251:107122. [PMID: 38246399 DOI: 10.1016/j.actatropica.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Strongyloidiasis, caused by the nematode Strongyloides stercoralis, remains a threat to global public health, and a vaccine would be useful to control the disease, especially in developing countries. This study aimed to evaluate the efficacy of recombinant proteins, A133 and Ss-IR, as potential vaccine candidates against strongyloidiasis by investigating the humoral and cellular immune responses in immunized mice. Respective antigens were adjuvanted with Complete Freund's Adjuvant (prime) and Incomplete Freund's Adjuvant (boost) and administered intraperitoneally (prime) and subcutaneously (boost) to female BALB/c mice. For antigen-only doses, only antigens were injected without adjuvants. Altogether, 1 prime dose, 4 booster doses, and 2 antigen-only doses were administered successively. ELISAs were conducted to assess the antibody responses, along with flow cytometry and cytokine ELISA to elucidate the cellular immune responses. Results showed that A133 and Ss-IR induced the production of IgG1 and IgG2a, with A133 generating more robust IgG2a responses than Ss-IR. Flow cytometry findings indicated that effector CD8+T-cells and memory B-cells activity were upregulated significantly for A133 only, whereas cytokine ELISA demonstrated that a Th1/Th2/Th17 mixed cell responses were triggered upon vaccination with either antigen. This preliminary study illustrated the good potential of recombinant A133 and Ss-IR as vaccine candidates against S. stercoralis. It provided information on the probable immune mechanism involved in host defence and the elicitation of protection against S. stercoralis.
Collapse
Affiliation(s)
- Matthew Tze Jian Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Nor Suhada Anuar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia; Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
15
|
Zeisbrich M, Thiel J, Venhoff N. The IL-17 pathway as a target in giant cell arteritis. Front Immunol 2024; 14:1199059. [PMID: 38299156 PMCID: PMC10828953 DOI: 10.3389/fimmu.2023.1199059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
The network of IL-17 cytokines is considered a key component of autoimmune and inflammatory processes. Blocking IL-17 showed great success in psoriasis as well as psoriatic arthritis, and in patients with axial spondyloarthritis. Secukinumab is one of the approved IL-17A inhibitors for these diseases and is now routinely used. In giant cell arteritis, a large vessel vasculitis, there is accumulating evidence for a pathogenic role of IL-17 and Th17 cells, which are part of the CD4+ T-cell subset. Giant cell arteritis occurs in individuals over 50 years of age and many have relative contraindications to glucocorticoid therapy, which today still represents the mainstay therapy. Despite the approval of tocilizumab, which targets the IL-6 receptor, a high demand for glucocorticoid-sparing agents remains that combine the effective suppression of the acute inflammation observed in giant cell arteritis with a safety profile that matches the needs of an older patient population. The first results from a phase II proof-of-principle study (TitAIN) support an optimistic outlook on a potential new treatment option with secukinumab in giant cell arteritis.
Collapse
Affiliation(s)
- Markus Zeisbrich
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
17
|
Zhang W, Li M, Li X, Wang X, Liu Y, Yang J. Global trends and research status in ankylosing spondylitis clinical trials: a bibliometric analysis of the last 20 years. Front Immunol 2024; 14:1328439. [PMID: 38288126 DOI: 10.3389/fimmu.2023.1328439if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a rheumatic and autoimmune disease associated with a chronic inflammatory response, mainly characterized by pain, stiffness, or limited mobility of the spine and sacroiliac joints. Severe symptoms can lead to joint deformity, destruction, and even lifelong disability, causing a serious burden on families and society as a whole. A large number of clinical studies have been published on AS over the past 20 years. This study aimed to summarize the current research status and global trends relating to AS clinical trials through a bibliometric analysis. METHODS The Web of Science Core Collection database was searched for publications related to AS clinical trials published between January 2003 and June 2023. Bibliometric analysis and web visualization were performed using CiteSpace, VOSviewer, and a bibliometric online analysis platform (https://bibliometric.com), which included the number of publications, citations, countries, institutions, journals, authors, references, and keywords. RESULTS 1,212 articles published in 201 journals from 65 countries were included in this study. The number of publications related to AS clinical trials is increasing annually. The United States and the Free University of Berlin, the countries and institutions, respectively, that have published the most articles on AS, have made outstanding contributions to this field. The author with the most published papers and co-citations over the period covered by the study was Desiree Van Der Heijde. The journal with the most published and cited articles was Annals of the Rheumatic Diseases. The keywords: "double-blind," "rheumatoid arthritis," "efficacy," "placebo-controlled trial," "infliximab," "etanercept," "psoriatic arthritis" and "therapy" represent the current research hotspots regarding AS. DISCUSSION This is the first study to perform a bibliometric analysis and visualization of AS clinical trial publications, providing a reliable research focus and direction for clinicians. Future studies in the field of AS clinical trials should focus on placebo-controlled trials of targeted therapeutic drugs.
Collapse
Affiliation(s)
- Wenhui Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meng Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xuhao Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xingxin Wang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuanxiang Liu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
18
|
Chandra V, Li L, Le Roux O, Zhang Y, Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino J, Kim MP, Bhat KPL, White JR, Kolls JK, Pylayeva-Gupta Y, McAllister F. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 2024; 42:85-100.e6. [PMID: 38157865 PMCID: PMC11238637 DOI: 10.1016/j.ccell.2023.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/05/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.
Collapse
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rian M Howell
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhwani N Rupani
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiyan D Miller
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Respiratory Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jay K Kolls
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Zhang W, Li M, Li X, Wang X, Liu Y, Yang J. Global trends and research status in ankylosing spondylitis clinical trials: a bibliometric analysis of the last 20 years. Front Immunol 2024; 14:1328439. [PMID: 38288126 PMCID: PMC10823346 DOI: 10.3389/fimmu.2023.1328439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Abstract
Background Ankylosing spondylitis (AS) is a rheumatic and autoimmune disease associated with a chronic inflammatory response, mainly characterized by pain, stiffness, or limited mobility of the spine and sacroiliac joints. Severe symptoms can lead to joint deformity, destruction, and even lifelong disability, causing a serious burden on families and society as a whole. A large number of clinical studies have been published on AS over the past 20 years. This study aimed to summarize the current research status and global trends relating to AS clinical trials through a bibliometric analysis. Methods The Web of Science Core Collection database was searched for publications related to AS clinical trials published between January 2003 and June 2023. Bibliometric analysis and web visualization were performed using CiteSpace, VOSviewer, and a bibliometric online analysis platform (https://bibliometric.com), which included the number of publications, citations, countries, institutions, journals, authors, references, and keywords. Results 1,212 articles published in 201 journals from 65 countries were included in this study. The number of publications related to AS clinical trials is increasing annually. The United States and the Free University of Berlin, the countries and institutions, respectively, that have published the most articles on AS, have made outstanding contributions to this field. The author with the most published papers and co-citations over the period covered by the study was Desiree Van Der Heijde. The journal with the most published and cited articles was Annals of the Rheumatic Diseases. The keywords: "double-blind," "rheumatoid arthritis," "efficacy," "placebo-controlled trial," "infliximab," "etanercept," "psoriatic arthritis" and "therapy" represent the current research hotspots regarding AS. Discussion This is the first study to perform a bibliometric analysis and visualization of AS clinical trial publications, providing a reliable research focus and direction for clinicians. Future studies in the field of AS clinical trials should focus on placebo-controlled trials of targeted therapeutic drugs.
Collapse
Affiliation(s)
- Wenhui Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meng Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xuhao Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xingxin Wang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuanxiang Liu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
20
|
Liu Y, Ouyang Y, You W, Liu W, Cheng Y, Mai X, Shen Z. Physiological roles of human interleukin-17 family. Exp Dermatol 2024; 33:e14964. [PMID: 37905720 DOI: 10.1111/exd.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.
Collapse
Affiliation(s)
- Yucong Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ye Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wanchun You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yufan Cheng
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinming Mai
- Medical School, Shenzhen University, Shenzhen, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
22
|
Saviano A, Manosour AA, Raucci F, Merlino F, Marigliano N, Schettino A, Wahid M, Begum J, Filer A, Manning JE, Casillo GM, Piccolo M, Ferraro MG, Marzano S, Russomanno P, Bellavita R, Irace C, Amato J, Alfaifi M, Rimmer P, Iqbal T, Pieretti S, Vellecco V, Caso F, Costa L, Giacomelli R, Scarpa R, Cirino G, Bucci M, McGettrick HM, Grieco P, Iqbal AJ, Maione F. New biologic (Ab-IPL-IL-17) for IL-17-mediated diseases: identification of the bioactive sequence (nIL-17) for IL-17A/F function. Ann Rheum Dis 2023; 82:1415-1428. [PMID: 37580108 PMCID: PMC10579190 DOI: 10.1136/ard-2023-224479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES Interleukin (IL) 17s cytokines are key drivers of inflammation that are functionally dysregulated in several human immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA), psoriasis and inflammatory bowel disease (IBD). Targeting these cytokines has some therapeutic benefits, but issues associated with low therapeutic efficacy and immunogenicity for subgroups of patients or IMIDs reduce their clinical use. Therefore, there is an urgent need to improve the coverage and efficacy of antibodies targeting IL-17A and/or IL-17F and IL-17A/F heterodimer. METHODS AND RESULTS Here, we initially identified a bioactive 20 amino acid IL-17A/F-derived peptide (nIL-17) that mimics the pro-inflammatory actions of the full-length proteins. Subsequently, we generated a novel anti-IL-17 neutralising monoclonal antibody (Ab-IPL-IL-17) capable of effectively reversing the pro-inflammatory, pro-migratory actions of both nIL-17 and IL-17A/F. Importantly, we demonstrated that Ab-IPL-IL-17 has less off-target effects than the current gold-standard biologic, secukinumab. Finally, we compared the therapeutic efficacy of Ab-IPL-IL-17 with reference anti-IL-17 antibodies in preclinical murine models and samples from patients with RA and IBD. We found that Ab-IPL-IL-17 could effectively reduce clinical signs of arthritis and neutralise elevated IL-17 levels in IBD patient serum. CONCLUSIONS Collectively, our preclinical and in vitro clinical evidence indicates high efficacy and therapeutic potency of Ab-IPL-IL-17, supporting the rationale for large-scale clinical evaluation of Ab-IPL-IL-17 in patients with IMIDs.
Collapse
Affiliation(s)
- Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Adel Abo Manosour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Anna Schettino
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Mussarat Wahid
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jenefa Begum
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew Filer
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julia E Manning
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | | | - Rosa Bellavita
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Peter Rimmer
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Tariq Iqbal
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stefano Pieretti
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | | | - Francesco Caso
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Luisa Costa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Roberto Giacomelli
- Fondazione Policlinico Universitario, and Research Unit of Immuno-Rheumatology, Department of Medicine and Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Roma, Italy, and Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy, Roma, Italy
| | - Raffaele Scarpa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | | | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Asif Jilani Iqbal
- Department of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
23
|
Ren T, Yin N, Du L, Pan M, Ding L. Identification and validation of FPR1, FPR2, IL17RA and TLR7 as immunogenic cell death related genes in osteoarthritis. Sci Rep 2023; 13:16872. [PMID: 37803031 PMCID: PMC10558501 DOI: 10.1038/s41598-023-43440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023] Open
Abstract
Immunogenic cell death (ICDs) has gained increasing attention for its significant clinical efficacy in various diseases. Similarly, more and more attention has been paid in the role of immune factors in the pathological process of osteoarthritis (OA). The objective of this study is to reveal the relationship between ICD-related genes and the process of OA at the gene level through bioinformatics analysis. In this study, Limma R package was applied to identify differentially expressed genes (DEG), and OA related module genes were determined by weighted gene co-expression network analysis. The ICD-related genes were extracted from a previous study. The module genes related to DEGs and ICD were overlapped. Then, hub genes were identified by a series of analyses using the Least absolute shrinkage and selection operator and random forest algorithm, the expression level and diagnostic value of hub genes were evaluated by Logistic regression. In addition, we used Spearman rank correlation analysis to clarify the relationship between hub genes and infiltrating immune cells and immune pathways. The expression levels of FPR1, FPR2, IL17RA, and TLR7 was verified in SD rat knee joint model of OA by immunohistochemistry. The expression levels of FPR1, FPR2, IL17RA, and TLR7 mRNA were detected in the IL-1β induced rat chondrocytes in qPCR experiment in vitro. Four hub genes (FPR1, FPR2, IL17RA, and TLR7) were ultimately identified as OA biomarkers associated with ICD. And knockdown of TLR7 reversed collagen II and ADAMTS-5 degradation in IL-1β-stimulated chondrocytes. This research may provide new immune related biomarkers for the diagnosis of OA and serve as a reference for disease treatment monitoring.
Collapse
Affiliation(s)
- Tingting Ren
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nuo Yin
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Li Du
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Mingmang Pan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Liang Ding
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China.
| |
Collapse
|
24
|
Rodriguez C, Araujo Furlan CL, Tosello Boari J, Bossio SN, Boccardo S, Fozzatti L, Canale FP, Beccaria CG, Nuñez NG, Ceschin DG, Piaggio E, Gruppi A, Montes CL, Acosta Rodríguez EV. Interleukin-17 signaling influences CD8 + T cell immunity and tumor progression according to the IL-17 receptor subunit expression pattern in cancer cells. Oncoimmunology 2023; 12:2261326. [PMID: 37808403 PMCID: PMC10557545 DOI: 10.1080/2162402x.2023.2261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.
Collapse
Affiliation(s)
- Constanza Rodriguez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Jimena Tosello Boari
- INSERM U932, Immunity and Cancer, Paris, France
- Department of Translational Research, PSL Research University, Paris, France
| | - Sabrina N. Bossio
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Santiago Boccardo
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Fernando P. Canale
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cristian G. Beccaria
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Nicolás G. Nuñez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Danilo G. Ceschin
- Centro de Investigación en Medicina Traslacional “Severo R. Amuchástegui” (CIMETSA), Vinculado al Instituto de Investigación Médica Mercedes y Martín Ferreyra (CONICET-UNC), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Eliane Piaggio
- INSERM U932, Immunity and Cancer, Paris, France
- Department of Translational Research, PSL Research University, Paris, France
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
25
|
Liu L, Liu R, Wei C, Li D, Gao X. The role of IL-17 in lung cancer growth. Cytokine 2023; 169:156265. [PMID: 37348188 DOI: 10.1016/j.cyto.2023.156265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Interleukin 17 (IL-17) is an inflammatory cytokine with multiple roles in immune protection, immunopathology, and inflammation-related tumors. Lung cancer is inflammation-related cancer, and a large number of studies have shown that IL-17 contributes to the metastasis and progression of lung cancer. However, some studies have shown that IL17 inhibits the occurrence of lung cancer. At present, there is still some controversy about the role of IL17 in the occurrence and development of lung cancer. This review introduces the basic characteristics of IL-17 and focuses on its role in lung cancer, in order to provide a certain theoretical basis for the prevention, diagnosis, and treatment of lung cancer.
Collapse
Affiliation(s)
- Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Renli Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chaojie Wei
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Xiuzhu Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
26
|
Ponde NO, Shoger KE, Khatun S, Sarkar MK, Dey I, Taylor TC, Cisney RN, Arunkumar SP, Gudjonsson JE, Kolls JK, Gottschalk RA, Gaffen SL. SARS-CoV-2 ORF8 Mediates Signals in Macrophages and Monocytes through MyD88 Independently of the IL-17 Receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:252-260. [PMID: 37265402 PMCID: PMC10330444 DOI: 10.4049/jimmunol.2300110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
SARS-CoV-2 has caused an estimated 7 million deaths worldwide to date. A secreted SARS-CoV-2 accessory protein, known as open reading frame 8 (ORF8), elicits inflammatory pulmonary cytokine responses and is associated with disease severity in COVID-19 patients. Recent reports proposed that ORF8 mediates downstream signals in macrophages and monocytes through the IL-17 receptor complex (IL-17RA, IL-17RC). However, generally IL-17 signals are found to be restricted to the nonhematopoietic compartment, thought to be due to rate-limiting expression of IL-17RC. Accordingly, we revisited the capacity of IL-17 and ORF8 to induce cytokine gene expression in mouse and human macrophages and monocytes. In SARS-CoV-2-infected human and mouse lungs, IL17RC mRNA was undetectable in monocyte/macrophage populations. In cultured mouse and human monocytes and macrophages, ORF8 but not IL-17 led to elevated expression of target cytokines. ORF8-induced signaling was fully preserved in the presence of anti-IL-17RA/RC neutralizing Abs and in Il17ra-/- cells. ORF8 signaling was also operative in Il1r1-/- bone marrow-derived macrophages. However, the TLR/IL-1R family adaptor MyD88, which is dispensable for IL-17R signaling, was required for ORF8 activity yet MyD88 is not required for IL-17 signaling. Thus, we conclude that ORF8 transduces inflammatory signaling in monocytes and macrophages via MyD88 independently of the IL-17R.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | | | | | | | - Ipsita Dey
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | - Tiffany C. Taylor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | - Rylee N. Cisney
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | - Samyuktha P. Arunkumar
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| | | | | | | | - Sarah L. Gaffen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, PA
| |
Collapse
|
27
|
Douglas A, Stevens B, Lynch L. Interleukin-17 as a key player in neuroimmunometabolism. Nat Metab 2023; 5:1088-1100. [PMID: 37488456 PMCID: PMC10440016 DOI: 10.1038/s42255-023-00846-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2023] [Indexed: 07/26/2023]
Abstract
In mammals, interleukin (IL)-17 cytokines are produced by innate and adaptive lymphocytes. However, the IL-17 family has widespread expression throughout evolution, dating as far back as cnidaria, molluscs and worms, which predate lymphocytes. The evolutionary conservation of IL-17 suggests that it is involved in innate defence strategies, but also that this cytokine family has a fundamental role beyond typical host defence. Throughout evolution, IL-17 seems to have a major function in homeostatic maintenance at barrier sites. Most recently, a pivotal role has been identified for IL-17 in regulating cellular metabolism, neuroimmunology and tissue physiology, particularly in adipose tissue. Here we review the emerging role of IL-17 signalling in regulating metabolic processes, which may shine a light on the evolutionary role of IL-17 beyond typical immune responses. We propose that IL-17 helps to coordinate the cross-talk among the nervous, endocrine and immune systems for whole-body energy homeostasis as a key player in neuroimmunometabolism.
Collapse
Affiliation(s)
- Aaron Douglas
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
| | - Brenneth Stevens
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- School of Biochemistry and Immunology, TBSI, Trinity College Dublin, Dublin, Ireland.
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Moos S, Regen T, Wanke F, Tian Y, Arendholz LT, Hauptmann J, Heinen AP, Bleul L, Bier K, El Malki K, Reinhardt C, Prinz I, Diefenbach A, Wolz C, Schittek B, Waisman A, Kurschus FC. IL-17 Signaling in Keratinocytes Orchestrates the Defense against Staphylococcus aureus Skin Infection. J Invest Dermatol 2023; 143:1257-1267.e10. [PMID: 36736996 DOI: 10.1016/j.jid.2023.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Keratinocytes (KCs) form the outer epithelial barrier of the body, protecting against invading pathogens. Mice lacking the IL-17RA or both IL-17A and IL-17F develop spontaneous Staphylococcusaureus skin infections. We found a marked expansion of T17 cells, comprised of RORγt-expressing γδ T cells and T helper 17 cells in the skin-draining lymph nodes of these mice. Contradictory to previous suggestions, this expansion was not a result of a direct negative feedback loop because we found no expansion of T17 cells in mice lacking IL-17 signaling specifically in T cells. Instead, we found that the T17 expansion depended on the microbiota and was observed only when KCs were deficient for IL-17RA signaling. Indeed, mice that lack IL-17RA only in KCs showed an increased susceptibility to experimental epicutaneous infection with S. aureus together with an accumulation of IL-17A-producing γδ T cells. We conclude that deficiency of IL-17RA on KCs leads to microbiota dysbiosis in the skin, which triggers the expansion of IL-17A-producing T cells. Our data show that KCs are the primary target cells of IL-17A and IL-17F, coordinating the defense against microbial invaders in the skin.
Collapse
Affiliation(s)
- Sonja Moos
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tommy Regen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Neuroscience and Rare Diseases (NRD), Discovery and Translational Area, Roche Pharma Research & Early Development (pRED), Roche Innovation Center, Basel, Switzerland
| | - Yizhu Tian
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucas T Arendholz
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Judith Hauptmann
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - André P Heinen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lisa Bleul
- Interfakultäres Institute for Microbiology, Infectious Diseases, Eberhard Karls University, Tübingen, Germany; Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany
| | - Katharina Bier
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Khalifa El Malki
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, 55131 Mainz, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Diefenbach
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Microbiology, Infectious Diseases and Immunology, Charite University Medical Center Berlin, Berlin, Germany
| | - Christiane Wolz
- Interfakultäres Institute for Microbiology, Infectious Diseases, Eberhard Karls University, Tübingen, Germany; Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
29
|
Maeda K, Tanioka T, Takahashi R, Watanabe H, Sueki H, Takimoto M, Hashimoto SI, Ikeo K, Miwa Y, Kasama T, Iwamoto S. MCAM+CD161- Th17 Subset Expressing CD83 Enhances Tc17 Response in Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1867-1881. [PMID: 37186262 DOI: 10.4049/jimmunol.2200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Recent studies have highlighted the pathogenic roles of IL-17-producing CD8+ T cells (T-cytotoxic 17 [Tc17]) in psoriasis. However, the underlying mechanisms of Tc17 induction remain unclear. In this study, we focused on the pathogenic subsets of Th17 and their mechanism of promotion of Tc17 responses. We determined that the pathogenic Th17-enriched fraction expressed melanoma cell adhesion molecule (MCAM) and CCR6, but not CD161, because this subset produced IL-17A abundantly and the presence of these cells in the peripheral blood of patients has been correlated with the severity of psoriasis. Intriguingly, the serial analysis of gene expression revealed that CCR6+MCAM+CD161-CD4+ T cells displayed the gene profile for adaptive immune responses, including CD83, which is an activator for CD8+ T cells. Coculture assay with or without intercellular contact between CD4+ and CD8+ T cells showed that CCR6+MCAM+CD161-CD4+ T cells induced the proliferation of CD8+ T cells in a CD83-dependent manner. However, the production of IL-17A by CD8+ T cells required exogenous IL-17A, suggesting that intercellular contact via CD83 and the production of IL-17A from activated CD4+ T cells elicit Tc17 responses. Intriguingly, the CD83 expression was enhanced in the presence of IL-15, and CD83+ cells stimulated with IL-1β, IL-23, IL-15, and IL-15Rα did not express FOXP3. Furthermore, CCR6+MCAM+CD161-CD4+ T cells expressing CD83 were increased in the peripheral blood of patients, and the CD83+ Th17-type cells accumulated in the lesional skin of psoriasis. In conclusion, pathogenic MCAM+CD161- Th17 cells may be involved in the Tc17 responses via IL-17A and CD83 in psoriasis.
Collapse
Affiliation(s)
- Kohei Maeda
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiro Tanioka
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Rei Takahashi
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Hideaki Watanabe
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Hirohiko Sueki
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Yusuke Miwa
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Kasama
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
30
|
Sun L, Chen Z, Ni Y, He Z. Network pharmacology-based approach to explore the underlying mechanism of sinomenine on sepsis-induced myocardial injury in rats. Front Pharmacol 2023; 14:1138858. [PMID: 37388447 PMCID: PMC10303801 DOI: 10.3389/fphar.2023.1138858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Background: Sepsis, a systemic disease, usually induces myocardial injury (MI), and sepsis-induced MI has become a significant contributor to sepsis-related deaths in the intensive care unit. The objective of this study is to investigate the role of sinomenine (SIN) on sepsis-induced MI and clarify the underlying mechanism based on the techniques of network pharmacology. Methods: Cecum ligation and puncture (CLP) was adopted to induce sepsis in male Sprague-Dawley (SD) rats. Serum indicators, echocardiographic cardiac parameters, and hematoxylin and eosin (H&E) staining were conducted to gauge the severity of cardiac damage. The candidate targets and potential mechanism of SIN against sepsis-induced MI were analyzed via network pharmacology. Enzyme-linked immunosorbent assay was performed for detecting the serum concentration of inflammatory cytokines. Western blot was applied for evaluating the levels of protein expression. Terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay was applied to assess cardiomyocyte apoptosis. Results: SIN significantly improved the cardiac functions, and attenuated myocardial structural damage of rats as compared with the CLP group. In total, 178 targets of SIN and 945 sepsis-related genes were identified, and 33 overlapped targets were considered as candidate targets of SIN against sepsis. Enrichment analysis results demonstrated that these putative targets were significantly associated with the Interleukin 17 (IL-17) signal pathway, inflammatory response, cytokines-mediated signal pathway, and Janus Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) pathway. Molecular docking suggested that SIN had favorable binding affinities with Mitogen-Activated Protein Kinase 8 (MAPK8), Janus Kinase 1 (JAK1), Janus Kinase 2 (JAK2), Signal Transducer and Activator of Transcription 3 (STAT3), and nuclear factor kappa-B (NF-κB). SIN significantly reduced the serum concentration of Tumor Necrosis Factor-α (TNF-α), Interleukin 1 Beta (IL-1β), Interleukin 6 (IL-6), Interferon gamma (IFN-γ), and C-X-C Motif Chemokine Ligand 8 (CXCL8), lowered the protein expression of phosphorylated c-Jun N-terminal kinase 1 (JNK1), JAK1, JAK2, STAT3, NF-κB, and decreased the proportion of cleaved-caspase3/caspase3. In addition, SIN also significantly inhibited the apoptosis of cardiomyocytes as compared with the CLP group. Conclusion: Based on network pharmacology analysis and corresponding experiments, it was concluded that SIN could mediate related targets and pathways to protect against sepsis-induced MI.
Collapse
|
31
|
Meyer-Arndt L, Kerkering J, Kuehl T, Infante AG, Paul F, Rosiewicz KS, Siffrin V, Alisch M. Inflammatory Cytokines Associated with Multiple Sclerosis Directly Induce Alterations of Neuronal Cytoarchitecture in Human Neurons. J Neuroimmune Pharmacol 2023; 18:145-159. [PMID: 36862362 PMCID: PMC10485132 DOI: 10.1007/s11481-023-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/16/2023] [Indexed: 03/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) coined by inflammation and neurodegeneration. The actual cause of the neurodegenerative component of the disease is however unclear. We investigated here the direct and differential effects of inflammatory mediators on human neurons. We used embryonic stem cell-derived (H9) human neuronal stem cells (hNSC) to generate neuronal cultures. Neurons were subsequently treated with tumour necrosis factor alpha (TNFα), interferon gamma (IFNγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 17A (IL-17A) and interleukin 10 (IL-10) separately or in combination. Immunofluorescence staining and quantitative polymerase chain reaction (qPCR) were used to assess cytokine receptor expression, cell integrity and transcriptomic changes upon treatment. H9-hNSC-derived neurons expressed cytokine receptors for IFNγ, TNFα, IL-10 and IL-17A. Neuronal exposure to these cytokines resulted in differential effects on neurite integrity parameters with a clear decrease for TNFα- and GM-CSF-treated neurons. The combinatorial treatment with IL-17A/IFNγ or IL-17A/TNFα induced a more pronounced effect on neurite integrity. Furthermore, combinatorial treatments with two cytokines induced several key signalling pathways, i.e. NFκB-, hedgehog and oxidative stress signalling, stronger than any of the cytokines alone. This work supports the idea of immune-neuronal crosstalk and the need to focus on the potential role of inflammatory cytokines on neuronal cytoarchitecture and function.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Janis Kerkering
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Tess Kuehl
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Ana Gil Infante
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Kamil Sebastian Rosiewicz
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Volker Siffrin
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.
| | - Marlen Alisch
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| |
Collapse
|
32
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
33
|
Th17/Treg Imbalance: Implications in Lung Inflammatory Diseases. Int J Mol Sci 2023; 24:ijms24054865. [PMID: 36902294 PMCID: PMC10003150 DOI: 10.3390/ijms24054865] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Regulatory T cells (Tregs) and T helper 17 cells (Th17) are two CD4+ T cell subsets with antagonist effects. Th17 cells promote inflammation, whereas Tregs are crucial in maintaining immune homeostasis. Recent studies suggest that Th17 cells and Treg cells are the foremost players in several inflammatory diseases. In this review, we explore the present knowledge on the role of Th17 cells and Treg cells, focusing on lung inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), sarcoidosis, asthma, and pulmonary infectious diseases.
Collapse
|
34
|
Abstract
T helper 17 (Th17) cells are IL-17-producing CD4 T cells that play a crucial role in autoimmune diseases. IL-17 is a key cytokine for host protection against mucosal and skin infection but is also one of the major pathogenic cytokines. IL-1 and IL-23 are requisite for stimulating pathogenic Th17 cell differentiation and proliferation. Therapeutics targeting the IL-17/IL-23 pathway are widely used clinically for the treatment of autoimmune diseases. Besides IL-17, pathogenic Th17 cells produce granulocyte-macrophage colony-stimulating factor, tumor necrosis factor α, interferon γ, IL-21 and IL-22. However, Th17-targeted therapy has not yet been established. T cell metabolism orchestrates T cell survival, cell differentiation, epigenetic change and function and each T cell subset favors a particular metabolic pathway. Recent studies have provided novel insights into the role of T cell metabolism in the pathogenesis of autoimmune diseases. The current review focuses on the role of Th17 cell metabolism in autoimmune diseases, particularly glycolysis, amino acid metabolism, lipid metabolism, as well as the regulators of these processes, including mTORC1. Therapeutics targeting T cell metabolism in autoimmune diseases could serve as a possible treatment option for patients who are refractory to or unresponsive to conventional therapy.
Collapse
Affiliation(s)
- Michihito Kono
- Faculty of Medicine, Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
35
|
Rex DAB, Dagamajalu S, Gouda MM, Suchitha GP, Chanderasekaran J, Raju R, Prasad TSK, Bhandary YP. A comprehensive network map of IL-17A signaling pathway. J Cell Commun Signal 2023; 17:209-215. [PMID: 35838944 PMCID: PMC9284958 DOI: 10.1007/s12079-022-00686-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 10/28/2022] Open
Abstract
Interleukin-17A (IL-17A) is one of the member of IL-17 family consisting of other five members (IL-17B to IL-17F). The Gamma delta (γδ) T cells and T helper 17 (Th17) cells are the major producers of IL-17A. Aberrant signaling by IL-17A has been implicated in the pathogenesis of several autoimmune diseases including idiopathic pulmonary fibrosis, acute lung injury, chronic airway diseases, and cancer. Activation of the IL-17A/IL-17 receptor A (IL-17RA) system regulates phosphoinositide 3-kinase/AKT serine/threonine kinase/mammalian target of rapamycin (PI3K/AKT/mTOR), mitogen-activated protein kinases (MAPKs) and activation of nuclear factor-κB (NF-κB) mediated signaling pathways. The IL-17RA activation orchestrates multiple downstream signaling cascades resulting in the release of pro-inflammatory cytokines such as interleukins (IL)-1β, IL-6, and IL-8, chemokines (C-X-C motif) and promotes neutrophil-mediated immune response. Considering the biomedical importance of IL-17A, we developed a pathway resource of signaling events mediated by IL-17A/IL-17RA in this study. The curation of literature data pertaining to the IL-17A system was performed manually by the NetPath criteria. Using data mined from the published literature, we describe an integrated pathway reaction map of IL-17A/IL-17RA consisting of 114 proteins and 68 reactions. That includes detailed information on IL-17A/IL-17RA mediated signaling events of 9 activation/inhibition events, 17 catalysis events, 3 molecular association events, 68 gene regulation events, 109 protein expression events, and 6 protein translocation events. The IL-17A signaling pathway map data is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway : WP5242).
Collapse
Affiliation(s)
- D. A. B. Rex
- grid.413027.30000 0004 1767 7704Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Mahesh Manjunath Gouda
- grid.13648.380000 0001 2180 3484Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg (UKE), Martinistrasse 52, 20251 Hamburg, Germany
| | - G. P. Suchitha
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Jaikanth Chanderasekaran
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’S NMIMS University, Hyderabad, Telangana India
| | - Rajesh Raju
- grid.413027.30000 0004 1767 7704Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - T. S. Keshava Prasad
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Yashodhar Prabhakar Bhandary
- grid.413027.30000 0004 1767 7704Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
36
|
Ganta S, Komaravalli PL, Ahmad S, Gaddam SL. Influence of genetic variants and mRNA expression of interleukin IL17A gene in asthma susceptibility. Gene 2023; 854:147119. [PMID: 36529350 DOI: 10.1016/j.gene.2022.147119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Asthma is a chronic respiratory disease characterized by coughing, wheezing, shortness of breath, chest tightness, overproduction of mucus, and expiratory airflow limitation, which affects >300 million people worldwide. It is triggered by the dynamic interplay of genetic factors and environmental exposure. Th17 cells are an emerging subset of CD4+ T cells, which secrete IL-17A. This proinflammatory cytokine has recently been associated with asthma, autoimmune diseases, and inflammatory disorders. The present case-control study was focused on identifying the involvement of the IL-17A gene in asthma pathogenesis among 150 clinically diagnosed asthma patients and 150 healthy controls (HCs) of South Indian origin. To carry out the study, we aimed to screen the genetic variants of rs2275913G/A and rs8193036C/T and also estimated the serum cytokine levels of the IL-17A cytokine of recruited subjects. Further, we evaluated mRNA expression in selected subjects to correlate with the genetic variants. The results revealed that the mean IL-17A serum levels (161.6 ± 380.1 pg/ml vs. 86.75 ± 90.01 pg/ml) and IgE levels (257.7 ± 133.3 pg/ml vs. 311.2 ± 160.5 pg/ml) in asthma patients were significantly high as compared to healthy controls (p < 0.05). The ROC curves were constructed to compare the cytokine levels of asthma patients and HC, and the area under the curve (AUC) for IL-17A cytokine was 0.64, indicating that the test was satisfactory and significant (95 % CI: 0.575-0.709; p < 0.001). Genotyping of rs2275913G/A polymorphism indicated a 1.6-fold risk (95 % CI-1.02-2.56; p = 0.04) for asthma patients compared to healthy controls, whereas no significant association was observed for rs8193036C/T polymorphism with asthma susceptibility. Under genetic models, GA and AA models showed a protective effect against the disease for rs2275913G/A. In contrast, no statistically significant result was observed among the models of rs8193036C/T when adjusted with age and sex. The mRNA expression levels of the gene were statistically high in patients compared to the HCs, with a 1.8-fold change (p < 0.0001). We conclude that the results indicate IL-17A rs2275913G/A is likely to contribute to protection against the disease, while IL-17A rs8193036C/T shows no association with the disease. However, no correlation was identified in serum cytokine levels concerning genotypes. This comprehensive information in the present study might contribute to developing novel therapeutic strategies for treating inflammatory diseases like asthma. Further studies are warranted to understand the diverse functions of IL-17A concerning its longitudinal stability and its response to clinical interventions with large sample sizes in various ethnicities.
Collapse
Affiliation(s)
- Soujanya Ganta
- Department of Genetics, Osmania University, Hyderabad, India
| | - Prasanna Latha Komaravalli
- Department of Genetics, Osmania University, Hyderabad, India; Global Medical Education and Research Foundation, Lakdi-ka-pool, Hyderabad, India
| | - Shazia Ahmad
- Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| | - Suman Latha Gaddam
- Department of Genetics, Osmania University, Hyderabad, India; Bhagwan Mahavir Medical Research Centre, Hyderabad, India.
| |
Collapse
|
37
|
Singh Gautam A, Kumar Singh R. Therapeutic potential of targeting IL-17 and its receptor signaling in neuroinflammation. Drug Discov Today 2023; 28:103517. [PMID: 36736763 DOI: 10.1016/j.drudis.2023.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/26/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
T helper 17 cells are thought to significantly contribute to the neuroinflammation process during neurogenerative diseases via their signature cytokine, interleukin (IL)-17. Recently, an emerging key role of IL-17 and its receptors has been documented in inflammatory and autoimmune diseases. The clinical studies conducted on patients with neurodegenerative disease have also shown an increase in IL-17 levels in serum as well as cerebrospinal fluid samples. Therapeutic targeting of either IL-17 receptors or direct IL-17 neutralizing antibodies has shown a promising preclinical and clinical proof of concept for treating chronic autoimmune neurodegenerative diseases such as multiple sclerosis. Thus, IL-17 and its receptors have a central role in regulation of neuroinflammation and can be considered as one of the major therapeutic targets in chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
38
|
Yang Y, Yan C, Yu L, Zhang X, Shang J, Fan J, Zhang R, Ren J, Duan X. The star target in SLE: IL-17. Inflamm Res 2023; 72:313-328. [PMID: 36538077 DOI: 10.1007/s00011-022-01674-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The purpose of this review is to discuss the significance of IL-17 in SLE and the potential of IL-17-targeted therapy. BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect many organs and tissues throughout the body. It is characterized by overactive B and T cells and loss of immune tolerance to autoantigens. Interleukin-17 (IL-17) is a cytokine that promotes inflammation and has been implicated in the pathogenesis of several autoimmune diseases as well as inflammatory diseases. In in vitro cellular experiments in lupus susceptible mice or SLE patients, there is substantial evidence that IL-17 is a highly promising therapeutic target. METHODS We searched papers from PubMed database using the search terms, such as interleukin-17, systemic lupus erythematosus, treatment targets, T cells, lupus nephritis, and other relevant terms. RESULTS We discuss in this paper the molecular mechanisms of IL-17 expression, Th17 cell proliferation, and the relationship between IL-17 and Th17. The significance of IL-17 in SLE and the potential of IL-17-targeted therapy are further discussed in detail. CONCLUSION IL-17 has a very high potential for the development as a star target in SLE.
Collapse
Affiliation(s)
- Yi Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Yan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuling Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingjing Shang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Fan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rongwei Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Ren
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinwang Duan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
39
|
Hirano T, Kawano T, Kadowaki Y, Moriyama M, Umemoto S, Yoshinaga K, Matsunaga T, Suzuki M. Impact of IL-17-producing γδ T cells on chronic otitis media induced by nontypeable Haemophilus influenzae in a mouse model. Pathog Dis 2023; 81:ftad029. [PMID: 37833235 DOI: 10.1093/femspd/ftad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is considered a major pathogen underlying middle ear infection. This study aimed to investigate the impact of IL-17 on chronic otitis media (COM) induced by NTHi in mice. NTHi was inoculated into the tympanic bulla with eustachian tubal obstruction. Middle ear effusions (MEEs) and tissues were collected on days 3, 14, and at 1, 2, and 6 months after injection. The expression of interleukin-17A (IL-17A) in MEEs was significantly elevated compared to that in the control group at the translational and transcriptional levels during the experiments. The quantities of IL-17-producing γδ T cells were significantly increased compared to that in the control group during COM, but that of Th17 cells did not. Depletion of γδ T cells by anti-γδ T-cell receptor (TCR) monoclonal antibody (mAb) administration significantly decreased the bacteria counts and the concentrations of IL-1β, IL-6, IL-17A, TNF-α, and IL-10 in MEEs. Our results suggest that IL-17 may play an important role in prolonging the inflammation in the middle ear in COM and that IL-17-producing γδ T cells may contribute to the exacerbated inflammatory response in the middle ear. In this study, anti-γδ TCR mAb administration was found to improve chronic middle ear inflammatory conditions.
Collapse
Affiliation(s)
- Takashi Hirano
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Toshiaki Kawano
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Yoshinori Kadowaki
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Munehito Moriyama
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Shingo Umemoto
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Kazuhiro Yoshinaga
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Takayuki Matsunaga
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Masashi Suzuki
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| |
Collapse
|
40
|
Numasaki M, Ito K, Takagi K, Nagashima K, Notsuda H, Ogino H, Ando R, Tomioka Y, Suzuki T, Okada Y, Nishioka Y, Unno M. Diverse and divergent functions of IL-32β and IL-32γ isoforms in the regulation of malignant pleural mesothelioma cell growth and the production of VEGF-A and CXCL8. Cell Immunol 2023; 383:104652. [PMID: 36516653 DOI: 10.1016/j.cellimm.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
In this study, we sought to elucidate the roles of the interleukin (IL)-32β and IL-32γ in mesothelioma cell growth, and vascular endothelial growth factor (VEGF)-A and C-X-C motif chemokine ligand 8 (CXCL8) expression. IL-32 elicited a growth-promoting effect against one of the six mesotheliomas lines and exerted diverse regulatory functions in VEGF-A and CXCL8 secretion from mesotheliomas stimulated with or without IL-17A. Retroviral-mediated transduction of mesothelioma lines with IL-32γ resulted in enhanced IL-32β expression, which facilitated or suppressed the in vitro growth, and VEGF-A and CXCL8 expression. Overexpressed IL-32β-augmented growth and VEGF-A and CXCL8 production were mainly mediated through the phosphatidylinositol-3 kinase (PI3K) signaling pathway. On the other hand, overexpressed IL-32β-deceased growth was mediated through mitogen-activated protein kinase (MAPK) pathway. NCI-H2373IL-32γ tumors grew faster than NCI-H2373Neo tumors in a xenograft model, which was associated with increased vascularity. These findings indicate that IL-32 are involved in the regulation of growth and angiogenic factor production in mesotheliomas.
Collapse
Affiliation(s)
- Muneo Numasaki
- Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan; Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan; Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Koyu Ito
- Department of Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Tokyo, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Rika Ando
- Department of Nursing, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
41
|
Li Z, Yang H, Hai Y, Cheng Y. Regulatory Effect of Inflammatory Mediators in Intervertebral Disc Degeneration. Mediators Inflamm 2023; 2023:6210885. [PMID: 37101594 PMCID: PMC10125773 DOI: 10.1155/2023/6210885] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major contributor to back, neck, and radicular pain. It is related to changes in tissue structure and function, including the breakdown of the extracellular matrix (ECM), aging, apoptosis of the nucleus pulposus, and biomechanical tissue impairment. Recently, an increasing number of studies have demonstrated that inflammatory mediators play a crucial role in IDD, and they are being explored as potential treatment targets for IDD and associated disorders. For example, interleukins (IL), tumour necrosis factor-α (TNF-α), chemokines, and inflammasomes have all been linked to the pathophysiology of IDD. These inflammatory mediators are found in high concentrations in intervertebral disc (IVD) tissues and cells and are associated with the severity of LBP and IDD. It is feasible to reduce the production of these proinflammatory mediators and develop a novel therapy for IDD, which will be a hotspot of future research. In this review, the effects of inflammatory mediators in IDD were described.
Collapse
Affiliation(s)
- Zhangfu Li
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Honghao Yang
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunzhong Cheng
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
42
|
Abstract
IL-17 cytokine family members have diverse biological functions, promoting protective immunity against many pathogens but also driving inflammatory pathology during infection and autoimmunity. IL-17A and IL-17F are produced by CD4+ and CD8+ T cells, γδ T cells, and various innate immune cell populations in response to IL-1β and IL-23, and they mediate protective immunity against fungi and bacteria by promoting neutrophil recruitment, antimicrobial peptide production and enhanced barrier function. IL-17-driven inflammation is normally controlled by regulatory T cells and the anti-inflammatory cytokines IL-10, TGFβ and IL-35. However, if dysregulated, IL-17 responses can promote immunopathology in the context of infection or autoimmunity. Moreover, IL-17 has been implicated in the pathogenesis of many other disorders with an inflammatory basis, including cardiovascular and neurological diseases. Consequently, the IL-17 pathway is now a key drug target in many autoimmune and chronic inflammatory disorders; therapeutic monoclonal antibodies targeting IL-17A, both IL-17A and IL-17F, the IL-17 receptor, or IL-23 are highly effective in some of these diseases. However, new approaches are needed to specifically regulate IL-17-mediated immunopathology in chronic inflammation and autoimmunity without compromising protective immunity to infection.
Collapse
Affiliation(s)
- Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
43
|
Iraji D, Oftedal BE, Wolff ASB. Th17 Cells: Orchestrators of Mucosal Inflammation and Potential Therapeutic Targets. Crit Rev Immunol 2023; 43:25-52. [PMID: 37831521 DOI: 10.1615/critrevimmunol.2023050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
T helper 17 (Th17) cells represent a specialized subgroup of effector CD4+ T cells known for their role in provoking neutrophil-driven tissue inflammation, particularly within mucosal tissues. Although they are pivotal for defending the host against extracellular bacteria and fungi, they have also been associated with development of various T cell-mediated inflammatory conditions, autoimmune diseases, and even cancer. Notably, Th17 cells exhibit a dual nature, with different Th17 cell subtypes showcasing distinct effector functions and varying capacities to incite autoimmune tissue inflammation. Furthermore, Th17 cells exhibit significant plasticity, which carries important functional implications, both in terms of their expression of cytokines typically associated with other effector T cell subsets and in their interactions with regulatory CD4+ T cells. The intricate balance of Th17 cytokines can also be a double-edged sword in inflammation, autoimmunity, and cancer. Within this article, we delve into the mechanisms that govern the differentiation, function, and adaptability of Th17 cells. We culminate with an exploration of therapeutic potentials in harnessing the power of Th17 cells and their cytokines. Targeted interventions to modulate Th17 responses are emerging as promising strategies for autoimmunity, inflammation, and cancer treatment. By precisely fine-tuning Th17-related pathways, we may unlock new avenues for personalized therapeutic approaches, aiming to restore immune balance, alleviate the challenges of these disorders, and ultimately enhance the quality of life for individuals affected by them.
Collapse
Affiliation(s)
- Dorsa Iraji
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
44
|
Hamadi GM. ASSOCIATION OF SOME IMMUNOLOGICAL BIOMARKERS WITH RHEUMATOID ARTHRITIS PATIENTS IN THI-QAR PROVINCE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:77-83. [PMID: 36883494 DOI: 10.36740/wlek202301111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The aim: The aim of this research is to evaluate some immunological biomarkers in cases of Rheumatoid arthritis and to verify their correlation with activity of disease among the population of Thi-Qar province. PATIENTS AND METHODS Matherials and methods: This study included 45 cases of rheumatoid arthritis and 45 healthy subjects. All cases underwent complete history taking, thor¬ough clinical examination, and laboratory tests including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), Anti-citrulline antibody (Anti-CCP) and rheumatoid factor (RF). IL-17and TNF-α blood level was measured by Enzyme Linked Immunosorbent Assay (ELISA) method. DAS-28 (Disease activity score 28) was evaluated. RESULTS Results: Serum levels TNF-α was higher in Rheumatoid arthritis patients (424.3±19.46 pg/ml) than in healthy individuals (112.7±4.73 pg/ml), and IL-17 blood levels were higher in Rheumatoid arthritis patients (233.5±241.4 pg/ml) than the healthy individuals group (47.24±49.7 pg/ml). There was significant association found among IL-17, DAS-28, CRP and hemoglobin levels. CONCLUSION Conclusions: In conclusion, IL-17 blood levels were significantly increased in peoples with rheumatoid arthritis than in healthy individuals. Its significant relationship with DAS-28 suggested that the level of IL-17 in serum could be important immunological biomarker for activity of disease in disease of Rheumatoid arthritis.
Collapse
|
45
|
Okamura Y, Kono T, Sakai M, Hikima JI. Evolutional perspective and functional characteristics of interleukin-17 in teleosts. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108496. [PMID: 36526158 DOI: 10.1016/j.fsi.2022.108496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-17 is a proinflammatory cytokine and plays essential roles in adaptive and innate immune responses against bacterial and fungal infections. Especially in mammalian mucosal tissues, it is well known that innate immune responses via IL-17A and IL-17F, such as the production of antimicrobial peptides, are very important for microbiota control. In contrast, interesting insights into the functions of IL-17 have recently been reported in several teleost species, although little research has been conducted on teleost IL-17. In the present review, we focused on current insights on teleost IL-17 and speculated on the different or consensus parts of teleost IL-17 signaling compared to that of mammals. This review focuses on the role of teleost IL-17 in intestinal immunity. We expect that this review will encourage a further understanding of the roles and importance of IL-17 signaling in teleosts.
Collapse
Affiliation(s)
- Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
46
|
Paroli M, Caccavale R, Fiorillo MT, Spadea L, Gumina S, Candela V, Paroli MP. The Double Game Played by Th17 Cells in Infection: Host Defense and Immunopathology. Pathogens 2022; 11:pathogens11121547. [PMID: 36558881 PMCID: PMC9781511 DOI: 10.3390/pathogens11121547] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
T-helper 17 (Th17) cells represent a subpopulation of CD4+ T lymphocytes that play an essential role in defense against pathogens. Th17 cells are distinguished from Th1 and Th2 cells by their ability to produce members of the interleukin-17 (IL-17) family, namely IL-17A and IL-17F. IL-17 in turn induces several target cells to synthesize and release cytokines, chemokines, and metalloproteinases, thereby amplifying the inflammatory cascade. Th17 cells reside predominantly in the lamina propria of the mucosa. Their main physiological function is to maintain the integrity of the mucosal barrier against the aggression of infectious agents. However, in an appropriate inflammatory microenvironment, Th17 cells can transform into immunopathogenic cells, giving rise to inflammatory and autoimmune diseases. This review aims to analyze the complex mechanisms through which the interaction between Th17 and pathogens can be on the one hand favorable to the host by protecting it from infectious agents, and on the other hand harmful, potentially generating autoimmune reactions and tissue damage.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Stefano Gumina
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Vittorio Candela
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
47
|
Two Epitope Regions Revealed in the Complex of IL-17A and Anti-IL-17A V HH Domain. Int J Mol Sci 2022; 23:ijms232314904. [PMID: 36499233 PMCID: PMC9738047 DOI: 10.3390/ijms232314904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Interleukin-17 (IL-17) is a cytokine produced by the Th17 cells. It is involved in chronic inflammation in patients with autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and psoriasis. The antibodies targeting IL-17 and/or IL-17R are therapy tools for these diseases. Netakimab is an IL-17A-specific antibody containing a Lama glama VHH derivative domain and a VL variable domain. We have determined the crystal structure of the IL-17A-specific VHH domain in complex with IL-17A at 2.85 Å resolution. Certain amino acid residues of the three complementary-determining regions of the VHH domain form a network of solvent-inaccessible hydrogen bonds with two epitope regions of IL-17A. The β-turn of IL-17A, which forms the so-called epitope-1, appears to be the main region of IL-17A interaction with the antibody. Contacts formed by the IL-17A mobile C-terminal region residues (epitope-2) further stabilize the antibody-antigen complex.
Collapse
|
48
|
Paroli M, Spadea L, Caccavale R, Spadea L, Paroli MP, Nante N. The Role of Interleukin-17 in Juvenile Idiopathic Arthritis: From Pathogenesis to Treatment. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1552. [PMID: 36363508 PMCID: PMC9696590 DOI: 10.3390/medicina58111552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 04/12/2024]
Abstract
Background and Objectives: Interleukin-17 (IL-17) is a cytokine family consisting of six members and five specific receptors. IL-17A was the first member to be identified in 1993. Since then, several studies have elucidated that IL-17 has predominantly pro-inflammatory activity and that its production is involved in both the defense against pathogens and the genesis of autoimmune processes. Materials and Methods: In this review, we provide an overview of the role of interleukin-17 in the pathogenesis of juvenile idiopathic arthritis (JIA) and its relationship with IL-23, the so-called IL-23-IL-17 axis, by reporting updated findings from the scientific literature. Results: Strong evidence supports the role of interleukin-17A in the pathogenesis of JIA after the deregulated production of this interleukin by both T helper 17 (Th17) cells and cells of innate immunity. The blocking of IL-17A was found to improve the course of JIA, leading to the approval of the use of the human anti-IL17A monoclonal antibody secukinumab in the treatment of the JIA subtypes juvenile psoriatic arthritis (JPsA) and enthesitis-related arthritis (ERA). Conclusions: IL-17A plays a central role in the pathogenesis of JIA. Blocking its production with specific biologic drugs enables the effective treatment of this disabling childhood rheumatic disease.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Faculty of Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Faculty of Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Leopoldo Spadea
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicola Nante
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
49
|
Knizkova D, Pribikova M, Draberova H, Semberova T, Trivic T, Synackova A, Ujevic A, Stefanovic J, Drobek A, Huranova M, Niederlova V, Tsyklauri O, Neuwirth A, Tureckova J, Stepanek O, Draber P. CMTM4 is a subunit of the IL-17 receptor and mediates autoimmune pathology. Nat Immunol 2022; 23:1644-1652. [PMID: 36271145 DOI: 10.1038/s41590-022-01325-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Knizkova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Pribikova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Helena Draberova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tereza Semberova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tijana Trivic
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Alzbeta Synackova
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Andrea Ujevic
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Jana Stefanovic
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ales Neuwirth
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jolana Tureckova
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Peter Draber
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic. .,Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
50
|
Yang ZJ, Wang TT, Wang BY, Gao H, He CW, Shang HW, Lu X, Wang Y, Xu JD. Deeper insight into the role of IL-17 in the relationship beween hypertension and intestinal physiology. J Inflamm (Lond) 2022; 19:14. [PMID: 36195874 PMCID: PMC9530412 DOI: 10.1186/s12950-022-00311-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
With the incidence of hypertension increasing worldwide, more and more the mechanisms of hypertension from the perspective of immunity have found. Intestinal microbiota as well as its metabolites relationship with hypertension has attracted great attention from both clinicians and investigators. However, the associations of hypertension with lesions of a large number of immune factors including IL-17, MCP-1, IL-6, TGF-β, IL-10 and others have not been fully characterized. In this review, after introducing the immune factors as the most potent anti/pro-hypertension agents known, we provide detailed descriptions of the IL-17 involved in the pathology of hypertension, pointing out the underlying mechanisms and suggesting the clinical indications.
Collapse
Affiliation(s)
- Ze-Jun Yang
- grid.24696.3f0000 0004 0369 153XClinical Medicine of “5+3”program, School of Basic Medical Science, Capital Medical University, Beijing, China ,grid.24696.3f0000 0004 0369 153XDepartment of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Tian-Tian Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo-Ya Wang
- grid.411634.50000 0004 0632 4559Eight Program of Clinical Medicine, Peking University People’s Hospital, Beijing, China
| | - Han Gao
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Cheng-Wei He
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hong-Wei Shang
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Lu
- grid.24696.3f0000 0004 0369 153XMorphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- grid.414373.60000 0004 1758 1243Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- grid.24696.3f0000 0004 0369 153XDepartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|