1
|
Li Y, Liao Y, Miao Y, Yu C, Long J, Wu J, Zuo J, Zhang Z, Dou W, Wang X, Zhang B, Yu C, Yang J, Wang S. Interleukin-35 mRNA therapy for influenza virus-induced pneumonia in mice. Eur J Pharmacol 2025; 993:177366. [PMID: 39947345 DOI: 10.1016/j.ejphar.2025.177366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Influenza virus-induced pneumonia is a common complication caused by influenza A virus infection and causes severe lung inflammation. After infection, the body induces an active immune response that can produce cytokine storm, leading to increased expression of pro-inflammatory factors and tissue damage. Interleukin-35 (IL-35) is a recently identified cytokine associated with viral infection. IL-35 may inhibit the inflammation caused by viral infection and therefore may be developed into an antiviral treatment. Compared with traditional drugs, mRNA drugs have the advantages of simple production process, short development cycle, strong target specificity, high safety, and long-lasting action. In this study,we prepared IL-35 mRNA and IL-35 mRNA/Lipid Nanoparticle (IL-35 mRNA/LNP). To investigate the role of IL-35 mRNA in the host defense against post-influenza pneumonia, a mouse model of pneumonia caused by influenza infection was established. After influenza infection, the mice produced a large number of inflammatory factors that caused lung tissue damage, while administration of IL-35 mRNA/LNP effectively reduced the inflammatory response and improved the survival rate of mice. In addition, mice injected with IL-35 mRNA/LNP (125 μg/kg) directly via tail vein did not show significant inflammatory responses or tissue damage. These data suggest that IL-35 mRNA attenuates the inflammatory response caused by influenza virus infection and shows potential for development as a new drug for the treatment of influenza virus-induced pneumonia.
Collapse
Affiliation(s)
- Yanyan Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, PR China; Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Yuqin Liao
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Yiqi Miao
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Changxiao Yu
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Jinrong Long
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Jiayu Wu
- Bioinformatics Center of AMMS, Beijing, 100850, PR China; Department of Pharmacy, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Jun Zuo
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Zhen Zhang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Wei Dou
- Bioinformatics Center of AMMS, Beijing, 100850, PR China; Department of Pharmacy, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xin Wang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| | - Jing Yang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China.
| |
Collapse
|
2
|
Khan WH, Khan N, Tembhre MK, Malik Z, Ansari MA, Mishra A. Integrated virtual screening and compound generation targeting H275Y mutation in the neuraminidase gene of oseltamivir-resistant influenza strains. Mol Divers 2025:10.1007/s11030-025-11163-0. [PMID: 40085404 DOI: 10.1007/s11030-025-11163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Neuraminidase (NA) is an essential enzyme located at the outer layer of the influenza virus and plays a key role in the release of virions from infected cells. The rising incidence of global epidemics has made the urgent need for effective antiviral medications an urgent public health priority. Furthermore, the emergence of resistance caused by specific mutations in the influenza viral genome exacerbates the challenges of antiviral therapy. In view of this, this study aims to identify and analyse possible inhibitors of NA from different subtypes of influenza viruses. Initially, a thorough search was conducted in the Protein Data Bank (PDB) to gather structures of NA proteins that were attached with oseltamivir, a widely recognized inhibitor of NA. Here, 36 PDB entries were found with NA-oseltamivir complexes which were studied to evaluate the diversity and mutations present in various subtypes. Finally, N1(H1N1) protein was selected that demonstrated low IC50 value of oseltamivir with mutation H275Y. In addition, the study utilized BiMODAL generative model to generate 1000 novel molecules with comparable structures to oseltamivir. A QSAR model, based on machine learning (ML), was built utilizing the ChEMBL database to improve the selection process of candidate inhibitors. These inhibitors were subsequently analysed by molecular docking and further the best hits compounds (compound_375, compound_106 and compound_597) were appended to make a bigger molecule (compound_106-375, compound_106-597, and compound_375-597) to fit into the binding pocket of protein. Further, triplicate molecular dynamics simulations lasting 100 ns to assess their effectiveness and binding stability showed that compound_106-375 had the most stable binding with the protein. Key residues, including Asn146, Ala138, and Tyr155, form critical interactions with the ligand, contributing to its stability. The investigation was enhanced by employing principal component analysis (PCA), free energy landscape (FEL), and binding free energy calculations. The total binding free energy (GTOTAL) of - 169.62 kcal/mol suggests that the contact between compound_106-375 and the mutant N1 (H1N1) protein is thermodynamically favourable. This approach allowed for a thorough comprehension of the binding interactions and possible effectiveness of the discovered inhibitors. Overall, these findings demonstrate that compound_106-375 exhibits favourable binding characteristics and stability. Further experimental validation is required to confirm its efficacy against the H275Y mutant neuraminidase protein and its potential to overcome influenza drug resistance. However, compound_106-375 is suggested as a promising candidate for further development as a therapeutic agent against the mutant N1 (H1N1) protein. This finding will assist in drug development and to overcome the challenges associated with drug resistance in influenza strains.
Collapse
Affiliation(s)
- Wajihul Hasan Khan
- Virology Unit, Department of Microbiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Manoj Kumar Tembhre
- Cardiac Biochemistry, C. T. Centre, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mairaj Ahmad Ansari
- Department of Biotechnology, SCLS, and Center for Virology, SIST, Jamia Hamdard, New Delhi, 110062, India
| | - Avinash Mishra
- Growdea Technologies Pvt. Ltd., Gurugram, Haryana, 122004, India.
| |
Collapse
|
3
|
Bonomini A, Mercorelli B, Loregian A. Antiviral strategies against influenza virus: an update on approved and innovative therapeutic approaches. Cell Mol Life Sci 2025; 82:75. [PMID: 39945883 PMCID: PMC11825441 DOI: 10.1007/s00018-025-05611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025]
Abstract
Influenza viruses still represent a great concern for Public Health by causing yearly seasonal epidemics and occasionally worldwide pandemics. Moreover, spillover events at the animal-human interface are becoming more frequent nowadays, also involving animal species not previously found as reservoirs. To restrict the effects of influenza virus epidemics, especially in at-risk population, and to prepare a drug arsenal for possible future pandemics, researchers worldwide have been working on the development of antiviral strategies since the 80's of the last century. One of the main obstacles is the considerable genomic variability of influenza viruses, which constantly poses the issues of drug-resistance emergence and immune evasion. This review summarizes the approved therapeutics for clinical management of influenza, promising new anti-flu compounds and monoclonal antibodies currently undergoing clinical evaluation, and molecules with efficacy against influenza virus in preclinical studies. Moreover, we discuss some innovative anti-influenza therapeutic approaches such as combination therapies and targeted protein degradation. Given the limited number of drugs approved for influenza treatment, there is a still strong need for novel potent anti-influenza drugs endowed with a high barrier to drug resistance and broad-spectrum activity against influenza viruses of animal origin that may be responsible of future large outbreaks and pandemics.
Collapse
Affiliation(s)
- Anna Bonomini
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- Microbiology and Virology Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
4
|
Li Z, Dong M, Chen Z, Zhang C, Jiang J, Liu M, Cui Q. Combining virus-based affinity ultrafiltration method with serum pharmacochemistry to identify the antiviral pharmacodynamic substances in licorice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118978. [PMID: 39433166 DOI: 10.1016/j.jep.2024.118978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liorice (Glycyrrhiza uralensis Fisch.), a widely used Chinese herbal medicine, is frequently employed in clinical practice to treat viral pneumonia. However, the pharmacodynamic substances and mechanisms of action responsible for its antiviral effects against H1N1 and RSV remain unclear. AIM OF THE STUDY To investigate the antiviral effects of licorice against H1N1 and RSV. Building on this, we aimed to more comprehensively and accurately identify the pharmacodynamic substances in licorice responsible for its antiviral activity and mechanisms of action against these two viruses. MATERIALS AND METHODS Firstly, the antiviral effects of licorice against H1N1 and RSV were confirmed through in vivo and in vitro experiments. Then, a combination of virus-based affinity ultrafiltration method (VAUM) and serum pharmacochemistry were used to screen for pharmacological substances in licorice and identify their molecular targets against H1N1 and RSV. RESULTS The in vivo experiments showed that licorice effectively alleviates H1N1 and RSV induced weight loss and lung tissue damage in mice, while also reducing viral loads of H1N1 and RSV in the lungs. Subsequent in vitro experiments confirmed the presence of original compounds in licorice that directly inhibit H1N1 and RSV. By combining both methods, glycyrrhizic acid, glycyrrhetinic acid (GA), isoliquiritigenin (ISL), and glyasperin A (targeting the M2 ion channel) were ultimately identified as the pharmacodynamic substances in licorice responsible for anti-H1N1 activity. Additionally, licochalcone A (LCA) and glyasperin A, which target RSV surface proteins, were identified as the pharmacodynamic substances responsible for anti-RSV activity. CONCLUSIONS Traditional Chinese medicine (TCM) exerts its antiviral effects through a 'multi-component, multi-target' mechanism, which poses challenges for single active compound screening methods to adequately address. By integrating VAUM and serum pharmacochemistry for the first time, one approach focused on identifying compounds in TCM that directly bind to viral surface proteins, while the other targeted compounds that enter the bloodstream in their original form and exhibit antiviral activity. This provides a novel approach for studying the pharmacodynamic substances of antiviral effects in TCM.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meiyue Dong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250355, China
| | - Zinuo Chen
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chengcheng Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiayu Jiang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Miaomiao Liu
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| | - Qinghua Cui
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| |
Collapse
|
5
|
Raglow Z, Lauring AS. Virus Evolution in Prolonged Infections of Immunocompromised Individuals. Clin Chem 2025; 71:109-118. [PMID: 39749520 DOI: 10.1093/clinchem/hvae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands. CONTENT In this review, we provide an overview of populations at risk for prolonged viral shedding, clinical manifestations of persistent viral infection, and methods of assessing viral evolution. We then review the literature on viral evolution in immunocompromised patients across an array of RNA viruses, including SARS-CoV-2, norovirus, influenza, and poliovirus, and discuss the global implications of persistent viral infections in these hosts. SUMMARY There is significant evidence for accelerated viral evolution and accumulation of mutations in antigenic sites in immunocompromised hosts across many viral pathogens. However, the implications of this phenomenon are not clear; while there are rare reports of transmission of these variants, they have not clearly been shown to predict disease outbreaks or have significant global relevance. Emerging methods including wastewater monitoring may provide a more sophisticated understanding of the impact of variants that evolve in immunocompromised hosts on the wider host population.
Collapse
Affiliation(s)
- Zoe Raglow
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Yong J, Lu S, Lu C, Huang R. The Development History, Structural Composition, and Functions of Influenza Viruses and the Progress of Influenza Virus Inhibitors in Clinics and Clinical Trials. Mini Rev Med Chem 2025; 25:196-207. [PMID: 39113298 DOI: 10.2174/0113895575316416240724043949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 02/25/2025]
Abstract
Flu is an acute respiratory disease caused by influenza viruses. The influenza viruses are classified as Alphainfluenzavirus (influenza A virus, IAV), Betainfluenzavirus (influenza B virus, IBV), Gammainfluenzavirus (influenza C virus, ICV), and Deltainfluenzavirus (influenza D virus, IDV) according to the antigenicity of nucleoproteins (NPs) and matrix (M) proteins in vivo. It is estimated that the seasonal influenza epidemics will cause about 3-5 million cases of serious illness and 290,000-650,000 deaths in the world every year, while influenza A virus is the leading cause of infection and death. Neuraminidase (NA) is one of the most critical targets for the development of anti-influenza virus drugs, and the main drugs clinically applied for the treatment of flu are neuraminidase inhibitors. However, various mutant strains have developed resistance to these inhibitors (For example, the substrains of H274Y in H1N1, H5N1, and E119V in H3N2 have developed resistance to Oseltamivir). Influenza viruses mutate frequently, and new substrains emerge constantly, and the pandemics caused by the new substrains will break out at any time. Therefore, it is urgent to develop new and wide-spectrum influenza virus inhibitors for overcoming the emerging influenza pandemic. Here, we focus on describing the progress of influenza virus inhibitors in clinics and clinical trials to provide a comprehensive reference for the researchers.
Collapse
Affiliation(s)
- Jianping Yong
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Department of Natural Products Chemistry, Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Shaoji Lu
- Xiamen Tasman Bio-Tech Co., Ltd., Xiamen, Fujian, China
| | - Canzhong Lu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Department of Natural Products Chemistry, Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Ruiwen Huang
- Xiamen Tasman Bio-Tech Co., Ltd., Xiamen, Fujian, China
| |
Collapse
|
7
|
Xu J, Luo Q, Huang Y, Li J, Ye W, Yan R, Zhou X, He Z, Liu G, Zhu Q. Influenza neuraminidase mutations and resistance to neuraminidase inhibitors. Emerg Microbes Infect 2024; 13:2429627. [PMID: 39530458 PMCID: PMC11600549 DOI: 10.1080/22221751.2024.2429627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Mutations in influenza virus neuraminidase (NA) can lead to viral resistance to NA inhibitors (NAIs). To update global influenza NA mutations and resistance to NAIs, we investigated epidemic information from global regions for NAIs-resistant influenza strains and analyzed their NA mutations. Drug-resistant mutations in NA, especially new mutations occurred in 2016-2024, were updated. The H274Y mutation in N1, a major contributor to NAI resistance, peaked in 2008, significantly impacting public health in countries like Japan and the USA. Three main mechanisms of NAI resistance were identified: catalytic site mutations, structural hindrance, and monomer stability changes. Although global resistance rates of H1N1pdm09, H3N2, and influenza B have remained stable at around 1%, sporadic emergence of resistant strains highlights the need for continued vigilance. The evolution of drug-resistant, transmissible strains through compensatory mutations underscores the urgency of new antiviral strategies. Strengthening global surveillance and adjusting public health policies, such as improving vaccine coverage and prudent antiviral use, remain essential to mitigating future risks.
Collapse
Affiliation(s)
- Jiapeng Xu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| | - Qiting Luo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Yuanyuan Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Jieyu Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Wei Ye
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Ran Yan
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xinrui Zhou
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
8
|
Wang N, Lu W, Yan L, Liu M, Che F, Wang Y, Yang C, Lv M, Cheng J, Sun Q, Dai Y. Epidemiological and genetic characterization of the influenza A (H1N1) virus in Hangzhou City in 2023. Front Public Health 2024; 12:1464435. [PMID: 39635219 PMCID: PMC11614803 DOI: 10.3389/fpubh.2024.1464435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Objective To explore and describe the epidemiological and genetic variation characteristics of the influenza A (H1N1) virus in Hangzhou City. Methods Respiratory throat swab specimens collected from the fever clinic of the 903rd Hospital of the Chinese People's Liberation Army (PLA) between January and March 2023 were collected. The respiratory pathogen antigens were identified using the colloidal gold method, and those testing positive for influenza A virus antigens were confirmed and subtyped by RT-qPCR. Seventeen H1N1 isolates were selected to amplify hemagglutinin (HA) and neuraminidase (NA) gene sequences via RT-PCR, and sequencing was completed following the identification of the amplified products. The sequenced HA and NA sequences were spliced using DNASTAR software (version 5.0), and a phylogenetic tree was constructed using MEGA software (version 11.0) for genetic characterization. Results A total of 2,376 respiratory samples were tested, with 680 cases testing positive for influenza A. Of these, 129 positive cases of influenza A were randomly selected for typing, resulting in the isolation of 112 H1N1 subtypes and 17 H3N2 subtypes. The HA genes of 17 strains of influenza A (H1N1) were randomly selected for amino acid homology comparisons with two vaccine strains recommended by the WHO for 2023 (A/Wisconsin/67/2022 (H1N1) and A/Victoria/4897/2022 (H1N1)). The HA gene results showed identities of 98.24 to 98.65% and 98.41 to 98.82%, respectively, and the NA gene results were 98.79 to 99.15% and 98.94 to 99.29%, respectively. Fourteen amino acid sites were altered in the HA gene of the 17 strains, with some strains contributing to the Sa and Ca antigenic determinants, respectively. Seventeen strains had mutations in the NA gene at sites 13, 50, 200, 339, 382, and 469. The sequenced strains, vaccine strains, and some 2023 domestic representative strains independently formed a branch 6B.1A.5a.2a. Conclusion The continuous evolutionary mutations of the H1N1 virus genes in Hangzhou City suggest the possibility of the virus escaping from the immune response. This study provides an experimental basis for evaluating the protective effect of the vaccine and formulating preventive measures against influenza in Hangzhou City.
Collapse
Affiliation(s)
- Ningning Wang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Wei Lu
- Quality Control Division, The 903rd Hospital of PLA, Hangzhou, China
| | - Li Yan
- Military Casualty Management Section, The 903rd Hospital of PLA, Hangzhou, China
| | - Mengru Liu
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Feihu Che
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Yue Wang
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Chunli Yang
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Mengyu Lv
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Jun Cheng
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Qingyang Sun
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Yuzhu Dai
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| |
Collapse
|
9
|
Takahashi T, Kurebayashi Y, Otsubo T, Ikeda K, Konagaya K, Suzuki S, Yamazaki M, Suzuki K, Narimichi Y, Minami A, Takeuchi H. Novel sialidase inhibitors suppress mumps virus replication and infection. Glycobiology 2024; 34:cwae059. [PMID: 39088577 DOI: 10.1093/glycob/cwae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/03/2024] Open
Abstract
The prevalent human pathogen, mumps virus (MuV; orthorubulavirus parotitidis) causes various complications and serious sequelae, such as meningitis, encephalitis, deafness, and impaired fertility. Direct-acting antivirals (DAAs) targeting MuV which can prevent mumps and mumps-associated complications and sequelae are yet to be developed. Paramyxoviridae family members, such as MuV, possess viral surface hemagglutinin-neuraminidase (HN) protein with sialidase activity which facilitates efficient viral replication. Therefore, to develop DAAs targeting MuV we synthesized MuV sialidase inhibitors. It is proposed that the viral HN has a single functional site for N-acetylneuraminic acid (Neu5Ac) binding and sialidase activity. Further, the known MuV sialidase inhibitor is an analog of Neu5Ac-2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA)-which lacks potency. DANA derivatives with higher MuV sialidase inhibitory potency are lacking. The MuV-HN-Neu5Ac binding site has a hydrophobic cavity adjacent to the C4 position of Neu5Ac. Exploiting this, here, we synthesized DANA derivatives with increasing hydrophobicity at its C4 position and created 3 novel sialidase inhibitors (Compounds 1, 2, and 3) with higher specificity for MuV-HN than DANA; they inhibited MuV replication step to greater extent than DANA. Furthermore, they also inhibited hemagglutination and the MuV infection step. The insight-that these 3 novel DANA derivatives possess linear hydrocarbon groups at the C4-hydroxyl group of DANA-could help develop highly potent sialidase inhibitors with high specificity for MuV sialidase, which may function as direct-acting MuV-specific antivirals.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure, Hiroshima 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure, Hiroshima 737-0112, Japan
| | - Kobun Konagaya
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Shunsuke Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Mika Yamazaki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Kenya Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Yutaka Narimichi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
- Department of Functional Morphology, Faculty of Pharmacy, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
10
|
Zhou W, Yang W, Jiang P, Gou S. A Lysosome-Targeting hNEU1 Inhibitor Treats Myocardial Infarction: A Potential Therapeutic Breakthrough. J Med Chem 2024; 67:16899-16911. [PMID: 39253767 DOI: 10.1021/acs.jmedchem.4c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The overexpression of NEU1 has recently been certified as being associated with myocardial infarction. However, the pursuit of an efficacious human NEU1 (hNEU1) inhibitor remains challenging, and viral NEU1 (viNEU1) inhibitor drugs are significantly weaker in terms of hNEU1 inhibition. Recognizing that hNEU1 is located within the lysosome, we designed a series of lysosome-targeting compounds, derived from oseltamivir, aimed at hNEU1 inhibition. Among these compounds, OsMo exhibits the most potent activity. Our findings reveal that OsMo accumulates within lysosomes and releases its pharmacophore via enzymatic catalysis. OsMo enhances hNEU1 inhibition by accumulating pharmacophores at the target site. OsMo exhibits improved regulation of abnormal autophagy during myocardial injury, demonstrating superior efficacy in treating myocardial infarction in vivo. Furthermore, OsMo exhibits acceptable pharmacokinetic parameters. Importantly, the development of molecules with lysosome-targeting abilities represents a promising avenue for addressing myocardial injuries linked to hNEU1 overexpression.
Collapse
Affiliation(s)
- Wen Zhou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Wanxiang Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ping Jiang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
11
|
Li R, Han Q, Li X, Liu X, Jiao W. Natural Product-Derived Phytochemicals for Influenza A Virus (H1N1) Prevention and Treatment. Molecules 2024; 29:2371. [PMID: 38792236 PMCID: PMC11124286 DOI: 10.3390/molecules29102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.
Collapse
Affiliation(s)
- Ruichen Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Qianru Han
- Foreign Language Education Department, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China;
| | - Xiaokun Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Xinguang Liu
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450003, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Weijie Jiao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
12
|
Malik S, Asghar M, Waheed Y. Outlining recent updates on influenza therapeutics and vaccines: A comprehensive review. Vaccine X 2024; 17:100452. [PMID: 38328274 PMCID: PMC10848012 DOI: 10.1016/j.jvacx.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Influenza virus has presented a considerable healthcare challenge during the past years, particularly in vulnerable groups with compromised immune systems. Therapeutics and vaccination have always been in research annals since the spread of influenza. Efforts have been going on to develop an antiviral therapeutic approach that could assist in better disease management and reduce the overall disease complexity, resistance development, and fatality rates. On the other hand, vaccination presents a chance for effective, long-term, cost-benefit, and preventive response against the morbidity and mortality associated with the influenza. However, the issues of resistance development, strain mutation, antigenic variability, and inability to cure wide-spectrum and large-scale strains of the virus by available vaccines remain there. The article gathers the updated data for the therapeutics and available influenza vaccines, their mechanism of action, shortcomings, and trials under clinical experimentation. A methodological approach has been adopted to identify the prospective therapeutics and available vaccines approved and within the clinical trials against the influenza virus. Review contains influenza therapeutics, including traditional and novel antiviral drugs and inhibitor therapies against influenza virus as well as research trials based on newer drug combinations and latest technologies such as nanotechnology and organic and plant-based natural products. Most recent development of influenza vaccine has been discussed including some updates on traditional vaccination protocols and discussion on next-generation and upgraded novel technologies. This review will help the readers to understand the righteous approach for dealing with influenza virus infection and for deducing futuristic approaches for novel therapeutic and vaccine trials against Influenza.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Asghar
- Department of Biology, Lund University, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
13
|
Li Z, Li B, Liu M, Chen Z, Li P, Du R, Su M, Anirudhan V, Achi JG, Tian J, Rong L, Cui Q. Development of a virus-based affinity ultrafiltration method for screening virus-surface-protein-targeted compounds from complex matrixes: Herbal medicines as a case study. J Med Virol 2024; 96:e29517. [PMID: 38476091 DOI: 10.1002/jmv.29517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Herbal medicines (HMs) are one of the main sources for the development of lead antiviral compounds. However, due to the complex composition of HMs, the screening of active compounds within these is inefficient and requires a significant time investment. We report a novel and efficient virus-based screening method for antiviral active compounds in HMs. This method involves the centrifugal ultrafiltration of viruses, known as the virus-based affinity ultrafiltration method (VAUM). This method is suitable to identify virus specific active compounds from complex matrices such as HMs. The effectiveness of the VAUM was evaluated using influenza A virus (IAV) H1N1. Using this method, four compounds that bind to the surface protein of H1N1 were identified from dried fruits of Terminalia chebula (TC). Through competitive inhibition assays, the influenza surface protein, neuraminidase (NA), was identified as the target protein of these four TC-derived compounds. Three compounds were identified by high performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS), and their anti-H1N1 activities were verified by examining the cytopathic effect (CPE) and by performing a virus yield reduction assay. Further mechanistic studies demonstrated that these three compounds directly bind to NA and inhibit its activity. In summary, we describe here a VAUM that we designed, one that can be used to accurately screen antiviral active compounds in HMs and also help improve the efficiency of screening antiviral drugs found in natural products.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baohong Li
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zinuo Chen
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Li
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ruikun Du
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Ming Su
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jazmin G Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Qinghua Cui
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
14
|
Nammalwar B, Bunce RA. Recent Advances in Pyrimidine-Based Drugs. Pharmaceuticals (Basel) 2024; 17:104. [PMID: 38256937 PMCID: PMC10820437 DOI: 10.3390/ph17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrimidines have become an increasingly important core structure in many drug molecules over the past 60 years. This article surveys recent areas in which pyrimidines have had a major impact in drug discovery therapeutics, including anti-infectives, anticancer, immunology, immuno-oncology, neurological disorders, chronic pain, and diabetes mellitus. The article presents the synthesis of the medicinal agents and highlights the role of the biological target with respect to the disease model. Additionally, the biological potency, ADME properties and pharmacokinetics/pharmacodynamics (if available) are discussed. This survey attempts to demonstrate the versatility of pyrimidine-based drugs, not only for their potency and affinity but also for the improved medicinal chemistry properties of pyrimidine as a bioisostere for phenyl and other aromatic π systems. It is hoped that this article will provide insight to researchers considering the pyrimidine scaffold as a chemotype in future drug candidates in order to counteract medical conditions previously deemed untreatable.
Collapse
Affiliation(s)
- Baskar Nammalwar
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA;
| | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
15
|
Zhang J, Liu C, Jia R, Zhang X, Zhang J, Bertagnin C, Bonomini A, Guizzo L, Jiang Y, Jia H, Jia S, Ma X, Loregian A, Huang B, Zhan P, Liu X. A novel N-heterocycles substituted oseltamivir derivatives as potent inhibitors of influenza virus neuraminidase: discovery, synthesis and biological evaluation. J Enzyme Inhib Med Chem 2023; 38:2277135. [PMID: 37955306 PMCID: PMC10653643 DOI: 10.1080/14756366.2023.2277135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Our previous studies have shown that the introduction of structurally diverse benzyl side chains at the C5-NH2 position of oseltamivir to occupy 150-cavity contributes to the binding affinity with neuraminidase and anti-influenza activity. To obtain broad-spectrum neuraminidase inhibitors, we designed and synthesised a series of novel oseltamivir derivatives bearing different N-heterocycles substituents that have been proved to induce opening of the 150-loop of group-2 neuraminidases. Among them, compound 6k bearing 4-((r)-2-methylpyrrolidin-1-yl) benzyl group exhibited antiviral activities similar to or weaker than those of oseltamivir carboxylate against H1N1, H3N2, H5N1, H5N6 and H5N1-H274Y mutant neuraminidases. More encouragingly, 6k displayed nearly 3-fold activity enhancement against H3N2 virus over oseltamivir carboxylate and 2-fold activity enhancement over zanamivir. Molecular docking studies provided insights into the explanation of its broad-spectrum potency against wild-type neuraminidases. Overall, as a promising lead compound, 6k deserves further optimisation by fully considering the ligand induced flexibility of the 150-loop.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Jian Zhang
- Institute of Medical Sciences, The Second Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Laura Guizzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Yuanmin Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Shuzhen Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, PR China
| |
Collapse
|
16
|
Tang YS, Zhang C, Lo CY, Jin Z, Kong BLH, Xiao MJ, Huang EF, Hu C, Shaw PC. Anti-influenza virus activities and mechanism of antrafenine analogs. Eur J Med Chem 2023; 260:115775. [PMID: 37672932 DOI: 10.1016/j.ejmech.2023.115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Antrafenine is a drug initially designed for anti-inflammation uses. In this work we have synthesized a library of its structural analogs and tested the anti-influenza activities. These analogs belong to a group of 2-(quinolin-4-yl)amino benzamides or 2-(quinolin-4-yl)amino benzoate derivatives. Best performers were identified, namely 12, 34, 41, with IC50 against A/WSN/33 (H1N1) of 5.53, 3.21 and 6.73 μM respectively. These chemicals were also effective against A/PR/8/34 (H1N1), A/HK/1/68 (H3N2) and B/Florida/04/2006 viruses. Time-of-addition study and minigenome luciferase reporter assay both supported that the compounds act on the ribonucleoprotein (RNP) components. Using 34 and 41 as representative compounds, we determined by microscale thermophoresis that this group of compounds bind to both PA C-terminal domain and the nucleoprotein (NP) which is the most abundant subunit of the RNP. Taken together, we have identified a new class of anti-influenza compounds with dual molecular targets and good potential to be further developed. IMPORTANCE: The influenza viruses, especially influenza A and B subtypes, cause many deaths each year. The high mutation rate of the virus renders available therapeutics less effective with time. In this work we identify a new class of compounds, structurally similar to the anti-inflammation drug antrafenine, with good potency against influenza A strains. The IC50 of the best performers are within low micromolar range and thus have good potential for further development.
Collapse
Affiliation(s)
- Yun-Sang Tang
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chao Zhang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chun-Yeung Lo
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Zhe Jin
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Meng-Jie Xiao
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Er-Fang Huang
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Pang-Chui Shaw
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
17
|
Ifrah S, Dahan A, Debotton N. Towards Effective Antiviral Oral Therapy: Development of a Novel Self-Double Emulsifying Drug Delivery System for Improved Zanamivir Intestinal Permeability. Pharmaceutics 2023; 15:2518. [PMID: 37896277 PMCID: PMC10610354 DOI: 10.3390/pharmaceutics15102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Self-double emulsifying drug delivery systems have the potential to enhance the intestinal permeability of drugs classified under the Biopharmaceutics Classification System (BCS) class III. One such example is the antiviral agent zanamivir, exhibiting suboptimal oral absorption (with a bioavailability range of 1-5%). To address this challenge, we have developed an innovative oral formulation for zanamivir: a self-double nanoemulsifying Winsor delivery system (SDNE-WDS) consisting of the microemulsion, which subsequently yields final double nanoemulsion (W1/O/W2) upon interaction with water. Two distinct formulations were prepared: SDNE-WDS1, classified as a W/O microemulsion, and SDNE-WDS2, discovered to be a bicontinuous microemulsion. The inner microemulsions displayed a consistent radius of gyration, with an average size of 35.1 ± 2.1 nm. Following self-emulsification, the resultant zanamivir-loaded nanoemulsion droplets for zSDNE-WDS1 and zSDNE-WDS2 measured 542.1 ± 36.1 and 174.4 ± 3.4 nm, respectively. Both types of emulsions demonstrated the ability to enhance the transport of zanamivir across a parallel artificial membrane. Additionally, in situ rat intestinal perfusion studies involving drug-loaded SDNE-WDSs revealed a significantly increased permeability of zanamivir through the small intestinal wall. Notably, both SDNE-WDS formulations exhibited effective permeability (Peff) values that were 3.5-5.5-fold higher than those of the low/high permeability boundary marker metoprolol. This research emphasizes the success of SDNE-WDSs in overcoming intestinal permeability barriers and enabling the effective oral administration of zanamivir. These findings hold promise for advancing the development of efficacious oral administration of BCS class III drugs.
Collapse
Affiliation(s)
- Sapir Ifrah
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Nir Debotton
- Department of Chemical Engineering, Shenkar College of Engineering and Design, Ramat-Gan 52526, Israel
| |
Collapse
|
18
|
Agustiningsih A, Indalao IL, Pangesti KA, Sukowati CHC, Ramadhany R. Molecular Characterization of Influenza A/H3N2 Virus Isolated from Indonesian Hajj and Umrah Pilgrims 2013 to 2014. Life (Basel) 2023; 13:1100. [PMID: 37240745 PMCID: PMC10221221 DOI: 10.3390/life13051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The Hajj and Umrah are the annual mass gatherings of Muslims in Saudi Arabia and increase the transmission risk of acute respiratory infection. This study describes influenza infection among pilgrims upon arrival in Indonesia and the genetic characterization of imported influenza A/H3N2 virus. In total, 251 swab samples with influenza-like illness were tested using real-time RT-PCR for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and influenza viruses. Complete sequences of influenza A/H3N2 HA and NA genes were obtained using DNA sequencing and plotted to amino acid and antigenicity changes. Phylogenetic analysis was performed using a neighbour-joining method including the WHO vaccine strains and influenza A/H3N2 as references. The real-time RT-PCR test detected 100 (39.5%) samples positive with influenza with no positivity of MERS-CoV. Mutations in the HA gene were mainly located within the antigenic sites A, B, and D, while for the NA gene, no mutations related to oseltamivir resistance were observed. Phylogenetic analysis revealed that these viruses grouped together with clades 3C.2 and 3C.3; however, they were not closely grouped with the WHO-recommended vaccine (clades 3C.1). Sequences obtained from Hajj and Umrah pilgrims were also not grouped together with viruses from Middle East countries but clustered according to years of collection. This implies that the influenza A/H3N2 virus mutates continually across time.
Collapse
Affiliation(s)
- Agustiningsih Agustiningsih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat, DKI, Jakarta 10340, Indonesia
| | - Irene Lorinda Indalao
- Ministry of Health of the Republic of Indonesia, Jl. H.R. Rasuna Said Blok X.5 Kav. 4-9, Jakarta Selatan, DKI, Jakarta 12950, Indonesia
| | - Krisnanur A. Pangesti
- Ministry of Health of the Republic of Indonesia, Jl. H.R. Rasuna Said Blok X.5 Kav. 4-9, Jakarta Selatan, DKI, Jakarta 12950, Indonesia
| | - Caecilia H. C. Sukowati
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat, DKI, Jakarta 10340, Indonesia
- Fondazione Italiana Fegato ONLUS, AREA Science Park, Basovizza, 34049 Trieste, Italy
| | - Ririn Ramadhany
- Ministry of Health of the Republic of Indonesia, Jl. H.R. Rasuna Said Blok X.5 Kav. 4-9, Jakarta Selatan, DKI, Jakarta 12950, Indonesia
| |
Collapse
|
19
|
Wang S, Ying Z, Huang Y, Li Y, Hu M, Kang K, Wang H, Shao J, Wu G, Yu Y, Du Y, Chen W. Synthesis and structure-activity optimization of 7-azaindoles containing aza-β-amino acids targeting the influenza PB2 subunit. Eur J Med Chem 2023; 250:115185. [PMID: 36773549 DOI: 10.1016/j.ejmech.2023.115185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
The PB2 subunit of influenza virus polymerase has been demonstrated as a promising drug target for anti-influenza therapy. In this work, 7-azaindoles containing aza-β3- or β2,3 -amino acids were synthesized possessing a good binding affinity of PB2. The aza-β-amino acid moieties with diverse size, shape, steric hindrance and configuration were investigated. Then a lead HAA-09 was validated, and the attached aza-β3-amino acid moiety with acyclic tertiary carbon side chain well occupied in the key hydrophobic cavity of PB2_cap binding domain. Importantly, HAA-09 displays potent polymerase inhibition capacity, low cytotoxicity (selectivity index up to 2915) as well as robust anti-viral activity against A/WSN/33 (H1N1) virus and oseltamivir-resistant H275Y variant. Moreover, HAA-09 exhibited druggability with high plasma stability (t1/2 ≥ 12 h) and no obvious hERG inhibition (IC50 > 10 μM). Also, HAA-09 demonstrated a favorable safety profile when orally administrated in healthy mice at a high dose of 40 mg/kg QD for consecutive 3 days. Besides, in vivo therapeutic efficacy (85.7% survival observed at the day 15 post infection) was demonstrated when HAA-09 was administrated orally at 12.5 mg/kg BID starting 48 h post infection for 9 days. These data support that exploring the interactions between side chains on aza-β3- or β2,3 -amino acid moieties and hydrophobic pocket of PB2_cap binding domain is a potential medicinal chemistry strategy for developing potent PB2 inhibitors.
Collapse
Affiliation(s)
- Sihan Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhimin Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Youchun Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yuting Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Menglong Hu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Ke Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Haiyang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, PR China
| | - Gaoqi Wu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yushen Du
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
20
|
Hassan AEA, Hegazy HA, Zaki I, Hassan MH, Ramadan M, Haikal AZ, Sheng J, Abou-Elkhair RAI. Design, synthesis, and evaluation of 4'-phosphonomethoxy pyrimidine ribonucleosides as potential anti-influenza agents. Arch Pharm (Weinheim) 2023:e2200382. [PMID: 36792964 DOI: 10.1002/ardp.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Influenza viruses belong to the Orthomyxoviridae family and cause acute respiratory distress in humans. The developed drug resistance toward existing drugs and the emergence of viral mutants that can escape vaccines mandate the search for novel antiviral drugs. Herein, the synthesis of epimeric 4'-methyl-4'-phosphonomethoxy [4'-C-Me-4'-C-(O-CH2 P═O)] pyrimidine ribonucleosides, their phosphonothioate [4'-C-Me-4'-C-(O-CH2 P═S)] derivatives, and their evaluation against an RNA viral panel are described. Selective formation of the α- l-lyxo epimer, [4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P(═O)(OEt)2 )] over the β- d-ribo epimer [4'-C-(β)-Me-4'-C-(α)-(O-CH2 -P(═O)(OEt)2 )] was explained by DFT equilibrium geometry optimizations studies. Pyrimidine nucleosides having the [4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P(═O)(OEt)2 )] framework showed specific activity against influenza A virus. Significant anti-influenza virus A (H1N1 California/07/2009 isolate) was observed with the 4'-C-(α)-Me-4'-C-(β)-O-CH2 -P(═O)(OEt)2 -uridine derivative 1 (EC50 = 4.56 mM, SI50 > 56), 4-ethoxy-2-oxo-1(2H)-pyrimidin-1-yl derivative 3 (EC50 = 5.44 mM, SI50 > 43) and the cytidine derivative 2 (EC50 = 0.81 mM, SI50 > 13), respectively. The corresponding thiophosphonates 4'-C-(α)-Me-4'-C-(β)-(O-CH2 -P( S)(OEt)2 ) and thionopyrimidine nucleosides were devoid of any antiviral activity. This study shows that the 4'-C-(α)-Me-4'-(β)-O-CH2 -P(═O)(OEt)2 ribonucleoside can be further optimized to provide potent antiviral agents.
Collapse
Affiliation(s)
- Abdalla E A Hassan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Hend A Hegazy
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa H Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Medhat Ramadan
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Abdelfattah Z Haikal
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Reham A I Abou-Elkhair
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Antiviral Mechanism of Virucidal Sialic Acid Modified Cyclodextrin. Pharmaceutics 2023; 15:pharmaceutics15020582. [PMID: 36839904 PMCID: PMC9965221 DOI: 10.3390/pharmaceutics15020582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
We have reported that CD-6'SLN [6-sialyllactosamine (6'SLN)-modified β-cyclodextrin (CD)] can be a potential anti-influenza drug because it irreversibly deactivates virions. Indeed, in vivo, CD-6'SLN improved mice survival in an H1N1 infection model even when administered 24 h post-infection. Although CD-6'SLN was designed to target the viral envelope protein hemagglutinin (HA), a natural receptor of 6'SLN, it remains unclear whether other targets exist. In this study, we confirm that CD-6'SLN inhibits the influenza virus through an extracellular mechanism by interacting with HA, but not with neuraminidase (NA), despite the latter also having a binding pocket for the sialyl group. We find that CD-6'SLN interacts with the viral envelope as it elicits the release of a fluorophore embedded in the membrane. Two similar compounds were designed to test separately the effect of 6'SLN and of the undecyl moiety that links the CD to 6'SLN. Neither showed any interaction with the membrane nor the irreversible viral inhibition (virucidal), confirming that both components are essential to membrane interaction and virucidal action. Unlike similar antiviral cyclodextrins developed against other viruses, CD-6'SLN was not able to decapsulate viral RNA. Our findings support that combining viral protein-specific epitopes with hydrophobic linkers provides a strategy for developing antiviral drugs with a virucidal mechanism.
Collapse
|
22
|
Batool S, Chokkakula S, Song MS. Influenza Treatment: Limitations of Antiviral Therapy and Advantages of Drug Combination Therapy. Microorganisms 2023; 11:183. [PMID: 36677475 PMCID: PMC9865513 DOI: 10.3390/microorganisms11010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Influenza infection is serious and debilitating for humans and animals. The influenza virus undergoes incessant mutation, segment recombination, and genome reassortment. As a result, new epidemics and pandemics are expected to emerge, making the elimination challenging of the disease. Antiviral therapy has been used for the treatment of influenza since the development of amantadine in the 1960s; however, its use is hampered by the emergence of novel strains and the development of drug resistance. Thus, combinational therapy with two or more antivirals or immunomodulators with different modes of action is the optimal strategy for the effective treatment of influenza infection. In this review, we describe current options for combination therapy, their performance, and constraints imposed by resistance, calling attention to the advantages of combination therapy against severe influenza infections. We also discuss the challenges of influenza therapy and the limitations of approved antiviral drugs.
Collapse
Affiliation(s)
| | | | - Min-Suk Song
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
23
|
Kwon EB, Li W, Kim YS, Kim B, Chung HS, Go Y, Ko HJ, Song JH, Kim YH, Choi CW, Choi JG. Vitisin B inhibits influenza A virus replication by multi-targeting neuraminidase and virus-induced oxidative stress. Acta Pharm Sin B 2023; 13:174-191. [PMID: 36815046 PMCID: PMC9939323 DOI: 10.1016/j.apsb.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase (NA) inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration (FDA) for the prevention and treatment of influenza. Here, we show that vitisin B (VB) inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species (ROS), which frequently occur during viral infection, increase virus replication by activating the NF-κB signaling pathway, downmodulating glucose-6-phosphate dehydrogenase (G6PD) expression, and decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response activity. VB decreased virus-induced ROS generation by increasing G6PD expression and Nrf2 activity, and inhibiting NF-κB translocation to the nucleus through IKK dephosphorylation. In addition, VB reduced body weight loss, increased survival, decreased viral replication and the inflammatory response in the lungs of influenza A virus (IAV)-infected mice. Taken together, our results indicate that VB is a promising therapeutic candidate against IAV infection, complements existing drug limitations targeting viral NA. It modulated the intracellular ROS by G6PD, Nrf2 antioxidant response pathway, and NF-κB signaling pathway. These results demonstrate the feasibility of a multi-targeting drug strategy, providing new approaches for drug discovery against IAV infection.
Collapse
Affiliation(s)
- Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Buyun Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Chun Whan Choi
- Natural Product Research Team, Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do 16229, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| |
Collapse
|
24
|
Wang K, Zhang H, Tian Y. The current strategies of optimization of oseltamivir against mutant neuraminidases of influenza A:A review. Eur J Med Chem 2022; 243:114711. [DOI: 10.1016/j.ejmech.2022.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
|
25
|
Debotton N, Grasiani S, Cohen Y, Dahan A. Enabling Oral Delivery of Antiviral Drugs: Double Emulsion Carriers to Improve the Intestinal Absorption of Zanamivir. Int J Pharm 2022; 629:122392. [DOI: 10.1016/j.ijpharm.2022.122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
26
|
Ghosh A, Panda P, Halder AK, Cordeiro MNDS. In silico characterization of aryl benzoyl hydrazide derivatives as potential inhibitors of RdRp enzyme of H5N1 influenza virus. Front Pharmacol 2022; 13:1004255. [PMID: 36225563 PMCID: PMC9548590 DOI: 10.3389/fphar.2022.1004255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRp) is a potential therapeutic target for the discovery of novel antiviral agents for the treatment of life-threatening infections caused by newly emerged strains of the influenza virus. Being one of the most conserved enzymes among RNA viruses, RdRp and its inhibitors require further investigations to design novel antiviral agents. In this work, we systematically investigated the structural requirements for antiviral properties of some recently reported aryl benzoyl hydrazide derivatives through a range of in silico tools such as 2D-quantitative structure-activity relationship (2D-QSAR), 3D-QSAR, structure-based pharmacophore modeling, molecular docking and molecular dynamics simulations. The 2D-QSAR models developed in the current work achieved high statistical reliability and simultaneously afforded in-depth mechanistic interpretability towards structural requirements. The structure-based pharmacophore model developed with the docked conformation of one of the most potent compounds with the RdRp protein of H5N1 influenza strain was utilized for developing a 3D-QSAR model with satisfactory statistical quality validating both the docking and the pharmacophore modeling methodologies performed in this work. However, it is the atom-based alignment of the compounds that afforded the most statistically reliable 3D-QSAR model, the results of which provided mechanistic interpretations consistent with the 2D-QSAR results. Additionally, molecular dynamics simulations performed with the apoprotein as well as the docked complex of RdRp revealed the dynamic stability of the ligand at the proposed binding site of the receptor. At the same time, it also supported the mechanistic interpretations drawn from 2D-, 3D-QSAR and pharmacophore modeling. The present study, performed mostly with open-source tools and webservers, returns important guidelines for research aimed at the future design and development of novel anti-viral agents against various RNA viruses like influenza virus, human immunodeficiency virus-1, hepatitis C virus, corona virus, and so forth.
Collapse
Affiliation(s)
- Abhishek Ghosh
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Parthasarathi Panda
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
- *Correspondence: Parthasarathi Panda, ; Maria Natalia D. S. Cordeiro,
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Maria Natalia D. S. Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- *Correspondence: Parthasarathi Panda, ; Maria Natalia D. S. Cordeiro,
| |
Collapse
|
27
|
An C, Wu Y, Wu J, Liu H, Zhou S, Ge D, Dong R, You L, Hao Y. Berberine ameliorates pulmonary inflammation in mice with influenza viral pneumonia by inhibiting NLRP3 inflammasome activation and gasdermin D‐mediated pyroptosis. Drug Dev Res 2022; 83:1707-1721. [DOI: 10.1002/ddr.21995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chen An
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Yanmin Wu
- Department of Immunology, School of Medical Technology Qiqihar Medical University Qiqihar China
| | - Jun Wu
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Huanwei Liu
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Siyao Zhou
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Dongyu Ge
- Research and Test Center, School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Ruijuan Dong
- Research and Test Center, School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| | - Yu Hao
- Department of Immunology and Microbiology, School of Life Science Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
28
|
Eryildiz B, Ozgun H, Ersahin ME, Koyuncu I. Antiviral drugs against influenza: Treatment methods, environmental risk assessment and analytical determination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115523. [PMID: 35779301 DOI: 10.1016/j.jenvman.2022.115523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, antiviral drugs against influenza are considered emerging contaminants since they cause environmental toxicity even at low concentrations. They have been found in environmental matrices all around the world, showing that conventional treatment methods fail to remove them from water and wastewater. In addition, the metabolites and transformation products of these drugs can be more persistent than original in the environment. Several techniques to degrade/remove antiviral drugs against influenza have been investigated to prevent this contamination. In this study, the characteristics of antiviral drugs against influenza, their measurement by analytical methods, and their removal in both water and wastewater treatment plants (WWTPs) were presented. Different treatment methods, such as traditional procedures (biological processes, filtration, coagulation, flocculation, and sedimentation), advanced oxidation processes (AOPs), adsorption and combined methods, were assessed. Ecotoxicological effects of both the antiviral drug and its metabolites as well as the transformation products formed as a result of treatment were evaluated. In addition, future perspectives for improving the removal of antiviral drugs against influenza, their metabolites and transformation products were further discussed. The research indicated that the main tested techniques in this study were ozonation, photolysis and photocatalysis. Combined methods, particularly those that use renewable energy and waste materials, appear to be the optimum approach for the treatment of effluents containing antiviral drugs against influenza. In light of high concentrations or probable antiviral resistance, this comprehensive assessment suggests that antiviral drug monitoring is required, and some of those substances may cause toxicological effects.
Collapse
Affiliation(s)
- Bahriye Eryildiz
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Hale Ozgun
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
29
|
Saim-Mamoun A, Abed Y, Carbonneau J, Boivin G. Generation and Characterization of Drug-Resistant Influenza B Viruses Selected In Vitro with Baloxavir Acid. Pathogens 2022; 11:pathogens11091048. [PMID: 36145480 PMCID: PMC9505253 DOI: 10.3390/pathogens11091048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Baloxavir marboxil (BXM) is an antiviral drug that targets the endonuclease of the influenza polymerase acidic (PA) protein. Antiviral resistance, mainly mediated by the I38T PA substitution, readily occurs in both A(H1N1) and A(H3N2) viruses following a single dose of BXM. Influenza B resistance to BXM remains poorly documented. We aimed to generate baloxavir-resistant contemporary influenza B/Yamagata/16/1988- and B/Victoria/2/1987-like viruses by in vitro passages under baloxavir acid (BXA) pressure to identify resistance mutations and to characterize the fitness of drug-resistant variants. Influenza B/Phuket/3073/2013 recombinant virus (rg-PKT13, a B/Yamagata/16/1988-like virus) and B/Quebec/MCV-11/2019 (MCV19, a B/Victoria/2/1987-like isolate) were passaged in ST6GalI-MDCK cells in the presence of increasing concentrations of BXA. At defined passages, viral RNA was extracted for sequencing the PA gene. The I38T PA substitution was selected in MCV19 after six passages in presence of BXA whereas no PA change was detected in rg-PKT13. The I38T substitution increased the BXA IC50 value by 13.7-fold in the MCV19 background and resulted in reduced viral titers compared to the wild type (WT) at early time points in ST6GalI-MDCK and at all time-points in human epithelial cells. By contrast, the I38T substitution had no impact on MCV19 polymerase activity, and this mutation was genetically stable over four passages. In conclusion, our results show a similar pathway of resistance to BXA in influenza B viruses highlighting the major role of the I38T PA substitution and suggest that I38T may differently impact the fitness of influenza variants depending on the viral type, subtype, or lineage.
Collapse
|
30
|
Ju H, Hou L, Zhao F, Zhang Y, Jia R, Guizzo L, Bonomini A, Zhang J, Gao Z, Liang R, Bertagnin C, Kong X, Ma X, Kang D, Loregian A, Huang B, Liu X, Zhan P. Iterative Optimization and Structure-Activity Relationship Studies of Oseltamivir Amino Derivatives as Potent and Selective Neuraminidase Inhibitors via Targeting 150-Cavity. J Med Chem 2022; 65:11550-11573. [PMID: 35939763 DOI: 10.1021/acs.jmedchem.1c01970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With our continuous endeavors in seeking neuraminidase (NA) inhibitors, we reported herein three series of novel oseltamivir amino derivatives with the goal of exploring the druggable chemical space inside the 150-cavity of influenza virus NAs. Among them, around half of the compounds in series C were demonstrated to be better inhibitors against both wild-type and oseltamivir-resistant group-1 NAs than oseltamivir carboxylate (OSC). Notably, compounds 12d, 12e, 15e, and 15i showed more potent or equipotent antiviral activity against H1N1, H5N1, and H5N8 viruses compared to OSC in cellular assays. Furthermore, compounds 12e and 15e exhibited high metabolic stability in human liver microsomes (HLMs) and low inhibitory effect on main cytochrome P450 (CYP) enzymes, as well as low acute/subacute toxicity and certain antiviral efficacy in vivo. Also, pharmacokinetic (PK) and molecular docking studies were performed. Overall, 12e and 15e possess great potential to serve as anti-influenza candidates and are worthy of further investigation.
Collapse
Affiliation(s)
- Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Lingxin Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Laura Guizzo
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Ruipeng Liang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Xiujie Kong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, 250100 Jinan, Shandong, P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 202 North Gongye Road, 250100 Jinan, Shandong, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
31
|
Mtambo SE, Kumalo HM. In Silico Drug Repurposing of FDA-Approved Drugs Highlighting Promacta as a Potential Inhibitor of H7N9 Influenza Virus. Molecules 2022; 27:molecules27144515. [PMID: 35889388 PMCID: PMC9321947 DOI: 10.3390/molecules27144515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
Influenza virus infections continue to be a significant and recurrent public health problem. Although vaccine efficacy varies, regular immunisation is the most effective method for suppressing the influenza virus. Antiviral drugs are available for influenza, although two of the four FDA-approved antiviral treatments have resulted in significant drug resistance. Therefore, new treatments are being sought to reduce the burden of flu-related illness. The time-consuming development of treatments for new and re-emerging diseases such as influenza and the high failure rate are increasing concerns. In this context, we used an in silico-based drug repurposing method to repurpose FDA-approved drugs as potential therapies against the H7N9 virus. To find potential inhibitors, a total of 2568 drugs were screened. Promacta, tucatinib, and lurasidone were identified as promising hits in the DrugBank database. According to the calculations of MM-GBSA, tucatinib (−54.11 kcal/mol) and Promacta (−56.20 kcal/mol) occupied the active site of neuraminidase with a higher binding affinity than the standard drug peramivir (−49.09 kcal/mol). Molecular dynamics (MD) simulation studies showed that the C-α atom backbones of the complexes of tucatinib and Promacta neuraminidase were stable throughout the simulation period. According to ADME analysis, the hit compounds have a high gastrointestinal absorption (GI) and do not exhibit properties that allow them to cross the blood–brain barrier (BBB). According to the in silico toxicity prediction, Promacta is not cardiotoxic, while lurasidone and tucatinib show only weak inhibition. Therefore, we propose to test these compounds experimentally against the influenza H7N9 virus. The investigation and validation of these potential H7N9 inhibitors would be beneficial in order to bring these compounds into clinical settings.
Collapse
|
32
|
Xu X, Zhang W, Wu X, Sun Y, Yang H, Pu Y, Zhou S, Fang B. The effectiveness and safety of Chaiqin Qingning Capsule in upper respiratory tract infections with fever: A prospective, double-blinded, randomized, multicenter controlled trial. Complement Ther Med 2022; 68:102840. [PMID: 35523395 DOI: 10.1016/j.ctim.2022.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND AND AIM Presently, over-the-counter drugs that can treat upper respiratory tract infections (URTI) are rarely effective and safe. Chaiqin Qingning Capsule (CQQNC), a Chinese patent medicine, which has been verified by long-term clinical practice is recommended by Chinese experts for the treatment of URTI with fever. This study conducted a prospective, double-blinded, randomized, multicenter controlled trial to evaluate the effectiveness and safety of CQQNC in the treatment of URTI. METHODS The study was conducted at 4 clinical centers in China. Eligible subjects were recruited and randomized 1:1 to the CQQNC group and Qingkailing Capsule (QKLC) group. Both groups were administered orally three times a day for three consecutive days. Primary outcomes were the antipyretic onset time and the temperature recovery time. Secondary outcomes included the symptom disappearance rate, symptom score, and drug safety assessment. RESULTS A total of 269 subjects were analyzed (134 subjects in the CQQNC group, 135 subjects in the QKLC group). The antipyretic onset time and the temperature recovery time were significantly shortened in the CQQNC group (median: 5 h vs. 10 h, p < 0.0001, median: 19 h vs. 27 h, p < 0.0001). CQQNC was more effective than the QKLC in improving the symptoms of pharyngodynia and rhinobyon (85.07% vs. 71.11%, p = 0.008; 76.99% vs. 64.41%, p = 0.043), and in improving the overall symptom scores (-15.10 ± 3.23 vs. -13.35 ± 3.58, p < 0.0001). During the trial, no serious adverse events were reported in the two groups. CONCLUSION CQQNC is effective and safe in the treatment of URTI with fever, and worthy of clinical application. (http://www.chictr.org.cn, ChiCTR-IPR-16009049).
Collapse
Affiliation(s)
- Xiangru Xu
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen Zhang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinxin Wu
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuting Sun
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hongqiang Yang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuting Pu
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shuang Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bangjiang Fang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China..
| |
Collapse
|
33
|
Shi W, Jiang L, Ye M, Wang B, Chang Y, Shan Z, Wang X, Hu Y, Chen H, Li C. A Single Amino Acid Residue R144 of SNX16 Affects Its Ability to Inhibit the Replication of Influenza A Virus. Viruses 2022; 14:825. [PMID: 35458555 PMCID: PMC9032038 DOI: 10.3390/v14040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Influenza A virus (IAV) is an important zoonotic pathogen, posing a severe burden for the health of both animals and humans. Many host factors are involved in the life cycle of IAV to regulate its replication. Herein, we identified sorting nexin-16 (SNX16) as a new host factor that negatively modulates the replication of IAV. When transiently overexpressed in cells, SNX16 appears to be expressed as two obvious bands. Mutagenesis analysis indicated that the amino acid residue R144 of SNX16 was responsible for its two-band expression phenotype. We found that the R144A mutation of SNX16 changed its cellular distribution in A549 cells and partially weakened the inhibitory effect of SNX16 on IAV replication. Further investigation revealed that SNX16 could negatively regulate the early stage of the replication cycle of IAV. Taken together, our results demonstrated that SNX16 is a novel restriction host factor for the replication of IAV by engaging in the early stage of IAV life cycle, and a single amino acid residue at position 144 plays an important role in the cellular distribution and anti-influenza function of SNX16.
Collapse
Affiliation(s)
- Wenjun Shi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (X.W.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Miaomiao Ye
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Bo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Yu Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Zhibo Shan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Xuyuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (X.W.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Hualan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.S.); (X.W.)
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (L.J.); (M.Y.); (B.W.); (Y.C.); (Z.S.); (Y.H.)
| |
Collapse
|
34
|
Xia C, Xu W, Ai X, Zhu Y, Geng P, Niu Y, Zhu H, Zhou W, Huang H, Shi X. Autophagy and Exosome Coordinately Enhance Macrophage M1 Polarization and Recruitment in Influenza A Virus Infection. Front Immunol 2022; 13:722053. [PMID: 35371077 PMCID: PMC8967985 DOI: 10.3389/fimmu.2022.722053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Background Influenza A virus infection results in viral pneumonia, which is often accompanied by the infiltration and recruitment of macrophages, overactivation of inflammatory responses, and obvious cell autophagy and exosome production. However, little is known about the roles of autophagy and exosome production in these inflammatory responses. Methods In this study, multiple methods, such as flow cytometry, real-time quantitative reverse transcription-polymerase chain reaction, immune–fluorescence technology, and western blot, were applied to explore the possible effects of autophagy and exosome production by H1N1-infected host cells. Results It was observed that a high number of polarized macrophages (CD11b+/F4/80+/CD86+) were recruited to the lung tissues of infected mice, which could be mimicked by tracking the movement of macrophages to H1N1-infected cells in vitro (transwell assays). Furthermore, there was some coordinated upregulation of M1 polarization signs (iNOS/Arg-1 bias) as well as autophagy (LC3) and exosome (CD63) biomarkers in the infected macrophages and epithelial cells. Moreover, exosomes extracted from the supernatant of virus-infected cells were shown to promote the recruitment and polarization of more peritoneal macrophages than the normal group. The fluorescence colocalization of LC3-CD63 and the inhibition of autophagy and exosome signaling pathway further revealed that H1N1 infection seemed to sequentially activate the M1 polarization and recruitment of macrophages via autophagy–exosome dependent pathway. Conclusion Autophagy and exosome production coordinately enhance the M1 polarization and recruitment of macrophages in influenza virus infection, which also provides potential therapeutic targets.
Collapse
Affiliation(s)
- Chengjie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Weiming Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xin Ai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yingqi Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Ping Geng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yijun Niu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
35
|
Liu X, Liang J, Yu Y, Han X, Yu L, Chen F, Xu Z, Chen Q, Jin M, Dong C, Zhou HB, Lan K, Wu S. Discovery of Aryl Benzoyl Hydrazide Derivatives as Novel Potent Broad-Spectrum Inhibitors of Influenza A Virus RNA-Dependent RNA Polymerase (RdRp). J Med Chem 2022; 65:3814-3832. [PMID: 35212527 DOI: 10.1021/acs.jmedchem.1c01257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza A viruses possess a high antigenic shift, and the approved anti-influenza drugs are extremely limited, which makes the development of novel anti-influenza drugs for the clinical treatment and prevention of influenza outbreaks imperative. Herein, we report a series of novel aryl benzoyl hydrazide analogs as potent anti-influenza agents. Particularly, analogs 10b, 10c, 10g, 11p, and 11q exhibited potent inhibitory activity against the avian H5N1 flu strain with EC50 values ranging from 0.009 to 0.034 μM. Moreover, compound 11q exhibited nanomolar antiviral effects against both the H1N1 virus and Flu B virus and possessed good oral bioavailability and inhibitory activity against influenza A virus in a mouse model. Preliminary mechanistic studies suggested that these compounds exert anti-influenza virus effects mainly by interacting with the PB1 subunit of RNA-dependent RNA polymerase (RdRp). These results revealed that 11q has the potential to become a potent clinical candidate to combat seasonal influenza and influenza pandemics.
Collapse
Affiliation(s)
- Xinjin Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinsen Liang
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yongshi Yu
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xin Han
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Lei Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feifei Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhichao Xu
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Qi Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengyu Jin
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Chune Dong
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hai-Bing Zhou
- Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuwen Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
36
|
Xin Y, Chen S, Tang K, Wu Y, Guo Y. Identification of Nifurtimox and Chrysin as Anti-Influenza Virus Agents by Clinical Transcriptome Signature Reversion. Int J Mol Sci 2022; 23:ijms23042372. [PMID: 35216485 PMCID: PMC8876279 DOI: 10.3390/ijms23042372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds’ perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov–Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 μM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.
Collapse
Affiliation(s)
- Yijing Xin
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shubing Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke Tang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - You Wu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Guo
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: ; Tel.: +86-010-63161716
| |
Collapse
|
37
|
Abstract
The neuraminidase (NA) of influenza A and B viruses plays a distinct role in viral replication and has a highly conserved catalytic site. Numerous sialic (neuraminic) acid analogs that competitively bind to the NA active site and potently inhibit enzyme activity have been synthesized and tested. Four NA inhibitors are now licensed in various parts of the world (zanamivir, oseltamivir, peramivir, and laninamivir) to treat influenza A and B infections. NA changes, naturally occurring or acquired under selective pressure, have been shown to reduce drug binding, thereby affecting the effectiveness of NA inhibitors. Drug resistance and other drawbacks have prompted the search for the next-generation NA-targeting therapeutics. One of the promising approaches is the identification of monoclonal antibodies (mAbs) targeting the conserved NA epitopes. Anti-NA mAbs demonstrate Fab-based antiviral activity supplemented with Fc-mediated immune effector functions. Antiviral Fc-conjugates offer another cutting-edge strategy that is based on a multimodal mechanism of action. These novel antiviral agents are composed of a small-molecule NA inhibitor and an Fc-region that simultaneously engages the immune system. The significant advancements made in recent years further support the value of NA as an attractive target for the antiviral development.
Collapse
Affiliation(s)
- Larisa Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| | - Teena Mohan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| |
Collapse
|
38
|
Tatar E, Yaldız S, Kulabaş N, Vanderlinden E, Naesens L, Küçükgüzel İ. Synthesis and structure-activity relationship of L-methionine-coupled 1,3,4-thiadiazole derivatives with activity against influenza virus. Chem Biol Drug Des 2021; 99:398-415. [PMID: 34873848 DOI: 10.1111/cbdd.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
In previous investigations, we identified a class of 1,3,4-thiadiazole derivatives with antiviral activity. N-{3-(Methylsulfanyl)-1-[5-(phenylamino)-1,3,4-thiadiazole-2-yl]propyl}benzamide emerged as a relevant lead compound for designing novel influenza A virus inhibitors. In the present study, we elaborated on this initial lead by performing chemical synthesis and antiviral evaluation of a series of structural analogues. During this research, thirteen novel 1,3,4-thiadiazole derivatives were synthesized by the cyclization of the corresponding thiosemicarbazides as synthetic precursors. The structures and the purities of the synthesized compounds were confirmed through chromatographic and spectral data. Four L-methionine-based 1,3,4-thiadiazole derivatives displayed activity against influenza A virus, the two best compounds being 24 carrying a 5-(4-chlorophenylamino)-1,3,4-thiadiazole moiety and 30 possessing a 5-(benzoylamino)-1,3,4-thiadiazole structure [antiviral EC50 against influenza A/H3N2 virus: 4.8 and 7.4 µM, respectively]. The 1,3,4-thiadiazole derivatives were inactive against influenza B virus and a wide panel of unrelated DNA and RNA viruses. Compound 24 represents a new class of selective influenza A virus inhibitors acting during the virus entry process, as evidenced by our findings in a time-of-addition assay. Molecular descriptors and in silico prediction of ADMET properties of the active compounds were calculated. According to in silico ADMET and drug similarity studies, active compounds have been estimated to be good candidates for oral administration with no apparent toxicity considerations.
Collapse
Affiliation(s)
- Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Seda Yaldız
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Necla Kulabaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Evelien Vanderlinden
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
39
|
Cáceres CJ, Hu Y, Cárdenas-García S, Wu X, Tan H, Carnaccini S, Gay LC, Geiger G, Ma C, Zhang QY, Rajao D, Perez DR, Wang J. Rational design of a deuterium-containing M2-S31N channel blocker UAWJ280 with in vivo antiviral efficacy against both oseltamivir sensitive and -resistant influenza A viruses. Emerg Microbes Infect 2021; 10:1832-1848. [PMID: 34427541 PMCID: PMC8451667 DOI: 10.1080/22221751.2021.1972769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 10/28/2022]
Abstract
Seasonal influenza A virus (IAV) infections are among the most important global health problems. FDA-approved antiviral therapies against IAV include neuraminidase inhibitors, M2 inhibitors, and polymerase inhibitor baloxavir. Resistance against adamantanes (amantadine and rimantadine) is widespread as virtually all IAV strains currently circulating in the human population are resistant to adamantanes through the acquisition of the S31N mutation. The neuraminidase inhibitor-resistant strains also contain the M2-S31N mutant, suggesting M2-S31N is a high-profile antiviral drug target. Here we report the development of a novel deuterium-containing M2-S31N inhibitor UAWJ280. UAWJ280 had broad-spectrum antiviral activity against both oseltamivir sensitive and -resistant influenza A strains and had a synergistic antiviral effect in combination with oseltamivir in cell culture. In vivo pharmacokinetic (PK) studies demonstrated that UAWJ280 had favourable PK properties. The in vivo mouse model study showed that UAWJ280 was effective alone or in combination with oseltamivir in improving clinical signs and survival after lethal challenge with an oseltamivir sensitive IAV H1N1 strain. Furthermore, UAWJ280 was also able to ameliorate clinical signs and increase survival when mice were challenged with an oseltamivir-resistant IAV H1N1 strain. In conclusion, we show for the first time that the M2-S31N channel blocker UAWJ280 has in vivo antiviral efficacy in mice that are infected with either oseltamivir sensitive or -resistant IAVs, and it has a synergistic antiviral effect with oseltamivir.
Collapse
Affiliation(s)
- C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Stivalis Cárdenas-García
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Haozhou Tan
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Silvia Carnaccini
- Tifton diagnostic laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Daniela Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
40
|
Orr-Burks N, Murray J, Todd KV, Bakre A, Tripp RA. MicroRNAs affect GPCR and Ion channel genes needed for influenza replication. J Gen Virol 2021; 102:001691. [PMID: 34787540 PMCID: PMC8742985 DOI: 10.1099/jgv.0.001691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/03/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza virus causes seasonal epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses worldwide. Understanding how to regulate influenza virus replication is important for developing vaccine and therapeutic strategies. Identifying microRNAs (miRs) that affect host genes used by influenza virus for replication can support an antiviral strategy. In this study, G-protein coupled receptor (GPCR) and ion channel (IC) host genes in human alveolar epithelial (A549) cells used by influenza virus for replication (Orr-Burks et al., 2021) were examined as miR target genes following A/CA/04/09- or B/Yamagata/16/1988 replication. Thirty-three miRs were predicted to target GPCR or IC genes and their miR mimics were evaluated for their ability to decrease influenza virus replication. Paired miR inhibitors were used as an ancillary measure to confirm or not the antiviral effects of a miR mimic. Fifteen miRs lowered influenza virus replication and four miRs were found to reduce replication irrespective of virus strain and type differences. These findings provide evidence for novel miR disease intervention strategies for influenza viruses.
Collapse
Affiliation(s)
- Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Kyle V. Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
41
|
Liu Z, Gu S, Zhu X, Liu M, Cao Z, Qiu P, Li S, Liu S, Song G. Discovery and optimization of new 6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline derivatives as potent influenza virus PA N inhibitors. Eur J Med Chem 2021; 227:113929. [PMID: 34700269 DOI: 10.1016/j.ejmech.2021.113929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022]
Abstract
Annual unpredictable efficacy of vaccines, coupled with emerging drug resistance, underlines the development of new antiviral drugs to treat influenza infections. The N-terminal domain of the PA (PAN) endonuclease is both highly conserved across influenza strains and serotypes and is indispensable for the viral lifecycle, making it an attractive target for new antiviral therapies. Here, we describe the discovery of a new class of PAN inhibitors derived from recently identified, highly active hits for PAN endonuclease inhibition. By use of structure-guided design and systematic SAR exploration, the hits were elaborated through a fragment growing strategy, giving rise to a series of 1, 3-cis-2-substituted-1-(3, 4-dihydroxybenzyl)-6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid derivatives as potent PAN inhibitors. This approach ultimately resulted in the development of a new lead compound 13e, which exhibited an EC50 value of 4.50 μM against H1N1 influenza virus in MDCK cells.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shuyin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Sumei Li
- Department of Human Anatomy, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
42
|
Minh Le T, Szakonyi Z. Enantiomeric Isopulegol as the Chiral Pool in the Total Synthesis of Bioactive Agents. CHEM REC 2021; 22:e202100194. [PMID: 34553822 DOI: 10.1002/tcr.202100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Indexed: 11/12/2022]
Abstract
Isopulegol, a pool of abundant chiral terpene, has long served as the starting material for the total synthesis of isopulegol-based drugs. As an inexpensive and versatile starting material, this compound continues to serve modern synthetic chemistry. This review highlights the total syntheses of terpenoids in the period from 1980 to 2020 in which with isopulegol applied as a building block.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Stereochemistry Research Group of the Hungarian Academy Science, Eötvös utca 6, H-6720, Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720, Szeged, Hungary.,Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720, Szeged, Hungary
| |
Collapse
|
43
|
Reassortant Highly Pathogenic H5N6 Avian Influenza Virus Containing Low Pathogenic Viral Genes in a Local Live Poultry Market, Vietnam. Curr Microbiol 2021; 78:3835-3842. [PMID: 34546415 PMCID: PMC8486720 DOI: 10.1007/s00284-021-02661-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
Sites of live poultry trade and marketing are hot spots for avian influenza virus (AIV) transmission. We conducted active surveillance at a local live poultry market (LPM) in northern Vietnamese provinces in December 2016. Feces samples from the market were collected and tested for AIV. A new reassorted AIV strain was isolated from female chickens, named A/chicken/Vietnam/AI-1606/2016 (H5N6), and was found to belong to group C of clade 2.3.4.4 H5N6 highly pathogenic (HP) AIVs. The neuraminidase gene belongs to the reassortant B type. The viral genome also contained polymerase basic 2 and polymerase acidic, which were most closely related to domestic-duck-origin low pathogenic AIVs in Japan (H3N8) and Mongolia (H4N6). The other six genes were most closely related to poultry-origin H5N6 HP AIVs in Vietnam and had over 97% sequence identity with human AIV isolate A/Guangzhou/39715/2014 (H5N6). The new reassorted AIV isolate A/chicken/Vietnam/AI-1606/2016 (H5N6) identified in this study exemplifies AIVs reassortment and evolution through contact among wild birds, poultry farms, and LPMs. Therefore, active surveillance of AIVs is necessary to prevent potential threats to human and animal health.
Collapse
|
44
|
Hariyono P, Kotta JC, Adhipandito CF, Aprilianto E, Candaya EJ, Wahab HA, Hariono M. A study on catalytic and non-catalytic sites of H5N1 and H1N1 neuraminidase as the target for chalcone inhibitors. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:69. [PMID: 34549099 PMCID: PMC8445792 DOI: 10.1186/s13765-021-00639-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The H1N1 pandemic in 2009 and the H5N1 outbreak in 2005 have shocked the world as millions of people were infected and hundreds of thousands died due to the infections by the influenza virus. Oseltamivir, the most common drug to block the viral life cycle by inhibiting neuraminidase (NA) enzyme, has been less effective in some resistant cases due to the virus mutation. Presently, the binding of 10 chalcone derivatives towards H5N1 and H1N1 NAs in the non-catalytic and catalytic sites was studied using molecular docking. The in silico study was also conducted for its drug-like likeness such as Lipinski Rule, mutagenicity, toxicity and pharmacokinetic profiles. The result demonstrates that two chalcones (1c and 2b) have the potential for future NA inhibitor development. Compound 1c inhibits H5N1 NA and H1N1 NA with IC50 of 27.63 µM and 28.11 µM, respectively, whereas compound 2b inhibits NAs with IC50 of 87.54 µM and 73.17 µM for H5N1 and H1N1, respectively. The in silico drug-like likeness prediction reveals that 1c is 62% better than 2b (58%) in meeting the criteria. The results suggested that 1c and 2b have potencies to be developed as non-competitive inhibitors of neuraminidase for the future development of anti-influenza drugs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13765-021-00639-w.
Collapse
Affiliation(s)
- Pandu Hariyono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
| | - Jasvidianto Chriza Kotta
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
| | - Christophorus Fideluno Adhipandito
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
- Faculty of Biomedical Engineering, Taipei Medical University, Wuxing Street No. 250, Xinyi District, Taipei City, 110 Taiwan
| | - Eko Aprilianto
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
- PT. Dankos Farma, Jalan Rawagatel Blok IIIS Kav 35-39, Jatinegara, Cakung, Jakarta Timur, 13930 DKI Jakarta Indonesia
| | - Evan Julian Candaya
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
- Apotek Kimia Farma Sempidi Unit Bisnis Nusa Dua, Jalan Raya Sempidi No. 12, Mengwi, Badung, 80351 Bali Indonesia
| | - Habibah A. Wahab
- Pharmaceutical Technology Department, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, 11800 Pulau Pinang Malaysia
| | - Maywan Hariono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman, 55282 Yogyakarta Indonesia
| |
Collapse
|
45
|
Faleye TOC, Adams D, Adhikari S, Sandrolini H, Halden RU, Varsani A, Scotch M. Use of hemagglutinin and neuraminidase amplicon-based high-throughput sequencing with variant analysis to detect co-infection and resolve identical consensus sequences of seasonal influenza in a university setting. BMC Infect Dis 2021; 21:810. [PMID: 34388979 PMCID: PMC8360813 DOI: 10.1186/s12879-021-06526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background Local transmission of seasonal influenza viruses (IVs) can be difficult to resolve. Here, we study if coupling high-throughput sequencing (HTS) of hemagglutinin (HA) and neuraminidase (NA) genes with variant analysis can resolve strains from local transmission that have identical consensus genome. We analyzed 24 samples collected over four days in January 2020 at a large university in the US. We amplified complete hemagglutinin (HA) and neuraminidase (NA) genomic segments followed by Illumina sequencing. We identified consensus complete HA and NA segments using BLASTn and performed variant analysis on strains whose HA and NA segments were 100% similar. Results Twelve of the 24 samples were PCR positive, and we detected complete HA and/or NA segments by de novo assembly in 83.33% (10/12) of them. Similarity and phylogenetic analysis showed that 70% (7/10) of the strains were distinct while the remaining 30% had identical consensus sequences. These three samples also had IAV and IBV co-infection. However, subsequent variant analysis showed that they had distinct variant profiles. While the IAV HA of one sample had no variant, another had a T663C mutation and another had both C1379T and C1589A. Conclusion In this study, we showed that HTS coupled with variant analysis of only HA and NA genes can help resolve variants that are closely related. We also provide evidence that during a short time period in the 2019–2020 season, co-infection of IAV and IBV occurred on the university campus and both 2020/2021 and 2021/2022 WHO recommended H1N1 vaccine strains were co-circulating. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06526-5.
Collapse
Affiliation(s)
- Temitope O C Faleye
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Deborah Adams
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Helen Sandrolini
- Arizona State University Health Services, Arizona State University, Tempe, AZ, 85287, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. .,College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA.
| |
Collapse
|
46
|
Substitution of I222L-E119V in neuraminidase from highly pathogenic avian influenza H7N9 virus exhibited synergistic resistance effect to oseltamivir in mice. Sci Rep 2021; 11:16293. [PMID: 34381119 PMCID: PMC8358046 DOI: 10.1038/s41598-021-95771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
That the high frequency and good replication capacity of strains with reduced susceptibility to neuraminidase inhibitors (NAIs) in highly pathogenic avian influenza H7N9 (HPAI H7N9) virus made it a significance to further study its drug resistance. HPAI H7N9 viruses bearing NA I222L or E119V substitution and two mutations of I222L-E119V as well as their NAIs-sensitive counterpart were generated by reverse genetics for NA inhibition test and replication capability evaluation in vitro. The attenuated H7N9/PR8 recombinant viruses were developed to study the pathogenicity and drug resistance brought by the above substitutions to mice. The IC50 fold change of oseltamivir to HPAI H7N9 with NA222L-119V is 306.34 times than that of its susceptible strain, and 3.5 times than the E119V mutant virus. HPAI H7N9 bearing NA222L-119V had good replication ability with peak value of more than 6log10 TCID50/ml in MDCK cells. H7N9/PR8 virus bearing NA222L-119V substitutions leaded to diffuse pneumonia, significant weight loss and fatality in mice. NA E119V made H7N9/PR8 virus resistant to oseltamivir, and I222L-E119V had synergistic resistance to oseltamivir in mice. Due to the good fitness of drug resistant strains of HPAI H7N9 virus, it is necessary to strengthen drug resistance surveillance and new drug research.
Collapse
|
47
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
48
|
Pereira IV, de Freitas MP. Double focus in the modelling of anti-influenza properties of 2-iminobenzimidazolines: pharmacology and toxicology. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:643-654. [PMID: 34282674 DOI: 10.1080/1062936x.2021.1950832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Influenza affects millions of people globally and the appearance of drug-resistant strains is an ongoing problem. Therefore, this work reports the development of quantitative structure-activity relationship (QSAR) models to predict some biological properties of new 2-iminobenzimidazoline candidates for the treatment of the flu. A series of 2-iminobenzimidazoline derivatives with experimentally available values for cytotoxicity (pCC50) and anti-influenza activity (pIC50) was used for multivariate image analysis applied to QSAR (MIA-QSAR). The models were vigorously validated according to the best practices in QSAR and the chemical features responsible for the response variables were analysed based on MIA-plots, which assess the PLS regression coefficients and variable importance in projection scores. MIA descriptors encoding atomic properties (van der Waals radius and electronegativity) were capable of properly modelling the pCC50 and pIC50 data. The internally and externally validated models were used to predict the selectivity indexes (SI = pCC50/pIC50) of unprecedented analogues, which were designed upon analysis of the MIA-plots that show the substituent groups most affecting the biological data and by the combination of substructures of selected molecules. At least three promising anti-influenza candidates could be proposed from the predictive MIA-QSAR models.
Collapse
Affiliation(s)
- I V Pereira
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil
| | - M P de Freitas
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil
| |
Collapse
|
49
|
El-Saadony MT, Zabermawi NM, Zabermawi NM, Burollus MA, Shafi ME, Alagawany M, Yehia N, Askar AM, Alsafy SA, Noreldin AE, Khafaga AF, Dhama K, Elnesr SS, Elwan HAM, Cerbo AD, El-Tarabily KA, Abd El-Hack ME. Nutritional Aspects and Health Benefits of Bioactive Plant Compounds against Infectious Diseases: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1944183] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Nidal M. Zabermawi
- Department of Biological Sciences, Microbiology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nehal M. Zabermawi
- Laboratory Department, King Abdulaziz Hospital (KAAH), Ministry of Health, Jeddah, Saudi Arabia
| | - Maryam A. Burollus
- Laboratory Department, King Abdulaziz Hospital (KAAH), Ministry of Health, Jeddah, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Microbiology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Cairo, Egypt
| | - Ahmed M. Askar
- Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sara A. Alsafy
- Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hamada A. M. Elwan
- Animal and Poultry Production Department, Faculty of Agriculture, Minia University, El-Minya, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Biosecurity and One health Research Centre, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | | |
Collapse
|
50
|
Sarr D, Gingerich AD, Asthiwi NM, Almutairi F, Sautto GA, Ecker J, Nagy T, Kilgore MB, Chandler JD, Ross TM, Tripp RA, Rada B. Dual oxidase 1 promotes antiviral innate immunity. Proc Natl Acad Sci U S A 2021; 118:e2017130118. [PMID: 34168077 PMCID: PMC8256044 DOI: 10.1073/pnas.2017130118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1-/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
Collapse
Affiliation(s)
- Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Aaron D Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Nuha Milad Asthiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Jeffrey Ecker
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Tamás Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Matthew B Kilgore
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Joshua D Chandler
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Ted M Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602;
| |
Collapse
|