1
|
Liu Y, Thyreau B, Cui Y, Zhang Y, Tatewaki Y, Taki Y. Influence of intergenerational social mobility on brain structure and global cognition: findings from the Whitehall II study across 20 years. Age Ageing 2024; 53:afae221. [PMID: 39395816 PMCID: PMC11470806 DOI: 10.1093/ageing/afae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/19/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Whether changes in socioeconomic position (SEP) across generations, i.e. intergenerational social mobility, influence brain degeneration and cognition in later life is unclear. OBJECTIVE To examine the association of social mobility, brain grey matter structure and global cognition. METHODS We analysed T1 brain MRI data of 771 old adults (69.8 ± 5.2 years) from the Whitehall II MRI substudy, with MRI data collected between 2012 and 2016. Social mobility was defined by SEP changes from their fathers' generation to mid-life status. Brain structural outcomes include grey matter (GM) volume and cortical thickness (CT) covering whole brain. Global cognition was measured by the Mini Mental State Examination. We firstly conducted analysis of covariance to identify regional difference of GM volume and cortical thickness across stable high/low and upward/downward mobility groups, followed with diagonal reference models studying the relationship between mobility and brain cognitive outcomes, apart from SEP origin and destination. We additionally conducted linear mixed models to check mobility interaction over time, where global cognition was derived from three phases across 2002 to 2017. RESULTS Social mobility related to 48 out of the 136 GM volume regions and 4 out of the 68 CT regions. Declined volume was particularly seen in response to downward mobility, whereas no independent association of mobility with global cognition was observed. CONCLUSION Despite no strong evidence supporting direct influence of mobility on global cognition in later life, imaging findings warranted a severe level of neurodegeneration due to downward mobility from their father's generation.
Collapse
Affiliation(s)
- Yingxu Liu
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Benjamin Thyreau
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuehua Cui
- Department of Statistics & Probability, Michigan State University, East Lansing, MI, USA
| | - Ye Zhang
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuko Tatewaki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
2
|
Wedderburn CJ, Yeung S, Subramoney S, Fouche JP, Joshi SH, Narr KL, Rehman AM, Roos A, Gibb DM, Zar HJ, Stein DJ, Donald KA. Association of in utero HIV exposure with child brain structure and language development: a South African birth cohort study. BMC Med 2024; 22:129. [PMID: 38519887 PMCID: PMC10960435 DOI: 10.1186/s12916-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND There is a growing population of children with in utero HIV exposure who are at risk of poor neurodevelopmental outcomes despite avoiding HIV infection. However, the underlying neurobiological pathways are not understood and neuroimaging studies are lacking. We aimed to investigate the cortical brain structure of children who are HIV-exposed and uninfected (HEU) compared to HIV-unexposed (HU) children and to examine the relationship with neurodevelopment. METHODS The Drakenstein Child Health birth cohort study enrolled pregnant women from a high HIV prevalence area in South Africa with longitudinal follow-up of mother-child pairs. High-resolution magnetic resonance imaging scans from 162 children (70 HEU; 92 HU) were acquired at 2-3 years of age. All HEU children were born to mothers taking antiretroviral therapy. Measures of brain structure (cortical thickness and surface area) in the prefrontal cortex regions were extracted from T1-weighted images and compared between groups using multivariate analysis of variance and linear regression. Child development, assessed using the Bayley Scales of Infant and Toddler Development-III, was correlated with cortical structure, and mediation analyses were performed. RESULTS Analyses demonstrated an association between HIV exposure and cortical thickness across the prefrontal cortex (p = 0.035). Children who were HEU had thicker cortices in prefrontal regions, with significantly greater cortical thickness in the medial orbitofrontal cortex (mOFC) bilaterally compared to HU children (3.21 mm versus 3.14 mm, p = 0.009, adjusted effect size 0.44 [95% CI 0.12 to 0.75]). Estimates held across multiple sensitivity analyses. There were no group differences in cortical surface area. Language scores, which were lower in HEU versus HU children (81.82 versus 86.25, p = 0.011, effect size - 0.44 [95% CI - 0.78 to - 0.09]), negatively correlated with prefrontal cortical thickness in both groups. Cortical thickness in the mOFC mediated the relationship between HIV exposure and poor language outcomes (Sobel test p = 0.032). CONCLUSIONS In this cohort study, exposure to HIV during pregnancy was associated with altered cortical structure in early life. Our findings indicate that differences in cortical thickness development in the prefrontal region in children who are HEU may be a pathway leading to language impairment. Longitudinal studies are needed to determine the lasting impact.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK.
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College London, London, UK
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
- SA MRC Unit On Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Tang R, Elman JA, Dale AM, Dorros SM, Eyler LT, Fennema-Notestine C, Gustavson DE, Hagler DJ, Lyons MJ, Panizzon MS, Puckett OK, Reynolds CA, Franz CE, Kremen WS. Childhood Disadvantage Moderates Late Midlife Default Mode Network Cortical Microstructure and Visual Memory Association. J Gerontol A Biol Sci Med Sci 2024; 79:glad114. [PMID: 37096346 PMCID: PMC11491750 DOI: 10.1093/gerona/glad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Childhood disadvantage is a prominent risk factor for cognitive and brain aging. Childhood disadvantage is associated with poorer episodic memory in late midlife and functional and structural brain abnormalities in the default mode network (DMN). Although age-related changes in DMN are associated with episodic memory declines in older adults, it remains unclear if childhood disadvantage has an enduring impact on this later-life brain-cognition relationship earlier in the aging process. Here, within the DMN, we examined whether its cortical microstructural integrity-an early marker of structural vulnerability that increases the risk for future cognitive decline and neurodegeneration-is associated with episodic memory in adults at ages 56-66, and whether childhood disadvantage moderates this association. METHODS Cortical mean diffusivity (MD) obtained from diffusion magnetic resonance imaging was used to measure microstructural integrity in 350 community-dwelling men. We examined both visual and verbal episodic memory in relation to DMN MD and divided participants into disadvantaged and nondisadvantaged groups based on parental education and occupation. RESULTS Higher DMN MD was associated with poorer visual memory but not verbal memory (β = -0.11, p = .040 vs β = -0.04, p = .535). This association was moderated by childhood disadvantage and was significant only in the disadvantaged group (β = -0.26, p = .002 vs β = -0.00, p = .957). CONCLUSIONS Lower DMN cortical microstructural integrity may reflect visual memory vulnerability in cognitively normal adults earlier in the aging process. Individuals who experienced childhood disadvantage manifested greater vulnerability to cortical microstructure-related visual memory dysfunction than their nondisadvantaged counterparts who exhibited resilience in the face of low cortical microstructural integrity.
Collapse
Affiliation(s)
- Rongxiang Tang
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Jeremy A Elman
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Stephen M Dorros
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Daniel E Gustavson
- Institute for Behavior Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Olivia K Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Chandra A Reynolds
- Department of Psychology, University of California Riverside, Riverside, California, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Taylor EK, Abdurokhmonova G, Romeo RR. Socioeconomic Status and Reading Development: Moving from "Deficit" to "Adaptation" in Neurobiological Models of Experience-Dependent Learning. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:324-333. [PMID: 38148924 PMCID: PMC10750966 DOI: 10.1111/mbe.12351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/23/2023] [Indexed: 12/28/2023]
Abstract
Childhood socioeconomic status (SES) is one of the strongest predictors of student reading outcomes, and these disparities have persisted for decades. Relatedly, two underlying skills that are required for successful reading-oral language and executive function (EF)-are also the two neurocognitive domains most affected by SES. In this review, we summarize current knowledge on how SES influences the neurobiology of language, EF, and their intersection, including the proximal factors that drive these relationships. We then consider the burgeoning evidence that SES systematically moderates certain brain-behavior relationships for language and EF, underscoring the importance of considering context in investigations of the neurobiological underpinnings of reading development. Finally, we discuss how disparities in reading may be conceptualized as neurobiological adaptations to adversity rather than deficit models. We conclude by suggesting that by harnessing children's stress-adapted relative strengths to support reading development, we may address opportunity gaps both ethically and efficaciously.
Collapse
|
5
|
Rakesh D, Whittle S, Sheridan MA, McLaughlin KA. Childhood socioeconomic status and the pace of structural neurodevelopment: accelerated, delayed, or simply different? Trends Cogn Sci 2023; 27:833-851. [PMID: 37179140 PMCID: PMC10524122 DOI: 10.1016/j.tics.2023.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Socioeconomic status (SES) is associated with children's brain and behavioral development. Several theories propose that early experiences of adversity or low SES can alter the pace of neurodevelopment during childhood and adolescence. These theories make contrasting predictions about whether adverse experiences and low SES are associated with accelerated or delayed neurodevelopment. We contextualize these predictions within the context of normative development of cortical and subcortical structure and review existing evidence on SES and structural brain development to adjudicate between competing hypotheses. Although none of these theories are fully consistent with observed SES-related differences in brain development, existing evidence suggests that low SES is associated with brain structure trajectories more consistent with a delayed or simply different developmental pattern than an acceleration in neurodevelopment.
Collapse
Affiliation(s)
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
6
|
Smid CR, Ganesan K, Thompson A, Cañigueral R, Veselic S, Royer J, Kool W, Hauser TU, Bernhardt B, Steinbeis N. Neurocognitive basis of model-based decision making and its metacontrol in childhood. Dev Cogn Neurosci 2023; 62:101269. [PMID: 37352654 PMCID: PMC10329104 DOI: 10.1016/j.dcn.2023.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/16/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023] Open
Abstract
Human behavior is supported by both goal-directed (model-based) and habitual (model-free) decision-making, each differing in its flexibility, accuracy, and computational cost. The arbitration between habitual and goal-directed systems is thought to be regulated by a process known as metacontrol. However, how these systems emerge and develop remains poorly understood. Recently, we found that while children between 5 and 11 years displayed robust signatures of model-based decision-making, which increased during this developmental period, there were substantial individual differences in the display of metacontrol. Here, we inspect the neurocognitive basis of model-based decision-making and metacontrol in childhood and focus this investigation on executive functions, fluid reasoning, and brain structure. A total of 69 participants between the ages of 6-13 completed a two-step decision-making task and an extensive behavioral test battery. A subset of 44 participants also completed a structural magnetic resonance imaging scan. We find that individual differences in metacontrol are specifically associated with performance on an inhibition task and individual differences in thickness of dorsolateral prefrontal, temporal, and superior-parietal cortices. These brain regions likely reflect the involvement of cognitive processes crucial to metacontrol, such as cognitive control and contextual processing.
Collapse
Affiliation(s)
- C R Smid
- Department of Psychology and Language Sciences, University College London, United Kingdom.
| | - K Ganesan
- Department of Psychology and Language Sciences, University College London, United Kingdom
| | - A Thompson
- Department of Psychology and Language Sciences, University College London, United Kingdom
| | - R Cañigueral
- Department of Psychology and Language Sciences, University College London, United Kingdom
| | - S Veselic
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, United Kingdom
| | - J Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - W Kool
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - T U Hauser
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, United Kingdom
| | - B Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - N Steinbeis
- Department of Psychology and Language Sciences, University College London, United Kingdom
| |
Collapse
|
7
|
Associations between digital media use and brain surface structural measures in preschool-aged children. Sci Rep 2022; 12:19095. [PMID: 36351968 PMCID: PMC9645312 DOI: 10.1038/s41598-022-20922-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
The American Academy of Pediatrics recommends limits on digital media use ("screen time"), citing cognitive-behavioral risks. Media use in early childhood is ubiquitous, though few imaging-based studies have been conducted to quantify impacts on brain development. Cortical morphology changes dynamically from infancy through adulthood and is associated with cognitive-behavioral abilities. The current study involved 52 children who completed MRI and cognitive testing at a single visit. The MRI protocol included a high-resolution T1-weighted anatomical scan. The child's parent completed the ScreenQ composite measure of media use. MRI measures included cortical thickness (CT) and sulcal depth (SD) across the cerebrum. ScreenQ was applied as a predictor of CT and SD first in whole-brain regression analyses and then for regions of interest (ROIs) identified in a prior study of screen time involving adolescents, controlling for sex, age and maternal education. Higher ScreenQ scores were correlated with lower CT in right-lateralized occipital, parietal, temporal and fusiform areas, and also lower SD in right-lateralized inferior temporal/fusiform areas, with substantially greater statistical significance in ROI-based analyses. These areas support primary visual and higher-order processing and align with prior findings in adolescents. While differences in visual areas likely reflect maturation, those in higher-order areas may suggest under-development, though further studies are needed.
Collapse
|
8
|
Majeed A, Rofeberg V, Bellinger DC, Wypij D, Newburger JW. Machine Learning to Predict Executive Function in Adolescents with Repaired d-Transposition of the Great Arteries, Tetralogy of Fallot, and Fontan Palliation. J Pediatr 2022; 246:145-153. [PMID: 35314155 DOI: 10.1016/j.jpeds.2022.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To identify predictors of impaired executive function in adolescents after surgical repair of critical congenital heart disease (CHD). STUDY DESIGN We analyzed patient factors, medical and surgical history, and family social class from 3 single-center studies of adolescents with d-transposition of the great arteries (d-TGA), tetralogy of Fallot (TOF), and Fontan repair. Machine learning models were developed using recursive partitioning to predict an executive function composite score based on five subtests (population mean 10, SD 3) of the Delis-Kaplan Executive Function System. RESULTS The sample included 386 patients (139 d-TGA, 91 TOF, 156 Fontan) of age 15.1 ± 2.1 (mean ± SD) years and an executive function composite score of 8.6 ± 2.4. Family social class emerged as the most important predictive factor. The lowest (worst) mean executive function score (5.3) occurred in patients with low to medium social class (Hollingshead index <56) with one or more neurologic events and a diagnosis of TOF. The highest (best) mean score (9.7) occurred in subjects with high social class (Hollingshead index ≥56) and shorter duration of deep hypothermic circulatory arrest. Other factors predicting lower executive function scores included low birth weight and a greater number of catheterizations. CONCLUSIONS In regression tree modeling, family social class was the strongest predictor of executive function in adolescents with critical CHD, even in the presence of medical risk factors. Additional predictors included CHD diagnosis, birth weight, neurologic events, and number of procedures. These data highlight the importance of social class in mitigating risks of executive dysfunction in CHD.
Collapse
Affiliation(s)
- Amara Majeed
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Valerie Rofeberg
- Department of Cardiology, Boston Children's Hospital, Boston, MA
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA
| | - David Wypij
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA.
| |
Collapse
|
9
|
Could Physical Fitness Be Considered as a Protective Social Factor Associated with Bridging the Cognitive Gap Related to School Vulnerability in Adolescents? The Cogni-Action Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910073. [PMID: 34639375 PMCID: PMC8507640 DOI: 10.3390/ijerph181910073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
The first aim was to compare differences between school vulnerability groups, fitness levels, and their combination in adolescent cognitive performance. The second aim was to determine the mediation role of fitness in the association between school vulnerability and cognitive performance. A total of 912 Chilean adolescents aged 10–14 years participated in this study. The school vulnerability index (SVI) assigned by the Chilean Government was categorized into high-, mid-, or low-SVI. Adolescents were classified as fit or unfit according to their global fitness z-score computed from their cardiorespiratory (CRF), muscular (MF), and speed/agility fitness (SAF) adjusted for age and sex. A global cognitive score was estimated through eight tasks based on a neurocognitive battery. Covariance and mediation analyses were performed, adjusted for sex, schools, body mass index, and peak high velocity. Independent analyses showed that the higher SVI, the lower the cognitive performance (F(6,905) = 18.5; p < 0.001). Conversely, fit adolescents presented a higher cognitive performance than their unfit peers (F(5,906) = 8.93; p < 0.001). The combined analysis found cognitive differences between fit and unfit adolescents in both the high- and mid-SVI levels (Cohen’s d = 0.32). No differences were found between fit participants belonging to higher SVI groups and unfit participants belonging to lower SVI groups. Mediation percentages of 9.0%, 5.6%, 7.1%, and 2.8% were observed for the global fitness score, CRF, MF, and SAF, respectively. The mediation effect was significant between low- with mid-high-SVI levels but not between mid- and high-SVI levels. These findings suggest that an adequate physical fitness level should be deemed a protective social factor associated with bridging the cognitive gap linked to school vulnerability in adolescents. This favourable influence seems to be most significant in adolescents belonging to a more adverse social background.
Collapse
|
10
|
Kuenzel E, Seguin D, Nicolson R, Duerden EG. Early adversity and positive parenting: Association with cognitive outcomes in children with autism spectrum disorder. Autism Res 2021; 14:2654-2662. [PMID: 34549545 DOI: 10.1002/aur.2613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 01/30/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and repetitive behaviors. Children with ASD are statistically more likely to experience early adversity; however, little is known about the types of early adversity that place these children at risk, the role of parenting as a protective factor, and how this early life stress impacts cognitive outcomes. We assessed early adversity in 302 children (ASD = 98) aged 6-16 years old, using parent-based report. To identify protective factors, we assessed parenting styles using parent surveys. Executive functions were assessed in the children using the WISC-V. Children with ASD had an increased incidence of familial stressors compared to the typically developing (TD) group. Positive parenting was associated with a significant decrease in the incidence of familial adverse events for both children with ASD and TD children. Examining the relationship between adversity and cognitive outcomes, in young children (6-11 years) with ASD, environmental stressors were associated with cognitive impairments. Findings suggest children with ASD may be at higher risk for familial adversity than their TD peers. However, all children benefit from positive parenting styles, which may mitigate the adverse effects of family-based early life stress. LAY SUMMARY: Some key features of Autism Spectrum Disorder (ASD) include difficulties with communication and social impairments. This means that children with ASD may be more likely to experience early adversity (stressful social interactions which take place during childhood) than children without ASD. Research in typically developing (TD) children has shown that experiencing more stressful events in childhood can cause changes in the brain, which can potentially impact the child's memory, reasoning, and decision-making skills later in life. However, there is evidence to suggest that having a nurturing relationship with a parent can offset some of the negative impacts of childhood adversity. In our study, we found that children with ASD are more likely to experience family-related stress compared to TD children. Having a positive relationship with a parent, however, was linked to experiencing this type of stress less often for all children, regardless of whether they were diagnosed with ASD. We also found that stressors related to environmental factors like financial instability were associated with lower cognitive abilities in children with ASD under 12 years of age. Understanding how these factors interact and differ in children with ASD can help to build stronger families and help children with ASD to thrive throughout their development.
Collapse
Affiliation(s)
- Elizabeth Kuenzel
- Applied Psychology, Faculty of Education, University of Western Ontario, London, Ontorio, Canada
| | - Diane Seguin
- Applied Psychology, Faculty of Education, University of Western Ontario, London, Ontorio, Canada.,Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontorio, Canada
| | - Robert Nicolson
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontorio, Canada
| | - Emma G Duerden
- Applied Psychology, Faculty of Education, University of Western Ontario, London, Ontorio, Canada.,Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontorio, Canada
| |
Collapse
|
11
|
Rakesh D, Whittle S. Socioeconomic status and the developing brain - A systematic review of neuroimaging findings in youth. Neurosci Biobehav Rev 2021; 130:379-407. [PMID: 34474050 DOI: 10.1016/j.neubiorev.2021.08.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
A growing literature has shown associations between socioeconomic disadvantage and neural properties (such as brain structure and function). In this review, we aimed to synthesize findings on the neural correlates of socioeconomic status (SES) in youth samples across neuroimaging modalities. We also aimed to disentangle the effects of different SES measures (e.g., parent income and education) in our synthesis. We found relatively consistent patterns of positive associations between SES and both volume and cortical surface area of frontal regions, and amygdala, hippocampal, and striatal volume (with most consistent results for composite SES indices). Despite limited longitudinal work, results suggest that SES is associated with developmental trajectories of gray matter structure. Higher SES was also found to be associated with increased fractional anisotropy of some white matter tracts, although there were more null than positive findings. Finally, methodological heterogeneity in brain function and connectivity studies prevented us from making strong inferences. Based on our findings, we make recommendations for future research, discuss the role of mitigating factors, and implications for policy.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia.
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| |
Collapse
|
12
|
Martins M, Reis AM, Castro SL, Gaser C. Gray matter correlates of reading fluency deficits: SES matters, IQ does not. Brain Struct Funct 2021; 226:2585-2601. [PMID: 34357437 DOI: 10.1007/s00429-021-02353-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
Brain correlates of reading ability have been intensely investigated. Most studies have focused on single-word reading and phonological processing, but the brain basis of reading fluency remains poorly explored to date. Here, in a voxel-based morphometry study with 8-year-old children, we compared fluent readers (n = 18; seven boys) with dysfluent readers with normal IQ (n = 18; six boys) and with low IQ (n = 18; ten boys). Relative to dysfluent readers, fluent readers had larger gray matter volume in the right superior temporal gyrus and the two subgroups of dysfluent readers did not differ from each other, as shown in frequentist and Bayesian analyses. Pairwise comparisons showed that dysfluent readers of normal and low IQ did not differ in core reading regions and that both subgroups had less gray matter volume than fluent readers in occipito-temporal, parieto-temporal and fusiform areas. We also examined gray matter volume in matched subgroups of dysfluent readers differing only in socioeconomic status (SES): lower-SES (n = 14; seven boys) vs. higher-SES (n = 14; seven boys). Higher-SES dysfluent readers had larger gray matter volume in the right angular gyrus than their lower-SES peers, and the volume of this cluster correlated positively with lexico-semantic fluency. Age, sex, IQ, and gray matter volume of the right angular cluster explained 68% of the variance in the reading fluency of higher-SES dysfluent readers. In sum, this study shows that gray matter correlates of dysfluent reading are independent of IQ, and suggests that SES modulates areas sub-serving lexico-semantic processes in dysfluent readers-two findings that may be useful to inform language/reading remediation programs.
Collapse
Affiliation(s)
- Marta Martins
- Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
- Center for Psychology, Faculty of Psychology and Education Sciences, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | | | - São Luís Castro
- Center for Psychology, Faculty of Psychology and Education Sciences, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal.
| | - Christian Gaser
- Department of Psychiatry, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
13
|
Kozak K, Greaves A, Waldfogel J, Angal J, Elliott AJ, Fifier WP, Brito NH. Paid maternal leave is associated with better language and socioemotional outcomes during toddlerhood. INFANCY 2021; 26:536-550. [PMID: 33755325 PMCID: PMC8684353 DOI: 10.1111/infa.12399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
The United States is the only high-income country that does not have a national policy mandating paid leave to working women who give birth. Increased rates of maternal employment post-birth call for greater understanding of the effects of family leave on infant development. This study examined the links between paid leave and toddler language, cognitive, and socioemotional outcomes (24-36 months; N = 328). Results indicate that paid leave was associated with better language outcomes, regardless of socioeconomic status. Additionally, paid leave was correlated with fewer infant behavior problems for mothers with lower levels of educational attainment. Expanding access to policies that support families in need, like paid family leave, may aid in reducing socioeconomic disparities in infant development.
Collapse
Affiliation(s)
- Karina Kozak
- Department of Applied Psychology, New York University, New York, NY, USA
| | - Ashley Greaves
- Department of Applied Psychology, New York University, New York, NY, USA
| | - Jane Waldfogel
- School of Social Work, Columbia University, New York, NY, USA
| | - Jyoti Angal
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, SD, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, USA
| | - Amy J. Elliott
- Center for Pediatric & Community Research, Avera Research Institute, Sioux Falls, SD, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, USA
| | - William P. Fifier
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
14
|
Johnson A, Bathelt J, Akarca D, Crickmore G, Astle DE. Far and wide: Associations between childhood socio-economic status and brain connectomics. Dev Cogn Neurosci 2021; 48:100888. [PMID: 33453544 PMCID: PMC7811130 DOI: 10.1016/j.dcn.2020.100888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Previous studies have identified localized associations between childhood environment - namely their socio-economic status (SES) - and particular neural structures. The primary aim of the current study was to test whether associations between SES and brain structure are widespread or limited to specific neural pathways. We employed advances in whole-brain structural connectomics to address this. Diffusion tensor imaging was used to construct whole-brain connectomes in 113 6-12 year olds. We then applied an adapted multi-block partial-least squares (PLS) regression to explore how connectome organisation is associated with childhood SES (parental income, education levels, and neighbourhood deprivation). The Fractional Anisotropy (FA) connectome was significantly associated with childhood SES and this effect was widespread. We then pursued a secondary aim, and demonstrated that the connectome mediated the relationship between SES and cognitive ability (matrix reasoning and vocabulary). However, the connectome did not significantly mediate SES relationships with academic ability (maths and reading) or internalising and externalising behavior. This multivariate approach is important for advancing our theoretical understanding of how brain development may be shaped by childhood environment, and the role that it plays in predicting key outcomes. We also discuss the limitations with this new methodological approach.
Collapse
Affiliation(s)
- Amy Johnson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Joe Bathelt
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| | - Danyal Akarca
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Gemma Crickmore
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Duncan E Astle
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom.
| |
Collapse
|
15
|
Hutton JS, Dudley J, Huang G, Horowitz-Kraus T, DeWitt T, Ittenbach RF, Holland SK. Validation of The Reading House and Association With Cortical Thickness. Pediatrics 2021; 147:peds.2020-1641. [PMID: 33542146 DOI: 10.1542/peds.2020-1641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The American Academy of Pediatrics recommends literacy and school readiness promotion during well visits. The Reading House (TRH) is a children's book-based screener of emergent literacy skills in preschool-aged children. Vocabulary, rhyming, and rapid naming are core emergent skills, and reading abilities are associated with thicker cortex in the left hemisphere. Our objective was to expand validity of TRH relative to these skills and explore association with cortical thickness. METHODS Healthy preschool-aged children completed MRI including a T1-weighted anatomic scan. Before MRI, TRH and assessments of rapid naming (Comprehensive Test of Phonological Processing, Second Edition), rhyming (Pre-Reading Inventory of Phonological Awareness), vocabulary (Expressive Vocabulary Test, Second Edition), and emergent literacy (Get Ready to Read!) were administered. Analyses included Spearman-ρ correlations (r ρ) accounting for age, sex, and socioeconomic status (SES). MRI analyses involved whole-brain measures of cortical thickness relative to TRH scores, accounting for covariates. RESULTS Seventy children completed assessments (36-63 months old; 36 female) and 52 completed MRI (37-63 months; 29 female). TRH scores were positively correlated with Comprehensive Test of Phonological Processing, Second Edition (r ρ = 0.61), Expressive Vocabulary Test, Second Edition (r ρ = 0.54), Get Ready to Read! (r ρ = 0.87), and Pre-Reading Inventory of Phonological Awareness scores (r ρ = 0.64; all P < .001). These correlations remained statistically significant across age, sex, and SES groups. TRH scores were correlated with greater thickness in left-sided language and visual cortex (P-family-wise error <.05), which were similar for higher SES yet more bilateral and frontal for low SES, reflecting a less mature pattern (P-family-wise error <.10). CONCLUSIONS These findings expand validation evidence for TRH as a screening tool for preschool-aged children, including associations with emergent skills and cortical thickness, and suggest important differences related to SES.
Collapse
Affiliation(s)
- John S Hutton
- Divisions of General and Community Pediatrics and .,Reading and Literacy Discovery Center and
| | - Jonathan Dudley
- Reading and Literacy Discovery Center and.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Guixia Huang
- Biostatistics and Epidemiology, College of Medicine, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tzipi Horowitz-Kraus
- Divisions of General and Community Pediatrics and.,Reading and Literacy Discovery Center and.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Educational Neuroimaging Center, Technion Israel - Institute of Technology, Haifa, Israel; and
| | - Thomas DeWitt
- Divisions of General and Community Pediatrics and.,Reading and Literacy Discovery Center and
| | - Richard F Ittenbach
- Biostatistics and Epidemiology, College of Medicine, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
16
|
Kershner JR. An Evolutionary Perspective of Dyslexia, Stress, and Brain Network Homeostasis. Front Hum Neurosci 2021; 14:575546. [PMID: 33551772 PMCID: PMC7859477 DOI: 10.3389/fnhum.2020.575546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Evolution fuels interindividual variability in neuroplasticity, reflected in brain anatomy and functional connectivity of the expanding neocortical regions subserving reading ability. Such variability is orchestrated by an evolutionarily conserved, competitive balance between epigenetic, stress-induced, and cognitive-growth gene expression programs. An evolutionary developmental model of dyslexia, suggests that prenatal and childhood subclinical stress becomes a risk factor for dyslexia when physiological adaptations to stress promoting adaptive fitness, may attenuate neuroplasticity in the brain regions recruited for reading. Stress has the potential to blunt the cognitive-growth functions of the predominantly right hemisphere Ventral and Dorsal attention networks, which are primed with high entropic levels of synaptic plasticity, and are critical for acquiring beginning reading skills. The attentional networks, in collaboration with the stress-responsive Default Mode network, modulate the entrainment and processing of the low frequency auditory oscillations (1-8 Hz) and visuospatial orienting linked etiologically to dyslexia. Thus, dyslexia may result from positive, but costly adaptations to stress system dysregulation: protective measures that reset the stress/growth balance of processing to favor the Default Mode network, compromising development of the attentional networks. Such a normal-variability conceptualization of dyslexia is at odds with the frequent assumption that dyslexia results from a neurological abnormality. To put the normal-variability model in the broader perspective of the state of the field, a traditional evolutionary account of dyslexia is presented to stimulate discussion of the scientific merits of the two approaches.
Collapse
Affiliation(s)
- John R. Kershner
- Department of Applied Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Linked patterns of biological and environmental covariation with brain structure in adolescence: a population-based longitudinal study. Mol Psychiatry 2021; 26:4905-4918. [PMID: 32444868 PMCID: PMC7981783 DOI: 10.1038/s41380-020-0757-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/11/2023]
Abstract
Adolescence is a period of major brain reorganization shaped by biologically timed and by environmental factors. We sought to discover linked patterns of covariation between brain structural development and a wide array of these factors by leveraging data from the IMAGEN study, a longitudinal population-based cohort of adolescents. Brain structural measures and a comprehensive array of non-imaging features (relating to demographic, anthropometric, and psychosocial characteristics) were available on 1476 IMAGEN participants aged 14 years and from a subsample reassessed at age 19 years (n = 714). We applied sparse canonical correlation analyses (sCCA) to the cross-sectional and longitudinal data to extract modes with maximum covariation between neuroimaging and non-imaging measures. Separate sCCAs for cortical thickness, cortical surface area and subcortical volumes confirmed that each imaging phenotype was correlated with non-imaging features (sCCA r range: 0.30-0.65, all PFDR < 0.001). Total intracranial volume and global measures of cortical thickness and surface area had the highest canonical cross-loadings (|ρ| = 0.31-0.61). Age, physical growth and sex had the highest association with adolescent brain structure (|ρ| = 0.24-0.62); at baseline, further significant positive associations were noted for cognitive measures while negative associations were observed at both time points for prenatal parental smoking, life events, and negative affect and substance use in youth (|ρ| = 0.10-0.23). Sex, physical growth and age are the dominant influences on adolescent brain development. We highlight the persistent negative influences of prenatal parental smoking and youth substance use as they are modifiable and of relevance for public health initiatives.
Collapse
|
18
|
Khundrakpam B, Choudhury S, Vainik U, Al‐Sharif N, Bhutani N, Jeon S, Gold I, Evans A. Distinct influence of parental occupation on cortical thickness and surface area in children and adolescents: Relation to self-esteem. Hum Brain Mapp 2020; 41:5097-5113. [PMID: 33058416 PMCID: PMC7670644 DOI: 10.1002/hbm.25169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Studies of socioeconomic disparities have largely focused on correlating brain measures with either composite measure of socioeconomic status (SES), or its components-family income or parental education, giving little attention to the component of parental occupation. Emerging evidence suggests that parental occupation may be an important and neglected indicator of childhood and adolescent SES compared to absolute measures of material resources or academic attainment because, while related, it may more precisely capture position in social hierarchy and related health outcomes. On the other hand, although cortical thickness and surface area are brain measures with distinct genetic and developmental origins, large-scale neuroimaging studies investigating regional differences in interaction of the composite measure of SES or its components with cortical thickness and surface area are missing. We set out to fill this gap, focusing specifically on the role of parental occupation on cortical thickness and surface area by analyzing magnetic resonance imaging scans from 704 healthy individuals (age = 3-21 years). We observed spatially distributed patterns of (parental occupation × age2 ) interaction with cortical thickness (localized at the left caudal middle frontal, the left inferior parietal and the right superior parietal) and surface area (localized at the left orbitofrontal cortex), indicating independent sources of variability. Further, with decreased cortical thickness, children from families with lower parental occupation exhibited lower self-esteem. Our findings demonstrate distinct influence of parental occupation on cortical thickness and surface area in children and adolescents, potentially reflecting different neurobiological mechanisms by which parental occupation may impact brain development.
Collapse
Affiliation(s)
- Budhachandra Khundrakpam
- Montreal Neurological Institute, McGill UniversityMontrealQuebecCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealQuebecCanada
| | - Suparna Choudhury
- Division of Social and Transcultural PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Uku Vainik
- Institute of Psychology, Faculty of Social SciencesUniversity of TartuTartuEstonia
| | - Noor Al‐Sharif
- Montreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Neha Bhutani
- Montreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Seun Jeon
- Montreal Neurological Institute, McGill UniversityMontrealQuebecCanada
| | - Ian Gold
- Division of Social and Transcultural PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Alan Evans
- Montreal Neurological Institute, McGill UniversityMontrealQuebecCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealQuebecCanada
| |
Collapse
|
19
|
Jäncke L, Liem F, Merillat S. Are language skills related to structural features in Broca's and Wernicke's area? Eur J Neurosci 2020; 53:1124-1135. [PMID: 33179366 DOI: 10.1111/ejn.15038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
This study used structural magnetic resonance imaging to examine whether specific anatomical features of Broca's and Wernicke's areas are related to language functions in typically developing older subjects with no specific language expertize. Data from 231 subjects from the Zurich LHAB-study are used for this study. For these subjects, we obtained several psychometric measures from which we calculated performance measures reflecting specific psychological functions (language comprehension, verbal fluency, perceptual speed, visual memory, recognition of regularities, and logical thinking). From the MRI measurements, we calculated the cortical thickness and cortical surface of Broca's and Wernicke's areas. Applying multiple regression analyses, we identified a moderately strong relationship between language comprehension and the brain metrics from Broca's and Wernicke's areas and showed that approximately 10% of the variance in language comprehension performance is explained by the linear combination of all perisylvian brain metrics. The other psychological functions (verbal fluency, perceptual speed, visual memory, recognition of regularities, and logical thinking) are not related to these brain metrics. Subsequent detailed analyses revealed that the cortical thickness of Wernicke's area, in particular, contributed most to this structure-function relationship. The better performance in the language comprehension tests was related to a thicker cortex in Wernicke's area. Thus, this study demonstrates a structure-function relationship between the anatomical features of the perisylvian language areas and language comprehension, suggesting that particular anatomical features are associated with better language performance.
Collapse
Affiliation(s)
- Lutz Jäncke
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program "Dynamic of Healthy Aging", University, Zurich, Switzerland.,Zurich Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Franz Liem
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program "Dynamic of Healthy Aging", University, Zurich, Switzerland
| | - Susan Merillat
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program "Dynamic of Healthy Aging", University, Zurich, Switzerland
| |
Collapse
|
20
|
Feola B, Dougherty LR, Riggins T, Bolger DJ. Prefrontal cortical thickness mediates the association between cortisol reactivity and executive function in childhood. Neuropsychologia 2020; 148:107636. [PMID: 33045229 DOI: 10.1016/j.neuropsychologia.2020.107636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022]
Abstract
The impact of stress hormones, such as cortisol, on the brain is proposed to contribute to differences in executive function of school-age children from impoverished backgrounds. However, the association between cortisol reactivity, prefrontal cortex, and executive function is relatively unexplored in young children. The current longitudinal study examined whether 63 children's early preschool-age (3-5 years, Time 1) and concurrent school-age (5-9 years, Time 2) salivary cortisol reactivity were associated with executive function and prefrontal cortical thickness at school-age. Two measures of cortisol reactivity were calculated: area under the curve with respect to ground (AUCg; total cortisol release) and with respect to increase (AUCi; total change in cortisol). Results demonstrated that Time 2 total cortisol release was negatively associated with executive function, Time 1 total cortisol release positively related to right middle frontal cortical thickness, and Time 2 total cortisol change was negatively associated with right inferior frontal cortical thickness. Moreover, greater right middle frontal cortical thickness mediated the association between greater Time 1 total cortisol release and lower executive function. This study provides support for an early adversity framework in which individual differences in executive function in childhood are directly related to the variations of cortisol-release and the effects on the prefrontal cortex thickness.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, USA; Department of Psychology and Human Development, Vanderbilt University, USA; Department of Human Development and Quantitative Methodology, University of Maryland, USA.
| | - Lea R Dougherty
- Department of Psychology, University of Maryland, USA; Department of Neuroscience and Cognitive Sciences, University of Maryland, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, USA; Department of Neuroscience and Cognitive Sciences, University of Maryland, USA
| | - Donald J Bolger
- Department of Neuroscience and Cognitive Sciences, University of Maryland, USA; Department of Human Development and Quantitative Methodology, University of Maryland, USA
| |
Collapse
|
21
|
Torre GA, Matejko AA, Eden GF. The relationship between brain structure and proficiency in reading and mathematics in children, adolescents, and emerging adults. Dev Cogn Neurosci 2020; 45:100856. [PMID: 32949854 PMCID: PMC7502824 DOI: 10.1016/j.dcn.2020.100856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Behavioral and brain imaging studies speak to commonalities between reading and math. Here, we investigated relationships between individual differences in reading and math ability (single word reading and calculation) with brain anatomy (cortical thickness and surface area) in 342 participants between 6-22 years of age from the NIH Pediatric MRI Database. We found no brain-behavioral correlations in the full sample. When dividing the dataset into three age-specific subgroups, cortical thickness of the left supramarginal gyrus (SMG) and fusiform gyrus (FG) correlated with reading ability in the oldest subgroup (15-22 years) only. Next, we tested unique contributions of these educational measures to neuroanatomy. Single word reading ability, age, and their interaction all contributed unique variance to cortical thickness in the left SMG and intraparietal sulcus (IPS). Age, and the interaction between age and reading, predicted cortical thickness in the left FG. However, regression analyses for math ability showed no relationships with cortical thickness; nor for math or reading ability with surface area. Overall, our results demonstrate relationships between cortical thickness and reading ability in emerging adults, but not in younger age groups. Surprisingly, there were no such relationships with math, and hence no convergence between the reading and math results.
Collapse
Affiliation(s)
- G A Torre
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, United States; Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States.
| | - A A Matejko
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, United States; Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States
| | - G F Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, United States; Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States.
| |
Collapse
|
22
|
Abstract
A burgeoning literature has recently begun investigating the links between socioeconomic inequality and the developing brain. This work suggests widespread disparities in both brain structure and function that begin as early as the first year of life. Here we review disparities in neural structure that have been reported in both cortical and subcortical gray matter, as well as in white matter. Disparities in brain function have also been reported, particularly in circuits that support language, memory, executive functioning, and emotion processing. We additionally review recent work investigating the mechanisms that underlie socioeconomic disparities in brain development. Taken together, this work has the potential to identify important targets for intervention in policy and practice.
Collapse
|
23
|
Bodoni PSB, Leoni RF, do Vale AB, da Silva PHR, Meira Junior SG, Richieri Costa A, Tabaquim MDLM. [Formula: see text] Neuropsychological functioning and its relationship with brain anatomical measures of children and adolescents with non-syndromic cleft lip and palate. Child Neuropsychol 2020; 27:2-16. [PMID: 32546116 DOI: 10.1080/09297049.2020.1776240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Children and adolescents with non-syndromic cleft lip and palate (NSCLP) show cognitive performance below expected. This difficulty can be associated with alterations in the cortical thickness and volume of brain regions. The aim of this study was to investigate anatomical brain characteristics and their relationship with the neuropsychological scores of children and adolescents with NSCLP. Methods: Twenty-four children and adolescents with ages from 10 to 16 years and 11 months (12 with a diagnosis of NSCLP; 12 with typical development) were enrolled. Neuropsychological tests were administered and high-resolution, structural magnetic resonance imaging (MRI) was performed in a 1.5 T scanner. Results: Compared to the control group, NSCLP individuals showed intellectual (p = 0.006) and cognitive (p = 0.003) impairment, as well as deficits in subdomains of executive functions (sustained attention, working memory, and cognitive planning). The morphological analysis showed reduced volumes and cortical thickness in temporal, parietal, and frontal regions, in both hemispheres, of the NSCLP group. Significant, strong associations of structural alterations and cognitive performance were observed. Conclusions: Our study provided strong evidence of the relationship between brain development in children and adolescents with NSCLP, and their neuropsychological profile. This relationship is characterized by a malfunction of associative areas of the brain, such as parieto-temporo-occipital, frontoparietal, and prefrontal regions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria De Lourdes Merighi Tabaquim
- Craniofacial Anomaly Rehabilitation Hospital, University of São Paulo , Bauru, Brazil.,Department of Speech Therapy, FOB, University of São Paulo , Bauru, Brazil
| |
Collapse
|
24
|
King LS, Dennis EL, Humphreys KL, Thompson PM, Gotlib IH. Cross-sectional and longitudinal associations of family income-to-needs ratio with cortical and subcortical brain volume in adolescent boys and girls. Dev Cogn Neurosci 2020; 44:100796. [PMID: 32479375 PMCID: PMC7525143 DOI: 10.1016/j.dcn.2020.100796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Sex-specific associations of SES with neurodevelopment may emerge in adolescence. We used a whole-brain approach to examine gray and white matter volume. Sex interacted with SES to explain variation in volume across adolescence. Sex is an important variable to consider in analyses of SES and brain volume.
Deviations in neurodevelopment may underlie the association between lower childhood socioeconomic status and difficulties in cognitive and socioemotional domains. Most previous investigations of the association between childhood socioeconomic status and brain morphology have used cross-sectional designs with samples that span wide age ranges, occluding effects specific to adolescence. Sex differences in the association between socioeconomic status and neurodevelopment may emerge or intensify during adolescence. In a sample representative of the San Francisco Bay Area, we used whole-brain tensor-based morphometry to examine sex differences in the cross-sectional association between variation in family income-to-needs ratio (INR) and cortical and subcortical gray and white matter volume during early adolescence (ages 9–13 years; N = 147), as well as in the longitudinal association between INR and change in volume from early to later adolescence (ages 11–16 years, N = 109). Biological sex interacted with INR to explain variation in volume in several areas cross-sectionally and longitudinally. Effects were primarily in cortical gray matter areas, including regions of the association cortex and sensorimotor processing areas. Effect sizes tended to be larger in boys than in girls. Biological sex may be an important variable to consider in analyses of the effects of family income on structural neurodevelopment during adolescence.
Collapse
Affiliation(s)
- Lucy S King
- Stanford University, Department of Psychology, Stanford, CA 94305, USA.
| | - Emily L Dennis
- University of Southern California, Imaging Genetics Center, Mary and Mark Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, Marina del Rey, CA 90292, USA
| | - Kathryn L Humphreys
- Vanderbilt University, Department of Psychology and Human Development, Nashville, TN 37235, USA
| | - Paul M Thompson
- University of Southern California, Imaging Genetics Center, Mary and Mark Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, Marina del Rey, CA 90292, USA
| | - Ian H Gotlib
- Stanford University, Department of Psychology, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Kershner JR. Dyslexia as an adaptation to cortico-limbic stress system reactivity. Neurobiol Stress 2020; 12:100223. [PMID: 32435671 PMCID: PMC7231974 DOI: 10.1016/j.ynstr.2020.100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/07/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
A new school of thought in evolutionary developmental biology, combined with research in the neurobiology of stress, suggest that early exposure to stressful circumstances may be a cause of dyslexia. A balance between epigenetic, stress-induced and cognitive-growth genetic programs modulates the brain's cellular, regional, and network homeostasis. This balance is essential for adaptability to the normative range of everyday stress. However, even mild chronic stress exposition may overactivate the hypothalmic-pituitary-adrenal stress axis, upsetting the homeostatic balance between these programs, and exposing the brain to harmful levels of stress hormones. A protective strategy to sustained disequilibrium precociously advances maturation at the cost of neuroplasticity, which blunts stress axis reactivity but also compromises learning potential in the prefrontal cortex and networks associated with dyslexia. Stress exceeding an individual's range of resilience: (1) reduces levels of TFEB and BDNF, gene regulatory factors prolonging maturation and neuroplasticity; (2) interferes with the insular cortex, amygdala and hippocampus in coordinating afferent visceral signals with cognitive performance; (3) over-recruits the brain's Default Mode network; and (4) amplifies release from the Locus coeruleus/norepinephrine system which impairs the entrainment of oscillations in the lower phonological frequencies of speech. Evidence supporting a stress-growth imbalance is preliminary, but holds promise for reconceptualizing the neurobiology of dyslexia and reducing its prevalence.
Collapse
Affiliation(s)
- John R. Kershner
- University of Toronto, Dept of Applied Psychology University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
26
|
Wedderburn CJ, Subramoney S, Yeung S, Fouche JP, Joshi SH, Narr KL, Rehman AM, Roos A, Ipser J, Robertson FC, Groenewold NA, Gibb DM, Zar HJ, Stein DJ, Donald KA. Neuroimaging young children and associations with neurocognitive development in a South African birth cohort study. Neuroimage 2020; 219:116846. [PMID: 32304884 PMCID: PMC7443699 DOI: 10.1016/j.neuroimage.2020.116846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an indispensable tool for investigating brain development in young children and the neurobiological mechanisms underlying developmental risk and resilience. Sub-Saharan Africa has the highest proportion of children at risk of developmental delay worldwide, yet in this region there is very limited neuroimaging research focusing on the neurobiology of such impairment. Furthermore, paediatric MRI imaging is challenging in any setting due to motion sensitivity. Although sedation and anesthesia are routinely used in clinical practice to minimise movement in young children, this may not be ethical in the context of research. Our study aimed to investigate the feasibility of paediatric multimodal MRI at age 2–3 years without sedation, and to explore the relationship between cortical structure and neurocognitive development at this understudied age in a sub-Saharan African setting. A total of 239 children from the Drakenstein Child Health Study, a large observational South African birth cohort, were recruited for neuroimaging at 2–3 years of age. Scans were conducted during natural sleep utilising locally developed techniques. T1-MEMPRAGE and T2-weighted structural imaging, resting state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy sequences were included. Child neurodevelopment was assessed using the Bayley-III Scales of Infant and Toddler Development. Following 23 pilot scans, 216 children underwent scanning and T1-weighted images were obtained from 167/216 (77%) of children (median age 34.8 months). Furthermore, we found cortical surface area and thickness within frontal regions were associated with cognitive development, and in temporal and frontal regions with language development (beta coefficient ≥0.20). Overall, we demonstrate the feasibility of carrying out a neuroimaging study of young children during natural sleep in sub-Saharan Africa. Our findings indicate that dynamic morphological changes in heteromodal association regions are associated with cognitive and language development at this young age. These proof-of-concept analyses suggest similar links between the brain and cognition as prior literature from high income countries, enhancing understanding of the interplay between cortical structure and function during brain maturation. MRI data are challenging to acquire in the early years of life. Paediatric MRI without sedation is feasible in sub-Saharan Africa, with 77% success. The Drakenstein Child Health study has novel MRI data of South African children. Morphological features of the cortex associate with neurocognitive development. Structure-cognition relationships in heteromodal association regions at 2–3 years.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Department of Clinical Research, London School of Hygiene & Tropical Medicine, UK; Neuroscience Institute, University of Cape Town, South Africa.
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, UK
| | | | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California Los Angeles, CA, USA
| | - Andrea M Rehman
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, South Africa
| | - Jonathan Ipser
- Neuroscience Institute, University of Cape Town, South Africa; Department of Psychiatry, University of Cape Town, South Africa
| | - Frances C Robertson
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Cape Universities Brain Imaging Centre (CUBIC), Cape Town, South Africa
| | - Nynke A Groenewold
- Neuroscience Institute, University of Cape Town, South Africa; Department of Psychiatry, University of Cape Town, South Africa
| | - Diana M Gibb
- MRC Clinical Trials Unit, University College, London, UK
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; SAMRC Unit on Child & Adolescent Health, University of Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, South Africa; Department of Psychiatry, University of Cape Town, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| |
Collapse
|
27
|
Chad-Friedman E, Botdorf M, Riggins T, Dougherty LR. Early childhood cumulative risk is associated with decreased global brain measures, cortical thickness, and cognitive functioning in school-age children. Dev Psychobiol 2020; 63:192-205. [PMID: 32052418 DOI: 10.1002/dev.21956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/10/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Children exposed to multiple risk factors early in life are increasingly more likely to suffer from a host of cognitive impairments across development. However, little work has identified the neurobiological mechanisms linking early cumulative risk and cognitive functioning. The current study examined the impact of cumulative risk assessed during early childhood on neural and cognitive outcomes measured 3 years later when children were school-aged. Participants included 63 children assessed during preschool (age: M = 4.23 years, SD = 0.84) and 3 years later (age: M = 7.19 years, SD = 0.89). Early cumulative risk was defined by the presence of low family income, a single parent household, low parental education, child exposure to parental depression, child exposure to high parental hostility, and high levels of stressful life events. Children's exposure to stressors in the past year, cognitive abilities, and brain structure were assessed at follow-up. Early cumulative risk was prospectively associated with reduced total gray matter volume, cortex volume, right superior parietal and inferior parietal thickness, and poorer attention shifting and memory. Right superior parietal thickness mediated associations between early risk and recall memory. Results highlight neural variations associated with early cumulative risk and suggest potential neural pathways from early risk to later childhood cognitive impairments.
Collapse
Affiliation(s)
| | - Morgan Botdorf
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Lea R Dougherty
- Department of Psychology, University of Maryland, College Park, MD, USA
| |
Collapse
|
28
|
Becker N, Piccolo LR, Salles JF. Verbal Fluency Development Across Childhood: Normative Data from Brazilian-Portuguese Speakers and Underlying Cognitive Processes. Arch Clin Neuropsychol 2020; 34:1217-1231. [PMID: 31063583 DOI: 10.1093/arclin/acz022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Verbal fluency (VF) tasks are widely used to investigate children's lexical knowledge and executive functions skills. Consistency of measurement of the strategic retrieval components is still an issue and performance of Brazilian-Portuguese speaking children are currently not available. A cross-sectional study investigated the effects of age, school type (public × private) and the influence of language, memory and inhibitory control on VF. METHOD We assessed 414 Brazilian children, aged 6-12, in the number of words produced and both clustering and switching components, with two measures of VF: letter (LVF) and semantic (SVF). RESULTS Analysis of the number of words produced showed a significant increase between 6-8-year-olds, 9-10-year-olds and 11-12-year-olds in SVF, while in LVF, the differences were significant only in the later age group. In SVF, the numbers of clusters and switches increased with age, whereas in LVF, the number of switches increased in all age groups, but clusters increased only in the older group. Structural equation model analyses showed that oral and written language, verbal memory and inhibitory control are associated with VF performance and IQ, while age mediated VF performance. CONCLUSIONS The results indicate a different development pattern between LVF and SVF in the number of words produced and in clustering and switching, with the latter predicting VF performance in words produced. VF development is shown to depend on language, memory and inhibitory control. Our results have important implications to clinical neuropsychology.
Collapse
Affiliation(s)
- Natalia Becker
- Department of Developmental and Personality Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - L R Piccolo
- Department of Preventive Medicine, State University of New York, Stony Brook, NY, USA
| | - J F Salles
- Department of Developmental and Personality Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
29
|
Valge M, Meitern R, Hõrak P. Morphometric traits predict educational attainment independently of socioeconomic background. BMC Public Health 2019; 19:1696. [PMID: 31852467 PMCID: PMC6921596 DOI: 10.1186/s12889-019-8072-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023] Open
Abstract
Background Aim of this study is to describe the relationship between anthropometric traits and educational attainment among Estonian schoolchildren born between 1937 and 1962. We asked whether height, cranial volume and face width (a testosterone-dependent trait), measured in childhood predict later educational attainment independently of each other, family socioeconomic position (SEP) and sex. Associations between morphometric traits and education and their interactions with biosocial variables are of scholarly importance because higher education is nearly universally associated with low fertility in women, and often with high fertility in men. Hence, morphometric traits associated with educational attainment are targeted by natural selection and describing the exact nature of these associations is relevant for understanding the current patterns of evolution of human body size. Methods Data on morphometric measurements and family background of 11,032 Estonian schoolchildren measured between seven and 19 years of age were obtained from the study performed by Juhan Aul between 1956 and 1969. Ordinal logistic regression was used for testing the effects of morphometric traits, biosocial variables and their interaction on the cumulative probability of obtaining education beyond primary level. Results Of biosocial variables, family SEP was the most important determinant of educational attainment, followed by the sex, rural vs urban origin and the number of siblings. No significant interactions with morphometric traits were detected, i.e., within each category of SEP, rural vs urban origin and sex, taller children and those with larger heads and relatively narrower faces were more likely to proceed to secondary and/or tertiary education. The effect of height on education was independent of cranial volume, indicating that taller children did not obtain more educations because their brains were larger than those of shorter children; height per se was important. Conclusions Our main finding – that adjusting for other morphometric traits and biosocial variables, morphometric traits still robustly predicted educational attainment, is relevant for understanding the current patterns of evolution of human body size. Our findings suggest that fecundity selection acting on educational attainment could be partly responsible for the concurrent selection for smaller stature and cranial volume in women and opposite trends in men.
Collapse
Affiliation(s)
- Markus Valge
- Department of Zoology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Richard Meitern
- Department of Zoology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Peeter Hõrak
- Department of Zoology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia.
| |
Collapse
|
30
|
Merz EC, Desai PM, Maskus EA, Melvin SA, Rehman R, Torres SD, Meyer J, He X, Noble KG. Socioeconomic Disparities in Chronic Physiologic Stress Are Associated With Brain Structure in Children. Biol Psychiatry 2019; 86:921-929. [PMID: 31409452 PMCID: PMC6874729 DOI: 10.1016/j.biopsych.2019.05.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Socioeconomic factors have been consistently linked with the structure of children's hippocampus and anterior cingulate cortex (ACC). Chronic stress-as indexed by hair cortisol concentration-may represent an important mechanism underlying these associations. Here, we examined associations between hair cortisol and children's hippocampal and ACC structure, including across hippocampal subfields, and whether hair cortisol mediated associations between socioeconomic background (family income-to-needs ratio, parental education) and the structure of these brain regions. METHODS Participants were 5- to 9-year-old children (N = 94; 61% female) from socioeconomically diverse families. Parents and children provided hair samples that were assayed for cortisol. High-resolution, T1-weighted magnetic resonance imaging scans were acquired, and FreeSurfer 6.0 was used to compute hippocampal volume and rostral and caudal ACC thickness and surface area (n = 37 with both child hair cortisol and magnetic resonance imaging data; n = 41 with both parent hair cortisol and magnetic resonance imaging data). RESULTS Higher hair cortisol concentration was significantly associated with smaller CA3 and dentate gyrus hippocampal subfield volumes but not with CA1 or subiculum volume. Higher hair cortisol was also associated with greater caudal ACC thickness. Hair cortisol significantly mediated associations between parental education level and CA3 and dentate gyrus volumes; lower parental education level was associated with higher hair cortisol, which in turn was associated with smaller volume in these subfields. CONCLUSIONS These findings point to chronic physiologic stress as a potential mechanism through which lower parental education level leads to reduced hippocampal volume. Hair cortisol concentration may be an informative biomarker leading to more effective prevention and intervention strategies aimed at childhood socioeconomic disadvantage.
Collapse
Affiliation(s)
- Emily C Merz
- Teachers College, Columbia University, New York, New York
| | - Pooja M Desai
- Teachers College, Columbia University, New York, New York
| | | | | | - Rehan Rehman
- Teachers College, Columbia University, New York, New York
| | - Sarah D Torres
- Teachers College, Columbia University, New York, New York
| | | | - Xiaofu He
- Columbia University Medical Center and New York State Psychiatric Institute, New York, New York
| | | |
Collapse
|
31
|
Maguire MJ, Schneider JM. Socioeconomic status related differences in resting state EEG activity correspond to differences in vocabulary and working memory in grade school. Brain Cogn 2019; 137:103619. [DOI: 10.1016/j.bandc.2019.103619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/13/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023]
|
32
|
Romeo RR. Socioeconomic and experiential influences on the neurobiology of language development. PERSPECTIVES OF THE ASHA SPECIAL INTEREST GROUPS 2019; 4:1229-1238. [PMID: 34013041 PMCID: PMC8130857 DOI: 10.1044/2019_persp-19-00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE The process by which young children acquire language is an incredible feat subserved by neurobiological language circuitry. While the foundations of brain structure and function are genetically determined, children's experiences during sensitive periods in early life have a significant influence on the development of language systems. The purpose of this review is to provide practitioners with a comprehensive summary of foundational and recent research on the ways that children's early experiences-both favorable and adverse-may influence the neuroanatomy and neurophysiology underlying language development. A specific focus is given to the burgeoning neuroimaging evidence of relationships between socioeconomic status (SES) and brain development, as well as to emerging research on proximal experiences that may serve as the direct mechanisms by which SES influences language development. CONCLUSION Findings from the neuroscience field have direct implications for practice in speech language pathology. Specifically, clinicians can have immense influence on crafting supportive language environments during windows of maximal neural influence, both via direct intervention and parent coaching. Practical suggestions are provided for translating research findings to practice.
Collapse
Affiliation(s)
- Rachel R. Romeo
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children’s Hospital; Boston, MA
- Harvard Medical School; Boston, MA
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA
| |
Collapse
|
33
|
LeWinn KZ, Shih EW. Social Experience and the Developing Brain: Opportunities for Social Epidemiologists in the Era of Population-Based Neuroimaging. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00222-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Machlin L, McLaughlin KA, Sheridan MA. Brain structure mediates the association between socioeconomic status and attention-deficit/hyperactivity disorder. Dev Sci 2019; 23:e12844. [PMID: 31056844 DOI: 10.1111/desc.12844] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/30/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
Low socioeconomic status (SES) is associated with greater risk for symptoms of attention-deficit/hyperactivity disorder (ADHD). One mechanism through which SES may confer risk for ADHD is by influencing brain structure. Alterations to cortical thickness, surface area and subcortical volume have been associated with low SES and with the presence of ADHD across multiple studies. The current study examined whether cortical thickness, surface area or subcortical volume mediate the associations between SES and ADHD in youth 3-21 years old (N = 874) from the Pediatric Imaging, Neurocognition and Genetics Study. Freesurfer was used to estimate cortical thickness, surface area and subcortical volume from structural magnetic resonance imaging. Parents reported on demographics, family SES, ADHD diagnoses and the presence of child attention problems. Statistical mediation was assessed using a bootstrap resampling procedure. Controlling for parental ADHD, child age, gender, birth weight and scanner, children in low SES families were more likely to be in the ADHD group. Consistent with previous reports in this sample, low SES was associated with reduced surface area across the frontal lobe and reduced subcortical volume in the amygdala, cerebellum, hippocampus and basal ganglia. Of these regions, a significant indirect effect of SES on ADHD status through subcortical volume was observed for the left cerebellum (95% confidence interval: 0.004, 0.022), the right cerebellum (95% confidence interval: 0.006, 0.025), and the right caudate (95% confidence interval: 0.002, 0.022). Environmentally mediated changes in the cerebellum and the caudate may be neurodevelopmental mechanisms explaining elevated risk of ADHD in children in low SES families.
Collapse
Affiliation(s)
- Laura Machlin
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
35
|
Perdue KL, Jensen SKG, Kumar S, Richards JE, Kakon SH, Haque R, Petri WA, Lloyd-Fox S, Elwell C, Nelson CA. Using functional near-infrared spectroscopy to assess social information processing in poor urban Bangladeshi infants and toddlers. Dev Sci 2019; 22:e12839. [PMID: 31017372 PMCID: PMC6737924 DOI: 10.1111/desc.12839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Abstract
Children living in low‐resource settings are at risk for failing to reach their developmental potential. While the behavioral outcomes of growing up in such settings are well‐known, the neural mechanisms underpinning poor outcomes have not been well elucidated, particularly in the context of low‐ and middle‐income countries. In this study, we measure brain metabolic responses to social and nonsocial stimuli in a cohort of 6‐ and 36‐month‐old Bangladeshi children. Study participants in both cohorts lived in an urban slum and were exposed to a broad range of adversity early in life including extreme poverty, malnutrition, recurrent infections, and low maternal education. We observed brain regions that responded selectively to social stimuli in both ages indicating that these specialized brain responses are online from an early age. We additionally show that the magnitude of the socially selective response is related to maternal education, maternal stress, and the caregiving environment. Ultimately our results suggest that a variety of psychosocial hazards have a measurable relationship with the developing social brain.
Collapse
Affiliation(s)
- Katherine L Perdue
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sarah K G Jensen
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Swapna Kumar
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts
| | | | | | | | | | - Sarah Lloyd-Fox
- Birkbeck College, London, UK.,University of Cambridge, Cambridge, UK
| | | | - Charles A Nelson
- Labs of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard Graduate School of Education, Cambridge, Massachusetts
| |
Collapse
|
36
|
Leonard JA, Romeo RR, Park AT, Takada ME, Robinson ST, Grotzinger H, Last BS, Finn AS, Gabrieli JDE, Mackey AP. Associations between cortical thickness and reasoning differ by socioeconomic status in development. Dev Cogn Neurosci 2019; 36:100641. [PMID: 30951970 PMCID: PMC6969225 DOI: 10.1016/j.dcn.2019.100641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 11/26/2022] Open
Abstract
Although lower socioeconomic status (SES) is generally negatively associated with performance on cognitive assessments, some children from lower-SES backgrounds perform as well as their peers from higher-SES backgrounds. Yet little research has examined whether the neural correlates of individual differences in cognition vary by SES. The current study explored whether relationships between cortical structure and fluid reasoning differ by SES in development. Fluid reasoning, a non-verbal component of IQ, is supported by a distributed frontoparietal network, with evidence for a specific role of rostrolateral prefrontal cortex (RLPFC). In a sample of 115 4-7-year old children, bilateral thickness of RLPFC differentially related to reasoning by SES: thicker bilateral RLPFC positively correlated with reasoning ability in children from lower-SES backgrounds, but not in children from higher-SES backgrounds. Similar results were found in an independent sample of 59 12-16-year old adolescents. Furthermore, young children from lower-SES backgrounds with strong reasoning skills were the only group to show a positive relationship between RLPFC thickness and age. In sum, we found that relationships between cortical thickness and cognition differ by SES during development.
Collapse
Affiliation(s)
- Julia A Leonard
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar St Room 46-4033, Cambridge, MA, 02139, USA; Department of Psychology, University of Pennsylvania, Levin Building 425 S. University Ave, Room 354, Philadelphia, PA, 19104, USA.
| | - Rachel R Romeo
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar St Room 46-4033, Cambridge, MA, 02139, USA; Division of Medical Sciences, Harvard University, 260 Longwood Ave, T-MEC 435, Boston, MA, 02155, USA
| | - Anne T Park
- Department of Psychology, University of Pennsylvania, Levin Building 425 S. University Ave, Room 354, Philadelphia, PA, 19104, USA
| | - Megumi E Takada
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar St Room 46-4033, Cambridge, MA, 02139, USA
| | - Sydney T Robinson
- Department of Psychology, University of Pennsylvania, Levin Building 425 S. University Ave, Room 354, Philadelphia, PA, 19104, USA
| | - Hannah Grotzinger
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar St Room 46-4033, Cambridge, MA, 02139, USA
| | - Briana S Last
- Department of Psychology, University of Pennsylvania, Levin Building 425 S. University Ave, Room 354, Philadelphia, PA, 19104, USA
| | - Amy S Finn
- Department of Psychology, University of Toronto, 100 St. George St, Sidney Smith Hall, Toronto, ON, M5S 3G3, Canada
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar St Room 46-4033, Cambridge, MA, 02139, USA
| | - Allyson P Mackey
- Department of Psychology, University of Pennsylvania, Levin Building 425 S. University Ave, Room 354, Philadelphia, PA, 19104, USA
| |
Collapse
|
37
|
Lima M, da Rosa Piccolo L, Puntel Basso F, Júlio-Costa A, Lopes-Silva JB, Haase VG, Salles JF. Neuropsychological and environmental predictors of reading performance in Brazilian children. APPLIED NEUROPSYCHOLOGY. CHILD 2019; 9:259-270. [PMID: 30884971 DOI: 10.1080/21622965.2019.1575737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Word-level reading is strongly associated with phonological processing. The aim of this study was to investigate the effects of cognitive and environmental variables on word reading performance. Our sample consisted of 185 fourth-grade students. Linear regression analyses were used to investigate the role of the following variables as potential predictors of word reading accuracy and fluency: phonological processing (phonological awareness, rapid automatized naming, and phonological memory); verbal fluency; working memory; socioeconomic status and an indicator of school quality (IDEB) in Brazil. Phonological awareness and rapid automatic naming were the best predictors of reading, supporting the role of phonological processing as a key contributor to the lexical aspects of reading, beyond the early years of literacy acquisition. Environmental variables were significant predictors of irregular word reading (socioeconomic status) and fluency (IDEB), corroborating multicomponent models of reading performance. The present findings demonstrate the complex interplay of factors underlying reading performance and highlight the importance of a multidimensional approach to the study of reading.
Collapse
Affiliation(s)
- Melina Lima
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Fabiane Puntel Basso
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Annelise Júlio-Costa
- Department of Psychology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Vitor Geraldi Haase
- Department of Psychology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
38
|
Neurobiological systems in dyslexia. Trends Neurosci Educ 2019; 14:11-24. [DOI: 10.1016/j.tine.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
|
39
|
Piccolo LR, Merz EC, Noble KG. School climate is associated with cortical thickness and executive function in children and adolescents. Dev Sci 2019; 22:e12719. [PMID: 30156357 PMCID: PMC6294656 DOI: 10.1111/desc.12719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/02/2018] [Indexed: 01/19/2023]
Abstract
A positive school climate has been found to support mental and physical health, academic achievement and social adjustment among youth. However, links between school climate and brain structure have not been investigated to date. In this study, we investigated whether school climate was associated with executive function (EF) and brain structure (cortical thickness and surface area) in children and adolescents. We further examined whether these links varied as a function of socioeconomic background. Participants who ranged from 9 to 18 years of age (N = 108) completed EF tasks and a high-resolution, 3-Tesla, T1-weighted magnetic resonance imaging (MRI) scan. Overall school climate, academic support, and family socioeconomic background were assessed using questionnaires. Higher academic support was associated with greater EF task performance and increased global cortical thickness. Additionally, academic support moderated the association between family income and EF, such that children from lower income families performed similarly to their more advantaged peers on EF tasks in the context of positive academic support. This work is the first to link school climate to brain structure and contributes to the growing body of evidence suggesting that academic support may be an important protective factor in the context of socioeconomic disadvantage.
Collapse
Affiliation(s)
- Luciane R. Piccolo
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, 10027
| | - Emily C. Merz
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, 10027
| | | |
Collapse
|
40
|
Brito NH, Noble KG. The independent and interacting effects of socioeconomic status and dual-language use on brain structure and cognition. Dev Sci 2018; 21:e12688. [PMID: 29877603 PMCID: PMC6202148 DOI: 10.1111/desc.12688] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Family socioeconomic status (SES) is strongly associated with children's cognitive development, and past studies have reported socioeconomic disparities in both neurocognitive skills and brain structure across childhood. In other studies, bilingualism has been associated with cognitive advantages and differences in brain structure across the lifespan. The aim of the current study is to concurrently examine the joint and independent associations between family SES and dual-language use with brain structure and cognitive skills during childhood. A subset of data from the Pediatric Imaging, Neurocognition and Genetics (PING) study was analyzed; propensity score matching established an equal sample (N = 562) of monolinguals and dual-language users with similar socio-demographic characteristics (Mage = 13.5, Range = 3-20 years). When collapsing across all ages, SES was linked to both brain structure and cognitive skills. When examining differences by age group, brain structure was significantly associated with both income and dual-language use during adolescence, but not earlier in childhood. Additionally, in adolescence, a significant interaction between dual-language use and SES was found, with no difference in cortical surface area (SA) between language groups of higher-SES backgrounds but significantly increased SA for dual-language users from lower-SES families compared to SES-matched monolinguals. These results suggest both independent and interacting associations between SES and dual-language use with brain development. To our knowledge, this is the first study to concurrently examine dual-language use and socioeconomic differences in brain structure during childhood and adolescence.
Collapse
Affiliation(s)
- Natalie H Brito
- Department of Applied Psychology, New York University, New York, USA
| | - Kimberly G Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, USA
| |
Collapse
|
41
|
Ozernov-Palchik O, Norton ES, Wang Y, Beach SD, Zuk J, Wolf M, Gabrieli JDE, Gaab N. The relationship between socioeconomic status and white matter microstructure in pre-reading children: A longitudinal investigation. Hum Brain Mapp 2018; 40:741-754. [PMID: 30276914 DOI: 10.1002/hbm.24407] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
Reading is a learned skill crucial for educational attainment. Children from families of lower socioeconomic status (SES) tend to have poorer reading performance and this gap widens across years of schooling. Reading relies on the orchestration of multiple neural systems integrated via specific white-matter pathways, but there is limited understanding about whether these pathways relate differentially to reading performance depending on SES background. Kindergarten white-matter FA and second-grade reading outcomes were investigated in an SES-diverse sample of 125 children. The three left-hemisphere white-matter tracts most associated with reading, and their right-hemisphere homologs, were examined: arcuate fasciculus (AF), superior longitudinal fasciculus (SLF), and inferior longitudinal fasciculus (ILF). There was a significant and positive association between SES and fractional anisotropy (FA) in the bilateral ILF in kindergarten. SES moderated the association between kindergarten ILF and second grade reading performance, such that it was positive in lower-SES children, but not significant in higher-SES children. These results have implications for understanding the role of the environment in the development of the neural pathways that support reading.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA.,Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA
| | - Elizabeth S Norton
- Department of Communication Sciences and Disorders, Department of Medical Social Sciences, and Institute for Innovations in Developmental Sciences, Northwestern University, Evanston, IL
| | - Yingying Wang
- College of Education and Human Sciences, University of Nebraska, Lincoln, NE
| | - Sara D Beach
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA.,Harvard Medical School, Boston, Massachusetts Boston Children's Hospital, Boston, MA
| | - Jennifer Zuk
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, Massachusetts Boston Children's Hospital, Boston, MA
| | - Maryanne Wolf
- Center for Dyslexia, Diverse Learners, and Social Justice, Graduate School of Education and Information Studies, UCLA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, Massachusetts Boston Children's Hospital, Boston, MA
| |
Collapse
|
42
|
Bigler ED, Finuf C, Abildskov TJ, Goodrich-Hunsaker NJ, Petrie JA, Wood DM, Hesselink JR, Wilde EA, Max JE. Cortical thickness in pediatric mild traumatic brain injury including sports-related concussion. Int J Psychophysiol 2018; 132:99-104. [DOI: 10.1016/j.ijpsycho.2018.07.474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022]
|
43
|
Tella P, Piccolo LDR, Rangel ML, Rohde LA, Polanczyk GV, Miguel EC, Grisi SJFE, Fleitlich-Bilyk B, Ferraro AA. Socioeconomic diversities and infant development at 6 to 9 months in a poverty area of São Paulo, Brazil. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2018; 40:232-240. [DOI: 10.1590/2237-6089-2017-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/08/2018] [Indexed: 11/22/2022]
Abstract
Abstract Introduction The effects of socioeconomic disparities on cognitive development tend to emerge early in infancy and to widen throughout childhood, and may perpetuate later in life. Although the study of how poverty affects early childhood has increased in the last 20 years, many of the effects remain largely unknown, especially during the first year of life. Aim To investigate the influence of socioeconomic status (SES) and maternal education on infants’ language, motor and cognitive development. Methods The cognitive, language and motor skills of 444 infants aged 6 to 9 months selected from a poor neighborhood in São Paulo, Brazil, were evaluated using the Bayley Scales of Infant Development. A questionnaire on socioeconomic background was administered to the participants’ families. Results A positive association was found between SES and infants’ performance on language and motor scales. Additionally, higher maternal education was associated with higher language and cognitive scores. Conclusion Our findings indicate that SES effects are detectable very early in infancy. This result has implications for the timing of both screening and intervention efforts to help children overcome the consequences of living in poverty.
Collapse
Affiliation(s)
- Patricia Tella
- Universidade de São Paulo, Brazil; Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes, Brazil
| | | | | | - Luis Augusto Rohde
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | - Bacy Fleitlich-Bilyk
- Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes, Brazil; USP, Brazil
| | - Alexandre Archanjo Ferraro
- Universidade de São Paulo, Brazil; Instituto Nacional de Psiquiatria do Desenvolvimento para Crianças e Adolescentes, Brazil
| |
Collapse
|
44
|
Dinga S, Wu D, Huang S, Wu C, Wang X, Shi J, Hu Y, Liang C, Zhang F, Lu M, Leiken K, Xiang J. Neuromagnetic correlates of audiovisual word processing in the developing brain. Int J Psychophysiol 2018; 128:7-21. [PMID: 29580903 DOI: 10.1016/j.ijpsycho.2018.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 11/25/2022]
Abstract
The brain undergoes enormous changes during childhood. Little is known about how the brain develops to serve word processing. The objective of the present study was to investigate the maturational changes of word processing in children and adolescents using magnetoencephalography (MEG). Responses to a word processing task were investigated in sixty healthy participants. Each participant was presented with simultaneous visual and auditory word pairs in "match" and "mismatch" conditions. The patterns of neuromagnetic activation from MEG recordings were analyzed at both sensor and source levels. Topography and source imaging revealed that word processing transitioned from bilateral connections to unilateral connections as age increased from 6 to 17 years old. Correlation analyses of language networks revealed that the path length of word processing networks negatively correlated with age (r = -0.833, p < 0.0001), while the connection strength (r = 0.541, p < 0.01) and the clustering coefficient (r = 0.705, p < 0.001) of word processing networks were positively correlated with age. In addition, males had more visual connections, whereas females had more auditory connections. The correlations between gender and path length, gender and connection strength, and gender and clustering coefficient demonstrated a developmental trend without reaching statistical significance. The results indicate that the developmental trajectory of word processing is gender specific. Since the neuromagnetic signatures of these gender-specific paths to adult word processing were determined using non-invasive, objective, and quantitative methods, the results may play a key role in understanding language impairments in pediatric patients in the future.
Collapse
Affiliation(s)
- Samantha Dinga
- Psychology Department, University of Rochester, 500 Joseph C Wilson Blvd, Rochester, NY 14627, USA; MEG Center, Department of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Di Wu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Shuyang Huang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Caiyun Wu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Jingping Shi
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Liang
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Fawen Zhang
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Meng Lu
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| | - Kimberly Leiken
- MEG Center, Department of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Jing Xiang
- MEG Center, Department of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA.
| |
Collapse
|
45
|
Madan CR, Kensinger EA. Predicting age from cortical structure across the lifespan. Eur J Neurosci 2018; 47:399-416. [PMID: 29359873 PMCID: PMC5835209 DOI: 10.1111/ejn.13835] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/22/2023]
Abstract
Despite interindividual differences in cortical structure, cross-sectional and longitudinal studies have demonstrated a large degree of population-level consistency in age-related differences in brain morphology. This study assessed how accurately an individual's age could be predicted by estimates of cortical morphology, comparing a variety of structural measures, including thickness, gyrification and fractal dimensionality. Structural measures were calculated across up to seven different parcellation approaches, ranging from one region to 1000 regions. The age prediction framework was trained using morphological measures obtained from T1-weighted MRI volumes collected from multiple sites, yielding a training dataset of 1056 healthy adults, aged 18-97. Age predictions were calculated using a machine-learning approach that incorporated nonlinear differences over the lifespan. In two independent, held-out test samples, age predictions had a median error of 6-7 years. Age predictions were best when using a combination of cortical metrics, both thickness and fractal dimensionality. Overall, the results reveal that age-related differences in brain structure are systematic enough to enable reliable age prediction based on metrics of cortical morphology.
Collapse
Affiliation(s)
- Christopher R. Madan
- School of Psychology, University of Nottingham, Nottingham, UK
- Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
46
|
Rosen ML, Sheridan MA, Sambrook KA, Meltzoff AN, McLaughlin KA. Socioeconomic disparities in academic achievement: A multi-modal investigation of neural mechanisms in children and adolescents. Neuroimage 2018; 173:298-310. [PMID: 29486324 DOI: 10.1016/j.neuroimage.2018.02.043] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
Growing evidence suggests that childhood socioeconomic status (SES) influences neural development, which may contribute to the well-documented SES-related disparities in academic achievement. However, the particular aspects of SES that impact neural structure and function are not well understood. Here, we investigate associations of childhood SES and a potential mechanism-degree of cognitive stimulation in the home environment-with cortical structure, white matter microstructure, and neural function during a working memory (WM) task across development. Analyses included 53 youths (age 6-19 years). Higher SES as reflected in the income-to-needs ratio was associated with higher parent-reported achievement, WM performance, and cognitive stimulation in the home environment. Although SES was not significantly associated with cortical thickness, children raised in more cognitively stimulating environments had thicker cortex in the frontoparietal network and cognitive stimulation mediated the assocation between SES and cortical thickness in the frontoparietal network. Higher family SES was associated with white matter microstructure and neural activation in the frontoparietal network during a WM task, including greater fractional anisotropy (FA) in the right and left superior longitudinal fasciculi (SLF), and greater BOLD activation in multiple regions of the prefrontal cortex during WM encoding and maintenance. Greater FA and activation in these regions was associated higher parent-reported achievement. Together, cognitive stimulation, WM performance, FA in the SLF, and prefrontal activation during WM encoding and maintenance significantly mediated the association between SES and parent-reported achievement. These findings highlight potential neural, cognitive, and environmental mechanisms linking SES with academic achievement and suggest that enhancing cognitive stimulation in the home environment might be one effective strategy for reducing SES-related disparities in academic outcomes.
Collapse
Affiliation(s)
- Maya L Rosen
- Department of Psychology, University of Washington, United States.
| | - Margaret A Sheridan
- Department of Psychology, University of North Carolina, Chapel Hill, United States
| | - Kelly A Sambrook
- Department of Radiology, University of Washington, United States
| | | | | |
Collapse
|
47
|
Piccolo LR, Noble KG. Perceived stress is associated with smaller hippocampal volume in adolescence. Psychophysiology 2017; 55:e13025. [PMID: 29053191 DOI: 10.1111/psyp.13025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Perceived stress has been associated with decreased hippocampal, amygdala, and prefrontal cortex volume, as well as decreased memory and executive functioning performance in adulthood. Parents' perceived stress has been linked to decreased hippocampal volume in young children. However, no studies have investigated the links between self-perceived stress and brain structure or function in adolescents. Additionally, findings from previous research with younger or older samples are inconsistent, likely in part due to inconsistencies in participants' age range. In this study, we investigated the associations among self-perceived stress, family socioeconomic factors (family income, parental education), subcortical (hippocampus, amygdala) volumes, prefrontal cortical thickness and surface area, and memory and executive functioning performance in adolescents. One hundred and forty-three participants (12-20 years old) were administered a cognitive battery, a questionnaire to assess perceived stress, and a structural MRI scan. Higher levels of perceived stress were associated with decreased adolescent hippocampal volume. This study provides empirical evidence of how experience may shape brain development in adolescence-a period of plasticity during which it may be possible to intervene and prevent negative developmental outcomes.
Collapse
|
48
|
Madan CR. Advances in Studying Brain Morphology: The Benefits of Open-Access Data. Front Hum Neurosci 2017; 11:405. [PMID: 28824407 PMCID: PMC5543094 DOI: 10.3389/fnhum.2017.00405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
|