1
|
Young TR, Kumar VJ, Saranathan M. Normative Modeling of Thalamic Nuclear Volumes and Characterization of Lateralized Volume Alterations in Alzheimer's Disease Versus Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00241-6. [PMID: 39182722 DOI: 10.1016/j.bpsc.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Thalamic nuclei facilitate a wide range of complex behaviors, emotions, and cognition and have been implicated in neuropsychiatric disorders including Alzheimer's disease (AD) and schizophrenia. The aim of this work was to establish novel normative models of thalamic nuclear volumes and their laterality indices and investigate their changes in schizophrenia and AD. METHODS Volumes of bilateral whole thalami and 10 thalamic nuclei were generated from T1 MRI data using a state-of-the-art novel segmentation method in healthy control subjects (n=2374) and early mild cognitive impairment (MCI, n=211), late MCI (n=113), AD (n=88), and schizophrenia (n=168). Normative models for each nucleus were generated from healthy control subjects while controlling for sex, intracranial volume, and site. Extreme z-score deviations (|z|>1.96) and z-score distributions were compared across phenotypes. Z-scores were associated with clinical descriptors. RESULTS Increased infranormal and decreased supranormal z-scores were observed in schizophrenia and AD. Z-score shifts representing reduced volumes were observed in most nuclei in schizophrenia and AD with strong overlap in the bilateral pulvinar, medial dorsal, and centromedian nuclei. Shifts were larger in AD with evidence of a left-sided preference in early MCI while a predilection for right thalamic nuclei was observed in schizophrenia. The right medial dorsal nucleus was associated with disorganized thought and daily auditory verbal hallucinations. CONCLUSION In AD, thalamic nuclei are more severely and symmetrically affected while in schizophrenia, the right thalamic nuclei are more affected. We highlight the right medial dorsal nucleus, which may mediate multiple symptoms of schizophrenia and is affected early in the disease course.
Collapse
Affiliation(s)
- Taylor R Young
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA; Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA.
| | | | - Manojkumar Saranathan
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
2
|
Rangus I, Rios AS, Horn A, Fritsch M, Khalil A, Villringer K, Udke B, Ihrke M, Grittner U, Galinovic I, Al-Fatly B, Endres M, Kufner A, Nolte CH. Fronto-thalamic networks and the left ventral thalamic nuclei play a key role in aphasia after thalamic stroke. Commun Biol 2024; 7:700. [PMID: 38849518 PMCID: PMC11161613 DOI: 10.1038/s42003-024-06399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Thalamic aphasia results from focal thalamic lesions that cause dysfunction of remote but functionally connected cortical areas due to language network perturbation. However, specific local and network-level neural substrates of thalamic aphasia remain incompletely understood. Using lesion symptom mapping, we demonstrate that lesions in the left ventrolateral and ventral anterior thalamic nucleus are most strongly associated with aphasia in general and with impaired semantic and phonemic fluency and complex comprehension in particular. Lesion network mapping (using a normative connectome based on fMRI data from 1000 healthy individuals) reveals a Thalamic aphasia network encompassing widespread left-hemispheric cerebral connections, with Broca's area showing the strongest associations, followed by the superior and middle frontal gyri, precentral and paracingulate gyri, and globus pallidus. Our results imply the critical involvement of the left ventrolateral and left ventral anterior thalamic nuclei in engaging left frontal cortical areas, especially Broca's area, during language processing.
Collapse
Affiliation(s)
- Ida Rangus
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany.
| | - Ana Sofia Rios
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
| | - Andreas Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit experimenteller Neurologie, Movement Disorder and Neuromodulation Unit, Berlin, Germany
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Merve Fritsch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Psychiatrie und Psychotherapie, Berlin, Germany
| | - Ahmed Khalil
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Kersten Villringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Birgit Udke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Audiologie und Phoniatrie, Berlin, Germany
| | - Manuela Ihrke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Audiologie und Phoniatrie, Berlin, Germany
| | - Ulrike Grittner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Biometrie und klinische Epidemiologie, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ivana Galinovic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Bassam Al-Fatly
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit experimenteller Neurologie, Movement Disorder and Neuromodulation Unit, Berlin, Germany
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (Deutsches Zentrum für Herz Kreislauferkrankungen, DZHK), Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Partner Site Berlin, Berlin, Germany
| | - Anna Kufner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Christian H Nolte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (Deutsches Zentrum für Herz Kreislauferkrankungen, DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
3
|
Diesburg DA, Wessel JR, Jones SR. Biophysical Modeling of Frontocentral ERP Generation Links Circuit-Level Mechanisms of Action-Stopping to a Behavioral Race Model. J Neurosci 2024; 44:e2016232024. [PMID: 38561227 PMCID: PMC11097283 DOI: 10.1523/jneurosci.2016-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/09/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Human frontocentral event-related potentials (FC-ERPs) are ubiquitous neural correlates of cognition and control, but their generating multiscale mechanisms remain mostly unknown. We used the Human Neocortical Neurosolver's biophysical model of a canonical neocortical circuit under exogenous thalamic and cortical drive to simulate the cell and circuit mechanisms underpinning the P2, N2, and P3 features of the FC-ERP observed after Stop-Signals in the Stop-Signal task (SST; N = 234 humans, 137 female). We demonstrate that a sequence of simulated external thalamocortical and corticocortical drives can produce the FC-ERP, similar to what has been shown for primary sensory cortices. We used this model of the FC-ERP to examine likely circuit-mechanisms underlying FC-ERP features that distinguish between successful and failed action-stopping. We also tested their adherence to the predictions of the horse-race model of the SST, with specific hypotheses motivated by theoretical links between the P3 and Stop process. These simulations revealed that a difference in P3 onset between successful and failed Stops is most likely due to a later arrival of thalamocortical drive in failed Stops, rather than, for example, a difference in the effective strength of the input. In contrast, the same model predicted that early thalamocortical drives underpinning the P2 and N2 differed in both strength and timing across stopping accuracy conditions. Overall, this model generates novel testable predictions of the thalamocortical dynamics underlying FC-ERP generation during action-stopping. Moreover, it provides a detailed cellular and circuit-level interpretation that supports links between these macroscale signatures and predictions of the behavioral race model.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island 02908
| |
Collapse
|
4
|
Bulut T, Hagoort P. Contributions of the left and right thalami to language: A meta-analytic approach. Brain Struct Funct 2024:10.1007/s00429-024-02795-3. [PMID: 38625556 DOI: 10.1007/s00429-024-02795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Despite a pervasive cortico-centric view in cognitive neuroscience, subcortical structures including the thalamus have been shown to be increasingly involved in higher cognitive functions. Previous structural and functional imaging studies demonstrated cortico-thalamo-cortical loops which may support various cognitive functions including language. However, large-scale functional connectivity of the thalamus during language tasks has not been examined before. METHODS The present study employed meta-analytic connectivity modeling to identify language-related coactivation patterns of the left and right thalami. The left and right thalami were used as regions of interest to search the BrainMap functional database for neuroimaging experiments with healthy participants reporting language-related activations in each region of interest. Activation likelihood estimation analyses were then carried out on the foci extracted from the identified studies to estimate functional convergence for each thalamus. A functional decoding analysis based on the same database was conducted to characterize thalamic contributions to different language functions. RESULTS The results revealed bilateral frontotemporal and bilateral subcortical (basal ganglia) coactivation patterns for both the left and right thalami, and also right cerebellar coactivations for the left thalamus, during language processing. In light of previous empirical studies and theoretical frameworks, the present connectivity and functional decoding findings suggest that cortico-subcortical-cerebellar-cortical loops modulate and fine-tune information transfer within the bilateral frontotemporal cortices during language processing, especially during production and semantic operations, but also other language (e.g., syntax, phonology) and cognitive operations (e.g., attention, cognitive control). CONCLUSION The current findings show that the language-relevant network extends beyond the classical left perisylvian cortices and spans bilateral cortical, bilateral subcortical (bilateral thalamus, bilateral basal ganglia) and right cerebellar regions.
Collapse
Affiliation(s)
- Talat Bulut
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Department of Speech and Language Therapy, School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Young T, Kumar VJ, Saranathan M. Normative modeling of thalamic nuclear volumes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.06.24303871. [PMID: 38496426 PMCID: PMC10942522 DOI: 10.1101/2024.03.06.24303871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Thalamic nuclei have been implicated in neurodegenerative and neuropsychiatric disorders. Normative models for thalamic nuclear volumes have not been proposed thus far. The aim of this work was to establish normative models of thalamic nuclear volumes and subsequently investigate changes in thalamic nuclei in cognitive and psychiatric disorders. Volumes of the bilateral thalami and 12 nuclear regions were generated from T1 MRI data using a novel segmentation method (HIPS-THOMAS) in healthy control subjects (n=2374) and non-control subjects (n=695) with early and late mild cognitive impairment (EMCI, LMCI), Alzheimer's disease (AD), Early psychosis and Schizophrenia, Bipolar disorder, and Attention deficit hyperactivity disorder. Three different normative modelling methods were evaluated while controlling for sex, intracranial volume, and site. Z-scores and extreme z-score deviations were calculated and compared across phenotypes. GAMLSS models performed the best. Statistically significant shifts in z-score distributions consistent with atrophy were observed for most phenotypes. Shifts of progressively increasing magnitude were observed bilaterally from EMCI to AD with larger shifts in the left thalamic regions. Heterogeneous shifts were observed in psychiatric diagnoses with a predilection for the right thalamic regions. Here we present the first normative models of thalamic nuclear volumes and highlight their utility in evaluating heterogenous disorders such as Schizophrenia.
Collapse
Affiliation(s)
- Taylor Young
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Manojkumar Saranathan
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
6
|
Tolley N, Rodrigues PLC, Gramfort A, Jones SR. Methods and considerations for estimating parameters in biophysically detailed neural models with simulation based inference. PLoS Comput Biol 2024; 20:e1011108. [PMID: 38408099 PMCID: PMC10919875 DOI: 10.1371/journal.pcbi.1011108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 03/07/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024] Open
Abstract
Biophysically detailed neural models are a powerful technique to study neural dynamics in health and disease with a growing number of established and openly available models. A major challenge in the use of such models is that parameter inference is an inherently difficult and unsolved problem. Identifying unique parameter distributions that can account for observed neural dynamics, and differences across experimental conditions, is essential to their meaningful use. Recently, simulation based inference (SBI) has been proposed as an approach to perform Bayesian inference to estimate parameters in detailed neural models. SBI overcomes the challenge of not having access to a likelihood function, which has severely limited inference methods in such models, by leveraging advances in deep learning to perform density estimation. While the substantial methodological advancements offered by SBI are promising, their use in large scale biophysically detailed models is challenging and methods for doing so have not been established, particularly when inferring parameters that can account for time series waveforms. We provide guidelines and considerations on how SBI can be applied to estimate time series waveforms in biophysically detailed neural models starting with a simplified example and extending to specific applications to common MEG/EEG waveforms using the the large scale neural modeling framework of the Human Neocortical Neurosolver. Specifically, we describe how to estimate and compare results from example oscillatory and event related potential simulations. We also describe how diagnostics can be used to assess the quality and uniqueness of the posterior estimates. The methods described provide a principled foundation to guide future applications of SBI in a wide variety of applications that use detailed models to study neural dynamics.
Collapse
Affiliation(s)
- Nicholas Tolley
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| | | | | | - Stephanie R. Jones
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
7
|
Diesburg DA, Wessel JR, Jones SR. Biophysical modeling of frontocentral ERP generation links circuit-level mechanisms of action-stopping to a behavioral race model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564020. [PMID: 37961333 PMCID: PMC10634895 DOI: 10.1101/2023.10.25.564020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human frontocentral event-related potentials (FC-ERPs) are ubiquitous neural correlates of cognition and control, but their generating multiscale mechanisms remain mostly unknown. We used the Human Neocortical Neurosolver(HNN)'s biophysical model of a canonical neocortical circuit under exogenous thalamic and cortical drive to simulate the cell and circuit mechanisms underpinning the P2, N2, and P3 features of the FC-ERP observed after Stop-Signals in the Stop-Signal task (SST). We demonstrate that a sequence of simulated external thalamocortical and cortico-cortical drives can produce the FC-ERP, similar to what has been shown for primary sensory cortices. We used this model of the FC-ERP to examine likely circuit-mechanisms underlying FC-ERP features that distinguish between successful and failed action-stopping. We also tested their adherence to the predictions of the horse-race model of the SST, with specific hypotheses motivated by theoretical links between the P3 and Stop process. These simulations revealed that a difference in P3 onset between successful and failed Stops is most likely due to a later arrival of thalamocortical drive in failed Stops, rather than, for example, a difference in effective strength of the input. In contrast, the same model predicted that early thalamocortical drives underpinning the P2 and N2 differed in both strength and timing across stopping accuracy conditions. Overall, this model generates novel testable predictions of the thalamocortical dynamics underlying FC-ERP generation during action-stopping. Moreover, it provides a detailed cellular and circuit-level interpretation that supports links between these macroscale signatures and predictions of the behavioral race model.
Collapse
Affiliation(s)
| | - Jan R. Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Stephanie R. Jones
- Department of Neuroscience, Brown University, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, RI, USA
| |
Collapse
|
8
|
Liu X, Gao Z, Liu W, He X, Wang N. AoA-L2 and Usage-L2 modulate the functional neuroplasticity of the subcortex. BRAIN AND LANGUAGE 2023; 245:105323. [PMID: 37757503 DOI: 10.1016/j.bandl.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Previous studies revealed structural differences in subcortical regions between monolinguals and bilinguals; however, whether the functional neuroplasticity of the subcortex is modulated by different bilingual experiences remains unclear. Here, we examined the effect of age of second language acquisition (AoA-L2) and usage of L2 (Usage-L2) on subcorto-cortical and intra-subcortical functional connectivity (FC) in bilinguals by using resting-state fMRI data. The relations between brain measurements and bilingual experiences were revealed by using multiple regression analysis. We found that increased AoA-L2 was mainly related to decreased subcortical FC involving the anterior thalamus, basal ganglia, and hippocampus. Increased Usage-L2 at home was mainly associated with decreased subcortical FC of the amygdala, globus pallidus, hippocampus, and nucleus accumbens. The FC of these subcortical regions displayed a positive relation with Usage-L2 in social settings. These findings reveal that bilingual experiences modulate the functional neuroplasticity of the subcortex in different ways.
Collapse
Affiliation(s)
- Xiaojin Liu
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai 519087, China.
| | - Zhenni Gao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Wen Liu
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Xintong He
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Naiyi Wang
- Institute of Educational Psychology and School Counseling, Faculty of Education, Beijing Normal University, Beijing 100875, China; Lab for Educational Neuroscience, Center for Educational Science and Technology, Faculty of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Alonso-Martínez C, Rubio-Teves M, Porrero C, Clascá F. Cerebellar and basal ganglia inputs define three main nuclei in the mouse ventral motor thalamus. Front Neuroanat 2023; 17:1242839. [PMID: 37645018 PMCID: PMC10461449 DOI: 10.3389/fnana.2023.1242839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
The thalamus is a central link between cortical and subcortical brain motor systems. Axons from the deep nuclei of the cerebellum (DCN), or the output nuclei of the basal ganglia system (substantia nigra reticulata, SNr; and internal pallidum GPi/ENT) monosynaptically innervate the thalamus, prominently some nuclei of the ventral nuclear group. In turn, axons from these ventral nuclei innervate the motor and premotor areas of the cortex, where their input is critical for planning, execution and learning of rapid and precise movements. Mice have in recent years become a widely used model in motor system research. However, information on the distribution of cerebellar and basal ganglia inputs in the rodent thalamus remains poorly defined. Here, we mapped the distribution of inputs from DCN, SNr, and GPi/ENT to the ventral nuclei of the mouse thalamus. Immunolabeling for glutamatergic and GABAergic neurotransmission markers delineated two distinct main territories, characterized each by the presence of large vesicular glutamate transporter type 2 (vGLUT2) puncta or vesicular GABA transporter (vGAT) puncta. Anterograde labeling of axons from DCN revealed that they reach virtually all parts of the ventral nuclei, albeit its axonal varicosities (putative boutons) in the vGAT-rich sector are consistently smaller than those in the vGLUT2-rich sector. In contrast, the SNr axons innervate the whole vGAT-rich sector, but not the vGLUT2-rich sector. The GPi/ENT axons were found to innervate only a small zone of the vGAT-rich sector which is also targeted by the other two input systems. Because inputs fundamentally define thalamic cell functioning, we propose a new delineation of the mouse ventral motor nuclei that is consistent with the distribution of DCN, SNr and GPi/ENT inputs and resembles the general layout of the ventral motor nuclei in primates.
Collapse
Affiliation(s)
| | | | - César Porrero
- Department of Anatomy and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Clascá
- Department of Anatomy and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Zeng C, Liao S, Pu W. Trait and state-related characteristics of thalamo-cortical circuit disruption in bipolar disorder: a prospective cross-sectional study. Front Psychiatry 2023; 14:1067819. [PMID: 37304427 PMCID: PMC10250647 DOI: 10.3389/fpsyt.2023.1067819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Objective The purpose of this study is to investigate the shared and distinct thalamic-cortical circuit between bipolar depression and remission, as well as to investigate the trait and state-related characteristics of the abnormal thalamic-cortical circuit in bipolar disorder. Methods Resting-state functional magnetic resonance imaging was performed on 38 bipolar depression patients, 40 bipolar remission patients, and 39 gender-matched healthy controls (rsfMRI). The thalamic subregions were used as seed points to draw the functional connectivity of the entire brain, and then the shared and distinct thalamic-cortical circuits between bipolar depression and remission were compared. Results When compared to the healthy group, both groups of patients had significantly lower functional connectivity between the rostral temporal thalamus and the lingual gyrus, the posterior parietal thalamus, the precuneus/cerebellum, and the occipital thalamus and the precuneus; however, functional connectivity between the premotor thalamus and the superior medial frontal was significantly lower in depression. Conclusion This study discovered that both bipolar depression and remission had abnormal sensorimotor-thalamic functional connectivity, implying that it is a trait-related characteristic of bipolar disorder; however, the decline in prefrontal-thalamic connectivity exists specifically in bipolar depression, implying that it is a state-related characteristic of bipolar disorder.
Collapse
Affiliation(s)
- Can Zeng
- Department of Psychology, Shaoguan University, Shaoguan, China
| | - SuQun Liao
- Department of Psychology, Shaoguan University, Shaoguan, China
| | - Weidan Pu
- Department of Clinical Psychology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Tolley N, Rodrigues PLC, Gramfort A, Jones S. Methods and considerations for estimating parameters in biophysically detailed neural models with simulation based inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537118. [PMID: 37131818 PMCID: PMC10153146 DOI: 10.1101/2023.04.17.537118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biophysically detailed neural models are a powerful technique to study neural dynamics in health and disease with a growing number of established and openly available models. A major challenge in the use of such models is that parameter inference is an inherently difficult and unsolved problem. Identifying unique parameter distributions that can account for observed neural dynamics, and differences across experimental conditions, is essential to their meaningful use. Recently, simulation based inference (SBI) has been proposed as an approach to perform Bayesian inference to estimate parameters in detailed neural models. SBI overcomes the challenge of not having access to a likelihood function, which has severely limited inference methods in such models, by leveraging advances in deep learning to perform density estimation. While the substantial methodological advancements offered by SBI are promising, their use in large scale biophysically detailed models is challenging and methods for doing so have not been established, particularly when inferring parameters that can account for time series waveforms. We provide guidelines and considerations on how SBI can be applied to estimate time series waveforms in biophysically detailed neural models starting with a simplified example and extending to specific applications to common MEG/EEG waveforms using the the large scale neural modeling framework of the Human Neocortical Neurosolver. Specifically, we describe how to estimate and compare results from example oscillatory and event related potential simulations. We also describe how diagnostics can be used to assess the quality and uniqueness of the posterior estimates. The methods described provide a principled foundation to guide future applications of SBI in a wide variety of applications that use detailed models to study neural dynamics.
Collapse
Affiliation(s)
- Nicholas Tolley
- Department of Neuroscience, Brown University, Providence, RI, United States
| | | | | | - Stephanie Jones
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
12
|
Lee IT, Huang CC, Hsu PC, Lin CP, Tsai PY. Resting-State Network Changes Following Transcranial Magnetic Stimulation in Patients With Aphasia—A Randomized Controlled Study. Neuromodulation 2022; 25:528-537. [DOI: 10.1016/j.neurom.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022]
|
13
|
Perez-Rando M, Elvira UKA, García-Martí G, Gadea M, Aguilar EJ, Escarti MJ, Ahulló-Fuster MA, Grasa E, Corripio I, Sanjuan J, Nacher J. Alterations in the volume of thalamic nuclei in patients with schizophrenia and persistent auditory hallucinations. Neuroimage Clin 2022; 35:103070. [PMID: 35667173 PMCID: PMC9168692 DOI: 10.1016/j.nicl.2022.103070] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Analysis of structural MRI images using a probabilistic atlas for segmentation of several nuclei of the thalamus. Comparison of chronic patients with schizophrenia, with and without auditory hallucinations and matched healthy controls. Volumetric reductions in patients with AH vs controls: Medial geniculate nucleus, anterior pulvinar nucleus and lateral and medial mediodorsal nuclei. In patients without AH we found reductions in the volume of the pulvinar and mediodorsal nuclei, but not in the medial geniculate nucleus. Found also some significant correlations between the volume of these nuclei and the total score of the PSYRATS scale.
The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| | - Uriel K A Elvira
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Institutes of Biomedical Technologies and Neuroscience, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Gracian García-Martí
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Marien Gadea
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain; Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eduardo J Aguilar
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Maria J Escarti
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain
| | - Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy. Faculty of Nursing, Physiotherapy and Podiatry. Universidad Complutense de Madrid, Spain
| | - Eva Grasa
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Iluminada Corripio
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Julio Sanjuan
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
14
|
Deshpande G, Wang Y, Robinson J. Resting state fMRI connectivity is sensitive to laminar connectional architecture in the human brain. Brain Inform 2022; 9:2. [PMID: 35038072 PMCID: PMC8764001 DOI: 10.1186/s40708-021-00150-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
Previous invasive studies indicate that human neocortical graymatter contains cytoarchitectonically distinct layers, with notable differences in their structural connectivity with the rest of the brain. Given recent improvements in the spatial resolution of anatomical and functional magnetic resonance imaging (fMRI), we hypothesize that resting state functional connectivity (FC) derived from fMRI is sensitive to layer-specific thalamo-cortical and cortico-cortical microcircuits. Using sub-millimeter resting state fMRI data obtained at 7 T, we found that: (1) FC between the entire thalamus and cortical layers I and VI was significantly stronger than between the thalamus and other layers. Furthermore, FC between somatosensory thalamus (ventral posterolateral nucleus, VPL) and layers IV, VI of the primary somatosensory cortex were stronger than with other layers; (2) Inter-hemispheric cortico-cortical FC between homologous regions in superficial layers (layers I-III) was stronger compared to deep layers (layers V-VI). These findings are in agreement with structural connections inferred from previous invasive studies that showed that: (i) M-type neurons in the entire thalamus project to layer-I; (ii) Pyramidal neurons in layer-VI target all thalamic nuclei, (iii) C-type neurons in the VPL project to layer-IV and receive inputs from layer-VI of the primary somatosensory cortex, and (iv) 80% of collosal projecting neurons between homologous cortical regions connect superficial layers. Our results demonstrate for the first time that resting state fMRI is sensitive to structural connections between cortical layers (previously inferred through invasive studies), specifically in thalamo-cortical and cortico-cortical networks.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL, 36849, USA. .,Department of Psychological Sciences, Auburn University, Auburn, AL, USA. .,Alabama Advanced Imaging Consortium, Birmingham, AL, USA. .,Center for Neuroscience, Auburn University, Auburn, AL, USA. .,Key Laboratory for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China. .,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India. .,Centre for Brain Research, Indian Institute of Science, Bangalore, India.
| | - Yun Wang
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL, 36849, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Jennifer Robinson
- AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, 560 Devall Dr, Suite 266D, Auburn, AL, 36849, USA.,Department of Psychological Sciences, Auburn University, Auburn, AL, USA.,Alabama Advanced Imaging Consortium, Birmingham, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
15
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Lin CY, Jhan SR, Lee WJ, Chen PL, Chen JP, Chen HC, Chen TB. Imaging Markers of Subcortical Vascular Dementia in Patients With Multiple-Lobar Cerebral Microbleeds. Front Neurol 2021; 12:747536. [PMID: 34867731 PMCID: PMC8636110 DOI: 10.3389/fneur.2021.747536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 01/16/2023] Open
Abstract
Background and Purpose: Small vessel disease (SVD) imaging markers are related to ischemic and hemorrhage stroke and to cognitive dysfunction. This study aimed to clarify the relationship between SVD imaging markers and subcortical vascular dementia in severe SVD burden. Methods: A total of 57 subjects with multiple lobar cerebral microbleeds (CMBs) and four established SVD imaging markers were enrolled from the dementia and stroke registries of a single center. Visual rating scales that are used to semi-quantify SVD imaging changes were analyzed individually and compositely to make correlations with cognitive domains and subcortical vascular dementia. Results: Dementia group had higher subcortical and total white matter hyperintensities (WMHs) and SVD composite scores than non-dementia group. Individual imaging markers correlated differently with one another and had distinct cognitive correlations. After adjusting for demographic factors, multivariate logistic regression indicated associations of subcortical WMHs (odds ratio [OR] 2.03, CI 1.24–3.32), total WMHs (OR 1.43, CI 1.09–1.89), lacunes (OR 1.18, CI 1.02–1.35), cerebral amyloid angiopathy-SVD scores (OR 2.33, CI 1.01–5.40), C1 scores (imaging composite scores of CMB and WMH) (OR 1.41, CI 1.09–1.83), and C2 scores (imaging composite scores of CMB, WMH, perivascular space, and lacune) (OR 1.38, CI 1.08–1.76) with dementia. Conclusions: SVD imaging markers might have differing associations with cognitive domains and dementia. They may provide valuable complementary information in support of personalized treatment planning against cognitive impairment, particularly in patients with a heavy SVD load.
Collapse
Affiliation(s)
- Chia-Yen Lin
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Song-Ru Jhan
- Division of Neuroradiology, Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Ju Lee
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Lin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chieh Chen
- Division of Neuroradiology, Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Cosmetology, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
17
|
Phillips JM, Kambi NA, Redinbaugh MJ, Mohanta S, Saalmann YB. Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control. Neurosci Biobehav Rev 2021; 128:487-510. [PMID: 34216654 DOI: 10.1016/j.neubiorev.2021.06.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/13/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The prefrontal cortex (PFC) has a complex relationship with the thalamus, involving many nuclei which occupy predominantly medial zones along its anterior-to-posterior extent. Thalamocortical neurons in most of these nuclei are modulated by the affective and cognitive signals which funnel through the basal ganglia. We review how PFC-connected thalamic nuclei likely contribute to all aspects of cognitive control: from the processing of information on internal states and goals, facilitating its interactions with mnemonic information and learned values of stimuli and actions, to their influence on high-level cognitive processes, attentional allocation and goal-directed behavior. This includes contributions to transformations such as rule-to-choice (parvocellular mediodorsal nucleus), value-to-choice (magnocellular mediodorsal nucleus), mnemonic-to-choice (anteromedial nucleus) and sensory-to-choice (medial pulvinar). Common mechanisms appear to be thalamic modulation of cortical gain and cortico-cortical functional connectivity. The anatomy also implies a unique role for medial PFC in modulating processing in thalamocortical circuits involving other orbital and lateral PFC regions. We further discuss how cortico-basal ganglia circuits may provide a mechanism through which PFC controls cortico-cortical functional connectivity.
Collapse
Affiliation(s)
- Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States.
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Michelle J Redinbaugh
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States; Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1202 Capitol Ct., Madison, WI 53715, United States.
| |
Collapse
|
18
|
Frankford SA, Heller Murray ES, Masapollo M, Cai S, Tourville JA, Nieto-Castañón A, Guenther FH. The Neural Circuitry Underlying the "Rhythm Effect" in Stuttering. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2325-2346. [PMID: 33887150 PMCID: PMC8740675 DOI: 10.1044/2021_jslhr-20-00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Purpose Stuttering is characterized by intermittent speech disfluencies, which are dramatically reduced when speakers synchronize their speech with a steady beat. The goal of this study was to characterize the neural underpinnings of this phenomenon using functional magnetic resonance imaging. Method Data were collected from 16 adults who stutter and 17 adults who do not stutter while they read sentences aloud either in a normal, self-paced fashion or paced by the beat of a series of isochronous tones ("rhythmic"). Task activation and task-based functional connectivity analyses were carried out to compare neural responses between speaking conditions and groups after controlling for speaking rate. Results Adults who stutter produced fewer disfluent trials in the rhythmic condition than in the normal condition. Adults who stutter did not have any significant changes in activation between the rhythmic condition and the normal condition, but when groups were collapsed, participants had greater activation in the rhythmic condition in regions associated with speech sequencing, sensory feedback control, and timing perception. Adults who stutter also demonstrated increased functional connectivity among cerebellar regions during rhythmic speech as compared to normal speech and decreased connectivity between the left inferior cerebellum and the left prefrontal cortex. Conclusions Modulation of connectivity in the cerebellum and prefrontal cortex during rhythmic speech suggests that this fluency-inducing technique activates a compensatory timing system in the cerebellum and potentially modulates top-down motor control and attentional systems. These findings corroborate previous work associating the cerebellum with fluency in adults who stutter and indicate that the cerebellum may be targeted to enhance future therapeutic interventions. Supplemental Material https://doi.org/10.23641/asha.14417681.
Collapse
Affiliation(s)
- Saul A. Frankford
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Matthew Masapollo
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Shanqing Cai
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | - Jason A. Tourville
- Department of Speech, Language & Hearing Sciences, Boston University, MA
| | | | - Frank H. Guenther
- Department of Speech, Language & Hearing Sciences, Boston University, MA
- Department of Biomedical Engineering, Boston University, MA
- Department of Radiology, Massachusetts General Hospital, Boston
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge
| |
Collapse
|
19
|
Neurophysiological basis of the N400 deflection, from Mismatch Negativity to Semantic Prediction Potentials and late positive components. Int J Psychophysiol 2021; 166:134-150. [PMID: 34097935 DOI: 10.1016/j.ijpsycho.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022]
Abstract
The first theoretical model on the neurophysiological basis of the N400: the deflection reflects layer I dendritic plateaus on a preparatory state of synaptic integration that precedes layer V somatic burst firing for conscious identification of the higher-order features of the stimulus (a late positive shift). Plateaus ensue from apical disinhibition by vasoactive intestinal polypeptide-positive interneurons (VIPs) through suppression of Martinotti cells, opening the gates for glutamatergic feedback to trigger dendritic regenerative potentials. Cholinergic transients contribute to these dynamics directly, holding a central role in the N400 deflection. The stereotypical timing of the (frontal) glutamatergic feedback and the accompanying cholinergic transients account for the enigmatic "invariability" of the peak latency in the face of a gamut of different stimuli and paradigms. The theoretical postulations presented here may bring about unprecedented level of detail for the N400 deflection to be used in the study of schizophrenia, Alzheimer's disease and other higher-order pathologies. The substrates of a late positive component, the Mismatch Negativity and the Semantic Prediction Potentials are also surveyed.
Collapse
|
20
|
Heard M, Li X, Lee YS. Hybrid auditory fMRI: In pursuit of increasing data acquisition while decreasing the impact of scanner noise. J Neurosci Methods 2021; 358:109198. [PMID: 33901568 DOI: 10.1016/j.jneumeth.2021.109198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Two challenges in auditory fMRI include the loud scanner noise during sound presentation and slow data acquisition. Here, we introduce a new auditory imaging protocol, termed "hybrid", that alleviates these obstacles. NEW METHOD We designed a within-subject experiment (N = 14) wherein language-driven activity was measured by hybrid, interleaved silent (ISSS), and continuous multiband acquisition. To determine the advantage of noise attenuation during sound presentation, hybrid was compared to multiband. To identify the benefits of increased temporal resolution, hybrid was compared to ISSS. Data were evaluated by whole-brain univariate general linear modeling (GLM) and multivariate pattern analysis (MVPA). RESULTS Comparison with existing methods: CONCLUSIONS: Our data revealed that hybrid imaging restored neural activity in the canonical language network that was absent due to the loud noise or slow sampling in the conventional imaging protocols. With its noise-attenuated sound presentation windows and increased acquisition speed, the hybrid protocol is well-suited for auditory fMRI research tracking neural activity pertaining to fast, time-varying acoustic events.
Collapse
Affiliation(s)
- Matthew Heard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, United States
| | - Xiangrui Li
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, United States
| | - Yune S Lee
- School of Behavioral and Brain Sciences, University of Texas at Dallas, United States; Center for BrainHealth, University of Texas at Dallas, United States.
| |
Collapse
|
21
|
Wang Y, Taylor E, Zikopoulos B, Seta F, Huang N, Hamilton JA, Kantak KM, Morgan KG. Aging-induced microbleeds of the mouse thalamus compared to sensorimotor and memory defects. Neurobiol Aging 2021; 100:39-47. [PMID: 33477010 PMCID: PMC8162167 DOI: 10.1016/j.neurobiolaging.2020.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022]
Abstract
The aim of this study is to investigate the relationship between aging and brain vasculature health. Three groups of mice, 3, 17-18, and 24 months, comparable to young adult, middle age, and old human were studied. Prussian blue histology and fast imaging with steady precession T2∗-weighted magnetic resonance imaging were used to quantify structural changes in the brain across age groups. The novel object recognition test was used to assess behavioral changes associated with anatomical changes. This study is the first to show that the thalamus is the most vulnerable brain region in the mouse model for aging-induced vascular damage. Magnetic resonance imaging data document the timeline of accumulation of thalamic damage. Histological data reveal that the majority of vascular damage accumulates in the ventroposterior nucleus and mediodorsal thalamic nucleus. Functional studies indicate that aging-induced vascular damage in the thalamus is associated with memory and sensorimotor deficits. This study points to the possibility that aging-associated vascular disease is a factor in irreversible brain damage as early as middle age.
Collapse
Affiliation(s)
- Yandan Wang
- Department of Health Sciences, Sargent College, Boston, MA, USA
| | - Erik Taylor
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | | | - Francesca Seta
- Department of Medicine, Boston University School of Medicine, Evans Biomed Research Centre, Boston, MA, USA
| | - Nasi Huang
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - James A Hamilton
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Kathleen M Kantak
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
22
|
Antonucci LA, Penzel N, Pigoni A, Dominke C, Kambeitz J, Pergola G. Flexible and specific contributions of thalamic subdivisions to human cognition. Neurosci Biobehav Rev 2021; 124:35-53. [PMID: 33497787 DOI: 10.1016/j.neubiorev.2021.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/30/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
The thalamus participates in multiple functional brain networks supporting different cognitive abilities. How thalamo-cortical connections map onto the architecture of human cognition remains an outstanding question. The aim of this meta-analysis is to map co-activation between thalamic and extra-thalamic brain regions onto separate cognitive domains and to assess thalamic subdivision specificity within each of the cognitive domains considered. We parsed 93 fMRI studies into twelve cognitive domains. Signed Differential Mapping served to obtain co-activation maps. We then projected the contribution of thalamic subdivisions onto a thalamic atlas to assess cognitive domain specificity. A set of brain regions was flexibly involved with thalamus in several cognitive domains. Thalamic subdivisions showed ample cognitive heterogeneity. Our proposed model represents thalamic involvement in cognition as an "ensemble" of functional subdivisions with common cell properties embedded in separate cortical circuits rather than a homogeneous functional unit.
Collapse
Affiliation(s)
- Linda A Antonucci
- Department of Education, Psychology and Communication - University of Bari Aldo Moro, Bari, Italy; Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy - Ludwig Maximilians Universität, Munich, Germany; Department of Basic Medical Sciences, Neuroscience and Sense Organs - University of Bari Aldo Moro, Bari, Italy.
| | - Nora Penzel
- Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy - Ludwig Maximilians Universität, Munich, Germany; Department of Psychiatry University of Cologne, Medical Faculty Cologne Germany
| | - Alessandro Pigoni
- Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy - Ludwig Maximilians Universität, Munich, Germany; Department of Neurosciences and Mental Health - Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Clara Dominke
- Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy - Ludwig Maximilians Universität, Munich, Germany
| | - Joseph Kambeitz
- Department of Psychiatry University of Cologne, Medical Faculty Cologne Germany
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs - University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
| |
Collapse
|
23
|
Wolff M, Morceau S, Folkard R, Martin-Cortecero J, Groh A. A thalamic bridge from sensory perception to cognition. Neurosci Biobehav Rev 2021; 120:222-235. [PMID: 33246018 DOI: 10.1016/j.neubiorev.2020.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The ability to adapt to dynamic environments requires tracking multiple signals with variable sensory salience and fluctuating behavioral relevance. This complex process requires integrative crosstalk between sensory and cognitive brain circuits. Functional interactions between cortical and thalamic regions are now considered essential for both sensory perception and cognition but a clear account of the functional link between sensory and cognitive circuits is currently lacking. This review aims to document how thalamic nuclei may effectively act as a bridge allowing to fuse perceptual and cognitive events into meaningful experiences. After highlighting key aspects of thalamocortical circuits such as the classic first-order/higher-order dichotomy, we consider the role of the thalamic reticular nucleus from directed attention to cognition. We next summarize research relying on Pavlovian learning paradigms, showing that both first-order and higher-order thalamic nuclei contribute to associative learning. Finally, we propose that modulator inputs reaching all thalamic nuclei may be critical for integrative purposes when environmental signals are computed. Altogether, the thalamus appears as the bridge linking perception, cognition and possibly affect.
Collapse
Affiliation(s)
- M Wolff
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| | - S Morceau
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - R Folkard
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - J Martin-Cortecero
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - A Groh
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| |
Collapse
|
24
|
Ehlen F, Al-Fatly B, Kühn AA, Klostermann F. Impact of deep brain stimulation of the subthalamic nucleus on natural language in patients with Parkinson's disease. PLoS One 2020; 15:e0244148. [PMID: 33373418 PMCID: PMC7771859 DOI: 10.1371/journal.pone.0244148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Background In addition to the typical motor symptoms, a majority of patients suffering from Parkinson’s disease experience language impairments. Deep Brain Stimulation of the subthalamic nucleus robustly reduces motor dysfunction, but its impact on language skills remains ambiguous. Method To elucidate the impact of subthalamic deep brain stimulation on natural language production, we systematically analyzed language samples from fourteen individuals (three female / eleven male, average age 66.43 ± 7.53 years) with Parkinson’s disease in the active (ON) versus inactive (OFF) stimulation condition. Significant ON-OFF differences were considered as stimulation effects. To localize their neuroanatomical origin within the subthalamic nucleus, they were correlated with the volume of tissue activated by therapeutic stimulation. Results Word and clause production speed increased significantly under active stimulation. These enhancements correlated with the volume of tissue activated within the associative part of the subthalamic nucleus, but not with that within the dorsolateral motor part, which again correlated with motor improvement. Language error rates were lower in the ON vs. OFF condition, but did not correlate with electrode localization. No significant changes in further semantic or syntactic language features were detected in the current study. Conclusion The findings point towards a facilitation of executive language functions occurring rather independently from motor improvement. Given the presumed origin of this stimulation effect within the associative part of the subthalamic nucleus, this could be due to co-stimulation of the prefrontal-subthalamic circuit.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Department of Neurology, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Jüdisches Krankenhaus Berlin, Berlin, Germany
- * E-mail:
| | - Bassam Al-Fatly
- Department of Neurology, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Department of Neurology, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
25
|
Patrikelis P, Lucci G, Fasilis T, Korfias S, Messinis L, Kosmidis MH, Lagogianni C, Konstantakopoulos G, Manolia S, Sakas D, Gatzonis S. Selective impairment of auditory attention processing in idiopathic generalized epilepsies: Implications for their cognitive pathophysiology. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:1131-1140. [PMID: 33284641 DOI: 10.1080/23279095.2020.1852566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The neuropsychological characteristics of Idiopathic Generalized Epilepsies (IGEs) as a wide syndrome encompassing different clinical entities have been as yet not well understood. We have studied neuropsychological performance in patients suffering Juvenile Myoclonic Epilepsy (JME) and Generalized Tonic Clonic Seizures (IGE-GTCS-only) to provide indirect-cognitive evidence on the pathophysiology of IGE-related neuropsychological dysfunction. Greater arousal-related impairments were expected for the auditory modality, by drawing on previous anatomo-clinical and neuro-evolutionary accounts. We have studied neurocognitive functioning in 26 IGE patients, suffering either JME (n = 16) or IGE-GTCS-only (n = 10), and their healthy counterparts consisted of 26 (18 females) demographically matched participants. IGE patients (JME and IGE-GTCS-only) did worse with respect to HC (healthy controls) in visual- and auditory- speed of information processing (reaction time), auditory-vigilance and -response inhibition, visuo-motor coordination, visual working memory and motor speed, delayed visual recall, immediate- and delayed verbal episodic recall, lexical access and retrieval, semantic associative processing, auditory-verbal memory span and verbal learning. Although both IGE-GTCS-only and JME patients delayed episodic recall was defective, the former did significantly worse. We believe that IGE patients' neuropsychological derailments represent indirect-secondary manifestations of a primary cortical tone deregulation inherent to IGEs' pathophysiology. In particular, IGE patients' worse-dissociated performance in auditory TOVA-also seen previously in TBI and schizophrenia-may implicate a grater vulnerability of the auditory information processing system, as well as a possibly shared cognitive pathophysiological component between IGE and the above nosologies.
Collapse
Affiliation(s)
- Panayiotis Patrikelis
- Department of Neurosurgery, Epilepsy Surgery Unit, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Giuliana Lucci
- Department of Technologies, Communication and Society, University of Rome G. Marconi, Rome, Italy
| | - Theodoros Fasilis
- Department of Neurosurgery, Epilepsy Surgery Unit, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefanos Korfias
- Department of Neurosurgery, Epilepsy Surgery Unit, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lambros Messinis
- Departments of Neurology and Psychiatry, Neuropsychology Section, School of Medicine, University Hospital of Patras, Patras, Greece
| | - Mary H Kosmidis
- Department of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christodouli Lagogianni
- Department of Neurosurgery, Epilepsy Surgery Unit, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Konstantakopoulos
- First Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stamatina Manolia
- Department of Statistics and Actuarial Science, University of Pireaus, Pireaus, Greece
| | - Damianos Sakas
- Department of Neurosurgery, Epilepsy Surgery Unit, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos Gatzonis
- Department of Neurosurgery, Epilepsy Surgery Unit, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Camerino I, Sierpowska J, Reid A, Meyer NH, Tuladhar AM, Kessels RPC, de Leeuw FE, Piai V. White matter hyperintensities at critical crossroads for executive function and verbal abilities in small vessel disease. Hum Brain Mapp 2020; 42:993-1002. [PMID: 33231360 PMCID: PMC7856651 DOI: 10.1002/hbm.25273] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
The presence of white matter lesions in patients with cerebral small vessel disease (SVD) is among the main causes of cognitive decline. We investigated the relation between white matter hyperintensity (WMH) locations and executive and language abilities in 442 SVD patients without dementia with varying burden of WMH. We used Stroop Word Reading, Stroop Color Naming, Stroop Color‐Word Naming, and Category Fluency as language measures with varying degrees of executive demands. The Symbol Digit Modalities Test (SDMT) was used as a control task, as it measures processing speed without requiring language use or verbal output. A voxel‐based lesion–symptom mapping (VLSM) approach was used, corrected for age, sex, education, and lesion volume. VLSM analyses revealed statistically significant clusters for tests requiring language use, but not for SDMT. Worse scores on all tests were associated with WMH in forceps minor, thalamic radiations and caudate nuclei. In conclusion, an association was found between WMH in a core frontostriatal network and executive‐verbal abilities in SVD, independent of lesion volume and processing speed. This circuitry underlying executive‐language functioning might be of potential clinical importance for elderly with SVD. More detailed language testing is required in future research to elucidate the nature of language production difficulties in SVD.
Collapse
Affiliation(s)
- Ileana Camerino
- Donders Institute for Brain, Cognition, and Behaviour, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Department of Neurology, Radboud University, Nijmegen, The Netherlands
| | - Joanna Sierpowska
- Donders Institute for Brain, Cognition, and Behaviour, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrew Reid
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Nathalie H Meyer
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anil M Tuladhar
- Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Department of Neurology, Radboud University, Nijmegen, The Netherlands
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition, and Behaviour, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Department of Neurology, Radboud University, Nijmegen, The Netherlands
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Contribution of the Cerebellum and the Basal Ganglia to Language Production: Speech, Word Fluency, and Sentence Construction-Evidence from Pathology. THE CEREBELLUM 2020; 20:282-294. [PMID: 33120434 PMCID: PMC8004516 DOI: 10.1007/s12311-020-01207-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Evidence reported in recent decades increasingly confirms that both the cerebellum and the basal ganglia, which are primarily involved in movement control, also have a significant role in a vast range of cognitive and affective functions. Evidence from pathology indicates that the disorders of some aspects of language production which follow damage of the cerebellum or respectively basal ganglia, i.e., disorders of speech, word fluency, and sentence construction, have identifiable neuropsychological profiles and that most manifestations can be specifically attributed to the dysfunctions of mechanisms supported by one or the other of these structures. The cerebellum and the basal ganglia are reciprocally interconnected. Thus, it is plausible that some disorders observed when damage involves one of these structures could be remote effects of abnormal activity in the other. However, in a purely clinical-neuropsychological perspective, primary and remote effects in the network are difficult to disentangle. Functional neuroimaging and non-invasive brain stimulation techniques likely represent the indispensable support for achieving this goal.
Collapse
|
28
|
Lahiri D, Ardila A, Dubey S, Ray BK. A Longitudinal Study of Aphasia Due to Pure Sub-Cortical Strokes. Ann Indian Acad Neurol 2020; 23:S109-S115. [PMID: 33343134 PMCID: PMC7731690 DOI: 10.4103/aian.aian_475_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/03/2020] [Accepted: 06/21/2020] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Contemporary neuro-imaging techniques have significantly advanced our understanding of the brain organization of language and the involvement of subcortical areas in aphasia. However, articles on sub-cortical aphasia, particularly in non-western languages, remain to be few and far between. We set out to explore aphasia typology in sub-cortical strokes among Bengali-speaking population with a focus towards providing a longitudinal view over a period of 3 months post-stroke. METHODS Bengali version of Western Aphasia Battery (BWAB) was used to assess and classify language dysfunction in our study participants. Conventional brain imaging techniques (CT scan & MRI) were used to detect and localize strokes. Uni-variate analysis for categorical variable (location versus aphasia typology) was performed using Chi square and Fischer's exact test (as applicable). Directional measures were calculated using lambda and Goodman-Kruskal tau (Range of - 1 to + 1). Boot strapping was applied while calculating the directional measures because of inadequate numbers in some sub-sections the sample. RESULTS Frequency of sub-cortical aphasia was observed to be 29.80% (62/208) in the index study. Four location of strokes were associated with language dysfunction, of which putamen (53.23%) was the commonest followed by striato-capsular region (33.87%). Thalamus and peri-ventricular white matter (PVWM) strokes (6.45% each) were infrequent in our sample of sub-cortical aphasia. Global aphasia (30/62, 48.38%) was the most frequent type observed in acute phase while Broca's aphasia (23/53, 43.39%) dominated among the follow up cases. Aphasia recovery (with follow up AQ of 90.0 or more) was observed in 12 (22.64%) patients of whom majority (8/12) had striato-capsular strokes. CONCLUSION The present paper illustrates the epidemiological aspects as well as longitudinal course aphasia following pure sub-cortical strokes.
Collapse
Affiliation(s)
- Durjoy Lahiri
- Bangur Institute of Neurosciences, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| | - Alfredo Ardila
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Albizu University, Miami, Florida, USA
| | - Souvik Dubey
- Bangur Institute of Neurosciences, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| | - Biman Kanti Ray
- Bangur Institute of Neurosciences, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| |
Collapse
|
29
|
Intrinsic connections between thalamic sub-regions and the lateral prefrontal cortex are differentially impacted by acute methylphenidate. Psychopharmacology (Berl) 2020; 237:1873-1883. [PMID: 32307560 PMCID: PMC7437544 DOI: 10.1007/s00213-020-05505-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The thalamus is a major target of dopaminergic projections and is densely connected with the prefrontal cortex. A better understanding of how dopamine changes thalamo-cortical communication may shed light on how dopamine supports cognitive function. Methylphenidate has been shown to facilitate cognitive processing and reduce connectivity between the thalamus and lateral prefrontal cortex. AIMS The thalamus is a heterogeneous structure, and the present study sought to clarify how the intrinsic connections of thalamic sub-regions are differentially impacted by acute dopamine transporter blockade. METHODS Sixty healthy volunteers were orally administered either 20 mg of methylphenidate (N = 29) or placebo (N = 31) in a double-blind, randomized, between-subject design. Multi-echo fMRI was used to assess intrinsic functional connectivity of sub-regions of the thalamus during a resting state scan. An N-back working-memory paradigm provided a measure of cognitive performance. RESULTS Acute methylphenidate significantly reduced connectivity of the lateral prefrontal cortex with the motor and somatosensory sub-regions of the thalamus and reduced connectivity with the parietal and visual sub-regions at a trend level. Connectivity with the premotor, prefrontal, and temporal sub-regions was not impacted. The intrinsic connectivity between the thalamus and the lateral prefrontal cortex was not associated with working-memory performance. CONCLUSIONS Methylphenidate decreases functional connections between the lateral prefrontal cortex and thalamus broadly, while sparing intrinsic connectivity with thalamic sub-regions involved with working-memory and language related processes. Collectively, our results suggest that the dopamine transporter regulates functional connections between the prefrontal cortex and non-cognitive areas of the thalamus.
Collapse
|
30
|
Utility of brain fluorodeoxyglucose PET in children with possible autoimmune encephalitis. Nucl Med Commun 2020; 41:800-809. [PMID: 32459714 DOI: 10.1097/mnm.0000000000001222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We aimed to explore the utility and additional clinical contribution of brain fluorodeoxyglucose (FDG) PET imaging for the assessment of children with possible autoimmune encephalitis in comparison to brain MRI. MATERIALS AND METHODS We conducted a retrospective analysis of six pediatric patients (all seronegative) between 2014 and 2019 with the initial diagnosis of possible autoimmune encephalitis who had brain FDG PET/CT or PET/MRI and brain MRI during the diagnostic period. Diagnosis of possible autoimmune encephalitis was based on clinical consensus criteria defined by Graus et al. Brain FDG PET images were visually evaluated. Semiquantitative evaluation was also performed by using the statistical parametric mapping (SPM) method. RESULTS Cerebrospinal fluid pleiocytosis and electroencephalography abnormality were present in all patients. Mean duration between the onset of symptoms and brain FDG PET imaging was 33 ± 16 days (range: 18-62 days). There were a total of eight brain FDG PET scans (six of PET/MRI and two of PET/CT). In two patients, FDG PET imaging was performed at diagnosis and follow-up. Initial FDG PET and SPM analysis findings were abnormal in all patients (100%), with four demonstrating only hypometabolism. Only a hypermetabolic pattern was seen in one patient, and mixed the hypohypermetabolic pattern was seen in one patient. All patients had metabolic abnormalities in temporal lobes. Additionally, visual and semiquantitative FDG PET findings revealed hypometabolism in extratemporal regions. Brain MRI was abnormal in two patients (33.3%) who had also FDG hypermetabolism in mesial temporal lobes. CONCLUSIONS Our findings support the usage of fluorine-18-FDG PET/computed tomography (CT)/MRI with quantitative analysis early in the diagnostic work-up of possible autoimmune encephalitis, particularly in those with normal or nonspecific MRI findings. However, it remains a purpose of further studies, if and to what extent FDG PET/CT or integrated FDG PET/MRI with quantitative analysis can improve the diagnostic workup of children with possible autoimmune encephalitis.
Collapse
|
31
|
Uchino H, Kazumata K, Ito M, Nakayama N, Kuroda S, Houkin K. Crossed cerebellar diaschisis as an indicator of severe cerebral hyperperfusion after direct bypass for moyamoya disease. Neurosurg Rev 2020; 44:599-605. [PMID: 32076897 DOI: 10.1007/s10143-020-01265-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Cerebral hyperperfusion (HP) complicates the postoperative course of patients with moyamoya disease (MMD) after direct revascularization surgery. Crossed cerebellar diaschisis (CCD) has been considered to be rarely associated with HP after revascularization surgery. This study aimed to describe the clinical features and factors associated with CCD secondary to cerebral HP after revascularization surgery for MMD. We analyzed 150 consecutive hemispheres including 101 in adults and 49 in pediatric patients who underwent combined direct and indirect bypass for MMD. Using single-photon emission computed tomography (SPECT), serial cerebral blood flow (CBF) was measured immediately after the surgery and on postoperative days 2 and 7. Pre- and postoperative voxel-based analysis of SPECT findings was performed to compare the changes in regional CBF. Multivariate logistic regression analysis was performed to test the effect of multiple variables on CCD. Asymptomatic and symptomatic HP was observed in 41.3% (62/150) and 16.7% (25/150) of the operated hemispheres, respectively. CCD was observed in 18.4% (16/87) of these hemispheres with radiological HP. Multivariate analysis revealed that the occurrence of CCD was significantly associated with symptomatic HP (p = 0.0015). Voxel-based analysis showed that the CBF increase in the operated frontal cortex, and the CBF reduction in the contralateral cerebellar hemisphere on day 7 were significantly larger in symptomatic HP than in asymptomatic HP (median 11.3% vs 7.5%; - 6.0% vs - 1.7%, respectively). CCD secondary to postoperative HP is more common than anticipated in MMD. CCD could potentially be used as an indicator of severe postoperative HP in patients with MMD.
Collapse
Affiliation(s)
- Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, University of Toyama, Toyama, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
32
|
Brandel MG, Lee RR, U HS. Transient Aphasia Following Resection of a Thalamic Cavernous Malformation. World Neurosurg 2020; 136:390-393.e3. [PMID: 32004743 DOI: 10.1016/j.wneu.2020.01.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The thalamus has a demonstrated role in language, particularly through its connectivity to frontal language cortices. CASE DESCRIPTION A 59-year-old man with transient mixed aphasia following resection of a left-sided thalamic cavernous malformation is reported. No operative complications were encountered, and there was no surgical contact with cortical language areas. The patient recovered full language function within a week postoperatively. CONCLUSIONS The role of thalamic nuclei in language processes and other reports of transient thalamic aphasia are reviewed.
Collapse
Affiliation(s)
- Michael G Brandel
- Department of Neurosurgery, Veterans Administration Healthcare System, University of California San Diego, San Diego, California, USA.
| | - Roland R Lee
- Department of Radiology, Veterans Administration Healthcare System, University of California San Diego, San Diego, California, USA
| | - Hoi Sang U
- Department of Neurosurgery, Veterans Administration Healthcare System, University of California San Diego, San Diego, California, USA
| |
Collapse
|
33
|
Hagoort P. The neurobiology of language beyond single-word processing. Science 2019; 366:55-58. [DOI: 10.1126/science.aax0289] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/06/2019] [Indexed: 11/02/2022]
Abstract
In this Review, I propose a multiple-network view for the neurobiological basis of distinctly human language skills. A much more complex picture of interacting brain areas emerges than in the classical neurobiological model of language. This is because using language is more than single-word processing, and much goes on beyond the information given in the acoustic or orthographic tokens that enter primary sensory cortices. This requires the involvement of multiple networks with functionally nonoverlapping contributions.
Collapse
Affiliation(s)
- Peter Hagoort
- Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
34
|
Young JC, Nasser HM, Casillas-Espinosa PM, O'Brien TJ, Jackson GD, Paolini AG. Multiunit cluster firing patterns of piriform cortex and mediodorsal thalamus in absence epilepsy. Epilepsy Behav 2019; 97:229-243. [PMID: 31254843 DOI: 10.1016/j.yebeh.2019.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The objective of the study were to investigate patterns of multiunit cluster firing in the piriform cortex (PC) and mediodorsal thalamus (MDT) in a rat model of genetic generalized epilepsy (GGE) with absence seizures and to assess whether these regions contribute to the initiation or spread of generalized epileptiform discharges. METHODS Multiunit clusters and their corresponding local field potentials (LFPs) were recorded from microelectrode arrays implanted in the PC and MDT in urethane anesthetized Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and nonepileptic control (NEC) rats. Peristimulus time histograms (PSTHs) and cross-correlograms were used to observe transient changes in both the rate of firing and synchrony over time. The phase locking of multiunit clusters to LFP signals (spike-LFP phase locking) was calculated for frequency bands associated with olfactory communication between the two brain regions. RESULTS There were significant increases in both rate of firing and synchronous activity at the onset of generalized epileptiform discharges in both PC and MDT. Prior to and following these increases in synchronous activity, there were periods of suppression. Significant increases in spike-LFP phase locking were observed within the PC prior to the onset of epileptiform discharges across all spectral bands. There were also significant increases in spike-LFP phase locking within the theta band of the MDT prior to onset. Between the two brain regions, there was a significant decrease in spike-LFP phase locking -0.5 s prior to onset in the theta band which coincided with a significant elevation in spike-LFP phase locking in the gamma band. CONCLUSIONS Both the PC and MDT are engaged in the absence epilepsy network. Early spike-LFP phase locking between these two brain regions suggests potential involvement in the initiation of seizure activity.
Collapse
Affiliation(s)
- James C Young
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Helen M Nasser
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Melbourne, Australia
| | - Antonio G Paolini
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
35
|
Hatz F, Meyer A, Roesch A, Taub E, Gschwandtner U, Fuhr P. Quantitative EEG and Verbal Fluency in DBS Patients: Comparison of Stimulator-On and -Off Conditions. Front Neurol 2019; 9:1152. [PMID: 30687215 PMCID: PMC6333686 DOI: 10.3389/fneur.2018.01152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction: Deep brain stimulation of the subthalamic nucleus (STN-DBS) ameliorates motor function in patients with Parkinson's disease and allows reducing dopaminergic therapy. Beside effects on motor function STN-DBS influences many non-motor symptoms, among which decline of verbal fluency test performance is most consistently reported. The surgical procedure itself is the likely cause of this decline, while the influence of the electrical stimulation is still controversial. STN-DBS also produces widespread changes of cortical activity as visualized by quantitative EEG. The present study aims to link an alteration in verbal fluency performance by electrical stimulation of the STN to alterations in quantitative EEG. Methods: Sixteen patients with STN-DBS were included. All patients had a high density EEG recording (256 channels) while testing verbal fluency in the stimulator on/off situation. The phonemic, semantic, alternating phonemic and semantic fluency was tested (Regensburger Wortflüssigkeits-Test). Results: On the group level, stimulation of STN did not alter verbal fluency performance. EEG frequency analysis showed an increase of relative alpha2 (10–13 Hz) and beta (13–30 Hz) power in the parieto-occipital region (p ≤ 0.01). On the individual level, changes of verbal fluency induced by stimulation of the STN were disparate and correlated inversely with delta power in the left temporal lobe (p < 0.05). Conclusion: STN stimulation does not alter verbal fluency performance in a systematic way at group level. However, when in individual patients an alteration of verbal fluency performance is produced by electrical stimulation of the STN, it correlates inversely with left temporal delta power.
Collapse
Affiliation(s)
- Florian Hatz
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Antonia Meyer
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Anne Roesch
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Ethan Taub
- Department of Neurosurgery, Hospitals of University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Peter Fuhr
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
A case of transient thalamic dysphasia-considering the role of the thalamus in language. Childs Nerv Syst 2018; 34:2345-2346. [PMID: 30187184 DOI: 10.1007/s00381-018-3967-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
37
|
Leroux E, Vandevelde A, Tréhout M, Dollfus S. Abnormalities of fronto-subcortical pathways in schizophrenia and the differential impacts of antipsychotic treatment: a DTI-based tractography study. Psychiatry Res Neuroimaging 2018; 280:22-29. [PMID: 30145382 DOI: 10.1016/j.pscychresns.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/13/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023]
Abstract
The fronto-striato-thalamic circuitry is a key network in patients with schizophrenia (SZPs). We use diffusion tensor imaging (DTI) to investigate the integrity of white matter (WM) pathways involved in this network in SZPs relative to healthy controls (HCs). We also evaluate the differential impact of chronic exposure to clozapine as well as other atypical and typical antipsychotics. 63 HCs and 41 SZPs were included. Of the SZPs, 16 were treated with clozapine (SZPsC), 17 with atypical antipsychotics (SZPsA), and 8 with typical antipsychotics (SZPsT). Three tracts were reconstructed in the left hemisphere using tractography: one fronto-subcortical tract, one prefronto-subcortical tract, and one prefronto-frontal tract. Diffusion parameters were individually extracted in each tract. SZPs exhibited lower integrity in both the fronto-subcortical and prefronto-subcortical tracts relative to HCs, and SZPsT showed altered integrity compared to SZPsC. There were no WM integrity differences in the prefronto-frontal tract between SZP groups or between SZPs and HCs. SZPs exhibit structural connectivity abnormalities in the prefronto-fronto-subcortical network that are specifically and differentially impacted by the type of antipsychotic treatment. Additional studies are needed to separate the contributions of clozapine-mediated neuroprotection, neurotoxicity related to typical antipsychotics, and the illness itself to observed differences.
Collapse
Affiliation(s)
- E Leroux
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France.
| | - A Vandevelde
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France; Service de Psychiatrie Adulte, Centre Esquirol, CHU de Caen, 14000 Caen, France; UFR de Médecine (Medical School), Normandie Université, UNICAEN, Caen, France.
| | - M Tréhout
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France; Service de Psychiatrie Adulte, Centre Esquirol, CHU de Caen, 14000 Caen, France; UFR de Médecine (Medical School), Normandie Université, UNICAEN, Caen, France.
| | - S Dollfus
- ISTS EA 7466, Normandie Université, UNICAEN, Caen, France; Service de Psychiatrie Adulte, Centre Esquirol, CHU de Caen, 14000 Caen, France; UFR de Médecine (Medical School), Normandie Université, UNICAEN, Caen, France.
| |
Collapse
|
38
|
Barbas H, Wang J, Joyce MKP, García-Cabezas MÁ. Pathway mechanism for excitatory and inhibitory control in working memory. J Neurophysiol 2018; 120:2659-2678. [PMID: 30256740 DOI: 10.1152/jn.00936.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans engage in many daily activities that rely on working memory, the ability to hold and sequence information temporarily to accomplish a task. We focus on the process of working memory, based on circuit mechanisms for attending to relevant signals and suppressing irrelevant stimuli. We discuss that connections critically depend on the systematic variation in laminar structure across all cortical systems. Laminar structure is used to group areas into types regardless of their placement in the cortex, ranging from low-type agranular areas that lack layer IV to high-type areas that have six well-delineated layers. Connections vary in laminar distribution and strength based on the difference in type between linked areas, according to the "structural model" (Barbas H, Rempel-Clower N. Cereb Cortex 7: 635-646, 1997). The many possible pathways thus vary systematically by laminar distribution and strength, and they interface with excitatory neurons to select relevant stimuli and with functionally distinct inhibitory neurons that suppress activity at the site of termination. Using prefrontal pathways, we discuss how systematic architectonic variation gives rise to diverse pathways that can be recruited, along with amygdalar and hippocampal pathways that provide sensory, affective, and contextual information. The prefrontal cortex is also connected with thalamic nuclei that receive the output of the basal ganglia and cerebellum, which may facilitate fast sequencing of information. The complement of connections and their interface with distinct inhibitory neurons allows dynamic recruitment of areas and shifts in cortical rhythms to meet rapidly changing demands of sequential components of working memory tasks.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Jingyi Wang
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| | - Mary Kate P Joyce
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| |
Collapse
|
39
|
Khanni JL, Casale JA, Koek AY, Espinosa Del Pozo PH, Espinosa PS. Artery of Percheron Infarct: An Acute Diagnostic Challenge with a Spectrum of Clinical Presentations. Cureus 2018; 10:e3276. [PMID: 30443447 PMCID: PMC6235647 DOI: 10.7759/cureus.3276] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The artery of Percheron (AOP) is a variant of the paramedian thalamic vasculature that supplies blood to the medial aspect of the thalamus and the rostral midbrain. The presentation of an infarct in this territory varies widely and is often characterized by nonspecific neurological deficits, with altered mental status, decreased level of consciousness, and memory impairment being among the most common. AOP infarcts are often missed on initial computed tomography (CT) scan, and additional imaging is usually not done due to low suspicion for stroke in most cases. There have been an increasing number of reports of AOP infarction, illustrating the diversity of clinical presentations and the challenge this presents to clinicians in the acute setting. Lacking the classic signs of stroke, many of these patients experience a delay in recognition and treatment, with the majority of diagnoses occurring outside the tissue plasminogen activator (tPA) window. This case highlights the unusual presentation and diagnostic difficulty of a patient with an AOP infarct, and serves as a reminder to include thalamic pathology in patients presenting with vague neurological symptoms and no obvious signs of stroke.
Collapse
Affiliation(s)
- Javed L Khanni
- Clinical Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| | - Joel A Casale
- Internal Medicine, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| | - Adriana Y Koek
- Clinical Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| | | | - Patricio S Espinosa
- Neurology, Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, USA
| |
Collapse
|
40
|
Youssofzadeh V, Vannest J, Kadis DS. fMRI connectivity of expressive language in young children and adolescents. Hum Brain Mapp 2018; 39:3586-3596. [PMID: 29717539 DOI: 10.1002/hbm.24196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 01/21/2023] Open
Abstract
Studies of language representation in development have shown a bilateral distributed pattern of activation that becomes increasingly left-lateralized and focal from young childhood to adulthood. However, the level by which canonical and extra-canonical regions, including subcortical and cerebellar regions, contribute to language during development has not been well-characterized. In this study, we employed fMRI connectivity analyses (fcMRI) to characterize the distributed network supporting expressive language in a group of young children (age 4-6) and adolescents (age 16-18). We conducted an fcMRI analysis using seed-to-voxel and seed-to-ROI (region of interest) strategies to investigate interactions of left pars triangularis with other brain areas. The analyses showed significant interhemispheric connectivity in young children, with a minimal connectivity of the left pars triangularis to subcortical and cerebellar regions. In contrast, adolescents showed significant connectivity between the left IFG seed and left perisylvian cortex, left caudate and putamen, and regions of the right cerebellum. Importantly, fcMRI analyses indicated significant differences between groups at 3 anatomical clusters, including left IFG, left supramarginal gyrus, and right cerebellar crura, suggesting a role in the functional development of language.
Collapse
Affiliation(s)
- Vahab Youssofzadeh
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Jennifer Vannest
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,College of Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Darren S Kadis
- Pediatric Neuroimaging Research Consortium (PNRC), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,College of Medicine, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
41
|
Pergola G, Trizio S, Di Carlo P, Taurisano P, Mancini M, Amoroso N, Nettis MA, Andriola I, Caforio G, Popolizio T, Rampino A, Di Giorgio A, Bertolino A, Blasi G. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophr Res 2017; 180:13-20. [PMID: 27449252 DOI: 10.1016/j.schres.2016.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
Previous evidence suggests reduced thalamic grey matter volume (GMV) in patients with schizophrenia (SCZ). However, it is not considered an intermediate phenotype for schizophrenia, possibly because previous studies did not assess the contribution of individual thalamic nuclei and employed univariate statistics. Here, we hypothesized that multivariate statistics would reveal an association of GMV in different thalamic nuclei with familial risk for schizophrenia. We also hypothesized that accounting for the heterogeneity of thalamic GMV in healthy controls would improve the detection of subjects at familial risk for the disorder. We acquired MRI scans for 96 clinically stable SCZ, 55 non-affected siblings of patients with schizophrenia (SIB), and 249 HC. The thalamus was parceled into seven regions of interest (ROIs). After a canonical univariate analysis, we used GMV estimates of thalamic ROIs, together with total thalamic GMV and premorbid intelligence, as features in Random Forests to classify HC, SIB, and SCZ. Then, we computed a Misclassification Index for each individual and tested the improvement in SIB detection after excluding a subsample of HC misclassified as patients. Random Forests discriminated SCZ from HC (accuracy=81%) and SIB from HC (accuracy=75%). Left anteromedial thalamic volumes were significantly associated with both multivariate classifications (p<0.05). Excluding HC misclassified as SCZ improved greatly HC vs. SIB classification (Cohen's d=1.39). These findings suggest that multivariate statistics identify a familial background associated with thalamic GMV reduction in SCZ. They also suggest the relevance of inter-individual variability of GMV patterns for the discrimination of individuals at familial risk for the disorder.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Silvestro Trizio
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Pasquale Di Carlo
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marina Mancini
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Nicola Amoroso
- National Institute of Nuclear of Physics-Branch of Bari, Via E. Orabona 4, 70125 Bari, Italy; Interuniversity Department of Physics 'M. Merlin', University of Bari 'Aldo Moro', Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Antonietta Nettis
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Ileana Andriola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Grazia Caforio
- Psychiatry Unit, Bari University Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Teresa Popolizio
- IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini, 1, I-71013 San Giovanni Rotondo, Italy
| | - Antonio Rampino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit, Bari University Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Annabella Di Giorgio
- IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini, 1, I-71013 San Giovanni Rotondo, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari 'Aldo Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit, Bari University Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giuseppe Blasi
- Psychiatry Unit, Bari University Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy; IRCCS "Casa Sollievo della Sofferenza", Viale Cappuccini, 1, I-71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
42
|
Jung NY, Han CE, Kim HJ, Yoo SW, Kim HJ, Kim EJ, Na DL, Lockhart SN, Jagust WJ, Seong JK, Seo SW. Tract-Specific Correlates of Neuropsychological Deficits in Patients with Subcortical Vascular Cognitive Impairment. J Alzheimers Dis 2016; 50:1125-35. [PMID: 26836179 DOI: 10.3233/jad-150841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The white matter tract-specific correlates of neuropsychological deficits are not fully established in patients with subcortical vascular cognitive impairment (SVCI), where white matter tract damage may be a critical factor in cognitive impairment. The purpose of this study is to investigate the tract-specific correlates of neuropsychological deficits in SVCI patients using tract-specific statistical analysis (TSSA). We prospectively recruited 114 SVCI patients, and 55 age-, gender-, and education-matched individuals with normal cognition (NC). All participants underwent diffusion weighted imaging and neuropsychological testing. We classified tractography results into fourteen major fiber tracts and analyzed group comparison and correlation with cognitive impairments. Relative to NC subjects, SVCI patients showed decreased fractional anisotropy values in bilateral anterior-thalamic radiation, cingulum, superior-longitudinal fasciculus, uncinate fasciculus, corticospinal tract, and left inferior-longitudinal fasciculus. Focal disruptions in specific tracts were associated with specific cognitive impairments. Our findings suggest that disconnection of specific white matter tracts, especially those neighboring and providing connections between gray matter regions important to certain cognitive functions, may contribute to specific cognitive impairments in SVCI.
Collapse
Affiliation(s)
- Na-Yeon Jung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Cheol E Han
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Wook Yoo
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Hee-Jong Kim
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Samuel N Lockhart
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Carrabba G, Bertani G, Cogiamanian F, Ardolino G, Zarino B, Di Cristofori A, Locatelli M, Caroli M, Rampini P. Role of Intraoperative Neurophysiologic Monitoring in the Resection of Thalamic Astrocytomas. World Neurosurg 2016; 94:50-56. [DOI: 10.1016/j.wneu.2016.06.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
|
44
|
Lambert C, Simon H, Colman J, Barrick TR. Defining thalamic nuclei and topographic connectivity gradients in vivo. Neuroimage 2016; 158:466-479. [PMID: 27639355 DOI: 10.1016/j.neuroimage.2016.08.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022] Open
Abstract
The thalamus consists of multiple nuclei that have been previously defined by their chemoarchitectual and cytoarchitectual properties ex vivo. These form discrete, functionally specialized, territories with topographically arranged graduated patterns of connectivity. However, previous in vivo thalamic parcellation with MRI has been hindered by substantial inter-individual variability or discrepancies between MRI derived segmentations and histological sections. Here, we use the Euclidean distance to characterize probabilistic tractography distributions derived from diffusion MRI. We generate 12 feature maps by performing voxel-wise parameterization of the distance histograms (6 feature maps) and the distribution of three-dimensional distance transition gradients generated by applying a Sobel kernel to the distance metrics. We use these 12 feature maps to delineate individual thalamic nuclei, then extract the tractography profiles for each and calculate the voxel-wise tractography gradients. Within each thalamic nucleus, the tractography gradients were topographically arranged as distinct non-overlapping cortical networks with transitory overlapping mid-zones. This work significantly advances quantitative segmentation of the thalamus in vivo using 3T MRI. At an individual subject level, the thalamic segmentations consistently achieve a close relationship with a priori histological atlas information, and resolve in vivo topographic gradients within each thalamic nucleus for the first time. Additionally, these techniques allow individual thalamic nuclei to be closely aligned across large populations and generate measures of inter-individual variability that can be used to study both basic function and pathological processes in vivo.
Collapse
Affiliation(s)
- Christian Lambert
- Neurosciences Research Centre, Cardiac and Cell Sciences Research Institute, St George's University of London, United Kingdom.
| | - Henry Simon
- Neurosciences Research Centre, Cardiac and Cell Sciences Research Institute, St George's University of London, United Kingdom
| | - Jordan Colman
- Neurosciences Research Centre, Cardiac and Cell Sciences Research Institute, St George's University of London, United Kingdom
| | - Thomas R Barrick
- Neurosciences Research Centre, Cardiac and Cell Sciences Research Institute, St George's University of London, United Kingdom
| |
Collapse
|
45
|
Konopka G, Roberts TF. Insights into the Neural and Genetic Basis of Vocal Communication. Cell 2016; 164:1269-1276. [PMID: 26967292 DOI: 10.1016/j.cell.2016.02.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/11/2022]
Abstract
The use of vocalizations to communicate information and elaborate social bonds is an adaptation seen in many vertebrate species. Human speech is an extreme version of this pervasive form of communication. Unlike the vocalizations exhibited by the majority of land vertebrates, speech is a learned behavior requiring early sensory exposure and auditory feedback for its development and maintenance. Studies in humans and a small number of other species have provided insights into the neural and genetic basis for learned vocal communication and are helping to delineate the roles of brain circuits across the cortex, basal ganglia, and cerebellum in generating vocal behaviors. This Review provides an outline of the current knowledge about these circuits and the genes implicated in vocal communication, as well as a perspective on future research directions in this field.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
46
|
Barbas H, García-Cabezas MÁ. How the prefrontal executive got its stripes. Curr Opin Neurobiol 2016; 40:125-134. [PMID: 27479655 DOI: 10.1016/j.conb.2016.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
Pathways from cortical and subcortical structures give the prefrontal cortex a panoramic view of the sensory environment and the internal milieu of motives and drives. The prefrontal cortex also receives privileged information from the output of the basal ganglia and cerebellum and innervates widely the inhibitory thalamic reticular nucleus that gates thalamo-cortical communication. Connections, in general, are strongly related to the systematic structural variation of the cortex that can be traced to development. Insights from development have profound implications for the special connections of the prefrontal cortex for executive control, learning and memory, and vulnerability in psychiatric and neurologic diseases.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory (www.bu.edu/neural), Dept. of Health Sciences, Boston University, Boston, MA, USA; Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
47
|
Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice. Proc Natl Acad Sci U S A 2016; 113:E4885-94. [PMID: 27469163 DOI: 10.1073/pnas.1604135113] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human neocortical 15-29-Hz beta oscillations are strong predictors of perceptual and motor performance. However, the mechanistic origin of beta in vivo is unknown, hindering understanding of its functional role. Combining human magnetoencephalography (MEG), computational modeling, and laminar recordings in animals, we present a new theory that accounts for the origin of spontaneous neocortical beta. In our MEG data, spontaneous beta activity from somatosensory and frontal cortex emerged as noncontinuous beta events typically lasting <150 ms with a stereotypical waveform. Computational modeling uniquely designed to infer the electrical currents underlying these signals showed that beta events could emerge from the integration of nearly synchronous bursts of excitatory synaptic drive targeting proximal and distal dendrites of pyramidal neurons, where the defining feature of a beta event was a strong distal drive that lasted one beta period (∼50 ms). This beta mechanism rigorously accounted for the beta event profiles; several other mechanisms did not. The spatial location of synaptic drive in the model to supragranular and infragranular layers was critical to the emergence of beta events and led to the prediction that beta events should be associated with a specific laminar current profile. Laminar recordings in somatosensory neocortex from anesthetized mice and awake monkeys supported these predictions, suggesting this beta mechanism is conserved across species and recording modalities. These findings make several predictions about optimal states for perceptual and motor performance and guide causal interventions to modulate beta for optimal function.
Collapse
|
48
|
Affiliation(s)
- Vanja Kljajević
- Vanja Kljajević, University of the Basque Country, Vitoria and IKERBASQUE, Basque Foundation for Science, Bilbao, Spain,
| |
Collapse
|
49
|
Beck Lidén C, Krüger O, Schwarz L, Erb M, Kardatzki B, Scheffler K, Ethofer T. Neurobiology of knowledge and misperception of lyrics. Neuroimage 2016; 134:12-21. [PMID: 27085504 DOI: 10.1016/j.neuroimage.2016.03.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022] Open
Abstract
We conducted two functional magnetic resonance imaging (fMRI) experiments to investigate the neural underpinnings of knowledge and misperception of lyrics. In fMRI experiment 1, a linear relationship between familiarity with lyrics and activation was found in left-hemispheric speech-related as well as bilateral striatal areas which is in line with previous research on generation of lyrics. In fMRI experiment 2, we employed so called Mondegreens and Soramimi to induce misperceptions of lyrics revealing a bilateral network including middle temporal and inferior frontal areas as well as anterior cingulate cortex (ACC) and mediodorsal thalamus. ACC activation also correlated with the extent to which misperceptions were judged as amusing corroborating previous neuroimaging results on the role of this area in mediating the pleasant experience of chills during music perception. Finally, we examined the areas engaged during misperception of lyrics using diffusion-weighted imaging (DWI) to determine their structural connectivity. These combined fMRI/DWI results could serve as a neurobiological model for future studies on other types of misunderstanding which are events with potentially strong impact on our social life.
Collapse
Affiliation(s)
- Claudia Beck Lidén
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany
| | - Oliver Krüger
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany
| | - Lena Schwarz
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany; University Clinic for Psychiatry and Psychotherapy, University of Tübingen, Calwer Str. 14, 72076 Tübingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany
| | - Bernd Kardatzki
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Speemannstraße 38-40, 72076 Tübingen, Germany
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Str. 51, 72076 Tübingen, Germany; University Clinic for Psychiatry and Psychotherapy, University of Tübingen, Calwer Str. 14, 72076 Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Speemannstraße 38-40, 72076 Tübingen, Germany
| |
Collapse
|
50
|
Hertrich I, Dietrich S, Ackermann H. The role of the supplementary motor area for speech and language processing. Neurosci Biobehav Rev 2016; 68:602-610. [PMID: 27343998 DOI: 10.1016/j.neubiorev.2016.06.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Susanne Dietrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|