1
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2024:10.1007/s00204-024-03889-x. [PMID: 39443317 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Tamir TY, Chaudhary S, Li AX, Trojan SE, Flower CT, Vo P, Cui Y, Davis JC, Mukkamala RS, Venditti FN, Hillis AL, Toker A, Vander Heiden MG, Spinelli JB, Kennedy NJ, Davis RJ, White FM. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-specific metabolic reprogramming in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609894. [PMID: 39257804 PMCID: PMC11383994 DOI: 10.1101/2024.08.28.609894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Coordination of adaptive metabolism through cellular signaling networks and metabolic response is essential for balanced flow of energy and homeostasis. Post-translational modifications such as phosphorylation offer a rapid, efficient, and dynamic mechanism to regulate metabolic networks. Although numerous phosphorylation sites have been identified on metabolic enzymes, much remains unknown about their contribution to enzyme function and systemic metabolism. In this study, we stratify phosphorylation sites on metabolic enzymes based on their location with respect to functional and dimerization domains. Our analysis reveals that the majority of published phosphosites are on oxidoreductases, with particular enrichment of phosphotyrosine (pY) sites in proximity to binding domains for substrates, cofactors, active sites, or dimer interfaces. We identify phosphosites altered in obesity using a high fat diet (HFD) induced obesity model coupled to multiomics, and interrogate the functional impact of pY on hepatic metabolism. HFD induced dysregulation of redox homeostasis and reductive metabolism at the phosphoproteome and metabolome level in a sex-specific manner, which was reversed by supplementing with the antioxidant butylated hydroxyanisole (BHA). Partial least squares regression (PLSR) analysis identified pY sites that predict HFD or BHA induced changes of redox metabolites. We characterize predictive pY sites on glutathione S-transferase pi 1 (GSTP1), isocitrate dehydrogenase 1 (IDH1), and uridine monophosphate synthase (UMPS) using CRISPRi-rescue and stable isotope tracing. Our analysis revealed that sites on GSTP1 and UMPS inhibit enzyme activity while the pY site on IDH1 induces activity to promote reductive carboxylation. Overall, our approach provides insight into the convergence points where cellular signaling fine-tunes metabolism.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shreya Chaudhary
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annie X Li
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sonia E Trojan
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cameron T Flower
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paula Vo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yufei Cui
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey C Davis
- Koch Institute for Integrative Cancer Research
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachit S Mukkamala
- Koch Institute for Integrative Cancer Research
- Department of Biological Engineering
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francesca N Venditti
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alissandra L Hillis
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research
- Center for Precision Cancer Medicine
- Department of Biological Engineering
- Program in Computational and Systems Biology
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Atallah E, Trehiou S, Alquier-Bacquie V, Lasserre F, Arroyo J, Molette C, Remignon H. Development of hepatic steatosis in male and female mule ducks after respective force-feeding programs. Front Physiol 2024; 15:1392968. [PMID: 38974520 PMCID: PMC11224645 DOI: 10.3389/fphys.2024.1392968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/24/2024] [Indexed: 07/09/2024] Open
Abstract
Male and female mule ducks were subjected to a force-feeding diet to induce liver steatosis as it is generally done only with male ducks for the production of foie gras. The different biochemical measurements indicated that the course of hepatic steatosis development was present in both sexes and associated with a huge increase in liver weight mainly due to the synthesis and accumulation of lipids in hepatocytes. In livers of male and female ducks, this lipid accumulation was associated with oxidative stress and hypoxia. However, certain specific modifications (kinetics of lipid droplet development and hepatic inflammation) indicate that female ducks may tolerate force-feeding less well, at least at the hepatic level. This is in contradiction with what is generally reported concerning hepatic steatosis induced by dietary disturbances in mammals but could be explained by the very specific conditions imposed by force-feeding. Despite this, force-feeding female ducks seems entirely feasible, provided that the final quality of the product is as good as that of the male ducks, which will remain to be demonstrated in future studies.
Collapse
Affiliation(s)
- Elham Atallah
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Sabrina Trehiou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Valérie Alquier-Bacquie
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
| | | | | | - Hervé Remignon
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, UPS, Université de Toulouse, Toulouse, France
- INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
4
|
Souza-Tavares H, Santana-Oliveira DA, Vasques-Monteiro IML, Silva-Veiga FM, Mandarim-de-Lacerda CA, Souza-Mello V. Exercise enhances hepatic mitochondrial structure and function while preventing endoplasmic reticulum stress and metabolic dysfunction-associated steatotic liver disease in mice fed a high-fat diet. Nutr Res 2024; 126:180-192. [PMID: 38759501 DOI: 10.1016/j.nutres.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has attracted increasing attention from the scientific community because of its severe but silent progression and the lack of specific treatment. Glucolipotoxicity triggers endoplasmic reticulum (ER) stress with decreased beta-oxidation and enhanced lipogenesis, promoting the onset of MASLD, whereas regular physical exercise can prevent MASLD by preserving ER and mitochondrial function. Thus, the hypothesis of this study was that high-intensity interval training (HIIT) could prevent the development of MASLD in high-fat (HF)-fed C57BL/6J mice by maintaining insulin sensitivity, preventing ER stress, and promoting beta-oxidation. Forty male C57BL/6J mice (3 months old) comprised 4 experimental groups: the control (C) diet group, the C diet + HIIT (C-HIIT) group, the HF diet group, and the HF diet + HIIT (HF-HIIT) group. HIIT sessions lasted 12 minutes and were performed 3 times weekly by trained mice. The diet and exercise protocols lasted for 10 weeks. The HIIT protocol prevented weight gain and maintained insulin sensitivity in the HF-HIIT group. A chronic HF diet increased ER stress-related gene and protein expression, but HIIT helped to maintain ER homeostasis, preserve mitochondrial ultrastructure, and maximize beta-oxidation. The increased sirtuin-1/peroxisome proliferator-activated receptor-gamma coactivator 1-alpha expression implies that HIIT enhanced mitochondrial biogenesis and yielded adequate mitochondrial dynamics. High hepatic fibronectin type III domain containing 5/irisin agreed with the antilipogenic and anti-inflammatory effects observed in the HF-HIIT group, reinforcing the antisteatotic effects of HIIT. Thus, we confirmed that practicing HIIT 3 times per week maintained insulin sensitivity, prevented ER stress, and enhanced hepatic beta-oxidation, impeding MASLD development in this mouse model even when consuming high energy intake from saturated fatty acids.
Collapse
Affiliation(s)
- Henrique Souza-Tavares
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Pontifex MG, Vauzour D, Muller M. Sexual dimorphism in the context of nutrition and health. Proc Nutr Soc 2024; 83:109-119. [PMID: 37665115 DOI: 10.1017/s0029665123003610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Diets and dietary constituents that we consume have a considerable impact on disease risk. Intriguingly these effects may be modulated to some extent by sex. Lack of female representation in nutritional studies as well as a lack of stratification by sex has and continues to limit our understanding of these sex × diet interactions. Here we provide an overview of the current and available literature describing how exposure to certain dietary patterns (Western-style diet, Mediterranean diet, vegetarian/vegan, ketogenic diet) and dietary constituents (dietary fibre, PUFA and plant bioactive) influences disease risk in a sex-specific manner. Interestingly, these sex differences appear to be highly disease-specific. The identification of such sex differences in response to diet stresses the importance of sex stratification in nutritional research.
Collapse
Affiliation(s)
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Michael Muller
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
6
|
Tseng YC, Fu LC, Chong HC, Tang ST, Yang SC, Huang WC, Yang YCS, Chen YL. Consumption of a Taiwanese cafeteria diet induces metabolic disorders and fecal flora changes in obese rats. Nutrition 2024; 117:112230. [PMID: 37897986 DOI: 10.1016/j.nut.2023.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/30/2023]
Abstract
OBJECTIVES Among diet-induced obesity animal models, the cafeteria diet, which contains human junk food and processed foods, is a popular experimental animal diets in Western countries. Consumption of a cafeteria diet can lead to the development of obesity and non-alcoholic liver disease in as soon as 2 mo, which more accurately reflects human eating patterns. The aim of this study was to establish a Taiwanese cafeteria diet and compare it with a traditional lard-based, 60% high-fat diet in a 12-wk animal model. METHODS Six-wk-old male Wistar rats were assigned to the following three groups: control diet (C; LabDiet 5001); high-fat diet (HFD; 60% HFD); and the Taiwanese cafeteria diet (CAF). RESULTS At the end of the study, weight gain and steatosis were observed in the HF and CAF groups. Compared with the HFD group, rats in the CAF group showed significantly higher plasma triacylglycerol concentrations and insulin resistance, which may have been correlated with increased inflammatory responses. Significantly lower hepatic sterol regulatory element-binding protein-1c and insulin receptor substrate-1 protein expressions were observed in the CAF group compared with the HFD group. Additionally, disruption of the microbiotic composition followed by increased obesity-related bacteria was observed in the CAF group. CONCLUSIONS The present study confirmed that the Taiwanese cafeteria diet-induced rat model provided a potential platform for investigating obesity-related diseases.
Collapse
Affiliation(s)
- Yu-Chieh Tseng
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Lu-Chi Fu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ho-Ching Chong
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shu-Ting Tang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taiwan
| | - Yu-Chen Sh Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
8
|
Juszczak F, Pierre L, Decarnoncle M, Jadot I, Martin B, Botton O, Caron N, Dehairs J, Swinnen JV, Declèves AE. Sex differences in obesity-induced renal lipid accumulation revealed by lipidomics: a role of adiponectin/AMPK axis. Biol Sex Differ 2023; 14:63. [PMID: 37770988 PMCID: PMC10537536 DOI: 10.1186/s13293-023-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Sex differences have been observed in the development of obesity-related complications in patients, as well as in animal models. Accumulating evidence suggests that sex-dependent regulation of lipid metabolism contributes to sex-specific physiopathology. Lipid accumulation in the renal tissue has been shown to play a major role in the pathogenesis of obesity-induced kidney injury. Unlike in males, the physiopathology of the disease has been poorly described in females, particularly regarding the lipid metabolism adaptation. METHODS Here, we compared the lipid profile changes in the kidneys of female and male mice fed a high-fat diet (HFD) or low-fat diet (LFD) by lipidomics and correlated them with pathophysiological changes. RESULTS We showed that HFD-fed female mice were protected from insulin resistance and hepatic steatosis compared to males, despite similar body weight gains. Females were particularly protected from renal dysfunction, oxidative stress, and tubular lipid accumulation. Both HFD-fed male and female mice presented dyslipidemia, but lipidomic analysis highlighted differential renal lipid profiles. While both sexes presented similar neutral lipid accumulation with obesity, only males showed increased levels of ceramides and phospholipids. Remarkably, protection against renal lipotoxicity in females was associated with enhanced renal adiponectin and AMP-activated protein kinase (AMPK) signaling. Circulating adiponectin and its renal receptor levels were significantly lower in obese males, but were maintained in females. This observation correlated with the maintained basal AMPK activity in obese female mice compared to males. CONCLUSIONS Collectively, our findings suggest that female mice are protected from obesity-induced renal dysfunction and lipotoxicity associated with enhanced adiponectin and AMPK signaling compared to males.
Collapse
Affiliation(s)
- Florian Juszczak
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium.
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium.
| | - Louise Pierre
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Morgane Decarnoncle
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Inès Jadot
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Blanche Martin
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Olivia Botton
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
9
|
Araújo de Vasconcelos MH, Tavares RL, Dutra MLDV, Batista KS, D'Oliveira AB, Pinheiro RO, Pereira RDA, Lima MDS, Salvadori MGDSS, de Souza EL, Magnani M, Alves AF, Aquino JDS. Extra virgin coconut oil ( Cocos nucifera L.) intake shows neurobehavioural and intestinal health effects in obesity-induced rats. Food Funct 2023. [PMID: 37318515 DOI: 10.1039/d3fo00850a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study aimed to evaluate the effect of E-VCO on the neurobehaviour and intestinal health parameters of obesity-induced rats, focusing on food consumption, body composition, bacterial and faecal organic acids and histological analyses in the hippocampus and colon. A total of 32 male Wistar rats were randomized into healthy (HG, n = 16) and obese groups (OG, n = 16), which consumed a control or cafeteria diet for eight weeks, respectively. After this period, they were subdivided into four groups: healthy (HG, n = 8); healthy treated with E-VCO (HGCO, n = 8); obese (OG, n = 8); obese treated with E-VCO (OGCO, n = 8), continuing for another eight weeks with their respective diets. The treated groups received 3000 mg kg-1 of E-VCO and control groups received water via gavage. Food preference, body weight gain, body composition, anxiety- and depression-like behaviour were evaluated. Bacteria and organic acids were evaluated in faeces, and histological analyses of the hippocampus and M1 and M2 macrophages in the colon were performed. E-VCO reduced energy intake (16.68%) and body weight gain (16%), although it did not reduce the fat mass of obese rats. E-VCO showed an antidepressant effect, increased lactic acid bacteria counts and modulated organic acids in obese rats. Furthermore, E-VCO protected the hippocampus from neuronal degeneration caused by the obesogenic diet, decreased the M1 macrophage and increased the M2 macrophage population in the gut. The results suggest neurobehavioural modulation and improved gut health by E-VCO, with promising effects against obesity-related comorbidities.
Collapse
Affiliation(s)
- Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Renata Leite Tavares
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Maria Letícia da Veiga Dutra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Aline Barbosa D'Oliveira
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
| | - Rafael Oliveira Pinheiro
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Ramon de Alencar Pereira
- Laboratory of Leishmaniasis Pathology, Department of Pathology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Dos Santos Lima
- Laboratory of Food and Beverage Analysis, Department of Food Technology, Institute Federal of Sertão Pernambucano (IF-Sertão PE), Petrolina, Pernambuco, Brazil
| | | | - Evandro Leite de Souza
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
- Laboratory of Food Microbiology and Biochemistry, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Marciane Magnani
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
- Laboratory of Microbial Processes in Food, Department of Food Engineering, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| |
Collapse
|
10
|
Malachowska B, Yang WL, Qualman A, Muro I, Boe DM, Lampe JN, Kovacs EJ, Idrovo JP. Transcriptomics, metabolomics, and in-silico drug predictions for liver damage in young and aged burn victims. Commun Biol 2023; 6:597. [PMID: 37268765 DOI: 10.1038/s42003-023-04964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Burn induces a systemic response affecting multiple organs, including the liver. Since the liver plays a critical role in metabolic, inflammatory, and immune events, a patient with impaired liver often exhibits poor outcomes. The mortality rate after burns in the elderly population is higher than in any other age group, and studies show that the liver of aged animals is more susceptible to injury after burns. Understanding the aged-specific liver response to burns is fundamental to improving health care. Furthermore, no liver-specific therapy exists to treat burn-induced liver damage highlighting a critical gap in burn injury therapeutics. In this study, we analyzed transcriptomics and metabolomics data from the liver of young and aged mice to identify mechanistic pathways and in-silico predict therapeutic targets to prevent or reverse burn-induced liver damage. Our study highlights pathway interactions and master regulators that underlie the differential liver response to burn injury in young and aged animals.
Collapse
Affiliation(s)
- Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andrea Qualman
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Israel Muro
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Devin M Boe
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
- Molecular Biology Program, University of Colorado, Aurora, CO, 80045, USA
| | - Juan-Pablo Idrovo
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Son Y, Shockey J, Dowd MK, Shieh JG, Cooper JA, Paton CM. A cottonseed oil-enriched diet improves liver and plasma lipid levels in a male mouse model of fatty liver. Am J Physiol Regul Integr Comp Physiol 2023; 324:R171-R182. [PMID: 36503254 DOI: 10.1152/ajpregu.00052.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A high-fat (HF) diet causes fatty liver, hyperlipidemia, and hypercholesterolemia, and cottonseed oil (CSO) has been shown to improve liver and plasma lipids in human and mouse models. The purpose of this study was to determine the effect of CSO vs. olive oil (OO)-enriched diets on lipid levels in a HF-diet model of fatty liver disease. We placed mice on a HF diet to induce obesity and fatty liver, after which mice were placed on CSO or OO diets, with chow and HF (5.1 kcal/g) groups as control. When CSO- and OO-fed mice were given isocaloric diets with the HF group, there were no differences in body weight, plasma, or hepatic lipids. However, when the CSO and OO diets were reduced in calories (4.0 kcal/g), CSO and OO groups reduced body weight. The CSO group had lower plasma total cholesterol (-56 ± 6%, P < 0.01), free cholesterol (-53 ± 7%, P < 0.01), triglycerides (-61 ± 14%, P < 0.01), and LDL (-42 ± 16%, P = 0.01) vs. HF group whereas the OO diet lowered LDL (-18 ± 12%, P = 0.05) vs. HF. Furthermore, the CSO diet decreased hepatic total cholesterol (-40 ± 12%, P < 0.01), free cholesterol (-23 ± 11%, P = 0.04), and triglycerides (-47 ± 12%, P = 0.02). There were no significant changes in lipogenesis and fatty acid oxidation among the groups. However, the CSO group increased lipid oxidative gene expression in liver and dihydrosterculic acid increased PPARα target genes with in vitro models. Taken together, consuming a reduced calorie diet enriched in CSO reduces liver and plasma lipid profiles in an obese model of fatty liver.
Collapse
Affiliation(s)
- Yura Son
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana
| | - Michael K Dowd
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana
| | - Josephine G Shieh
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Jamie A Cooper
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Chad M Paton
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia.,Department of Food Science & Technology, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| |
Collapse
|
12
|
Dungubat E, Kusano H, Mori I, Tawara H, Sutoh M, Ohkura N, Takanashi M, Kuroda M, Harada N, Udo E, Souda M, Furusato B, Fukusato T, Takahashi Y. Age-dependent sex difference of non-alcoholic fatty liver disease in TSOD and db/db mice. PLoS One 2022; 17:e0278580. [PMID: 36516179 PMCID: PMC9750023 DOI: 10.1371/journal.pone.0278580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
According to previous clinical studies, the prevalence of non-alcoholic fatty liver disease (NAFLD) is higher in men than women only during the reproductive age. Animal models of NAFLD that reflect sex differences in humans have not been established. In this study, we examined sex differences in the hepatic lesions of Tsumura Suzuki obese diabetes (TSOD) and db/db mice, which are representative genetic models of NAFLD. Male and female TSOD and db/db mice were fed with a normal diet and tap water ad libitum. Six male and female mice of each strain were sacrificed at the ages of 3 and 9 months, respectively, and serum biochemical, pathological, and molecular analyses were performed. Serum aspartate aminotransferase (AST) levels were significantly higher in male than female mice of both strains at the age of 3 months; however, at 9 months, significant sex differences were not observed. Similarly, alanine aminotransferase (ALT) levels were significantly higher in male mice than in female TSOD mice at the age of 3 months; however, at 9 months, significant sex differences were not observed. Image analysis of histological slides revealed that the frequency of the steatotic area was significantly higher in male than female db/db mice at the age of 3 months; however, significant sex differences were not observed at 9 months. The frequency of Sirius red-positive fibrotic area was significantly higher in male than female mice in both strains at the age of 3 months; however, significant sex differences were not observed at 9 months. Serum AST and ALT levels and hepatic steatosis and fibrosis in TSOD and db/db mice showed age-dependent sex differences consistent with those observed in human NAFLD. These mice may be suitable for studying sex differences of the disease.
Collapse
Affiliation(s)
- Erdenetsogt Dungubat
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Japan,Department of Pathology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Hiroyuki Kusano
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Ichiro Mori
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | | | - Mitsuko Sutoh
- Institute for Animal Reproduction, Kasumigaura, Japan
| | - Naoki Ohkura
- Faculty of Pharma Sciences, Laboratory of Host Defence, Teikyo University, Tokyo, Japan
| | | | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Naoki Harada
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Emiko Udo
- Clinical Genomics Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Masakazu Souda
- Clinical Genomics Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Bungo Furusato
- Clinical Genomics Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Toshio Fukusato
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan
| | - Yoshihisa Takahashi
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Japan,* E-mail:
| |
Collapse
|
13
|
Critical Role of Maternal Selenium Nutrition in Neurodevelopment: Effects on Offspring Behavior and Neuroinflammatory Profile. Nutrients 2022; 14:nu14091850. [PMID: 35565817 PMCID: PMC9104078 DOI: 10.3390/nu14091850] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Research in both animals and humans shows that some nutrients are important in pregnancy and during the first years of life to support brain and cognitive development. Our aim was to evaluate the role of selenium (Se) in supporting brain and behavioral plasticity and maturation. Pregnant and lactating female rats and their offspring up to postnatal day 40 were fed isocaloric diets differing in Se content—i.e., optimal, sub-optimal, and deficient—and neurodevelopmental, neuroinflammatory, and anti-oxidant markers were analyzed. We observed early adverse behavioral changes in juvenile rats only in sub-optimal offspring. In addition, sub-optimal, more than deficient supply, reduced basal glial reactivity in sex dimorphic and brain-area specific fashion. In female offspring, deficient and sub-optimal diets reduced the antioxidant Glutathione peroxidase (GPx) activity in the cortex and in the liver, the latter being the key organ regulating Se metabolism and homeostasis. The finding that the Se sub-optimal was more detrimental than Se deficient diet may suggest that maternal Se deficient diet, leading to a lower Se supply at earlier stages of fetal development, stimulated homeostatic mechanisms in the offspring that were not initiated by sub-optimal Se. Our observations demonstrate that even moderate Se deficiency during early life negatively may affect, in a sex-specific manner, optimal brain development.
Collapse
|
14
|
Chi Y, Youn DY, Xiaoli AM, Liu L, Qiu Y, Kurland IJ, Pessin JB, Yang F, Pessin JE. Comparative impact of dietary carbohydrates on the liver transcriptome in two strains of mice. Physiol Genomics 2021; 53:456-472. [PMID: 34643091 PMCID: PMC8616594 DOI: 10.1152/physiolgenomics.00053.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Excessive long-term consumption of dietary carbohydrates, including glucose, sucrose, or fructose, has been shown to have significant impact on genome-wide gene expression, which likely results from changes in metabolic substrate flux. However, there has been no comprehensive study on the acute effects of individual sugars on the genome-wide gene expression that may reveal the genetic changes altering signaling pathways, subsequent metabolic processes, and ultimately physiological/pathological responses. Considering that gene expressions in response to acute carbohydrate ingestion might be different in nutrient sensitive and insensitive mammals, we conducted comparative studies of genome-wide gene expression by deep mRNA sequencing of the liver in nutrient sensitive C57BL/6J and nutrient insensitive BALB/cJ mice. Furthermore, to determine the temporal responses, we compared livers from mice in the fasted state and following ingestion of standard laboratory mouse chow supplemented with plain drinking water or water containing 20% glucose, sucrose, or fructose. Supplementation with these carbohydrates induced unique extents and temporal changes in gene expressions in a strain specific manner. Fructose and sucrose stimulated gene changes peaked at 3 h postprandial, whereas glucose effects peaked at 12 h and 6 h postprandial in C57BL/6J and BABL/cJ mice, respectively. Network analyses revealed that fructose changed genes were primarily involved in lipid metabolism and were more complex in C57BL/6J than in BALB/cJ mice. These data demonstrate that there are qualitative and antitative differences in the normal physiological responses of the liver between these two strains of mice and C57BL/6J is more sensitive to sugar intake than BALB/cJ.
Collapse
Affiliation(s)
- Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| | - Dou Yeon Youn
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| | - Alus M Xiaoli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Li Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| | - Yunping Qiu
- Einstein Stable Isotope and Metabolomics Core, Albert Einstein College of Medicine, Bronx, New York
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Einstein Stable Isotope and Metabolomics Core, Albert Einstein College of Medicine, Bronx, New York
| | - Jacob B Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Fajun Yang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- The Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
15
|
Makarova E, Kazantseva A, Dubinina A, Jakovleva T, Balybina N, Baranov K, Bazhan N. The Same Metabolic Response to FGF21 Administration in Male and Female Obese Mice Is Accompanied by Sex-Specific Changes in Adipose Tissue Gene Expression. Int J Mol Sci 2021; 22:10561. [PMID: 34638898 PMCID: PMC8508620 DOI: 10.3390/ijms221910561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023] Open
Abstract
The preference for high-calorie foods depends on sex and contributes to obesity development. Fibroblast growth factor 21 (FGF21) beneficially affects taste preferences and obesity, but its action has mainly been studied in males. The aim of this study was to compare the effects of FGF21 on food preferences and glucose and lipid metabolism in C57Bl/6J male and female mice with diet-induced obesity. Mice were injected with FGF21 or vehicle for 7 days. Body weight, choice between standard (SD) and high-fat (HFD) diets, blood parameters, and gene expression in white (WAT) and brown (BAT) adipose tissues, liver, muscles, and the hypothalamus were assessed. Compared to males, females had a greater preference for HFD; less WAT; lower levels of cholesterol, glucose, and insulin; and higher expression of Fgf21, Insr, Ppara, Pgc1, Acca and Accb in the liver and Dio2 in BAT. FGF21 administration decreased adiposity; blood levels of cholesterol, glucose, and insulin; hypothalamic Agrp expression, increased SD intake, decreased HFD intake independently of sex, and increased WAT expression of Pparg, Lpl and Lipe only in females. Thus, FGF21 administration beneficially affected mice of both sexes despite obesity-associated sex differences in metabolic characteristics, and it induced female-specific activation of gene expression in WAT.
Collapse
Affiliation(s)
- Elena Makarova
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Antonina Kazantseva
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Anastasia Dubinina
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Tatiana Jakovleva
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Natalia Balybina
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Konstantin Baranov
- The Institute of Molecular and Cellular Biology, 630090 Novosibirsk, Russia;
| | - Nadezhda Bazhan
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| |
Collapse
|
16
|
Mothers' cafeteria diet induced sex-specific changes in fat content, metabolic profiles, and inflammation outcomes in rat offspring. Sci Rep 2021; 11:18573. [PMID: 34535697 PMCID: PMC8448886 DOI: 10.1038/s41598-021-97487-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
“Western diet” containing high concentrations of sugar and fat consumed during pregnancy contributes to development of obesity and diabetes type 2 in offspring. To mimic effects of this diet in animals, a cafeteria (CAF) diet is used. We hypothesized that CAF diet given to rats before, and during pregnancy and lactation differently influences fat content, metabolic and inflammation profiles in offspring. Females were exposed to CAF or control diets before pregnancy, during pregnancy and lactation. At postnatal day 25 (PND 25), body composition, fat contents were measured, and blood was collected for assessment of metabolic and inflammation profiles. We have found that CAF diet lead to sex-specific alterations in offspring. At PND25, CAF offspring had: (1) higher percentage of fat content, and were lighter; (2) sex-specific differences in levels of glucose; (3) higher levels of interleukin 6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor (TNF-α); (4) sex-specific differences in concentration of IL-6 and TNF-α, with an increase in CAF females; (5) higher level of IL-10 in both sexes, with a more pronounced increase in females. We concluded that maternal CAF diet affects fat content, metabolic profiles, and inflammation parameters in offspring. Above effects are sex-specific, with female offspring being more susceptible to the diet.
Collapse
|
17
|
Zhou Y, Li C, Wang X, Deng P, He W, Zheng H, Zhao L, Gao H. Integration of FGF21 Signaling and Metabolomics in High-Fat Diet-Induced Obesity. J Proteome Res 2021; 20:3900-3912. [PMID: 34237942 DOI: 10.1021/acs.jproteome.1c00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sex differences in obesity have been well established, but the metabolic mechanism underlying these differences remains unclear. In the present study, we determined the expression levels of endogenous fibroblast growth factor 21 (FGF21) and its related receptors in male and female mice that were fed a high-fat diet (HFD) for 12 weeks. We also analyzed the metabolic changes in serum and livers using a nuclear magnetic resonance-based metabolomics approach. Reverse transcription polymerase chain reaction and western blotting results revealed that the levels of FGFR1, FGFR2, and co-factor β-klotho were upregulated in female mice to alleviate FGF21 resistance induced by HFD. The metabolomics results demonstrated that the serum and liver metabolic patterns of HFD-fed male mice were significantly separated from those of the female HFD-fed group and the normal diet group. Furthermore, low-density lipoprotein/very low density lipoprotein and betaine levels were associated with the resistance of exogenous HFD in female mice. These findings imply that sex-based differences in metabolism and susceptibility to obesity might be mediated by the FGF21 signaling pathway.
Collapse
Affiliation(s)
- Yi Zhou
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyi Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Pengxi Deng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenting He
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
18
|
Makarova EN, Yakovleva TV, Balyibina NY, Baranov KO, Denisova EI, Dubinina AD, Feofanova NA, Bazhan NM. Pharmacological effects of fibroblast growth factor 21 are sex-specific in mice with the lethal yellow (A y) mutation. Vavilovskii Zhurnal Genet Selektsii 2021; 24:200-208. [PMID: 33659800 PMCID: PMC7716522 DOI: 10.18699/vj20.40-o] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypothalamic melanocortin 4 receptors (MC4R) regulate energy balance. Mutations in the MC4R gene are
the most common cause of monogenic obesity in humans. Fibroblast growth factor 21 (FGF21) is a promising antiobesity
agent, but its effects on melanocortin obesity are unknown. Sex is an important biological variable that must
be considered when conducting preclinical studies; however, in laboratory animal models, the pharmacological effects
of FGF21 are well documented only for male mice. We aimed at investigating whether FGF21 affects metabolism in
male and female mice with the lethal yellow (Ay) mutation, which results in MC4R blockage and obesity development.
Obese C57Bl-Ay male and female mice were administered subcutaneously for 10 days with vehicle or FGF21 (1 mg per
1 kg). Food intake (FI), body weight (BW), blood parameters, and gene expression in the liver, muscles, brown adipose
tissue, subcutaneous and visceral white adipose tissues, and hypothalamus were measured. FGF21 action strongly
depended on the sex of the animals. In the males, FGF21 decreased BW and insulin blood levels without affecting FI. In
the females, FGF21 increased FI and liver weight, but did not affect BW. In control Ay-mice, expression of genes involved
in lipid and glucose metabolism (Ppargc1a, Cpt1, Pck1, G6p, Slc2a2) in the liver and genes involved in lipogenesis (Pparg,
Lpl, Slc2a4) in visceral adipose tissue was higher in females than in males, and FGF21 administration inhibited the expression
of these genes in females. FGF21 administration decreased hypothalamic POMC mRNA only in males. Thus,
the pharmacological effect of FGF21 were significantly different in male and female Ay-mice; unlike males, females were
resistant to catabolic effects of FGF21.
Collapse
Affiliation(s)
- E N Makarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T V Yakovleva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - K O Baranov
- The Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Denisova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A D Dubinina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Feofanova
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - N M Bazhan
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
19
|
Novelle MG, Bravo SB, Deshons M, Iglesias C, García-Vence M, Annells R, da Silva Lima N, Nogueiras R, Fernández-Rojo MA, Diéguez C, Romero-Picó A. Impact of liver-specific GLUT8 silencing on fructose-induced inflammation and omega oxidation. iScience 2021; 24:102071. [PMID: 33554072 PMCID: PMC7856473 DOI: 10.1016/j.isci.2021.102071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Excessive consumption of high-fructose diets is associated with insulin resistance, obesity, and non-alcoholic fatty liver disease (NAFLD). However, fructose differentially affects hepatic regulation of lipogenesis in males and females. Hence, additional studies are necessary in order to find strategies taking gender disparities in fructose-induced liver damage into consideration. Although the eighth member of facilitated glucose transporters (GLUT8) has been linked to fructose-induced macrosteatosis in female mice, its contribution to the inflammatory state of NAFLD remains to be elucidated. Combining pharmacological, biochemical, and proteomic approaches, we evaluated the preventive effect of targeted liver GLUT8 silencing on liver injury in a mice female fructose-induced non-alcoholic steatohepatitis female mouse model. Liver GLUT8-knockdown attenuated fructose-induced ER stress, recovered liver inflammation, and dramatically reduced fatty acid content, in part, via the omega oxidation. Therefore, this study links GLUT8 with liver inflammatory response and suggests GLUT8 as a potential target for the prevention of NAFLD.
Collapse
Affiliation(s)
- Marta G Novelle
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain.,Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, E28049, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Maxime Deshons
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Cristina Iglesias
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - María García-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Rebecca Annells
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, Oxford, UK
| | - Natália da Silva Lima
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - Manuel Alejandro Fernández-Rojo
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, E28049, Spain.,School of Medicine, The University of Queensland, Herston, 4006, Brisbane, Australia
| | - Carlos Diéguez
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - Amparo Romero-Picó
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| |
Collapse
|
20
|
Bonfim THFD, Tavares RL, de Vasconcelos MHA, Gouveia M, Nunes PC, Soares NL, Alves RC, de Carvalho JLP, Alves AF, Pereira RDA, Cardoso GA, Silva AS, Aquino JDS. Potentially obesogenic diets alter metabolic and neurobehavioural parameters in Wistar rats: a comparison between two dietary models. J Affect Disord 2021; 279:451-461. [PMID: 33120246 DOI: 10.1016/j.jad.2020.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/28/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Clinical studies related to the obesity pandemic have intensified in recent years, being the animal studies are also considered of great relevance. However, despite the fact that many diets have been reported in the literature to induce obesity in animal models, there is still a gap regarding evidence of the efficacy of these models, considering not only changes in somatic parameters, but also the triggering of comorbidities associated with obesity. In this scenario, the aim of this study was to compare the effectiveness of western and cafeteria diets as obesity-inducing protocols, focusing on the evaluation of metabolic, somatic, oxidative, histological and behavioural parameters of Wistar rats. METHODS The rats were fed a control (CON), western (WTD) or cafeteria (CAF) diet for 16 weeks. RESULTS The CAF diet caused anxiogenic-like behaviour. Body mass (BMI), Lee and adiposity indices increased in the CAF group. CAF and WTD diets reduced glucose and insulin tolerance, caused dyslipidemia, increased lipid peroxidation and decrease antioxidant capacity in the liver, kidneys and brain. The WTD and CAF groups shows greater IL-6 protein expression in adipose tissue, developed hepatic steatosis and ischaemic neurons, whereas interstitial nephritis was observed only in the CAF group. CONCLUSION The CAF diet was most effective in inducing obesity, as shown both by the somatic parameters and by the greater number of obesity-related metabolic and neurobehavioural disorders in the evaluated rats.
Collapse
Affiliation(s)
| | - Renata Leite Tavares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | | | - Mirela Gouveia
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Polyana Campos Nunes
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Naís Lira Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Raquel Coutinho Alves
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Jader Luciano Pinto de Carvalho
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Adriano Francisco Alves
- Laboratory of Pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Ramon de Alencar Pereira
- Laboratory of Pathology, Department of Pathology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Glêbia Alexa Cardoso
- Associate Graduate Program in Physical Education - UPE / UFPB, Department of Physical Education, Federal University of Paraíba, João Pessoa, Brazil; Laboratory of Physical Training Applied to Performance and Health, Department of Physical Education, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Alexandre Sergio Silva
- Laboratory of Physical Training Applied to Performance and Health, Department of Physical Education, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil.
| |
Collapse
|
21
|
Bazhan NM, Iakovleva TV, Dubinina AD, Makarova EN. Impact of sex on the adaptation of adult mice to long consumption of sweet-fat diet. Vavilovskii Zhurnal Genet Selektsii 2020; 24:844-852. [PMID: 35087997 PMCID: PMC8763717 DOI: 10.18699/vj20.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022] Open
Abstract
In rodents, the most adequate model of human diet-induced obesity is obesity caused by the consumption of a sweet-fat diet (SFD), which causes more pronounced adiposity in females than in males. The aim of this work was to determine the sex-associated effect of SFD on the expression of genes related to carbohydrate-lipid metabolism in adult mice. For 10 weeks, male and female С57Bl mice were fed a standard laboratory chow (Control group) or a diet, which consisted of laboratory chow supplemented with sweet cookies, sunflower seeds and lard (SFD group). Weights of body, liver and fat depots, blood concentrations of hormones and metabolites, liver fat, and mRNA levels of genes involved in regulation of energy metabolism in the liver, perigonadal and subcutaneous white adipose tissue (pgWAT, scWAT) and brown adipose tissue (BAT) were measured. SFD increased body weight and insulin resistance in mice of both sexes. Female mice that consumed SFD (SFD females) had a greater increase in adiposity than SFD males. SFD females showed a decreased expression of genes related to lipogenesis (Lpl) and glucose metabolism (G6pc, Pklr) in liver, as well as lipogenesis (Lpl, Slca4) and lipolysis (Lipe) in pgWAT, suggesting reduced energy expenditure. In contrast, SFD males showed increased lean mass gain, plasma insulin and FGF21 levels, expressions of Cpt1α gene in pgWAT and scWAT and Pklr gene in liver, suggesting enhanced lipid and glucose oxidation in these organs. Thus, in mice, there are sex-dependent differences in adaptation to SFD at the transcriptional level, which can help to explain higher adiposity in females under SFD consumtion.
Collapse
Affiliation(s)
- N. M. Bazhan
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences;
Novosibirsk State University
| | - T. V. Iakovleva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - A. D. Dubinina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - E. N. Makarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
22
|
Preguiça I, Alves A, Nunes S, Fernandes R, Gomes P, Viana SD, Reis F. Diet-induced rodent models of obesity-related metabolic disorders-A guide to a translational perspective. Obes Rev 2020; 21:e13081. [PMID: 32691524 DOI: 10.1111/obr.13081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Diet is a critical element determining human health and diseases, and unbalanced food habits are major risk factors for the development of obesity and related metabolic disorders. Despite technological and pharmacological advances, as well as intensification of awareness campaigns, the prevalence of metabolic disorders worldwide is still increasing. Thus, novel therapeutic approaches with increased efficacy are urgently required, which often depends on cellular and molecular investigations using robust animal models. In the absence of perfect rodent models, those induced by excessive consumption of fat and sugars better replicate the key aspects that are the root causes of human metabolic diseases. However, the results obtained using these models cannot be directly compared, particularly because of the use of different dietary protocols, and animal species and strains, among other confounding factors. This review article revisits diet-induced models of obesity and related metabolic disorders, namely, metabolic syndrome, prediabetes, diabetes and nonalcoholic fatty liver disease. A critical analysis focused on the main pathophysiological features of rodent models, as opposed to the criteria defined for humans, is provided as a practical guide with a translational perspective for the establishment of animal models of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Inês Preguiça
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Pedro Gomes
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), University of Porto, Porto, Portugal
| | - Sofia D Viana
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal.,ESTESC-Coimbra Health School, Pharmacy, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Gimenez-Donoso C, Bosque M, Vila A, Vilalta G, Santafe MM. Effects of a Fat-Rich Diet on the Spontaneous Release of Acetylcholine in the Neuromuscular Junction of Mice. Nutrients 2020; 12:nu12103216. [PMID: 33096733 PMCID: PMC7594037 DOI: 10.3390/nu12103216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Western societies are facing a clear increase in the rate of obesity and overweight which are responsible for musculoskeletal pain. Some of the substances described in the environment of myofascial trigger points (MTrPs) are the same as those found in the skeletal muscle of obese people, such as cytokines. Furthermore, elevated neuromuscular neurotransmission has been associated with MTrPs. The main objective of this study is to assess whether obesity or overweight may be a facilitator of myofascial pain. The experiments were performed on male Swiss mice. One experimental group was given a typical “cafeteria” diet and another group a commercial high-fat diet for six weeks. Intramuscular adipocytes were assessed with Sudan III. The functional study was performed with electromyographic recording to determine the plaque noise and intracellular recording of miniature endplate potentials (MEPPs). The intake of a cafeteria diet showed the presence of more adipocytes in muscle tissue, but not with the fat-supplemented diet. Both experimental groups showed an increase in the plaque noise and an increase in the frequency of MEPPs that lasted several weeks after interrupting diets. In summary, the supply of a hypercaloric diet for six weeks in mice increases spontaneous neurotransmission, thus facilitating the development of MTrPs.
Collapse
Affiliation(s)
- Carlos Gimenez-Donoso
- Centre de Fisioteràpia Inspira, Carrer Muntaner num 200, 2º, 2ª, 08036 Barcelona, Spain
| | - Marc Bosque
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St Llorenç num 21, 43201 Reus, Spain
| | - Anna Vila
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St Llorenç num 21, 43201 Reus, Spain
| | - Gemma Vilalta
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St Llorenç num 21, 43201 Reus, Spain
| | - Manel M Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St Llorenç num 21, 43201 Reus, Spain
| |
Collapse
|
24
|
Sowton AP, Padmanabhan N, Tunster SJ, McNally BD, Murgia A, Yusuf A, Griffin JL, Murray AJ, Watson ED. Mtrr hypomorphic mutation alters liver morphology, metabolism and fuel storage in mice. Mol Genet Metab Rep 2020; 23:100580. [PMID: 32257815 PMCID: PMC7109458 DOI: 10.1016/j.ymgmr.2020.100580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with dietary folate deficiency and mutations in genes required for one‑carbon metabolism. However, the mechanism through which this occurs is unclear. To improve our understanding of this link, we investigated liver morphology, metabolism and fuel storage in adult mice with a hypomorphic mutation in the gene methionine synthase reductase (Mtrr gt ). MTRR enzyme is a key regulator of the methionine and folate cycles. The Mtrr gt mutation in mice was previously shown to disrupt one‑carbon metabolism and cause a wide-spectrum of developmental phenotypes and late adult-onset macrocytic anaemia. Here, we showed that livers of Mtrr gt/gt female mice were enlarged compared to control C57Bl/6J livers. Histological analysis of these livers revealed eosinophilic hepatocytes with decreased glycogen content, which was associated with down-regulation of genes involved in glycogen synthesis (e.g., Ugp2 and Gsk3a genes). While female Mtrr gt/gt livers showed evidence of reduced β-oxidation of fatty acids, there were no other associated changes in the lipidome in female or male Mtrr gt/gt livers compared with controls. Defects in glycogen storage and lipid metabolism often associate with disruption of mitochondrial electron transfer system activity. However, defects in mitochondrial function were not detected in Mtrr gt/gt livers as determined by high-resolution respirometry analysis. Overall, we demonstrated that adult Mtrr gt/gt female mice showed abnormal liver morphology that differed from the NAFLD phenotype and that was accompanied by subtle changes in their hepatic metabolism and fuel storage.
Collapse
Key Words
- 5-methyl-THF, 5-methyltetrahydofolate
- Agl, amylo-alpha-1,6-glucosidase,4-alpha-glucanotransferase gene
- BCA, bicinchoninic acid
- Bhmt, betaine-homocysteine S-methyltransferase gene
- CE, cholesteryl-ester
- Cebpa, CCAAT/enhancer binding protein (C/EBP), alpha gene
- Cer, ceramide
- DAG, diacylglycerol
- Ddit3, DNA damage inducible transcript 3 gene
- ETS, electron transport system
- FCCP, p-trifluoromethoxyphenyl hydrazine
- FFA, free fatty acid
- G6pc, glucose 6-phophastase gene
- Gbe1, glycogen branching enzyme 1 gene
- Glycogen
- Gsk3, glycogen synthase kinase gene
- Gyg, glycogenin gene
- Gys2, glycogen synthase 2 gene
- HOAD, 3-hydoxyacyl-CoA dehydrogenase
- Hepatic fuel storage
- Isca1, iron‑sulfur cluster assembly 1 gene
- JO2, oxygen flux
- LC-MS, liquid chromatography-mass spectrometry
- LPC, lysophosphatidylcholine
- Lipidomics
- Liver metabolism
- Mitochondrial function
- Mthfr, methylenetetrahydrofolate reductase gene
- Mtr, methionine synthase gene (also MS)
- Mtrr, methionine synthase reductase gene (also MSR)
- Myc, myelocytomatosis oncogene
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- Ndufs, NADH:ubiquinone oxidoreductase core subunit (ETS complex I) gene
- OXPHOS, oxidative phosphorylation
- One‑carbon metabolism
- PA, phosphatidic acid
- PAS, periodic acid Schiff
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerol
- PI, phosphatidylinositol
- PIP, phosphatidylinositol phosphate(s)
- PL, phospholipid
- PS, phosphatidylserine
- RIPA, Radioimmunoprecipitation assay
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SM, sphingomyelin
- TAG, triacylglycerol
- Ugp2, UDP-glucose pyrophophorylase 2 gene
- gt, gene-trap
Collapse
Affiliation(s)
- Alice P. Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Nisha Padmanabhan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Simon J. Tunster
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Ben D. McNally
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Antonio Murgia
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Aisha Yusuf
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Erica D. Watson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
25
|
De Faveri A, De Faveri R, Broering MF, Bousfield IT, Goss MJ, Muller SP, Pereira RO, de Oliveira E Silva AM, Machado ID, Quintão NLM, Santin JR. Effects of passion fruit peel flour (Passiflora edulis f. flavicarpa O. Deg.) in cafeteria diet-induced metabolic disorders. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112482. [PMID: 31866512 DOI: 10.1016/j.jep.2019.112482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Passiflora edulis f. flavicarpa O. Deg. is a native Brazilian fruit known as sour or yellow passion fruit. From its peel, mainly in the northeast of Brazil, is produced a flour that is largely used as folk medicine to treat diabetes and other metabolic conditions. AIM OF THE STUDY The aim of the study was to show the effects of P. edulis peel flour (PEPF) in metabolic disorders caused by cafeteria diet in mice. MATERIAL AND METHODS The antioxidant activity in vitro of PEPF extract was determined by ferric reducing/antioxidant power, β-carotene/linoleic acid system and nitric oxide scavenging activity assay. C57BL/6 mice divided in 3 groups: Control group, fed on a standard diet (AIN); Cafeteria diet (CAF) group, fed on a cafeteria diet, and PEPF group, fed on a cafeteria diet containing 15% of PEPF, during 16 weeks. The glucose tolerance and insulin sensitivity were evaluated through the glucose tolerance test (GTT) and the insulin tolerance test (ITT). After the intervention period, blood, hepatic, pancreatic and adipose tissues were collected for biochemical and histological analysis. Cholesterol, triglyceride, interleukins and antioxidant enzymes were measured in the liver tissue. RESULTS PEPF extract presented antioxidant activity in the higher concentrations in the performed assays. The PEPF intake decreased the body weight gain, fat deposition, predominantly in the liver, improved the glucose tolerance and insulin sensitivity in metabolic changes caused by cafeteria diet. CONCLUSION Together, the data herein obtained points out that P. edulis peel flour supplementation in metabolic syndrome condition induced by CAF-diet, prevents insulin and glucose resistance, hepatic steatosis and adiposity.
Collapse
Affiliation(s)
- Aline De Faveri
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Renata De Faveri
- Biomedicine Course, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Milena Fronza Broering
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Izabel Terranova Bousfield
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Marina Jagielski Goss
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Samuel Paulo Muller
- Postgraduate Program in Biodiversity, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Raquel Oliveira Pereira
- Nutrition Department (DNUT), Universidade Federal de Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | | | - Isabel Daufenback Machado
- Postgraduate Program in Biodiversity, Universidade Regional de Blumenau, Blumenau, Santa Catarina, Brazil
| | - Nara Lins Meira Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil
| | - José Roberto Santin
- Postgraduate Program in Pharmaceutical Science, Universidade Do Vale Do Itajaí, Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
26
|
Herrera-Marcos LV, Sancho-Knapik S, Gabás-Rivera C, Barranquero C, Gascón S, Romanos E, Martínez-Beamonte R, Navarro MA, Surra JC, Arnal C, García-de-Jalón JA, Rodríguez-Yoldi MJ, Tena-Sempere M, Sánchez-Ramos C, Monsalve M, Osada J. Pgc1a is responsible for the sex differences in hepatic Cidec/Fsp27β mRNA expression in hepatic steatosis of mice fed a Western diet. Am J Physiol Endocrinol Metab 2020; 318:E249-E261. [PMID: 31846369 DOI: 10.1152/ajpendo.00199.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fat-specific protein 27 [cell death-inducing DNA fragmentation effector protein C (Cidec)/Fsp27] mRNA levels have been associated with hepatic lipid droplet extent under certain circumstances. To address its hepatic expression under different dietary conditions and in both sexes, apolipoprotein E (Apoe)-deficient mice were subjected to different experimental conditions for 11 wk to test the influence of cholesterol, Western diet, squalene, oleanolic acid, sex, and surgical castration on Cidec/Fsp27 mRNA expression. Dietary cholesterol increased hepatic Cidec/Fsp27β expression, an effect that was suppressed when cholesterol was combined with saturated fat as represented by Western diet feeding. Using the latter diet, neither oleanolic acid nor squalene modified its expression. Females showed lower levels of hepatic Cidec/Fsp27β expression than males when they were fed Western diets, a result that was translated into a lesser amount of CIDEC/FSP27 protein in lipid droplets and microsomes. This was also confirmed in low-density lipoprotein receptor (Ldlr)-deficient mice. Incubation with estradiol resulted in decreased Cidec/Fsp27β expression in AML12 cells. Whereas male surgical castration did not modify the expression, ovariectomized females did show increased levels compared with control females. Females also showed increased expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1a), suppressed by ovariectomy, and the values were significantly and inversely associated with those of Cidec/Fsp27β. When Pgc1a-deficient mice were used, the sex differences in Cidec/Fsp27β expression disappeared. Therefore, hepatic Cidec/Fsp27β expression has a complex regulation influenced by diet and sex hormonal milieu. The mRNA sex differences are controlled by Pgc1a.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Sara Sancho-Knapik
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Clara Gabás-Rivera
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Romanos
- Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - José A García-de-Jalón
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Tena-Sempere
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba e Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Zhang S, Wong YT, Tang KY, Kwan HY, Su T. Chinese Medicinal Herbs Targeting the Gut-Liver Axis and Adipose Tissue-Liver Axis for Non-Alcoholic Fatty Liver Disease Treatments: The Ancient Wisdom and Modern Science. Front Endocrinol (Lausanne) 2020; 11:572729. [PMID: 33101207 PMCID: PMC7556113 DOI: 10.3389/fendo.2020.572729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. The pathogenesis of NAFLD is complex. Frontline western medicines only ameliorate the symptoms of NAFLD. On the contrary, the uniqueness of Chinese medicine in its interpretation of NAFLD and the holistic therapeutic approach lead to a promising therapeutic efficacy. Recent studies reveal that the gut-liver axis and adipose tissue-liver axis play important roles in the development of NAFLD. Interestingly, with advanced technology, many herbal formulae are found to target the gut-liver axis and adipose tissue-liver axis and resolve the inflammation in NAFLD. This is the first review summarizes the current findings on the Chinese herbal formulae that target the two axes in NAFLD treatment. This review not only demonstrates how the ancient wisdom of Chinese medicine is being interpreted by modern pharmacological studies, but also provides valuable information for the further development of the herbal-based treatment for NAFLD.
Collapse
Affiliation(s)
- Shuwei Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yui-Tung Wong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ka-Yu Tang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiu-Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Hiu-Yee Kwan, ; Tao Su,
| | - Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Hiu-Yee Kwan, ; Tao Su,
| |
Collapse
|
28
|
Sex Differences in Liver, Adipose Tissue, and Muscle Transcriptional Response to Fasting and Refeeding in Mice. Cells 2019; 8:cells8121529. [PMID: 31783664 PMCID: PMC6953068 DOI: 10.3390/cells8121529] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Fasting is often used for obesity correction but the “refeeding syndrome” limits its efficiency, and molecular mechanisms underlying metabolic response to different food availability are under investigation. Sex was shown to affect hormonal and metabolic reactions to fasting/refeeding. The aim of this study was to evaluate hormonal and transcriptional responses to fasting and refeeding in male and female C57Bl/6J mice. Sex asymmetry was observed both at the hormonal and transcriptional levels. Fasting (24 h) induced increase in hepatic Fgf21 gene expression, which was associated with elevation of plasma FGF21 and adiponectin levels, and the upregulation of expression of hepatic (Pparα, Cpt1α) and muscle (Cpt1β, Ucp3) genes involved in fatty acid oxidation. These changes were more pronounced in females. Refeeding (6 h) evoked hyperinsulinemia and increased hepatic expression of gene related to lipogenesis (Fasn) only in males and hyperleptinemia and increase in Fgf21 gene expression in muscles and adipose tissues only in females. The results suggest that in mice, one of the molecular mechanisms underlying sex asymmetry in hepatic Pparα, Cpt1α, muscle Cpt1β, and Ucp3 expression during fasting is hepatic Fgf21 expression, and the reason for sex asymmetry in hepatic Fasn expression during refeeding is male-specific hyperinsulinemia.
Collapse
|
29
|
Chlorophyll Supplementation in Early Life Prevents Diet‐Induced Obesity and Modulates Gut Microbiota in Mice. Mol Nutr Food Res 2019; 63:e1801219. [DOI: 10.1002/mnfr.201801219] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/10/2019] [Indexed: 12/11/2022]
|
30
|
Morais Mewes J, Rodrigues Silva Gasparin F, Yoshida T, Amâncio Daniel da Silva M, Raquel Marçal Natali M, Francisco Veiga Bizerra P, Sayuri Utsunomiya K, Hideo Gilglioni E, Shigueaki Mito M, Cristiane Mantovanelli G, Thais Lima de Souza B, Makiyama Klosowski E, Luiza Ishii-Iwamoto E, Constantin J, Polimeni Constantin R. The Role of Mitochondria in Sex-Dependent Differences in Hepatic Steatosis and Oxidative Stress in Response to Cafeteria Diet-Induced Obesity in Mice. Nutrients 2019; 11:E1618. [PMID: 31315289 PMCID: PMC6682896 DOI: 10.3390/nu11071618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/03/2019] [Accepted: 07/11/2019] [Indexed: 12/30/2022] Open
Abstract
Female mice fed a cafeteria diet (FCaf) develop higher liver steatosis and oxidative stress than males (MCaf) as a consequence of unresolved ER stress. Here, we investigated whether mitochondria play a role in this sex difference. The isolated mitochondria from FCaf showed more signs of oxidative stress than those of MCaf, correlated with a reduced content of GSH, increased amount of reactive oxygen species (ROS), and lower activities of enzymes involved in ROS neutralisation. Mitochondria from FCaf and MCaf livers exhibited lower rates of succinate-driven state III respiration and reduced ATPase activity in intact coupled mitochondria compared to their controls fed a standard diet (FC and MC), with no differences between the sexes. Fatty acid oxidation in mitochondria and peroxisomes was higher in MCaf and FCaf compared to their respective controls. In the intact perfused liver, there was no difference between sex or diet regarding the fatty acid oxidation rate. These results indicated that cafeteria diet did not affect mitochondrial energy metabolism, even in FCaf livers, which have higher steatosis and cellular oxidative stress. Nevertheless, the increase in mitochondrial ROS generation associated with a decrease in the antioxidant defence capacity, probably contributes to inducing or reinforcing the ER stress in FCaf livers.
Collapse
Affiliation(s)
- Juliana Morais Mewes
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Fabiana Rodrigues Silva Gasparin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Tiago Yoshida
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Mariana Amâncio Daniel da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Maria Raquel Marçal Natali
- Department of Morphophysiological Sciences, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Karina Sayuri Utsunomiya
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Eduardo Hideo Gilglioni
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Marcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Gislaine Cristiane Mantovanelli
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Jorgete Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations and Laboratory of Experimental Steatosis, State University of Maringá, Maringá 87020-900, Paraná, Brazil.
| |
Collapse
|
31
|
Hong T, Ge Z, Zhang B, Meng R, Zhu D, Bi Y. Erythropoietin suppresses hepatic steatosis and obesity by inhibiting endoplasmic reticulum stress and upregulating fibroblast growth factor 21. Int J Mol Med 2019; 44:469-478. [PMID: 31173165 PMCID: PMC6605699 DOI: 10.3892/ijmm.2019.4210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO), known primarily for its role in erythropoiesis, was recently reported to play a beneficial role in regulating lipid metabolism; however, the underlying mechanism through which EPO decreases hepatic lipid accumulation requires further investigation. Endoplasmic reticulum (ER) stress may contribute to the progression of hepatic steatosis. The present study investigated the effects of EPO on regulating ER stress in fatty liver. It was demonstrated that EPO inhibited hepatic ER stress and steatosis in vivo and in vitro. Interestingly, these beneficial effects were abrogated in liver-specific sirtuin 1 (SIRT1)-knockout mice compared with wild-type littermates. In addition, in palmitate-treated hepatocytes, small interfering RNA-mediated SIRT1 silencing suppressed the effects of EPO on lipid-induced ER stress. Additionally, EPO stimulated hepatic fibroblast growth factor 21 (FGF21) expression and secretion in a SIRT1-dependent manner in mice. Furthermore, the sensitivity of hepatocytes from obese mice to FGF21 was restored following treatment with EPO. Collectively, the results of the present study revealed a new mechanism underlying the regulation of hepatic ER stress and FGF21 expression induced by EPO; thus, EPO may be considered as a potential therapeutic agent for the treatment of fatty liver and obesity.
Collapse
Affiliation(s)
- Ting Hong
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Bingjie Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ran Meng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
32
|
Garcia-Jaramillo M, Spooner MH, Löhr CV, Wong CP, Zhang W, Jump DB. Lipidomic and transcriptomic analysis of western diet-induced nonalcoholic steatohepatitis (NASH) in female Ldlr -/- mice. PLoS One 2019; 14:e0214387. [PMID: 30943218 PMCID: PMC6447358 DOI: 10.1371/journal.pone.0214387] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, particularly in obese and type 2 diabetic individuals. NAFLD ranges in severity from benign steatosis to nonalcoholic steatohepatitis (NASH); and NASH can progress to cirrhosis, primary hepatocellular carcinoma (HCC) and liver failure. As such, NAFLD has emerged as a major public health concern. Herein, we used a lipidomic and transcriptomic approach to identify lipid markers associated with western diet (WD) induced NASH in female mice. METHODS Female mice (low-density lipoprotein receptor null (Ldlr -/-) were fed a reference or WD diet for 38 and 46 weeks. Transcriptomic and lipidomic approaches, coupled with statistical analyses, were used to identify associations between major NASH markers and transcriptomic & lipidomic markers. RESULTS The WD induced all major hallmarks of NASH in female Ldlr -/- mice, including steatosis (SFA, MUFA, MUFA-containing di- and triacylglycerols), inflammation (TNFα), oxidative stress (Ncf2), and fibrosis (Col1A). The WD also increased transcripts associated with membrane remodeling (LpCat), apoptosis & autophagy (Casp1, CtsS), hedgehog (Taz) & notch signaling (Hey1), epithelial-mesenchymal transition (S1004A) and cancer (Gpc3). WD feeding, however, suppressed the expression of the hedgehog inhibitory protein (Hhip), and enzymes involved in triglyceride catabolism (Tgh/Ces3, Ces1g), as well as the hepatic abundance of C18-22 PUFA-containing phosphoglycerolipids (GpCho, GpEtn, GpSer, GpIns). WD feeding also increased hepatic cyclooxygenase (Cox1 & 2) expression and pro-inflammatory ω6 PUFA-derived oxylipins (PGE2), as well as lipid markers of oxidative stress (8-iso-PGF2α). The WD suppressed the hepatic abundance of reparative oxylipins (19, 20-DiHDPA) as well as the expression of enzymes involved in fatty epoxide metabolism (Cyp2C, Ephx). CONCLUSION WD-induced NASH in female Ldlr -/- mice was characterized by a massive increase in hepatic neutral and membrane lipids containing SFA and MUFA and a loss of C18-22 PUFA-containing membrane lipids. Moreover, the WD increased hepatic pro-inflammatory oxylipins and suppressed the hepatic abundance of reparative oxylipins. Such global changes in the type and abundance of hepatic lipids likely contributes to tissue remodeling and NASH severity.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diet, Western/adverse effects
- Disease Models, Animal
- Fatty Acids, Monounsaturated/metabolism
- Fatty Acids, Omega-3/genetics
- Female
- Fibrosis/complications
- Fibrosis/genetics
- Fibrosis/metabolism
- Humans
- Lipid Metabolism/genetics
- Lipidomics
- Liver Neoplasms/complications
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Mice
- Mice, Knockout
- Non-alcoholic Fatty Liver Disease/complications
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Oxidative Stress/genetics
- Receptors, LDL/genetics
- Transcriptome/genetics
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Manuel Garcia-Jaramillo
- The Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
- Department of Chemistry Oregon State University, Corvallis, Oregon, United States of America
| | - Melinda H. Spooner
- The Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Christiane V. Löhr
- Anatomic Pathology, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Carmen P. Wong
- The Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Weijian Zhang
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Donald B. Jump
- The Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- The Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
33
|
Feofanova NA, Yakovleva TV, Makarova EN, Bazhan NM. Sex differences in the expression of lipid oxidation and glucose uptake genes in muscles of fasted mice. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fasting has become increasingly popular for treatment and prevention of obesity. Sex differences in the mechanisms of adaptation to fasting may contribute to choosing a therapeutic strategy for correction of metabolic disorders. Hepatokine fibroblast growth factor 21 (FGF21) is involved in the adaptation to fasting. Muscles are assumed to be the main energy-consuming tissue in the body, as muscle metabolism plays an important role in the adaptation to nutritional deficit. However, there is still little information on sex differences in muscle and FGF21 physiological response to fasting. Our aim was to find out whether there were sex differences in hormonal regulation and the expression of genes controlling glucose and lipid metabolism in skeletal muscles in response to fasting. We estimated the effect of 24-hour fasting on the expression of genes involved in lipid (Ucp3, Cpt1) and carbohydrate (Slc2a4) metabolism in muscles and evaluated changes in body weight and blood plasma levels of glucose, insulin, free fatty acids (FFA), adiponectin, and FGF21 in male and female C57BL/6J mice. None of the genes studied (Ucp3, Cpt1 and Slc2a4) showed sex-related changes at mRNA levels in control groups, but females exposed to fasting demonstrated a significant increase in the expression of all genes as compared to control. Fasting significantly decreased body weight and glucose blood plasma levels in animals of both sexes but exerted no effect on the levels of insulin or FFA. The adiponectin and FGF21 levels were increased in response to fasting, the increase in females being significant. We were first to show sex dimorphism in muscle gene expression and FGF21 blood level in response to fasting. In females, the greater increase in FGF21 and adiponectin blood levels was positively associated with the greater upregulation of lipid oxidation and glucose uptake gene expression.
Collapse
Affiliation(s)
- N. A. Feofanova
- Research Institute of Fundamental and Clinical Immunology; Institute of Cytology and Genetics, SB RAS
| | | | | | | |
Collapse
|
34
|
Parafati M, Lascala A, La Russa D, Mignogna C, Trimboli F, Morittu VM, Riillo C, Macirella R, Mollace V, Brunelli E, Janda E. Bergamot Polyphenols Boost Therapeutic Effects of the Diet on Non-Alcoholic Steatohepatitis (NASH) Induced by "Junk Food": Evidence for Anti-Inflammatory Activity. Nutrients 2018; 10:nu10111604. [PMID: 30388763 PMCID: PMC6267059 DOI: 10.3390/nu10111604] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Wrong alimentary behaviors and so-called “junk food” are a driving force for the rising incidence of non-alcoholic fatty liver disease (NAFLD) among children and adults. The “junk food” toxicity can be studied in “cafeteria” (CAF) diet animal model. Young rats exposed to CAF diet become obese and rapidly develop NAFLD. We have previously showed that bergamot (Citrus bergamia Risso et Poiteau) flavonoids, in the form of bergamot polyphenol fraction (BPF), effectively prevent CAF diet-induced NAFLD in rats. Here, we addressed if BPF can accelerate therapeutic effects of weight loss induced by a normocaloric standard chow (SC) diet. 21 rats fed with CAF diet for 16 weeks to induce NAFLD with inflammatory features (NASH) were divided into three groups. Two groups were switched to SC diet supplemented or not with BPF (CAF/SC±BPF), while one group continued with CAF diet (CAF/CAF) for 10 weeks. BPF had no effect on SC diet-induced weight loss, but it accelerated hepatic lipid droplets clearance and reduced blood triglycerides. Accordingly, BPF improved insulin sensitivity, but had little effect on leptin levels. Interestingly, the inflammatory parameters were still elevated in CAF/SC livers compared to CAF/CAF group after 10 weeks of dietary intervention, despite over 90% hepatic fat reduction. In contrast, BPF supplementation decreased hepatic inflammation by reducing interleukin 6 (Il6) mRNA expression and increasing anti-inflammatory Il10, which correlated with fewer Kupffer cells and lower inflammatory foci score in CAF/SC+BPF livers compared to CAF/SC group. These data indicate that BPF mediates a specific anti-inflammatory activity in livers recovering from NASH, while it boosts lipid-lowering and anti-diabetic effects of the dietary intervention.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| | - Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| | - Daniele La Russa
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Chiara Mignogna
- Department of Experimental and Clinical Medicine, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Francesca Trimboli
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Valeria Maria Morittu
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Concetta Riillo
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy.
- Interregional Research Center for Food Safety and Health, 88100 Catanzaro, Italy.
| |
Collapse
|
35
|
Cafeteria Diet Feeding in Young Rats Leads to Hepatic Steatosis and Increased Gluconeogenesis under Fatty Acids and Glucagon Influence. Nutrients 2018; 10:nu10111571. [PMID: 30360555 PMCID: PMC6266290 DOI: 10.3390/nu10111571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023] Open
Abstract
Gluconeogenesis overstimulation due to hepatic insulin resistance is the best-known mechanism behind elevated glycemia in obese subjects with hepatic steatosis. This suggests that glucose production in fatty livers may differ from that of healthy livers, also in response to other gluconeogenic determinant factors, such as the type of substrate and modulators. Thus, the aim of this study was to investigate the effects of these factors on hepatic gluconeogenesis in cafeteria diet-induced obese adult rats submitted to a cafeteria diet at a young age. The livers of the cafeteria group exhibited higher gluconeogenesis rates when glycerol was the substrate, but lower rates were found when lactate and pyruvate were the substrates. Stearate or glucagon caused higher stimulations in gluconeogenesis in cafeteria group livers, irrespective of the gluconeogenic substrates. An increased mitochondrial NADH/NAD+ ratio and a reduced rate of 14CO2 production from [14C] fatty acids suggested restriction of the citric acid cycle. The higher glycogen and lipid levels were possibly the cause for the reduced cellular and vascular spaces found in cafeteria group livers, likely contributing to oxygen consumption restriction. In conclusion, specific substrates and gluconeogenic modulators contribute to a higher stimulation of gluconeogenesis in livers from the cafeteria group.
Collapse
|