1
|
Ren X, Li W. Iron-handling solute carrier SLC22A17 as a blood-brain barrier target after stroke. Neural Regen Res 2025; 20:3207-3208. [PMID: 39715085 DOI: 10.4103/nrr.nrr-d-24-00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Xueqi Ren
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China (Ren X)
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (Li W)
| |
Collapse
|
2
|
Kesharwani P, Dash D, Koiri RK. Deciphering the role of hepcidin in iron metabolism and anemia management. J Trace Elem Med Biol 2025; 87:127591. [PMID: 39813816 DOI: 10.1016/j.jtemb.2025.127591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
One of the most common diseases worldwide is anemia, which is characterized by insufficient erythrocyte production. Numerous complex factors, such as chronic diseases, genetic mutations, and nutritional inadequacies, contribute to this widespread syndrome. This review focuses specifically on anemias caused by defective hepcidin production. Hepcidin, a peptide hormone produced primarily by liver cells, plays a crucial role in regulating iron levels by controlling its absorption. Hepcidin's mechanism of action involves binding to the ferroportin iron transporter, causing its internalization. Disturbances in iron metabolism can have far-reaching consequences, affecting not only the blood but also organs like the liver, kidneys, and brain. Iron homeostasis is crucial for maintaining optimal physiological function. Several blood-based markers are employed to assess iron stores. However, these markers have inherent limitations. Hepcidin, a key regulator of iron metabolism, plays a pivotal role in preventing iron release into the plasma from absorptive enterocytes and macrophages. Elucidating the structure and function of hepcidin is essential for understanding its role in iron homeostasis, which has significant implications for the diagnosis and management of various anemia subtypes. A well-established correlation exists between hepcidin dysregulation and iron deficiency. Despite its potential as a biomarker, the clinical application of hepcidin is hindered by the lack of a commercially available, clinically validated assay. This review aims to provide a comprehensive overview of hepcidin's role in regulating blood iron concentrations and elucidate its implications in the pathogenesis of various anemia subtypes, paving the way for its future applications in research and clinical practice.
Collapse
Affiliation(s)
- Palak Kesharwani
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Debabrata Dash
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
3
|
Simchovitz Gesher A, Grinin K, Atias D, Patalon T, Gazit S, Hoshen M, Dagan A. Strength in Numbers: Identifying a Significant Association between High Serum Ferritin Levels and Newly Diagnosed Malignancy in a Large Health Organization Cohort. Cancer Epidemiol Biomarkers Prev 2025; 34:190-196. [PMID: 39445830 DOI: 10.1158/1055-9965.epi-24-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Ferritin, an iron storage protein and acute phase reactant, has been implicated in various aspects of human health and disease, including cancer. Previous studies have identified elevated serum ferritin (SF) levels in several cancer types, but a comprehensive examination across different malignancies remains lacking. This study aims to fill this gap by utilizing anonymized data from Maccabi Health Services (MHS), one of Israel's largest health organizations, to explore the association between elevated SF levels and the diagnosis of different malignancies. METHODS An extensive dataset from MHS, comprising 2.7 million members, including 1.3 million individuals who underwent SF level testing, was analyzed. ORs and 95% confidence intervals were calculated to assess the association between high SF levels and cancer diagnosis. Subgroup analysis was conducted to investigate variations across different malignancies. RESULTS The analysis revealed a significant association between elevated SF levels and cancer diagnosis among MHS members, with an OR of 1.9 (95% confidence interval, 1.71-2.15). Subgroup analysis unveiled differences in the association across malignancy types, with hematologic, hepatobiliary, and respiratory malignancies more strongly associated with high SF levels. CONCLUSIONS This study provides further support for the link between elevated SF levels and malignancy, leveraging a vast dataset from MHS, underscoring potential utilities of elevated SF levels as a potential indicator for cancer with a variable role among different malignancy types. IMPACT The identification of elevated SF levels as a potential indicator for underlying malignancy for seemingly healthy individuals.
Collapse
Affiliation(s)
- Alon Simchovitz Gesher
- Internal Medicine Ward T, Sheba Tel Hashomer Medical Center, Ramat Gan, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Keren Grinin
- Internal Medicine Ward T, Sheba Tel Hashomer Medical Center, Ramat Gan, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dor Atias
- Maccabi Research and Innovation Center, Maccabi Healthcare Services, Tel Aviv, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Patalon
- Maccabi Research and Innovation Center, Maccabi Healthcare Services, Tel Aviv, Israel
- Arison school of Business, Reichman University, Herzliya, Israel
| | - Sivan Gazit
- Maccabi Research and Innovation Center, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Moshe Hoshen
- Maccabi Research and Innovation Center, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Amir Dagan
- Internal Medicine Ward T, Sheba Tel Hashomer Medical Center, Ramat Gan, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Brooks J, Everett J, Hill E, Billimoria K, Morris CM, Sadler PJ, Telling N, Collingwood JF. Nanoscale synchrotron x-ray analysis of intranuclear iron in melanised neurons of Parkinson's substantia nigra. Commun Biol 2024; 7:1024. [PMID: 39164395 PMCID: PMC11335769 DOI: 10.1038/s42003-024-06636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Neuromelanin-pigmented neurons of the substantia nigra are selectively lost during the progression of Parkinson's disease. These neurons accumulate iron in the disease state, and iron-mediated neuron damage is implicated in cell death. Animal models of Parkinson's have evidenced iron loading inside the nucleoli of nigral neurons, however the nature of intranuclear iron deposition in the melanised neurons of the human substantia nigra is not understood. Here, scanning transmission x-ray microscopy (STXM) is used to probe iron foci in relation to the surrounding ultrastructure in melanised neurons of human substantia nigra from a confirmed Parkinson's case. In addition to the expected neuromelanin-bound iron, iron deposits are also associated with the edge of the cell nucleolus. Speciation analysis confirms these deposits to be ferric (Fe3+) iron. The function of intranuclear iron in these cells remains unresolved, although both damaging and protective mechanisms are considered. This finding shows that STXM is a powerful label-free tool for the in situ, nanoscale chemical characterisation of both organic and inorganic intracellular components. Future applications are likely to shed new light on incompletely understood biochemical mechanisms, such as metal dysregulation and morphological changes to cell nucleoli, that are important in understanding the pathogenesis of Parkinson's.
Collapse
Affiliation(s)
- Jake Brooks
- School of Engineering, Library Road, University of Warwick, Coventry, CV4 7AL, UK.
| | - James Everett
- School of Engineering, Library Road, University of Warwick, Coventry, CV4 7AL, UK
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Thornburrow Drive, Keele University, Staffordshire, ST4 7QB, UK
| | - Emily Hill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Kharmen Billimoria
- School of Engineering, Library Road, University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Institute of Neuroscience, Newcastle University, Newcastle-upon-Tyne, NE4 5PL, UK
| | - Peter J Sadler
- Department of Chemistry, Library Road, University of Warwick, Coventry, CV4 7AL, UK
| | - Neil Telling
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Thornburrow Drive, Keele University, Staffordshire, ST4 7QB, UK
| | - Joanna F Collingwood
- School of Engineering, Library Road, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Terzi EM, Possemato R. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling. Cold Spring Harb Perspect Med 2024; 14:a041545. [PMID: 37932129 PMCID: PMC10982729 DOI: 10.1101/cshperspect.a041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| |
Collapse
|
6
|
Hu H, Krishaa L, Fong ELS. Magnetic force-based cell manipulation for in vitro tissue engineering. APL Bioeng 2023; 7:031504. [PMID: 37736016 PMCID: PMC10511261 DOI: 10.1063/5.0138732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Cell manipulation techniques such as those based on three-dimensional (3D) bioprinting and microfluidic systems have recently been developed to reconstruct complex 3D tissue structures in vitro. Compared to these technologies, magnetic force-based cell manipulation is a simpler, scaffold- and label-free method that minimally affects cell viability and can rapidly manipulate cells into 3D tissue constructs. As such, there is increasing interest in leveraging this technology for cell assembly in tissue engineering. Cell manipulation using magnetic forces primarily involves two key approaches. The first method, positive magnetophoresis, uses magnetic nanoparticles (MNPs) which are either attached to the cell surface or integrated within the cell. These MNPs enable the deliberate positioning of cells into designated configurations when an external magnetic field is applied. The second method, known as negative magnetophoresis, manipulates diamagnetic entities, such as cells, in a paramagnetic environment using an external magnetic field. Unlike the first method, this technique does not require the use of MNPs for cell manipulation. Instead, it leverages the magnetic field and the motion of paramagnetic agents like paramagnetic salts (Gadobutrol, MnCl2, etc.) to propel cells toward the field minimum, resulting in the assembly of cells into the desired geometrical arrangement. In this Review, we will first describe the major approaches used to assemble cells in vitro-3D bioprinting and microfluidics-based platforms-and then discuss the use of magnetic forces for cell manipulation. Finally, we will highlight recent research in which these magnetic force-based approaches have been applied and outline challenges to mature this technology for in vitro tissue engineering.
Collapse
Affiliation(s)
- Huiqian Hu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - L. Krishaa
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Eliza Li Shan Fong
- Present address: Translational Tumor Engineering Laboratory, 15 Kent Ridge Cres, E7, 06-01G, Singapore 119276, Singapore. Author to whom correspondence should be addressed:
| |
Collapse
|
7
|
Zhang Q, Ding H, Yu X, Wang Q, Li X, Zhang R, Feng J. Plasma non-transferrin-bound iron uptake by the small intestine leads to intestinal injury and intestinal flora dysbiosis in an iron overload mouse model and Caco-2 cells. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2041-2055. [PMID: 37452897 DOI: 10.1007/s11427-022-2347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
Iron overload often occurs during blood transfusion and iron supplementation, resulting in the presence of non-transferrin-bound iron (NTBI) in host plasma and damage to multiple organs, but effects on the intestine have rarely been reported. In this study, an iron overload mouse model with plasma NTBI was established by intraperitoneal injection of iron dextran. We found that plasma NTBI damaged intestinal morphology, caused intestinal oxidative stress injury and reactive oxygen species (ROS) accumulation, and induced intestinal epithelial cell apoptosis. In addition, plasma NTBI increased the relative abundance of Ileibacterium and Desulfovibrio in the cecum, while the relative abundance of Faecalibaculum and Romboutsia was reduced. Ileibacterium may be a potential microbial biomarker of plasma NTBI. Based on the function prediction analysis, plasma NTBI led to the weakening of intestinal microbiota function, significantly reducing the function of the extracellular structure. Further investigation into the mechanism of injury showed that iron absorption in the small intestine significantly increased in the iron group. Caco-2 cell monolayers were used as a model of the intestinal epithelium to study the mechanism of iron transport. By adding ferric ammonium citrate (FAC, plasma NTBI in physiological form) to the basolateral side, the apparent permeability coefficient (Papp) values from the basolateral to the apical side were greater than 3×10-6 cm s-1. Intracellular ferritin level and apical iron concentration significantly increased, and SLC39A8 (ZIP8) and SLC39A14 (ZIP14) were highly expressed in the FAC group. Short hairpin RNA (shRNA) was used to knock down ZIP8 and ZIP14 in Caco-2 cells. Transfection with ZIP14-specific shRNA decreased intracellular ferritin level and inhibited iron uptake. These results revealed that plasma NTBI may cause intestinal injury and intestinal flora dysbiosis due to the uptake of plasma NTBI from the basolateral side into the small intestine, which is probably mediated by ZIP14.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoxuan Ding
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Yu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Wang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuejiao Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruiqiang Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Feng
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Yu H, Wang K, Yang Z, Li X, Liu S, Wang L, Zhang H. A ferritin protein is involved in the development and reproduction of the whitefly, Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2023; 52:750-758. [PMID: 37318359 DOI: 10.1093/ee/nvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Ferritins are conserved iron-binding proteins that exist in most living organisms and play an essential role in the maintenance of cellular iron homeostasis. Although ferritin has been studied in many species, little is known about its role in the whitefly, Bemisia tabaci. In this study, we identified an iron-binding protein from B. tabaci and named it BtabFer1. The full-length cDNA of BtabFer1 is 1,043 bp and encodes a protein consisting of 224 amino acids with a deduced molecular weight of 25.26 kDa, and phylogenetic analysis shows that BtabFer1 is conserved among Hemiptera insects. The expression levels of BtabFer1 in different developmental stages and tissues were analyzed by real-time PCR, and results showed that BtabFer1 was ubiquitously expressed at all developmental stages and in all examined tissues. The RNAi-mediated knockdown of BtabFer1 caused a significant reduction in survival rate, egg production, and egg hatching rate of whiteflies. Knockdown of BtabFer1 also inhibited the transcription of genes in the juvenile hormone signal transduction pathway. Taken together, these results suggest that BtabFer1 plays a critical role in the development and reproduction of whiteflies. This study can broaden our understanding of ferritin in insect fecundity and development, as well as provide baseline data for future studies.
Collapse
Affiliation(s)
- Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
- College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| |
Collapse
|
9
|
Shesh BP, Connor JR. A novel view of ferritin in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188917. [PMID: 37209958 PMCID: PMC10330744 DOI: 10.1016/j.bbcan.2023.188917] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.
Collapse
Affiliation(s)
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
10
|
Rurua M, Pachkoria E, Sanikidze T, Machvariani K, Ormocadze G, Jomidava T, Dzidziguri D, Ratiani L. Impact of the Angiotensin-Converting Enzyme (ACE) Inhibitors on the Course of the Acute Respiratory Distress Syndrome (ARDS) Developed During COVID-19 and Other Severe Respiratory Infections Under Hyperferritinemia Conditions: A Cohort Study. Clin Med Insights Circ Respir Pulm Med 2023; 17:11795484231180391. [PMID: 37313301 PMCID: PMC10259131 DOI: 10.1177/11795484231180391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) is not only the entry route of SARS-CoV-2 infection but also triggers a major mechanism of COVID-19 aggravation by promoting a hyperinflammatory state, leading to lung injury, hematological and immunological dysregulation. The impact of ACE2 inhibitors on the course of COVID-19 is still unclear. The effect of ACE2 inhibitors on the course of acute respiratory distress syndrome (ARDS) during COVID-19 and other severe respiratory infections in conditions of hyperferritinemia (HF) was investigated. Methods A cohort study of critically ill patients with COVID-19 and other respiratory diseases (widespread infection, pneumonia) who underwent treatment in The Critical Care Unit of the First University Clinic (Tbilisi, Georgia) during the 2020-2021 years was conducted. The impact of the ACE2 inhibitors on the course of the ARDS developed during COVID-19 and other severe respiratory infections in conditions of different severity of HF was evaluated. Results In COVID-19-infected (I) and uninfected (II) patients with ARDS, ACE2 inhibitors reduce the levels of Ang II, C reactive protein (CRP) and D-dimer (I: from 1508.07 ± 26.68 to 48.51 ± 24.35, from 233.92 ± 13.02 to 198.12 ± 11.88, from 7.88 ± 0.47 to 6.28 ± 0.43; II: from 1000.14 ± 149.49 to 46.23 ± 88.21, 226.48 ± 13.81 to 183.52 ± 17.32, from 6.39 ± 0.58 to 5.48 ± 0.69) at moderate HF and Ang II, CRP levels (I: from 1845.89 ± 89.37 to 49.64 ± 51.05, from 209.28 ± 14.41 to 175.37 ± 9.84; II: from 1753.29 ± 65.95 to 49.76 ± 55.74, 287.10 ± 20.50 to 214.71 ± 17.32) at severe HF, reduce interleukin-6 (IL-6) expression at moderate HF (I: from 1977.23 ± 354.66 to 899.36 ± 323.76) and cause reduction of pCO2 index at severe HF (I: from 69.80 ± 3.22 to 60.44 ± 2.20) in COVID-19-infected patients. Conclusion Study results show that the ACE2 inhibitors play an important role in the regulation of inflammatory processes in both COVID-19-infected and uninfected patients with ARDS. ACE2 inhibitors decrease immunological disorders, inflammation, and lung alveoli dysfunction, especially in COVID-19-infected patients.
Collapse
Affiliation(s)
- Magda Rurua
- Tbilisi State Medical University, High Technology Medical Center, First University Clinic, Tbilisi, Georgia
| | - Elena Pachkoria
- Tbilisi State Medical University, High Technology Medical Center, First University Clinic, Tbilisi, Georgia
| | - Tamar Sanikidze
- Department of Physics, Biophysics, Biomechanics and Informative Technologies, Tbilisi State Medical University, Tbilisi, Georgia
| | - K Machvariani
- Tbilisi State Medical University, High Technology Medical Center, First University Clinic, Tbilisi, Georgia
| | - George Ormocadze
- Ivane Beritashvili Center of Experimental Biomedicine Tbilisi, Tbilisi, Georgia
| | - Tinatin Jomidava
- Tbilisi State Medical University, High Technology Medical Center, First University Clinic, Tbilisi, Georgia
| | | | - Levan Ratiani
- Tbilisi State Medical University, High Technology Medical Center, First University Clinic, Tbilisi, Georgia
| |
Collapse
|
11
|
Voulgaridou GP, Theologidis V, Venetikidou M, Tsochantaridis I, Tsolou A, Koffa M, Panayiotidis MI, Pappa A. Investigating the Functional Roles of Aldehyde Dehydrogenase 3A1 in Human Corneal Epithelial Cells. Int J Mol Sci 2023; 24:ijms24065845. [PMID: 36982917 PMCID: PMC10056195 DOI: 10.3390/ijms24065845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) oxidizes medium-chain aldehydes to their corresponding carboxylic acids. It is expressed at high rates in the human cornea, where it has been characterized as a multi-functional protein displaying various cytoprotective modes of action. Previous studies identified its association with the DNA damage response (DDR) pathway. Here, we utilized a stable transfected HCE-2 (human corneal epithelium) cell line expressing ALDH3A1, to investigate the molecular mechanisms underlying the cytoprotective role(s) of ALDH3A1. Our data revealed morphological differences among the ALDH3A1-expressing and the mock-transfected HCE-2 cells accompanied by differential expression of E-cadherin. Similarly, the ALDH3A1/HCE-2 cells demonstrated higher mobility, reduced proliferation, upregulation of ZEB1, and downregulation of CDK3, and p57. The expression of ALDH3A1 also affected cell cycle progression by inducing the sequestration of HCE-2 cells at the G2/M phase. Following 16 h cell treatments with either H2O2 or etoposide, a significantly lower percentage of ALDH3A1/HCE-2 cells were apoptotic compared to the respective treated mock/HCE-2 cells. Interestingly, the protective effect of ALDH3A1 expression under these oxidative and genotoxic conditions was accompanied by a reduced formation of γ-H2AX foci and higher levels of total and phospho (Ser15) p53. Finally, ALDH3A1 was found to be localized both in the cytoplasm and the nucleus of transfected HCE-2 cells. Its cellular compartmentalization was not affected by oxidant treatment, while the mechanism by which ALDH3A1 translocates to the nucleus remains unknown. In conclusion, ALDH3A1 protects cells from both apoptosis and DNA damage by interacting with key homeostatic mechanisms associated with cellular morphology, cell cycle, and DDR.
Collapse
Affiliation(s)
- Georgia-Persephoni Voulgaridou
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Vasileios Theologidis
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Venetikidou
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Ilias Tsochantaridis
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Avgi Tsolou
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
12
|
Jung S, Kim MJ, Lim C, Elvitigala DAS, Lee J. Molecular insights into two ferritin subunits from red-lip mullet (Liza haematocheila): Detectable antibacterial activity with its expressional response against immune stimulants. Gene X 2023; 851:146923. [DOI: 10.1016/j.gene.2022.146923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/08/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
|
13
|
Zheng J, Wang JJ, Ma HM, Shen MQ, Qian ZM, Bao YX. Norcantharidin down-regulates iron contents in the liver and spleen of lipopolysaccharide-treated mice. Redox Rep 2022; 27:119-127. [PMID: 35735222 PMCID: PMC9246006 DOI: 10.1080/13510002.2022.2088011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective The inhibiting effect of Norcantharidin (NCTD) on IL-6 (interleukin-6) and STAT3 and the involvement of the IL-6/STAT3 pathway in hepcidin expression prompted us to speculate that NCTD could affect iron metabolism. Methods We examined the effects of NCTD on serum iron (SI) and transferrin (Tf) saturation, iron and ferritin light chain (FTL), transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1), ferroportin 1 (Fpn1), iron regulatory protein 1 (IRP1) and hepcidin, as well as IL-6 and STAT3 in the liver, spleen and duodenum of mice treated with lipopolysaccharide (LPS) in vivo, using RT-PCR, Western blotting and immunofluorescence analysis. Results NCTD could increase SI and Tf saturation and reduce tissue iron and FTL content by affecting expression of cell-iron transport proteins TfR1, DMT1 and Fpn1. The impact of NCTD on TfR1, DMT1 and Fpn1 expression is mediated by up-regulating IRP1 and down-regulating hepcidin expression, while NCTD-induced down-regulation of hepcidin is mediated by the IL-6/STAT3 signalling pathway in LPS-treated mice. Conclusions NCTD affects iron metabolism by modifying the expression of IL-6/JAK2/STAT3/hepcidin and IRP1 and suggest that the ability of NCTD to reduce tissue iron contents may be a novel mechanism associated with the anti-cancer effects of NCTD.
Collapse
Affiliation(s)
- Jie Zheng
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiao-Jiao Wang
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, People's Republic of China
| | - Hui-Min Ma
- Institute of Translational and Precision Medicine, Nantong University, Nantong, People's Republic of China
| | - Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, Nantong, People's Republic of China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, People's Republic of China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, People's Republic of China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
14
|
Abulseoud OA, Yehia A, Egol CJ, Nettey VN, Aly M, Qu Y, Skolnik AB, Grill MF, Sen A, Schneekloth TD. Attenuated initial serum ferritin concentration in critically ill coronavirus disease 2019 geriatric patients with comorbid psychiatric conditions. Front Psychiatry 2022; 13:1035986. [PMID: 36440432 PMCID: PMC9681793 DOI: 10.3389/fpsyt.2022.1035986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
We examined the effects of psychiatric comorbidity, sex, and ICU admission on serum ferritin concentration in 628 elderly patients (79.7 ± 8.5 years) with positive SARS-CoV-2 PCR test. Hospitalization was required in 96% of patients and 17% required ICU admission. Patients with COVID-19 and psychiatric comorbidities (n = 212) compared to patients without psychiatric comorbidities (n = 416) had significantly lower ferritin concentration (570.4 ± 900.1 vs. 744.1 ± 965, P = 0.029), a greater incidence of delirium (22.6 vs. 14.4%, P = 0.013) and higher mortality (35.3 vs. 27.6%, P = 0.015). Furthermore, we found significant effects for sex (P = 0.002) and ICU admission (P = 0.007). Among patients without comorbid psychiatric conditions, males had significantly higher ferritin compared to females (1,098.3 ± 78.4 vs. 651.5 ± 94.4, P < 0.001). ICU patients without comorbid psychiatric conditions had significantly higher serum ferritin compared to ICU patients with comorbid psychiatric conditions: (1,126.6 ± 110.7 vs. 668.6 ± 156.5, P < 0.001). Our results suggest that the presence of comorbid psychiatric conditions in elderly patients with COVID-19 is associated with higher rates of delirium and mortality and lower ferritin levels during severe illness. Whether high serum ferritin is protective during severe infection requires further investigation.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Collaborative Research Building (CRB), Scottsdale, AZ, United States
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Claudine J. Egol
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Victor N. Nettey
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Mohamed Aly
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Yihuai Qu
- Alix School of Medicine at Mayo Clinic, Phoenix, AZ, United States
| | - Aaron B. Skolnik
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Marie F. Grill
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Ayan Sen
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Terry D. Schneekloth
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
15
|
Reutovich AA, Srivastava AK, Smith GL, Foucher A, Yates DM, Stach EA, Papaefthymiou GC, Arosio P, Bou-Abdallah F. Effect of Phosphate and Ferritin Subunit Composition on the Kinetics, Structure, and Reactivity of the Iron Core in Human Homo- and Heteropolymer Ferritins. Biochemistry 2022; 61:2106-2117. [PMID: 36099002 PMCID: PMC9548343 DOI: 10.1021/acs.biochem.2c00354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferritins are highly conserved supramolecular protein nanostructures that play a key role in iron homeostasis. Thousands of iron atoms can be stored inside their hollow cavity as a hydrated ferric oxyhydroxide mineral. Although phosphate associates with the ferritin iron nanoparticles, the effect of physiological concentrations on the kinetics, structure, and reactivity of ferritin iron cores has not yet been explored. Here, the iron loading and mobilization kinetics were studied in the presence of 1-10 mM phosphate using homopolymer and heteropolymer ferritins having different H to L subunit ratios. In the absence of ferritin, phosphate enhances the rate of ferrous ion oxidation and forms large and soluble polymeric Fe(III)-phosphate species. In the presence of phosphate, Fe(II) oxidation and core formation in ferritin is significantly accelerated with oxidation rates several-fold higher than with phosphate alone. High-angle annular dark-field scanning transmission electron microscopy measurements revealed a strong phosphate effect on both the size and morphology of the iron mineral in H-rich (but not L-rich) ferritins. While iron nanoparticles in L-rich ferritins have spherical shape in the absence and presence of phosphate, iron nanoparticles in H-rich ferritins change from irregular shapes in the absence of phosphate to spherical particles in the presence of phosphate with larger size distribution and smaller particle size. In the presence of phosphate, the kinetics of iron-reductive mobilization from ferritin releases twice as much iron than in its absence. Altogether, our results demonstrate an important role for phosphate, and the ferritin H and L subunit composition toward the kinetics of iron oxidation and removal from ferritin, as well as the structure and reactivity of the iron mineral, and may have an important implication on ferritin iron management in vivo.
Collapse
Affiliation(s)
- Aliaksandra A Reutovich
- Department of Chemistry, State University of New York, Potsdam, New York 13676, United States
| | - Ayush K Srivastava
- Department of Chemistry, State University of New York, Potsdam, New York 13676, United States
| | - Gideon L Smith
- Department of Chemistry, State University of New York, Potsdam, New York 13676, United States
| | - Alexandre Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Douglas M Yates
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, New York 13676, United States
| |
Collapse
|
16
|
Abstract
Iron is essential to the virulence of Aspergillus species, and restricting iron availability is a critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron sequestration from pathogens. To gain an integrated understanding of how this is achieved in aspergillosis, we generated a transcriptomic time series of the response of human monocyte-derived macrophages to Aspergillus and used this and the available literature to construct a mechanistic computational model of iron handling of macrophages during this infection. We found an overwhelming macrophage response beginning 2 to 4 h after exposure to the fungus, which included upregulated transcription of iron import proteins transferrin receptor-1, divalent metal transporter-1, and ZIP family transporters, and downregulated transcription of the iron exporter ferroportin. The computational model, based on a discrete dynamical systems framework, consisted of 21 3-state nodes, and was validated with additional experimental data that were not used in model generation. The model accurately captures the steady state and the trajectories of most of the quantitatively measured nodes. In the experimental data, we surprisingly found that transferrin receptor-1 upregulation preceded the induction of inflammatory cytokines, a feature that deviated from model predictions. Model simulations suggested that direct induction of transferrin receptor-1 (TfR1) after fungal recognition, independent of the iron regulatory protein-labile iron pool (IRP-LIP) system, explains this finding. We anticipate that this model will contribute to a quantitative understanding of iron regulation as a fundamental host defense mechanism during aspergillosis. IMPORTANCE Invasive pulmonary aspergillosis is a major cause of death among immunosuppressed individuals despite the best available therapy. Depriving the pathogen of iron is an essential component of host defense in this infection, but the mechanisms by which the host achieves this are complex. To understand how recruited macrophages mediate iron deprivation during the infection, we developed and validated a mechanistic computational model that integrates the available information in the field. The insights provided by this approach can help in designing iron modulation therapies as anti-fungal treatments.
Collapse
|
17
|
Jin S, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. RNA Interference Analysis Reveals the Positive Regulatory Role of Ferritin in Testis Development in the Oriental River Prawn, Macrobrachium nipponense. Front Physiol 2022; 13:805861. [PMID: 35250613 PMCID: PMC8896479 DOI: 10.3389/fphys.2022.805861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
Ferritin plays an essential role in organismic and cellular iron homeostasis in Macrobrachium nipponense. In this study, we aimed to investigate the role of ferritin in the sexual development of male M. nipponense. According to the qPCR analysis of different tissues and developmental stages, ferritin exhibited high expression levels in the testis and androgenic gland, from post-larval developmental stage 5 (PL5) to PL15, indicating that it may be involved in gonad differentiation and development, especially in male sexual development. In situ hybridization and qPCR analysis in various reproductive cycles of the testis indicated that ferritin may play an essential role in spermatogonia development in M. nipponense. RNAi analysis revealed that ferritin positively affected mRNA expression of the insulin-like androgenic gland (Mn-IAG) and the secretion of testosterone, and thus positively affected testis development in M. nipponense. This study highlighted the functions of ferritin in the sexual development of male M. nipponense and provided important information for the establishment of a technique to regulate the process of testis development in M. nipponense.
Collapse
Affiliation(s)
| | - Hongtuo Fu
- *Correspondence: Hongtuo Fu, , orcid.org/000-0003-2974-9464
| | | | | | | | | | | | | |
Collapse
|
18
|
Massai L, Ciambellotti S, Cosottini L, Messori L, Turano P, Pratesi A. Direct detection of iron clusters in L ferritins through ESI-MS experiments. Dalton Trans 2021; 50:16464-16467. [PMID: 34729572 DOI: 10.1039/d1dt03106f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human cytoplasmic ferritins are heteropolymers of H and L subunits containing a catalytic ferroxidase center and a nucleation site for iron biomineralization, respectively. Here, ESI-MS successfully detected labile metal-protein interactions revealing the formation of tetra- and octa-iron clusters bound to L subunits, as previously underscored by X-ray crystallography.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Silvia Ciambellotti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Lucrezia Cosottini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
| | - Paola Turano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy. .,Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (C.I.R.M.M.P.), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
19
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
20
|
Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics 2021; 13:6244244. [PMID: 33881539 PMCID: PMC8083198 DOI: 10.1093/mtomcs/mfab021] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Iron is an essential element required by cells and has been described as a key player in ferroptosis. Ferritin operates as a fundamental iron storage protein in cells forming multimeric assemblies with crystalline iron cores. We discuss the latest findings on ferritin structure and activity and its link to cell metabolism and ferroptosis. The chemistry of iron, including its oxidation states, is important for its biological functions, its reactivity, and the biology of ferritin. Ferritin can be localized in different cellular compartments and secreted by cells with a variety of functions depending on its spatial context. Here, we discuss how cellular ferritin localization is tightly linked to its function in a tissue-specific manner, and how impairment of iron homeostasis is implicated in diseases, including cancer and coronavirus disease 2019. Ferritin is a potential biomarker and we discuss latest research where it has been employed for imaging purposes and drug delivery.
Collapse
Affiliation(s)
- Marina Plays
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Sebastian Müller
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| |
Collapse
|
21
|
Nash B, Irollo E, Brandimarti R, Meucci O. Opioid Modulation of Neuronal Iron and Potential Contributions to NeuroHIV. Methods Mol Biol 2021; 2201:139-162. [PMID: 32975796 DOI: 10.1007/978-1-0716-0884-5_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Opioid use has substantially increased over recent years and remains a major driver of new HIV infections worldwide. Clinical studies indicate that opioids may exacerbate the symptoms of HIV-associated neurocognitive disorders (HAND), but the mechanisms underlying opioid-induced cognitive decline remain obscure. We recently reported that the μ-opioid agonist morphine increased neuronal iron levels and levels of ferritin proteins that store iron, suggesting that opioids modulate neuronal iron homeostasis. Additionally, increased iron and ferritin heavy chain protein were necessary for morphine's ability to reduce the density of thin and mushroom dendritic spines in cortical neurons, which are considered critical mediators of learning and memory, respectively. As altered iron homeostasis has been reported in HAND and related neurocognitive disorders like Alzheimer's, Parkinson's, and Huntington's disease, understanding how opioids regulate neuronal iron metabolism may help identify novel drug targets in HAND with potential relevance to these other neurocognitive disorders. Here, we review the known mechanisms of opioid-mediated regulation of neuronal iron and corresponding cellular responses and discuss the implications of these findings for patients with HAND. Furthermore, we discuss a new molecular approach that can be used to understand if opioid modulation of iron affects the expression and processing of amyloid precursor protein and the contributions of this pathway to HAND.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elena Irollo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Renato Brandimarti
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Olimpia Meucci
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
23
|
Serafin EK, Paranjpe A, Brewer CL, Baccei ML. Single-nucleus characterization of adult mouse spinal dynorphin-lineage cells and identification of persistent transcriptional effects of neonatal hindpaw incision. Pain 2021; 162:203-218. [PMID: 33045156 PMCID: PMC7744314 DOI: 10.1097/j.pain.0000000000002007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neonatal tissue damage can have long-lasting effects on nociceptive processing in the central nervous system, which may reflect persistent injury-evoked alterations to the normal balance between synaptic inhibition and excitation in the spinal dorsal horn. Spinal dynorphin-lineage (pDyn) neurons are part of an inhibitory circuit which limits the flow of nociceptive input to the brain and is disrupted by neonatal tissue damage. To identify the potential molecular underpinnings of this disruption, an unbiased single-nucleus RNAseq analysis of adult mouse spinal pDyn cells characterized this population in depth and then identified changes in gene expression evoked by neonatal hindpaw incision. The analysis revealed 11 transcriptionally distinct subpopulations (ie, clusters) of dynorphin-lineage cells, including both inhibitory and excitatory neurons. Investigation of injury-evoked differential gene expression identified 15 genes that were significantly upregulated or downregulated in adult pDyn neurons from neonatally incised mice compared with naive littermate controls, with both cluster-specific and pan-neuronal transcriptional changes observed. Several of the identified genes, such as Oxr1 and Fth1 (encoding ferritin), were related to the cellular stress response. However, the relatively low number of injury-evoked differentially expressed genes also suggests that posttranscriptional regulation within pDyn neurons may play a key role in the priming of developing nociceptive circuits by early-life injury. Overall, the findings reveal novel insights into the molecular heterogeneity of a key population of dorsal horn interneurons that has previously been implicated in the suppression of mechanical pain and itch.
Collapse
Affiliation(s)
- Elizabeth K Serafin
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States . Dr. Brewer is now with the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Aditi Paranjpe
- Division of Biomedical Informatics, Bioinformatics Collaborative Services, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chelsie L Brewer
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States . Dr. Brewer is now with the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States . Dr. Brewer is now with the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
24
|
Tham M, Frischer JM, Weigand SD, Fitz-Gibbon PD, Webb SM, Guo Y, Adiele RC, Robinson CA, Brück W, Lassmann H, Furber KL, Pushie MJ, Parisi JE, Lucchinetti CF, Popescu BF. Iron Heterogeneity in Early Active Multiple Sclerosis Lesions. Ann Neurol 2020; 89:498-510. [PMID: 33244761 PMCID: PMC7986227 DOI: 10.1002/ana.25974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a heterogeneous inflammatory demyelinating disease. Iron distribution is altered in MS patients' brains, suggesting iron liberation within active lesions amplifies demyelination and neurodegeneration. Whether the amount and distribution of iron are similar or different among different MS immunopatterns is currently unknown. METHODS We used synchrotron X-ray fluorescence imaging, histology, and immunohistochemistry to compare the iron quantity and distribution between immunopattern II and III early active MS lesions. We analyzed archival autopsy and biopsy tissue from 21 MS patients. RESULTS Immunopattern II early active lesions contain 64% more iron (95% confidence interval [CI] = 17-127%, p = 0.004) than immunopattern III lesions, and 30% more iron than the surrounding periplaque white matter (95% CI = 3-64%, p = 0.03). Iron in immunopattern III lesions is 28% lower than in the periplaque white matter (95% CI = -40 to -14%, p < 0.001). When normalizing the iron content of early active lesions to that of surrounding periplaque white matter, the ratio is significantly higher in immunopattern II (p < 0.001). Microfocused X-ray fluorescence imaging shows that iron in immunopattern II lesions localizes to macrophages, whereas macrophages in immunopattern III lesions contain little iron. INTERPRETATION Iron distribution and content are heterogeneous in early active MS lesions. Iron accumulates in macrophages in immunopattern II, but not immunopattern III lesions. This heterogeneity in the two most common MS immunopatterns may be explained by different macrophage polarization, origin, or different demyelination mechanisms, and paves the way for developing new or using existing iron-sensitive magnetic resonance imaging techniques to differentiate among immunopatterns in the general nonbiopsied MS patient population. ANN NEUROL 2021;89:498-510.
Collapse
Affiliation(s)
- Mylyne Tham
- Department of Anatomy, Physiology, and Pharmacology/Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Josa M Frischer
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Stephen D Weigand
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patrick D Fitz-Gibbon
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Yong Guo
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Reginald C Adiele
- Department of Anatomy, Physiology, and Pharmacology/Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher A Robinson
- Department of Pathology and Laboratory Medicine, Saskatoon Health Region/College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wolfgang Brück
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Kendra L Furber
- Department of Anatomy, Physiology, and Pharmacology/Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M Jake Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Bogdan F Popescu
- Department of Anatomy, Physiology, and Pharmacology/Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Puentes-Pardo JD, Moreno-SanJuan S, Carazo Á, León J. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease. Antioxidants (Basel) 2020; 9:antiox9121214. [PMID: 33276470 PMCID: PMC7760122 DOI: 10.3390/antiox9121214] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Heme oxygenase 1 (HO-1) is the rate-limiting enzyme of heme oxidative degradation, generating carbon monoxide (CO), free iron, and biliverdin. HO-1, a stress inducible enzyme, is considered as an anti-oxidative and cytoprotective agent. As many studies suggest, HO-1 is highly expressed in the gastrointestinal tract where it is involved in the response to inflammatory processes, which may lead to several diseases such as pancreatitis, diabetes, fatty liver disease, inflammatory bowel disease, and cancer. In this review, we highlight the pivotal role of HO-1 and its downstream effectors in the development of disorders and their beneficial effects on the maintenance of the gastrointestinal tract health. We also examine clinical trials involving the therapeutic targets derived from HO-1 system for the most common diseases of the digestive system.
Collapse
Affiliation(s)
- Jose D. Puentes-Pardo
- Research Unit, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
- Correspondence: (J.D.P.-P.); (J.L.); Tel.: +34-958-023-706 (J.L.)
| | - Sara Moreno-SanJuan
- Cytometry and Microscopy Research Service, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain;
| | - Ángel Carazo
- Genomic Research Service, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain;
| | - Josefa León
- Research Unit, Instituto de Investigacion Biosanitaria de Granada, ibs.GRANADA, 18012 Granada, Spain
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, 18016 Granada, Spain
- Correspondence: (J.D.P.-P.); (J.L.); Tel.: +34-958-023-706 (J.L.)
| |
Collapse
|
26
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020; 10:476. [PMID: 32328462 PMCID: PMC7160331 DOI: 10.3389/fonc.2020.00476] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient that plays a complex role in cancer biology. Iron metabolism must be tightly controlled within cells. Whilst fundamental to many cellular processes and required for cell survival, excess labile iron is toxic to cells. Increased iron metabolism is associated with malignant transformation, cancer progression, drug resistance and immune evasion. Depleting intracellular iron stores, either with the use of iron chelating agents or mimicking endogenous regulation mechanisms, such as microRNAs, present attractive therapeutic opportunities, some of which are currently under clinical investigation. Alternatively, iron overload can result in a form of regulated cell death, ferroptosis, which can be activated in cancer cells presenting an alternative anti-cancer strategy. This review focuses on alterations in iron metabolism that enable cancer cells to meet metabolic demands required during different stages of tumorigenesis in relation to metastasis and immune response. The strength of current evidence is considered, gaps in knowledge are highlighted and controversies relating to the role of iron and therapeutic targeting potential are discussed. The key question we address within this review is whether iron modulation represents a useful approach for treating metastatic disease and whether it could be employed in combination with existing targeted drugs and immune-based therapies to enhance their efficacy.
Collapse
Affiliation(s)
- Rikki A. M. Brown
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Kirsty L. Richardson
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Tasnuva D. Kabir
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Debbie Trinder
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Ruth Ganss
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Peter J. Leedman
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
27
|
Cömert P, Yıldız A, Yıldırım M, Afacan Öztürk HB, Pala Ç, Albayrak M, Aylı M. Prognostic Factors in Patients with Low-Grade Nonhodgkin Lymphoma. Indian J Hematol Blood Transfus 2020; 36:78-83. [PMID: 32158088 DOI: 10.1007/s12288-019-01168-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
Low-grade Nonhodgkin lymphoma (LG-NHL) is characterized by indolent clinical course, which consist of marginal zone lymphoma (MZL), follicular lymphoma (FL), chronic lymphocytic leukemia/small lymphocytic lymphoma, lymphoplasmacytic lymphoma, waldenstrom macroglobulinemia (WM) as the most common subtypes. Factors affecting prognosis and treatment need in these patients have long been the subject of research. A retrospective study was conducted with patients diagnosed with LG-NHL in Hematology Departments of two centres between 2010 and 2018. At the time of diagnosis, demographic and disease characteristics, hematological and biochemical parameters were examined. Using these data, treatment requirements, response and survival rates were calculated. The effect of parameters on survival and need to treatment were analyzed. 93 LG-NHL patients were included in this study. 40 (43%) of these patients were MZL, 28 (30.1%) were FL and 25 (26.8%) were others. In comparison of patients required treatment with patients without treatment, there was significant difference among the number of comorbidity, platelet count, neutrophil count, disease subgroups and ferritin levels. Logistic regression analysis revealed that disease subgroup (other than MZL and FL) and ferritin levels were independent risk factors for need to treatment. Only ferritin level was found to be associated with overall survival. The current study demonstrated an association between serum ferritin levels and prognosis in patients with LG-NHL. Given that it is easily available and low-cost, the initial ferritin level can be used as a prognostic marker for patients with indolent lymphoma.
Collapse
Affiliation(s)
- Pınar Cömert
- 1Department of Hematology, Diskapi Yildirim Beyazit Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Abdulkerim Yıldız
- 1Department of Hematology, Diskapi Yildirim Beyazit Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Murat Yıldırım
- 2Department of Hematology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Hacer Berna Afacan Öztürk
- 1Department of Hematology, Diskapi Yildirim Beyazit Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Çiğdem Pala
- 1Department of Hematology, Diskapi Yildirim Beyazit Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Murat Albayrak
- 1Department of Hematology, Diskapi Yildirim Beyazit Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Meltem Aylı
- 2Department of Hematology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
28
|
Abstract
Ferritins are evolutionarily conserved proteins that regulate cellular iron metabolism. It is the only intracellular protein that is capable of storing large quantities of iron. Although the ratio of different subunits determines the iron content of each ferritin molecule, the exact mechanism that dictates organization of these subunits still is unclear. In this review, we address renal ferritin expression and its implication in kidney disease. Specifically, we address the role of ferritin subunits in preventing kidney injury and also promoting tolerance against infection-associated kidney injury. We describe functions for ferritin that are independent of its ability to ferroxidize and store iron. We further discuss the implications of ferritin in body fluids, including blood and urine, during inflammation and kidney disease. Although there are several in-depth review articles on ferritin in the context of iron metabolism, we chose to focus on the role of ferritin particularly in kidney health and disease and highlight unanswered questions in the field.
Collapse
Affiliation(s)
- Kayla McCullough
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
29
|
Abstract
Iron is critically important and highly regulated trace metal in the human body. However, in its free ion form, it is known to be cytotoxic; therefore, it is bound to iron storing protein, ferritin. Ferritin is a key regulator of body iron homeostasis able to form various types of minerals depending on the tissue environment. Each mineral, e.g. magnetite, maghemite, goethite, akaganeite or hematite, present in the ferritin core carry different characteristics possibly affecting cells in the tissue. In specific cases, it can lead to disease development. Widely studied connection with neurodegenerative conditions is widely studied, including Alzheimer disease. Although the exact ferritin structure and its distribution throughout a human body are still not fully known, many studies have attempted to elucidate the mechanisms involved in its regulation and pathogenesis. In this review, we try to summarize the iron uptake into the body. Next, we discuss the known occurrence of ferritin in human tissues. Lastly, we also examine the formation of iron oxides and their involvement in brain functions.
Collapse
|
30
|
Zhang K, Fan Z, Weng J, Zhao J, Wang J, Wu H, Xie M, Zhou H, Li H. Peptide-Based Biosensing of Redox-Active Protein-Heme Complexes Indicates Novel Mechanism for Tumor Survival under Oxidative Stress. ACS Sens 2019; 4:2671-2678. [PMID: 31525915 DOI: 10.1021/acssensors.9b01083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signal response of several relevant protein-cofactor interactions, united in one bioassay, may greatly enhance the ability to study the intriguing molecular mechanisms of pathological process such as the tumor immunological process of chronic inflammation and oxidative stress. Here, a peptide-based multiplexed bioassay has been developed and applied in studying the interactions among ferritin, p53, and heme under oxidative stress. In a malignant breast cancer cell line, it can be observed that oxidative stress-triggered nuclear co-translocations of heme and ferritin may lead to direct molecular contact of ferritin with p53, to pass heme to p53, which subsequently sequestered into the cytoplasm, therefore forming a possible new route of tumor survival under oxidative stress, by using the stress to circumvent oxidative stress-induced apoptosis. The observed peroxidase-like activity of ferritin-heme and p53-heme complexes may also contribute to survival. Such activity is observed most prominently in triple negative or the most malignant breast cancer subtype. These results may suggest the possible future use of this bioassay in furthering the understanding of tumor molecular pathology, as well as the early detection, diagnosis, and prognosis of cancer.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Zhenqiang Fan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiena Weng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaying Wang
- Department of Rehabilitation & Acupuncture and Moxibustion, Nanjing Medical University, Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu 214000, China
| | - Hao Wu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Hong Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao Li
- School of Biological Science and Technology, University of Jinan, No. 106 Jiwei Road, Jinan, Shandong 250022, China
| |
Collapse
|
31
|
Ravi V, Madhankumar AB, Abraham T, Slagle-Webb B, Connor JR. Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms. PLoS One 2019; 14:e0221952. [PMID: 31491006 PMCID: PMC6730865 DOI: 10.1371/journal.pone.0221952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Elevated expression of the iron regulatory protein, ferritin heavy chain 1 (FTH1), is increasingly being associated with high tumor grade and poor survival outcomes in glioblastoma. Glioma initiating cells (GICs), a small population of stem-like cells implicated in therapeutic resistance and glioblastoma recurrence, have recently been shown to exhibit increased FTH1 expression. We previously demonstrated that FTH1 knockdown enhanced therapeutic sensitivity in an astrocytoma cell line. Therefore, in this study we developed a liposomal formulation to enable the in vitro delivery of FTH1 siRNA in patient xenograft derived GICs from glioblastomas with pro-neural and mesenchymal transcriptional signatures to interrogate the effect of FTH1 downregulation on their radiation sensitivity. Transfection with siRNA decreased FTH1 expression significantly in both GICs. However, there were inherent differences in transfectability between pro-neural and mesenchymal tumor derived GICs, leading us to modify siRNA: liposome ratios for comparable transfection. Moreover, loss of FTH1 expression resulted in increased extracellular lactate dehydrogenase activity, executioner caspase 3/7 induction, substantial mitochondrial damage, diminished mitochondrial mass and reduced cell viability. However, only GICs from pro-neural glioblastoma showed marked increase in radiosensitivity upon FTH1 downregulation demonstrated by decreased cell viability, impaired DNA repair and reduced colony formation subsequent to radiation. In addition, the stemness marker Nestin was downregulated upon FTH1 silencing only in GICs of pro-neural but not mesenchymal origin. Using liposomes as a siRNA delivery system, we established FTH1 as a critical factor for survival in both GIC subtypes as well as a regulator of radioresistance and stemness in pro-neural tumor derived GICs. Our study provides further evidence to support the role of FTH1 as a promising target in glioblastoma.
Collapse
Affiliation(s)
- Vagisha Ravi
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| | | | - Thomas Abraham
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
32
|
Nash B, Tarn K, Irollo E, Luchetta J, Festa L, Halcrow P, Datta G, Geiger JD, Meucci O. Morphine-Induced Modulation of Endolysosomal Iron Mediates Upregulation of Ferritin Heavy Chain in Cortical Neurons. eNeuro 2019; 6:ENEURO.0237-19.2019. [PMID: 31300544 PMCID: PMC6675873 DOI: 10.1523/eneuro.0237-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent and are aggravated by µ-opioid use. We have previously shown that morphine and other µ-opioids may contribute to HAND by inhibiting the homeostatic and neuroprotective chemokine receptor CXCR4 in cortical neurons, and this novel mechanism depends on upregulation of the protein ferritin heavy chain (FHC). Here, we examined the cellular events and potential mechanisms involved in morphine-mediated FHC upregulation using rat cortical neurons of either sex in vitro and in vivo. Morphine dose dependently increased FHC protein levels in primary neurons through µ-opioid receptor (µOR) and Gαi-protein signaling. Cytoplasmic FHC levels were significantly elevated, but nuclear FHC levels and FHC gene expression were unchanged. Morphine-treated rats also displayed increased FHC levels in layer 2/3 neurons of the prefrontal cortex. Importantly, both in vitro and in vivo FHC upregulation was accompanied by loss of mature dendritic spines, which was also dependent on µOR and Gαi-protein signaling. Moreover, morphine upregulated ferritin light chain (FLC), a component of the ferritin iron storage complex, suggesting that morphine altered neuronal iron metabolism. Indeed, prior to FHC upregulation, morphine increased cytoplasmic labile iron levels as a function of decreased endolysosomal iron. In line with this, chelation of endolysosomal iron (but not extracellular iron) blocked morphine-induced FHC upregulation and dendritic spine reduction, whereas iron overloading mimicked the effect of morphine on FHC and dendritic spines. Overall, these data demonstrate that iron mediates morphine-induced FHC upregulation and consequent dendritic spine deficits and implicate endolysosomal iron efflux to the cytoplasm in these effects.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Kevin Tarn
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Lindsay Festa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Peter Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
33
|
Wu B, Wu Y, Tang W. Heme Catabolic Pathway in Inflammation and Immune Disorders. Front Pharmacol 2019; 10:825. [PMID: 31396090 PMCID: PMC6667928 DOI: 10.3389/fphar.2019.00825] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, the heme catabolic pathway is considered to play an important regulatory role in cell protection, apoptosis, inflammation, and other physiological and pathological processes. An appropriate amount of heme forms the basic elements of various life activities, while when released in large quantities, it can induce toxicity by mediating oxidative stress and inflammation. Heme oxygenase (HO) -1 can catabolize free heme into carbon monoxide (CO), ferrous iron, and biliverdin (BV)/bilirubin (BR). The diverse functions of these metabolites in immune systems are fascinating. Decades work shows that administration of degradation products of heme such as CO and BV/BR exerts protective activities in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS) and other immune disorders. This review elaborates the molecular and biochemical characterization of heme catabolic pathway, discusses the signal transduction and immunomodulatory mechanism in inflammation and summarizes the promising therapeutic strategies based on this pathway in inflammatory and immune disorders.
Collapse
Affiliation(s)
- Bing Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Wu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Xue L, Deng D, Sun J. Magnetoferritin: Process, Prospects, and Their Biomedical Applications. Int J Mol Sci 2019; 20:E2426. [PMID: 31100837 PMCID: PMC6567256 DOI: 10.3390/ijms20102426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Ferritin is a spherical iron storage protein composed of 24 subunits and an iron core. Using biomimetic mineralization, magnetic iron oxide can be synthesized in the cavity of ferritin to form magnetoferritin (MFt). MFt, also known as a superparamagnetic protein, is a novel magnetic nanomaterial with good biocompatibility and flexibility for biomedical applications. Recently, it has been demonstrated that MFt had tumor targetability and a peroxidase-like catalytic activity. Thus, MFt, with its many unique properties, provides a powerful platform for tumor diagnosis and therapy. In this review, we discuss the biomimetic synthesis and biomedical applications of MFt.
Collapse
Affiliation(s)
- Le Xue
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
35
|
Sikura KÉ, Potor L, Szerafin T, Zarjou A, Agarwal A, Arosio P, Poli M, Hendrik Z, Méhes G, Oros M, Posta N, Beke L, Fürtös I, Balla G, Balla J. Potential Role of H-Ferritin in Mitigating Valvular Mineralization. Arterioscler Thromb Vasc Biol 2019; 39:413-431. [PMID: 30700131 PMCID: PMC6393195 DOI: 10.1161/atvbaha.118.312191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective- Calcific aortic valve disease is a prominent finding in elderly and in patients with chronic kidney disease. We investigated the potential role of iron metabolism in the pathogenesis of calcific aortic valve disease. Approach and Results- Cultured valvular interstitial cells of stenotic aortic valve with calcification from patients undergoing valve replacement exhibited significant susceptibility to mineralization/osteoblastic transdifferentiation in response to phosphate. This process was abrogated by iron via induction of H-ferritin as reflected by lowering ALP and osteocalcin secretion and preventing extracellular calcium deposition. Cellular phosphate uptake and accumulation of lysosomal phosphate were decreased. Accordingly, expression of phosphate transporters Pit1 and Pit2 were repressed. Translocation of ferritin into lysosomes occurred with high phosphate-binding capacity. Importantly, ferritin reduced nuclear accumulation of RUNX2 (Runt-related transcription factor 2), and as a reciprocal effect, it enhanced nuclear localization of transcription factor Sox9 (SRY [sex-determining region Y]-box 9). Pyrophosphate generation was also increased via upregulation of ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase-2). 3H-1, 2-dithiole-3-thione mimicked these beneficial effects in valvular interstitial cell via induction of H-ferritin. Ferroxidase activity of H-ferritin was essential for this function, as ceruloplasmin exhibited similar inhibitory functions. Histological analysis of stenotic aortic valve revealed high expression of H-ferritin without iron accumulation and its relative dominance over ALP in noncalcified regions. Increased expression of H-ferritin accompanied by elevation of TNF-α (tumor necrosis factor-α) and IL-1β (interleukin-1β) levels, inducers of H-ferritin, corroborates the essential role of ferritin/ferroxidase via attenuating inflammation in calcific aortic valve disease. Conclusions- Our results indicate that H-ferritin is a stratagem in mitigating valvular mineralization/osteoblastic differentiation. Utilization of 3H-1, 2-dithiole-3-thione to induce ferritin expression may prove a novel therapeutic potential in valvular mineralization.
Collapse
Affiliation(s)
- Katalin Éva Sikura
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Tamás Szerafin
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Department of Cardiac Surgery, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Abolfazl Zarjou
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anupam Agarwal
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zoltán Hendrik
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Melinda Oros
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Niké Posta
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Lívia Beke
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Ibolya Fürtös
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| |
Collapse
|
36
|
Zhao H, Zhao X, Lei T, Zhang M. Screening, identification of prostate cancer urinary biomarkers and verification of important spots. Invest New Drugs 2019; 37:935-947. [PMID: 30610587 DOI: 10.1007/s10637-018-0709-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
Abstract
Prostate-specific antigen (PSA) has been widely used as the unique serum biomarker for the diagnosis of prostate cancer (PCa). When PSA is moderately increased (e.g., 4-10 ng/ml), it is difficult to differentiate benign prostatic hyperplasia (BPH) from cancer. The diagnostic test (i.e., prostate biopsy) is invasive, adding pain and economic burden to the patient. Urine samples are more convenient, non-invasive and readily available than blood. We sought to determine whether ferritin might be the potential urinary biomarker in prostate cancer diagnosis. Using two-dimensional electrophoresis (2DE) followed by mass spectrometry (MS), differentially expressed urinary proteins among patients with PCa, BPH and normal controls were obtained. The ferritin heavy chain (FTH) gene, ferritin light chain (FTL) gene and protein expression of BPH-1 cells and PC-3 cells were analyzed by real-time quantitative PCR and Western blotting, respectively. Stable FTH or FTL silenced cell lines were generated by small hairpin(sh) RNA lentiviral transfection. The function of the cell lines was evaluated by the colony formation assay, transwell assay, and flow cytometry. Compared with BPH and normal controls, 15 overexpressed proteins, including FTH and FTL, were identified in the urine of the PCa group. FTH and FTL were also highly expressed in PC-3 cell lines compared with BPH-1 cells. FTH-silenced cells showed reduced cell proliferation, migration and increased cell apoptosis. FTL-silenced cells showed increased proliferation and migration abilities. There are differences in urinary proteins among patients with PCa, BPH and normal controls. FTH and FTL play different roles in PCa cells and are potential biomarkers for PCa.
Collapse
Affiliation(s)
- Huijun Zhao
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Xuhong Zhao
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
- Department of Clinical Laboratory, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Ting Lei
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
- Department of Clinical Laboratory, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Man Zhang
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
- Department of Clinical Laboratory, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.
| |
Collapse
|
37
|
Bertoli S, Paubelle E, Bérard E, Saland E, Thomas X, Tavitian S, Larcher M, Vergez F, Delabesse E, Sarry A, Huguet F, Larrue C, Bosc C, Farge T, Sarry JE, Michallet M, Récher C. Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur J Haematol 2018; 102:131-142. [DOI: 10.1111/ejh.13183] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Emilie Bérard
- Service d'Epidémiologie Centre Hospitalier Universitaire de Toulouse Toulouse France
- UMR 1027 INSERM‐Université de Toulouse III Toulouse France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | | | - François Vergez
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Eric Delabesse
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
| | - Clément Larrue
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Claudie Bosc
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | - Jean Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| | | | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
- Centre de Recherches en Cancérologie de Toulouse UMR1037‐INSERM, ERL5294 CNRS Toulouse France
| |
Collapse
|
38
|
Emerging and Dynamic Biomedical Uses of Ferritin. Pharmaceuticals (Basel) 2018; 11:ph11040124. [PMID: 30428583 PMCID: PMC6316788 DOI: 10.3390/ph11040124] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
Ferritin, a ubiquitously expressed protein, has classically been considered the main iron cellular storage molecule in the body. Owing to the ferroxidase activity of the H-subunit and the nucleation ability of the L-subunit, ferritin can store a large amount of iron within its mineral core. However, recent evidence has demonstrated a range of abilities of ferritin that extends well beyond the scope of iron storage. This review aims to discuss novel functions and biomedical uses of ferritin in the processes of iron delivery, delivery of biologics such as chemotherapies and contrast agents, and the utility of ferritin as a biomarker in a number of neurological diseases.
Collapse
|
39
|
Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation. Curr Allergy Asthma Rep 2018; 18:63. [PMID: 30267163 DOI: 10.1007/s11882-018-0817-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Allergen is an umbrella term for irritants of diverse origin. Along with other offenders such as pathogens, mutagens, xenobiotics, and pollutants, allergens can be grouped as inflammatory agents. Danger-associated molecular patterns (DAMPs) are altered metabolism products of necrotic or stressed cells, which are deemed as alarm signals by the innate immune system. Like inflammation, DAMPs play a role in correcting the altered physiological state, but in excess, they can be lethal due to their signal transduction roles. In a vicious loop, inflammatory agents are DAMP generators and DAMPs create a pro-inflammatory state. Only a handful of DAMPs such as uric acid, mtDNA, extracellular ATP, HSPs, amyloid β, S100, HMGB1, and ECM proteins have been studied till now. A large number of DAMPs are still obscure, in need to be unveiled. The identification and functional characterization of those DAMPs in inflammation pathways can be insightful. RECENT FINDINGS As inflammation and immune activation have been implicated in almost all pathologies, studies on them have been intensified in recent times. Consequently, the pathologic mechanisms of various DAMPs have emerged. Following PRR ligation, the activation of inflammasome, MAPK, and NF-kB is some of the common pathways. The limited number of recognized DAMPs are only a fraction of the vast array of other DAMPs. In fact, any misplaced or abnormal level of metabolite can be a DAMP. Sophisticated analysis studies can reveal the full profile of the DAMPs. Lowering the level of DAMPs is useful therapeutic intervention but certainly not as effective as avoiding the DAMP generators, i.e., the inflammatory agents. So, rather than mitigating DAMPs, efforts should be focused on the elimination of inflammatory agents.
Collapse
|
40
|
Jin S, Fu H, Sun S, Jiang S, Xiong Y, Gong Y, Qiao H, Zhang W, Wu Y. iTRAQ-based quantitative proteomic analysis of the androgenic glands of the oriental river prawn, Macrobrachium nipponense , during nonreproductive and reproductive seasons. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:50-57. [DOI: 10.1016/j.cbd.2018.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/17/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023]
|
41
|
Lobello N, Biamonte F, Pisanu ME, Faniello MC, Jakopin Ž, Chiarella E, Giovannone ED, Mancini R, Ciliberto G, Cuda G, Costanzo F. Ferritin heavy chain is a negative regulator of ovarian cancer stem cell expansion and epithelial to mesenchymal transition. Oncotarget 2018; 7:62019-62033. [PMID: 27566559 PMCID: PMC5308708 DOI: 10.18632/oncotarget.11495] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Objectives Ferritin is the major intracellular iron storage protein essential for maintaining the cellular redox status. In recent years ferritin heavy chain (FHC) has been shown to be involved also in the control of cancer cell growth. Analysis of public microarray databases in ovarian cancer revealed a correlation between low FHC expression levels and shorter survival. To better understand the role of FHC in cancer, we have silenced the FHC gene in SKOV3 cells. Results FHC-KO significantly enhanced cell viability and induced a more aggressive behaviour. FHC-silenced cells showed increased ability to form 3D spheroids and enhanced expression of NANOG, OCT4, ALDH and Vimentin. These features were accompanied by augmented expression of SCD1, a major lipid metabolism enzyme. FHC apparently orchestrates part of these changes by regulating a network of miRNAs. Methods FHC-silenced and control shScr SKOV3 cells were monitored for changes in proliferation, migration, ability to propagate as 3D spheroids and for the expression of stem cell and epithelial-to-mesenchymal-transition (EMT) markers. The expression of three miRNAs relevant to spheroid formation or EMT was assessed by q-PCR. Conclusions In this paper we uncover a new function of FHC in the control of cancer stem cells.
Collapse
Affiliation(s)
- Nadia Lobello
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Flavia Biamonte
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Maria Elena Pisanu
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Italy.,Laboratorio di Biologia Cellulare e Molecolare, Dipartimento di Chirurgia "P. Valdoni", Sapienza Università di Roma, Italy
| | - Maria Concetta Faniello
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Emanuela Chiarella
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Emilia Dora Giovannone
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy.,Centro Interdipartimentale di Servizi e Ricerca, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Rita Mancini
- Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Italy.,Laboratorio di Biologia Cellulare e Molecolare, Dipartimento di Chirurgia "P. Valdoni", Sapienza Università di Roma, Italy
| | - Gennaro Ciliberto
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Napoli, Italy
| | - Giovanni Cuda
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| | - Francesco Costanzo
- Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi "Magna Graecia", Catanzaro, Italy
| |
Collapse
|
42
|
Nanometronomic treatment of 4T1 breast cancer with nanocaged doxorubicin prevents drug resistance and circumvents cardiotoxicity. Oncotarget 2018; 8:8383-8396. [PMID: 28039473 PMCID: PMC5352408 DOI: 10.18632/oncotarget.14204] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022] Open
Abstract
Chemotherapeutic treatment of breast cancer is based on maximum tolerated dose (MTD) approach. However, advanced stage tumors are not effectively eradicated by MTD owing to suboptimal drug targeting, onset of therapeutic resistance and neoangiogenesis. In contrast, “metronomic” chemotherapy is based on frequent drug administrations at lower doses, resulting in neovascularization inhibition and induction of tumor dormancy. Here we show the potential of H-ferritin (HFn)-mediated targeted nanodelivery of metronomic doxorubicin (DOX) in the setting of a highly aggressive and metastatic 4T1 breast cancer mouse model with DOX-inducible expression of chemoresistance. We find that HFn-DOX administered at repeated doses of 1.24 mg kg−1 strongly improves the antitumor potential of DOX chemotherapy arresting the tumor progression. We find that such a potent antitumor effect is attributable to multiple nanodrug actions beyond cell killing, including inhibition of tumor angiogenesis and avoidance of chemoresistance. Multiparametric assessment of heart tissues, including histology, ultrastructural analysis of tissue morphology, and measurement of markers of reactive oxygen species and hepatic/renal conditions, provided evidence that metronomic HFn-DOX allowed us to overcome cardiotoxicity. Our results suggest that HFn-DOX has tremendous potential for the development of “nanometronomic” chemotherapy toward safe and tailored oncological treatments.
Collapse
|
43
|
Ahn B, Lee SG, Yoon HR, Lee JM, Oh HJ, Kim HM, Jung Y. Four-fold Channel-Nicked Human Ferritin Nanocages for Active Drug Loading and pH-Responsive Drug Release. Angew Chem Int Ed Engl 2018; 57:2909-2913. [DOI: 10.1002/anie.201800516] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Byungjun Ahn
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| | - Seong-Gyu Lee
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Korea
| | - Hye Ryeon Yoon
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| | - Jeong Min Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| | - Hyeok Jin Oh
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology; Korea
| | - Yongwon Jung
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| |
Collapse
|
44
|
Ahn B, Lee SG, Yoon HR, Lee JM, Oh HJ, Kim HM, Jung Y. Four-fold Channel-Nicked Human Ferritin Nanocages for Active Drug Loading and pH-Responsive Drug Release. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Byungjun Ahn
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| | - Seong-Gyu Lee
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Korea
| | - Hye Ryeon Yoon
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| | - Jeong Min Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| | - Hyeok Jin Oh
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering; Korea Advanced Institute of Science and Technology; Korea
| | - Yongwon Jung
- Department of Chemistry; Korea Advanced Institute of Science and Technology; Daejeon 305-701 Korea
| |
Collapse
|
45
|
The interaction of iron and the genome: For better and for worse. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:25-32. [DOI: 10.1016/j.mrrev.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/28/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022]
|
46
|
Kazan HH, Urfali-Mamatoglu C, Gunduz U. Iron metabolism and drug resistance in cancer. Biometals 2017; 30:629-641. [DOI: 10.1007/s10534-017-0037-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023]
|
47
|
Ding Z, Zhao X, Zhan Q, Cui L, Sun Q, Wang W, Liu H. Comparative analysis of two ferritin subunits from blunt snout bream (Megalobrama amblycephala): Characterization, expression, iron depriving and bacteriostatic activity. FISH & SHELLFISH IMMUNOLOGY 2017; 66:411-422. [PMID: 28535971 DOI: 10.1016/j.fsi.2017.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Iron is an essential microelement for almost all living organisms, while an excess of iron is toxic, thus maintenance of iron homeostasis is vital. As iron storage protein, ferritin plays an important role in iron metabolism. In the present study, we cloned and characterized the ferritin H subunit from Megalobrama amblycephala, termed as MamFerH. An iron-responsive element (IRE) was predicted in the 5' untranslated region (UTR) of MamFerH, while its bulge structural was different from that of the reported ferritin M subunit (MamFerM). The MamFerH and MamFerM genes exhibited similar expression patterns during early development with specifically high expression post hatching, whereas their tissue expression patterns were different. Specifically, MamFerM was highly expressed in the spleen, liver and kidney, while MamFerH was predominantly expressed in the blood and brain, indicating their different functions. In addition, the expression of the two genes was induced upon Aeromonas hydrophila infection at both transcriptional and translational levels, and MamFerH was more efficient. Immunohistochemistry and immunofluorescence analysis confirmed their significant changes at protein level and distribution in the liver post infection, indicating their participation in host immune response. Furthermore, bacteriostatic experiment revealed that recombinant MamFerH displayed more significant inhibitory effect on the growth of A. hydrophila.
Collapse
Affiliation(s)
- Zhujin Ding
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xiaoheng Zhao
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Qifeng Zhan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Lei Cui
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
48
|
Liu QN, Xin ZZ, Liu Y, Wang ZF, Chen YJ, Zhang DZ, Jiang SH, Chai XY, Zhou CL, Tang BP. A ferritin gene from Procambarus clarkii, molecular characterization and in response to heavy metal stress and lipopolysaccharide challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 63:297-303. [PMID: 28232280 DOI: 10.1016/j.fsi.2017.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/11/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Ferritin plays important roles in iron storage, detoxification, and immune response. Here, a ferritin gene (PcFer) was identified in Procambarus clarkii, an economically important freshwater crayfish. Full-length PcFer cDNA was 1022-bp, including a 135-bp 5'-untranslated region (UTR) with a typical iron responsive element, a 374-bp 3'-UTR, and a 513-bp open reading frame encoding a polypeptide of 170 amino acids which contained the Ferritin domain. PcFer has ion binding sites, a ferrihydrite nucleation center, and an iron ion channel. PcFer is phylogenetically closely-related to Pacifastacus leniusculus and Eriocheir sinensis ferritins. Real-time quantitative reverse-transcription PCR analysis showed that PcFer was expressed in all tested P. clarkii tissues, and expressed most in hepatopancreas. After challenge with various heavy metals and lipopolysaccharide, respectively, the hepatopancreatic expression levels of PcFer were markedly upregulated. These results suggest that expression of PcFer might be involved in immune defense and protection of P. clarkii against heavy metal stress.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China.
| | - Yi-Jing Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
49
|
Milto IV, Suhodolo IV, Prokopieva VD, Klimenteva TK. Molecular and Cellular Bases of Iron Metabolism in Humans. BIOCHEMISTRY (MOSCOW) 2017; 81:549-64. [PMID: 27301283 DOI: 10.1134/s0006297916060018] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron is a microelement with the most completely studied biological functions. Its wide dissemination in nature and involvement in key metabolic pathways determine the great importance of this metal for uni- and multicellular organisms. The biological role of iron is characterized by its indispensability in cell respiration and various biochemical processes providing normal functioning of cells and organs of the human body. Iron also plays an important role in the generation of free radicals, which under different conditions can be useful or damaging to biomolecules and cells. In the literature, there are many reviews devoted to iron metabolism and its regulation in pro- and eukaryotes. Significant progress has been achieved recently in understanding molecular bases of iron metabolism. The purpose of this review is to systematize available data on mechanisms of iron assimilation, distribution, and elimination from the human body, as well as on its biological importance and on the major iron-containing proteins. The review summarizes recent ideas about iron metabolism. Special attention is paid to mechanisms of iron absorption in the small intestine and to interrelationships of cellular and extracellular pools of this metal in the human body.
Collapse
Affiliation(s)
- I V Milto
- Siberian State Medical University, Tomsk, 634050, Russia.
| | | | | | | |
Collapse
|
50
|
Sun S, Zhu J, Ge X, Zhang W. Molecular characterization and gene expression of ferritin in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2016; 57:87-95. [PMID: 27539708 DOI: 10.1016/j.fsi.2016.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Ferritins are conserved iron storage proteins that exist in most living organisms and play an essential role in iron homeostasis. In this study, we reported the identification and analysis of a ferritin middle-chain (M) subunit, MaFerM, from blunt snout bream, Megalobrama amblycephala. The full length cDNA of MaFerM contains a 5'-untranslated region (UTR) of 152 bp, an open reading frame (ORF) of 522 bp and a 3'-UTR of 270 bp. The ORF encodes a putative protein of 174 amino acids, which shares extensive sequence identities with the M ferritins of several fish species. In silico analysis identified both the ferroxidase center of mammalian heavy-chain (H) ferritins and the iron nucleation site of mammalian light-chain (L) ferritins in MaFerM. Quantitative real-time reverse transcription polymerase chain reaction analysis indicated that MaFerM expression was highest in the liver and lowest in the heart and responded positively to experimental challenges with Aeromonas hydrophila. The exposure of cultured M. amblycephala to treatment with stress inducers (iron and H2O2) significantly up-regulated the expression of MaFerM in a dose-dependent manner. Iron chelation analysis showed that recombinant MaFerM purified from Escherichia coli exhibited apparent iron binding activity. These results suggest that MaFerM is a functional M ferritin and is likely to play a role in iron sequestration and protection against oxidative stress and immune stimulus.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 East Shanshui Road, Wuxi, Jiangsu 214081, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 East Shanshui Road, Wuxi, Jiangsu 214081, PR China.
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 East Shanshui Road, Wuxi, Jiangsu 214081, PR China.
| | - Wxuxiao Zhang
- Wuxi Fishery College Nanjing Agricultural University, Wuxi 214081, PR China
| |
Collapse
|