1
|
Su L, Yi H, Xu E, Xiao M, Gao Y. Colonic bacterial community responding to selenium-enriched yeast supplementation associated with improved gut mucus function in growing-finishing pigs. BMC Microbiol 2025; 25:213. [PMID: 40223092 DOI: 10.1186/s12866-025-03909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Selenium-enriched yeast (SeY), a high-quality organic source of selenium, enhances antioxidant activity and intestinal health in swine. This study aims to evaluate the effects of varying dietary SeY levels on intestinal morphology, epithelial mucus production, antioxidant activity, and colonic bacterial communities in growing-finishing pigs. Thirty 90-day-old Duroc×Landrace×Yorkshire growing-finishing pigs (average body weight of 54.37±2.13 kg) were randomly assigned to five treatment groups. The control group (CON) was fed a basal diet, while the other four groups were fed the basal diet supplemented with SeY at 0.3, 1, 3, and 5 mg/kg, respectively, for an 80-day of feeding trial. The results showed that the addition of SeY at 0.3 mg/kg increased villus height, villus height/crypt ratio, and mucus production in the ileum, as evidenced by the increase in goblet cell number and mucus thickness (P < 0.05). Furthermore, 0.3 mg/kg SeY up-regulated the mRNA expression levels of the MUC-1, claudin-1, occludin, and ZO-1 genes (P < 0.05). In contrast, high-dose SeY at 5 mg/kg resulting in damage to mucosal morphology. Ileal antioxidant activity of SOD and GSH-Px, and jejunal mRNA expression of GPX-1 and GPX-4, were higher in response to SeY (P < 0.05). Faecal Se excretion increased in SeY groups in a dose-dependent manner (P < 0.05). SeY led to a significant difference in beta diversity among treatment groups (P = 0.002) and led to a significant decrease in the concentrations of isobutyric and isovaleric acids when compared to the control group (P < 0.05). The acetate, propionate, butyrate, and total short-chain fatty acids were positively correlated with the biomarker genera Agathobacter (SeY at 0.3mg/kg), while isobutyrate and isovalerate were negatively correlated with biomarker genera Lactobacillus (SeY at 0.3mg/kg) (P < 0.05). Faecal accumulation of Se was positively correlated with the biomarker genera Alloprevotella (SeY at 3mg/kg) and Prevotellaceae_UCG-001 (SeY at 5mg/kg) and was negatively correlated with biomarker genera Agathobacter (SeY at 0.3mg/kg), Bacteroides (CON), and Faecalibacterium (CON) (P < 0.05). In conclusion, SeY doses of 0.3 mg/kg have beneficial effects on intestinal health, whereas prolonged SeY doses up to 5 mg/kg may compromise the intestinal mucus function in growing-finishing pigs.
Collapse
Affiliation(s)
- Lingling Su
- College of Animal and Veterinary Sciences, Ministry of Education Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resources Reservation and Utilization, Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - E Xu
- College of Animal Science, Guizhou University, Guizhou, 550025, China
| | - Mingfei Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Animal Science, Guizhou University, Guizhou, 550025, China
| | - Yanhua Gao
- College of Animal and Veterinary Sciences, Ministry of Education Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resources Reservation and Utilization, Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zheng L, Wei Z, Ni X, Shang J, Liu F, Peng Y, Liu J, Li Y. Exploring the therapeutic potential of Xiangsha Liujunzi Wan in Crohn's disease: from network pharmacology approach to experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118863. [PMID: 39343107 DOI: 10.1016/j.jep.2024.118863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiangsha Liujunzi Wan (LJZW) is a traditional Chinese medicine (TCM) formula containing a variety of traditional Chinese herb components. Its principal components are often used in the treatment of gastrointestinal diseases and contribute to the treatment of Crohn's disease (CD). AIM OF THE STUDY To explore the therapeutic potential of LJZW in CD through network pharmacology, bioinformatics, molecular docking, and experimental verification. METHODS The principal bioactive components and corresponding targets of LJZW were ascertained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Potential targets for CD were identified in GeneCards, OMIM, DrugBank, DisGeNET, CTD, and Gene Expression Omnibus (GEO) databases. Intersection targets of LJZW and CD were identified using a Venn diagram and visualized using Cytoscape 3.8.0 to construct a protein-protein interaction (PPI) network. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to assess the function of intersection targets. AutoDockTools and PyMOL were used for molecular docking to recognize the association between the core ingredients of LJZW and the core targets of CD. Subsequently, a series of experiments were conducted for validation. RESULTS The network pharmacology results indicated that there were 156 bioactive components and 268 corresponding targets for LJZW, 3023 primary relevant targets for CD, and 169 intersection targets for LJZW and CD. The PPI network was employed to identify five hub genes and six clusters. The GO functional analysis indicated that intersection targets are primarily correlated with oxidative stress and inflammatory responses. KEGG pathway analysis revealed that these targets were primarily associated with the phosphotylinosital 3 kinase (PI3K)-protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. The molecular docking results showed that the core ingredients of LJZW had good binding ability with the core targets of CD. A series of experiments demonstrated that LJZW could effectively attenuate TNBS-induced colitis symptoms, inhibit the inflammatory response, and protect intestinal barrier function by inhibiting the PI3K-AKT and MAPK signaling pathways, thus preventing and treating CD. CONCLUSION LJZW has the characteristics of multi-component, multi-target, and multi-pathway treatment, which helps to improve the treatment of CD, protect the intestinal barrier, and exert the effect of anti-inflammatory therapy by inhibiting PI3K-AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Linlin Zheng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Jianing Shang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Fu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China.
| | - Yunwei Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
3
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2025; 99:127-152. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Shendge AK, Sekler I, Hershfinkel M. ZnR/GPR39 regulates hepatic insulin signaling, tunes liver bioenergetics and ROS production, and mitigates liver fibrosis and injury. Redox Biol 2024; 78:103403. [PMID: 39514940 PMCID: PMC11584770 DOI: 10.1016/j.redox.2024.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Adequate supply of zinc is essential for hepatic function and its deficiency is associated with acute liver injury (ALI) and chronic nonalcoholic fatty liver disease (NAFLD). However, how zinc controls hepatic function is unknown. We found that the zinc sensitive ZnR/GPR39, a mediator of zinc signaling, enhances hepatic phosphorylation of ERK1/2, which is reduced in ZnR/GPR39 deficient livers. Surprisingly, livers from ZnR/GPR39 knockout (KO) mice exhibited elevated insulin receptor expression and downstream AKT activation. Moreover, ZnR/GPR39 KO mice had higher blood fasting glucose level, pronounced hepatic lipid accumulation, increased hepatocyte oxygen consumption rate (OCR) and reactive oxygen species (ROS) levels. These data suggest that ZnR/GPR39 modulates insulin receptor signaling, a major pathway in hepatic metabolism. Associated with the impaired signaling, ZnR/GPR39 KO livers exhibited increased tissue fibrosis, manifested by marked elevation of collagen expression, compared to wildtype (WT). Additionally, we found alteration of hepatocyte junctional proteins that was accompanied by increased macrophage infiltration and higher liver inflammation in ZnR/GPR39 KO mice. To determine the role of ZnR/GPR39 in ALI, we applied a mild LPS challenge that induced profound decrease in hepatic OCR, also leading to higher ROS generation in ZnR/GPR39 KO hepatocytes, but not in WT. We further found increased serum IL-2 and AST/ALT ratio only in ZnR/GPR39 KO mice. Our findings reveal a role of ZnR/GPR39 in controlling hepatic insulin receptor signaling and mitigating liver fibrosis and inflammation, thus underscoring the important role of ZnR/GPR39 in liver signaling and function.
Collapse
Affiliation(s)
- Anil Khushalrao Shendge
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
5
|
Lin X, Bai H, Barravecchia M, Norman R, Schiralli Lester GM, Kottmann RM, Leonard A, Rahman A, Young JL, Dean DA. Occludin Is Essential to Maintain Normal Alveolar Barrier Integrity and Its Protective Role During ARDS Progression. Int J Mol Sci 2024; 25:11595. [PMID: 39519146 PMCID: PMC11546927 DOI: 10.3390/ijms252111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe lung condition without targeted therapy that is characterized by the disruption of epithelial and endothelial barriers. The role of the tight junction protein occludin in the pathogenesis of this disease is unknown, although it has previously been deemed redundant in some tissues. The aim of the present study is to determine whether occludin is required for lung function by controlling alveolar barrier integrity in mouse models. Immunofluorescence staining of lungs from ARDS patients revealed a significant decrease in occludin expression compared to controls. Gene delivery of shRNA against occludin in the mouse lung reduced occludin levels and induced lung injury, as assessed by wet-to-dry-ratio, histology, and cellularity and protein content of bronchial alveolar lavage fluid. Conversely, gene delivery of an occludin-expressing plasmid increased occludin expression and dampened endotoxin-induced lung injury. In primary rat alveolar epithelial cells, occludin levels were positively correlated with barrier integrity, as well as membrane localization of claudin-18, another tight junction protein. Collectively, our data demonstrate that occludin plays a significant role in alveolar barrier function and that targeting occludin may provide a new therapeutic approach for ARDS.
Collapse
Affiliation(s)
- Xin Lin
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Haiqing Bai
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
- Department of Pathology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA
| | - Michael Barravecchia
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Rosemary Norman
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Gillian M. Schiralli Lester
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - R. Matthew Kottmann
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Antony Leonard
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Arshad Rahman
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - Jennifer L. Young
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| | - David A. Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue BOX 850, Rochester, NY 14642, USA; (X.L.); (H.B.); (M.B.); (R.N.); (G.M.S.L.); (A.L.); (A.R.); (J.L.Y.)
| |
Collapse
|
6
|
Liebing E, Krug SM, Neurath MF, Siegmund B, Becker C. Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut. Cell Mol Gastroenterol Hepatol 2024; 19:101423. [PMID: 39461590 PMCID: PMC11720114 DOI: 10.1016/j.jcmgh.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The intestinal epithelium forms the boundary between the intestinal immune system in the lamina propria and the outside world, the intestinal lumen, which contains a diverse array of microbial and environmental antigens. Composed of specialized cells, this epithelial monolayer has an exceptional turnover rate. Differentiated epithelial cells are released into the intestinal lumen within a few days, at the villus tip, a process that requires strict regulation. Dysfunction of the epithelial barrier increases the intestinal permeability and paves the way for luminal antigens to pass into the intestinal serosa. Stem cells at the bottom of Lieberkühn crypts provide a constant supply of mature epithelial cells. Differentiated intestinal epithelial cells exhibit a diverse array of mechanisms that enable communication with surrounding cells, fortification against microorganisms, and orchestration of nutrient absorption and hormonal balance. Furthermore, tight junctions regulate paracellular permeability properties, and their disruption can lead to an impairment of the intestinal barrier, allowing inflammation to develop or further progress. Intestinal epithelial cells provide a communication platform through which they maintain homeostasis with a spectrum of entities including immune cells, neuronal cells, and connective tissue cells. This homeostasis can be disrupted in disease, such as inflammatory bowel disease. Patients suffering from inflammatory bowel disease show an impaired gut barrier, dysregulated cellular communication, and aberrant proliferation and demise of cells. This review summarizes the individual cellular and molecular mechanisms pivotal for upholding the integrity of the intestinal epithelial barrier and shows how these can be disrupted in diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Eva Liebing
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
7
|
Sait AM, Day PJR. Interconnections between the Gut Microbiome and Alzheimer's Disease: Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:8619. [PMID: 39201303 PMCID: PMC11354889 DOI: 10.3390/ijms25168619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is known to accumulate amyloid-β (Aβ) and tau protein. Clinical studies have not identified pathogenesis mechanisms or produced an effective cure for AD. The Aβ monoclonal antibody lecanemab reduces Aβ plaque formation for the treatment of AD, but more studies are required to increase the effectiveness of drugs to reduce cognitive decline. The lack of AD therapy targets and evidence of an association with an acute neuroinflammatory response caused by several bacteria and viruses in some individuals has led to the establishment of the infection hypothesis during the last 10 years. How pathogens cross the blood-brain barrier is highly topical and is seen to be pivotal in proving the hypothesis. This review summarizes the possible role of the gut microbiome in the pathogenesis of AD and feasible therapeutic approaches and current research limitations.
Collapse
Affiliation(s)
- Ahmad M. Sait
- Medical Laboratory Science, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Philip J. R. Day
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
8
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
9
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
10
|
Meijnikman AS, Nieuwdorp M, Schnabl B. Endogenous ethanol production in health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:556-571. [PMID: 38831008 DOI: 10.1038/s41575-024-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome exerts metabolic actions on distal tissues and organs outside the intestine, partly through microbial metabolites that diffuse into the circulation. The disruption of gut homeostasis results in changes to microbial metabolites, and more than half of the variance in the plasma metabolome can be explained by the gut microbiome. Ethanol is a major microbial metabolite that is produced in the intestine of nearly all individuals; however, elevated ethanol production is associated with pathological conditions such as metabolic dysfunction-associated steatotic liver disease and auto-brewery syndrome, in which the liver's capacity to metabolize ethanol is surpassed. In this Review, we describe the mechanisms underlying excessive ethanol production in the gut and the role of ethanol catabolism in mediating pathogenic effects of ethanol on the liver and host metabolism. We conclude by discussing approaches to target excessive ethanol production by gut bacteria.
Collapse
Affiliation(s)
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, Netherlands
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Zhang J, Zhang C, Yu L, Tian F, Chen W, Zhai Q. Analysis of the key genes of Lactobacillus reuteri strains involved in the protection against alcohol-induced intestinal barrier damage. Food Funct 2024; 15:6629-6641. [PMID: 38812427 DOI: 10.1039/d4fo01796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Gastrointestinal inflammation and intestinal barrier function have important effects on human health. Alcohol, an important foodborne hazard factor, damages the intestinal barrier, increasing the risk of disease. Lactobacillus reuteri strains have been reported to reduce gastrointestinal inflammation and strengthen the intestinal barrier. In this study, we selected three anti-inflammatory L. reuteri strains to evaluate their role in the protection of the intestinal barrier and their immunomodulatory activity in a mouse model of gradient alcohol intake. Among the three strains tested (FSCDJY33M3, FGSZY33L6, and FCQHCL8L6), L. reuteri FSCDJY33M3 was found to protect the intestinal barrier most effectively, possibly due to its ability to reduce the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) and increase the expression of tight junction proteins (occludin, claudin-3). Genomic analysis suggested that the protective effects of L. reuteri FSCDJY33M3 may be related to functional genes and glycoside hydrolases associated with energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism, and DNA replication, recombination, and repair. These genes include COG2856, COG1804, COG2071, and COG1061, which encode adenine deaminase, acyl-CoA transferases, glutamine amidotransferase, RNA helicase, and glycoside hydrolases, including GH13_20, GH53, and GH70. Our results identified functional genes that may be related to protection against alcohol-induced intestinal barrier damage, which might be useful for screening lactic acid bacterial strains that can protect the intestinal barrier.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Nong H, Yuan H, Lin Y, Chen S, Li Y, Luo Z, Yang W, Zhang T, Chen Y. IL-22 promotes occludin expression by activating autophagy and treats ulcerative colitis. Mol Cell Biochem 2024; 479:1443-1450. [PMID: 37440121 DOI: 10.1007/s11010-023-04806-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
IL-22 serves a protective function in the intestinal barrier. These protective properties of IL-22 may offer a potential treatment for ulcerative colitis (UC). However, the exact mechanisms of action remain unclear. Autophagy plays an important protective role in stabilizing the intestinal barrier. We aimed to explore the role of autophagy in the IL-22-mediated-protective effects in UC. Dextran sulfate sodium (DSS) was administrated via drinking water over 7 days to induce acute UC in BALB/c mice. Treatments with IL-22 (0.25 μg/10 g bodyweight) were started by intraperitoneal injection on days 1, 3, and 5. Weight, disease activity index, histological score, and myeloperoxidase (MPO) activity were used to evaluate the severity of colitis. The expressions of occludin and autophagy-related proteins LC3BII/I were measured by western blot analysis. The lipopolysaccharide-induced HT-29 cell model was used to explore the mechanism. In vivo, IL-22 significantly alleviated DSS-induced clinical manifestations, reduced histological injury, and inhibited MPO activity. IL-22 upregulated the expression of occludin and the LC3B II/I ratio in the colon. In vitro, IL-22 significantly lowered TNF-α levels and enhanced the expression of occludin and the LC3B II/I ratio. Importantly, inhibiting autophagy in vitro by 3-Methyladenine (3-MA) attenuated the occludin protective effects of IL-22. In summary, our findings demonstrate that IL-22 ameliorates DSS-induced ulcerative colitis, which may be attributable to activating autophagy and then promoting occludin expression.
Collapse
Affiliation(s)
- Hui Nong
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haifeng Yuan
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yiting Lin
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Siyu Chen
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yanbo Li
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Zhaoqiong Luo
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Wen Yang
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Tao Zhang
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Yuanneng Chen
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
13
|
Feng M, Zhou Y, Gao Z, Huang W, Xie W, Xie W, Liu Z, Tang S, Xiong X, Chen Y, Zhou X, Liu C. Timosaponin BⅡ reduces colonic inflammation and alleviates DSS-induced ulcerative colitis by inhibiting NLRP3. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117885. [PMID: 38331123 DOI: 10.1016/j.jep.2024.117885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Timosaponin BⅡ (TBⅡ) is one of the main active components of the traditional Chinese medicine Anemarrhena asphodeloides, and it is a steroidal saponin with various pharmacological activities such as anti-oxidation, anti-inflammatory and anti-apoptosis. However, its role in acute ulcerative colitis remains unexplored thus far. AIM OF THE STUDY This study aims to investigate the protective effect of TBⅡ against dextran sulfate sodium (DSS)-induced ulcerative colitis in mice and elucidate its underlying mechanisms. METHODS Wild-type (WT) and NLRP3 knockout (NLRP3-/-) mice were applied to evaluate the protective effect of TBⅡ in DSS-induced mice colitis. Pharmacological inhibition of NLRP3 or adenovirus-mediated NLRP3 overexpression in bone marrow-derived macrophages (BMDM) from WT mice and colonic epithelial HCoEpiC cells was used to assess the role of TBⅡ in LPS + ATP-induced cell model. RNA-seq, ELISA, western blots, immunofluorescence staining, and expression analysis by qPCR were performed to examine the alterations of colonic NLRP3 expression in DSS-induced colon tissues and LPS + ATP-induced cells, respectively. RESULTS In mice with DSS-induced ulcerative colitis, TBⅡ treatment attenuated clinical symptoms, repaired the intestinal mucosal barrier, reduced inflammatory infiltration, and alleviated colonic inflammation. RNA-seq analysis and protein expression levels demonstrated that TBⅡ could prominently inhibit NLRP3 signaling. TBⅡ-mediated NLRP3 inhibition was associated with alleviating intestinal permeability and inflammatory response via the blockage of communication between epithelial cells and macrophages, probably in an NLRP3 inhibition mechanism. However, pharmacological inhibition of NLRP3 by MCC950 or Ad-NLRP3 mediated NLRP3 overexpression significantly impaired the TBⅡ-mediated anti-inflammatory effect. Mechanistically, TBⅡ-mediated NLRP3 inhibition may be partly associated with the suppression of NF-κB, a master pro-inflammatory factor for transcriptional regulation of NLRP3 expression in the priming step. Moreover, co-treatment TBⅡ with NF-κB inhibitor BAY11-7082 partly impaired TBⅡ-mediated NLRP3 inhibition, and consequently affected the IL-1β mature and secretion. Importantly, TBⅡ-mediated amelioration was not further enhanced in NLPR3-/- mice. CONCLUSION TBⅡ exerted a prominent protective effect against DSS-induced colitis via regulation of alleviation of intestinal permeability and inflammatory response via the blockage of crosstalk between epithelial cells and macrophages in an NLRP3-mediated inhibitory mechanism. These beneficial effects could make TBⅡ a promising drug for relieving colitis.
Collapse
Affiliation(s)
- Meng Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Yingya Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Zhenyu Gao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Wenni Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Wenmin Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Wanlin Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Zhenyv Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Shengzhao Tang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Xuejun Xiong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Yijun Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Xinxin Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Changhui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| |
Collapse
|
14
|
Chen N, Wan X, Wang M, Li Y, Wang X, Zeng L, Zhou J, Zhang Y, Cheng S, Shen Y. Cross-talk between Vimentin and autophagy regulates blood-testis barrier disruption induced by cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123625. [PMID: 38401636 DOI: 10.1016/j.envpol.2024.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The blood-testis barrier (BTB) plays a vital role in mammalian spermatogenesis by separating the seminiferous epithelium into an adluminal and a basal compartment. Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. We observed that Cd can induce BTB disruption, leading to apoptosis of testicular cells. However, the molecular mechanisms contributing to BTB injury induced by Cd have not yet been fully clarified. Vimentin (Vim) is an important desmosome-like junction protein that mediates robust adhesion in the BTB. In this study, we investigated how Vim responds to Cd. We found that Cd treatment led to a significant decrease in Vim expression, accompanied by a marked increase in LC3-II expression and a higer number of autophagosomes. Interestingly, we also observed that Cd-induced autophagy was associated with decreased Vim activity and enhanced apoptosis of testicular cells. To further investigate the role of autophagy in Vim regulation under Cd exposure, we treated cells with an autophagy inhibitor called 3-MA. We found that 3-MA treatment enhanced Vim expression and improved the disruption of the BTB under Cd exposure. Additionally, the inhibition of Vim confirmed the role of autophagy in modulating Vim expression. These results reveal a previously unknown regulatory mechanism of Cd involving the interplay between a heavy metal and a protein.
Collapse
Affiliation(s)
- Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiaoyan Wan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, PR China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yamin Li
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xiaofei Wang
- Center for Reproductive Medicine, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, Hubei, PR China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, PR China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shun Cheng
- College of Zhixing, Hubei University, Wuhan, 430011, PR China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
15
|
Chorawala MR, Postwala H, Prajapati BG, Shah Y, Shah A, Pandya A, Kothari N. Impact of the microbiome on colorectal cancer development. COLORECTAL CANCER 2024:29-72. [DOI: 10.1016/b978-0-443-13870-6.00021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Fang C, Cheng J, Jia W, Xu Y. Akkermansia muciniphila Ameliorates Alcoholic Liver Disease in Experimental Mice by Regulating Serum Metabolism and Improving Gut Dysbiosis. Metabolites 2023; 13:1057. [PMID: 37887381 PMCID: PMC10608788 DOI: 10.3390/metabo13101057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Alcoholic liver disease (ALD) represents a significant global health concern, yet the available treatment options remain limited. Numerous studies have shown that gut microbiota is a critical target for the treatment of ALD. Additionally, there is increasing evidence that host metabolism also plays a crucial role in the development of ALD. Akkermansia muciniphila has been demonstrated to ameliorate experimental ALD through its modulatory effects on the intestinal vascular barrier, enhancement of mucus layer thickness, and promotion of intestinal tight junction proteins. Nevertheless, there is a dearth of studies investigating the impact of A. muciniphila on host metabolism and gut microbiota. Here, C57BL/6 mice were utilized to establish a modified NIAAA model in order to investigate the impact of the oral administration of A. muciniphila during the development of ALD. Furthermore, we employed targeted metabolomics to analyze the serum metabolomic profiles of the mice and 2bRAD-M sequencing to comprehensively examine the underlying mechanisms of the efficacy of A. muciniphila on ALD. Our results illustrated that the oral administration of A. muciniphila alleviated alcohol-induced liver injury in conjunction with encouraged serum levels of ornithine and diminished the elevation of oxalic acid levels induced by alcohol intake. In addition, A. muciniphila also inhibited the proliferation of harmful bacteria, such as Escherichia coli and Helicobacter hepaticus, induced by alcohol consumption while promoting the growth of butyrate-producing and commensal bacteria, including Paramuribaculum intestinale and Bacteroides ovatus. In conclusion, this study suggests that A. muciniphila restores ALD by regulating the gut microbiota, and this corrective effect is associated with alterations in the serum metabolism. Our research supplies a theoretical basis for developing A. muciniphila as an innovative generation of probiotic for preventing and managing ALD.
Collapse
Affiliation(s)
- Cheng Fang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (C.F.); (J.C.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinyan Cheng
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (C.F.); (J.C.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China;
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (C.F.); (J.C.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Chen Q, Jia T, Wu X, Chen X, Wang J, Ba Y. Polygalae Radix Oligosaccharide Esters May Relieve Depressive-like Behavior in Rats with Chronic Unpredictable Mild Stress via Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:13877. [PMID: 37762181 PMCID: PMC10530649 DOI: 10.3390/ijms241813877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Polygalae radix (PR) is a well-known traditional Chinese medicine that is used to treat depression, and polygalae radix oligosaccharide esters (PROEs) are the main active ingredient. Although gut microbiota are now believed to play key role in depression, the effects of PROEs on depression via modulation of gut microbiota remain unknown. In this article, we investigate the effect of PROEs on the gut microbiota of a depression rat and the possible mechanism responsible. The depression rat model was induced by solitary rearing combined with chronic unpredictable mild stress (CUMS). The depression-like behavior, the influence on the hypothalamic-pituitary-adrenal (HPA) axis, the contents of monoamine neurotransmitter in the hippocampus, and the quantity of short-chain fatty acids (SCFAs) in the feces were each assessed, and the serum levels of lipopolysaccharide (LPS) and interleukin-6 (IL-6) were measured by ELISA. Additionally, ultrastructural changes of the duodenal and colonic epithelium were observed under transmission electron microscope, and the gut microbiota were profiled by using 16S rRNA sequencing. The results show that PROEs alleviated the depression-like behavior of the depression model rats, increased the level of monoamine neurotransmitters in the brain, and reduced the hyperfunction of the HPA axis. Furthermore, PROEs regulated the imbalance of the gut microbiota in the rats, relieving intestinal mucosal damage by increasing the relative abundance of gut microbiota with intestinal barrier protective functions, and adjusting the level of SCFAs in the feces, as well as the serum levels of LPS and IL-6. Thus, we find that PROEs had an antidepressant effect through the restructuring of gut microbiota that restored the function of the intestinal barrier, reduced the release of intestinal endotoxin, and constrained the inflammatory response.
Collapse
Affiliation(s)
- Qijun Chen
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
- School of Pharmaceutical Sciences, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China
| | - Tanrong Jia
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Xiaoqing Chen
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Jiajia Wang
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Yinying Ba
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| |
Collapse
|
18
|
Alonso-Peña M, Del Barrio M, Peleteiro-Vigil A, Jimenez-Gonzalez C, Santos-Laso A, Arias-Loste MT, Iruzubieta P, Crespo J. Innovative Therapeutic Approaches in Non-Alcoholic Fatty Liver Disease: When Knowing Your Patient Is Key. Int J Mol Sci 2023; 24:10718. [PMID: 37445895 DOI: 10.3390/ijms241310718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis may result from the dysfunction of multiple pathways and thus multiple molecular triggers involved in the disease have been described. The development of NASH entails the activation of inflammatory and fibrotic processes. Furthermore, NAFLD is also strongly associated with several extra-hepatic comorbidities, i.e., metabolic syndrome, type 2 diabetes mellitus, obesity, hypertension, cardiovascular disease and chronic kidney disease. Due to the heterogeneity of NAFLD presentations and the multifactorial etiology of the disease, clinical trials for NAFLD treatment are testing a wide range of interventions and drugs, with little success. Here, we propose a narrative review of the different phenotypic characteristics of NAFLD patients, whose disease may be triggered by different agents and driven along different pathophysiological pathways. Thus, correct phenotyping of NAFLD patients and personalized treatment is an innovative therapeutic approach that may lead to better therapeutic outcomes.
Collapse
Affiliation(s)
- Marta Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Ana Peleteiro-Vigil
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Carolina Jimenez-Gonzalez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Alvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
19
|
Odriozola A, Santos-Laso A, Del Barrio M, Cabezas J, Iruzubieta P, Arias-Loste MT, Rivas C, Duque JCR, Antón Á, Fábrega E, Crespo J. Fatty Liver Disease, Metabolism and Alcohol Interplay: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24097791. [PMID: 37175497 PMCID: PMC10178387 DOI: 10.3390/ijms24097791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide, and its incidence has been increasing in recent years because of the high prevalence of obesity and metabolic syndrome in the Western population. Alcohol-related liver disease (ArLD) is the most common cause of cirrhosis and constitutes the leading cause of cirrhosis-related deaths worldwide. Both NAFLD and ArLD constitute well-known causes of liver damage, with some similarities in their pathophysiology. For this reason, they can lead to the progression of liver disease, being responsible for a high proportion of liver-related events and liver-related deaths. Whether ArLD impacts the prognosis and progression of liver damage in patients with NAFLD is still a matter of debate. Nowadays, the synergistic deleterious effect of obesity and diabetes is clearly established in patients with ArLD and heavy alcohol consumption. However, it is still unknown whether low to moderate amounts of alcohol are good or bad for liver health. The measurement and identification of the possible synergistic deleterious effect of alcohol consumption in the assessment of patients with NAFLD is crucial for clinicians, since early intervention, advising abstinence and controlling cardiovascular risk factors would improve the prognosis of patients with both comorbidities. This article seeks to perform a comprehensive review of the pathophysiology of both disorders and measure the impact of alcohol consumption in patients with NAFLD.
Collapse
Affiliation(s)
- Aitor Odriozola
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Alvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - María Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Joaquín Cabezas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Coral Rivas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Juan Carlos Rodríguez Duque
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Ángela Antón
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Emilio Fábrega
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla Universitary Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| |
Collapse
|
20
|
Saha K, Subramenium Ganapathy A, Wang A, Michael Morris N, Suchanec E, Ding W, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. Autophagy Reduces the Degradation and Promotes Membrane Localization of Occludin to Enhance the Intestinal Epithelial Tight Junction Barrier against Paracellular Macromolecule Flux. J Crohns Colitis 2023; 17:433-449. [PMID: 36219473 PMCID: PMC10069622 DOI: 10.1093/ecco-jcc/jjac148] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Functional loss of the gut epithelium's paracellular tight junction [TJ] barrier and defective autophagy are factors potentiating inflammatory bowel disease [IBD]. Previously, we showed the role of autophagy in enhancing the intestinal TJ barrier via pore-forming claudin-2 degradation. How autophagy regulates the TJ barrier-forming proteins remains unknown. Here, we investigated the role of autophagy in the regulation of occludin, a principal TJ component involved in TJ barrier enhancement. RESULTS Autophagy induction using pharmacological activators and nutrient starvation increased total occludin levels in intestinal epithelial cells, mouse colonocytes and human colonoids. Autophagy induction enriched membrane occludin levels and reduced paracellular permeability of macromolecules. Autophagy-mediated TJ barrier enhancement was contingent on the presence of occludin as OCLN-/- nullified its TJ barrier-enhancing effect against macromolecular flux. Autophagy inhibited the constitutive degradation of occludin by preventing its caveolar endocytosis from the membrane and protected against inflammation-induced TJ barrier loss. Autophagy enhanced the phosphorylation of ERK-1/2 and inhibition of these kinases in Caco-2 cells and human colonic mucosa prevented the macromolecular barrier-enhancing effects of autophagy. In vivo, autophagy induction by rapamycin enhanced occludin levels in wild-type mouse intestines and protected against lipopolysaccharide- and tumour necrosis factor-α-induced TJ barrier loss. Disruption of autophagy with acute Atg7 knockout in adult mice decreased intestinal occludin levels, increasing baseline colonic TJ permeability and exacerbating the effect of experimental colitis. CONCLUSION Our data suggest a novel role of autophagy in promoting the intestinal TJ barrier by increasing occludin levels in an ERK1/2 mitogen-activated protein kinase-dependent mechanism.
Collapse
Affiliation(s)
- Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ashwinkumar Subramenium Ganapathy
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nathan Michael Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eric Suchanec
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
21
|
Akinluyi ET, Edem EE, Dakoru KM, Nnodim CJ, Oladipupo MA, Adeoluwa OA, Obisesan AO, Ben-Azu B, Adebayo OG. Psychobiotic interventions attenuate chronic alcohol use-mediated exacerbation of posttraumatic stress disorder in rats: the role of gut-liver axis response. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:92-105. [PMID: 36537043 DOI: 10.1515/jcim-2022-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES The incidence of co-occurring alcohol-use disorder (AUD) and post-traumatic stress disorder (PTSD) is high, and the presence of one disorder aggravates the severity of the other. Emerging evidence shows the neuroprotective and anti-inflammation functions of psychobiotics. Hence, the study explored the effects of probiotics and synbiotic inulin on the gut- and liver-oxidative and inflammatory biomarkers in chronic alcohol exacerbation of PTSD symptoms in rats. METHODS Young adult rats were administered 10% ethanol in a two-bottle choice test for six weeks and were subjected to single prolonged stress. Probiotics and synbiotic intervention followed this. Markers of oxido-inflammatory stress, liver functions, intestinal (faecal) metabolites, occludin expression, and histopathology of the ileum and liver were evaluated. RESULTS Chronic alcohol drinking and PTSD increased oxido-inflammatory stress, markers of hepatic damage, and reduced faecal metabolites, which were attenuated by probiotic and synbiotic interventions. Furthermore, reduced immunoexpression of gut and liver occludin, with loss of barrier integrity, viable hepatocytes, congestive portal area, and shortened villi and crypt depth, were observed. Probiotic and synbiotic interventions mitigated these effects. CONCLUSIONS The study demonstrates that psychobiotics mitigate the detrimental effects of co-occurring chronic alcohol intake in the context of PTSD.
Collapse
Affiliation(s)
- Elizabeth T Akinluyi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Edem E Edem
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Kelvin M Dakoru
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Chinaza J Nnodim
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Michael A Oladipupo
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Olusegun A Adeoluwa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Abiola O Obisesan
- Department of Pharmaceutical Microbiology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
22
|
Ding MH, Xu PG, Wang Y, Ren BD, Zhang JL. Resveratrol Attenuates Ankylosing Spondylitis in Mice by Inhibiting the TLR4/NF-κB/NLRP3 Pathway and Regulating Gut Microbiota. Immunol Invest 2023; 52:194-209. [PMID: 36548483 DOI: 10.1080/08820139.2022.2154162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease associated with disturbed gut microbiota. Currently, the treatments and outcomes of AS are not satisfactory. It is reported that resveratrol (RES) is a major phytoalexin with anti-inflammatory, antibacterial and some other pharmacological effects. However, there are no studies on the role of RES in AS. Therefore, this study aimed to explore the effect and mechanism of RES on AS. Proteoglycan and complete freund's adjuvant were used to conduct an AS mouse model, and then the AS mice were gavaged with RES (20 mg/kg and 50 mg/kg) daily for 4 weeks. Subsequently, the effect of RES on AS mice was assessed by detecting disease severity, inflammatory cytokines, NLRP3 inflammasome, TLR4/NF-κB pathway, intestinal mucosal barrier function, intestinal microbial barrier function. The assessment results indicated that RES could significantly relieve progression and severity of AS, inhibit the expression of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6, interleukin-17A, interferon-γ), and promote the expression of anti-inflammatory cytokines (interleukin-4). RES intervention caused the inhibition of NLRP3 inflammasome and TLR4/NF-κB pathway. In terms of intestinal barrier function, experimental results found RES increased zonula occludens-1 and occludin expression, and additionally, changed the composition of the gut microbiota by increasing levels of Lactobacillus and Bifidobacterium and reducing levels of Enterococcus faecalis and Escherichia coli. Collectively, RES protects PG-induced AS mice by inhibiting inflammatory responses and TLR4/NF-κB/NLRP3 pathway, restoring intestinal mucosal barrier function, and regulating the composition of the gut microbiota. In other words, RES is a potential candidate for the treatment of AS.
Collapse
Affiliation(s)
- Ming-Hui Ding
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Peng-Gang Xu
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Ying Wang
- The Eighth Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Bao-di Ren
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Jun-Li Zhang
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| |
Collapse
|
23
|
Zhao N, Yang Y, Chen C, Jing T, Hu Y, Xu H, Wang S, He Y, Liu E, Cui J. Betaine supplementation alleviates dextran sulfate sodium-induced colitis via regulating the inflammatory response, enhancing the intestinal barrier, and altering gut microbiota. Food Funct 2022; 13:12814-12826. [PMID: 36422855 DOI: 10.1039/d2fo02942a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inflammatory bowel disease (IBD) is a multifaceted and recurrent immune disorder that occurs in the gastrointestinal tract. Betaine is a natural compound that exerts beneficial anti-inflammatory effects. However, the role of betaine in protecting IBD is still unclear. Therefore, the aim of our study was to investigate the anti-inflammatory effect of betaine in dextran sulfate sodium (DSS)-induced colitis. The results showed that betaine greatly increased the body weight and decreased the disease activity index score of DSS-treated mice. Furthermore, betaine effectively downregulated the protein levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) and upregulated tight junction proteins (occludin and ZO-1) in the mice. Additionally, betaine exposure remarkably restricted the DSS-induced phosphorylation of IκB and NF-κB p65 in mice. Similarly, betaine pretreatment improved the inflammatory response and intestinal barrier of Caco-2 cells. Betaine altered the gut microbiota composition, markedly decreasing the relative abundance of Firmicutes and Proteobacteria and considerably increasing the relative abundance of Bacteroidota and Campylobacterota in DSS-induced mice. In conclusion, betaine could attenuate colitis via regulating the inflammatory response, enhancing the intestinal barrier, and altering gut microbiota and is conducive to developing new drugs for treating human diseases.
Collapse
Affiliation(s)
- Nannan Zhao
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Yuhang Yang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Chen Chen
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Tengfang Jing
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Haixu Xu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Shuai Wang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Yu He
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Enqi Liu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| | - Jue Cui
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, 221018, People's Republic of China.
| |
Collapse
|
24
|
Kulle A, Thanabalasuriar A, Cohen TS, Szydlowska M. Resident macrophages of the lung and liver: The guardians of our tissues. Front Immunol 2022; 13:1029085. [PMID: 36532044 PMCID: PMC9750759 DOI: 10.3389/fimmu.2022.1029085] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Resident macrophages play a unique role in the maintenance of tissue function. As phagocytes, they are an essential first line defenders against pathogens and much of the initial characterization of these cells was focused on their interaction with viral and bacterial pathogens. However, these cells are increasingly recognized as contributing to more than just host defense. Through cytokine production, receptor engagement and gap junction communication resident macrophages tune tissue inflammatory tone, influence adaptive immune cell phenotype and regulate tissue structure and function. This review highlights resident macrophages in the liver and lung as they hold unique roles in the maintenance of the interface between the circulatory system and the external environment. As such, we detail the developmental origin of these cells, their contribution to host defense and the array of tools these cells use to regulate tissue homeostasis.
Collapse
Affiliation(s)
- Amelia Kulle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Taylor S. Cohen
- Late Stage Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marta Szydlowska
- Bacteriology and Vaccine Discovery, Research and Early Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
25
|
Microbiota Dysbiosis and Gut Barrier Dysfunction Associated with Non-Alcoholic Fatty Liver Disease Are Modulated by a Specific Metabolic Cofactors' Combination. Int J Mol Sci 2022; 23:ijms232213675. [PMID: 36430154 PMCID: PMC9692973 DOI: 10.3390/ijms232213675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The gut is a selective barrier that not only allows the translocation of nutrients from food, but also microbe-derived metabolites to the systemic circulation that flows through the liver. Microbiota dysbiosis occurs when energy imbalances appear due to an unhealthy diet and a sedentary lifestyle. Dysbiosis has a critical impact on increasing intestinal permeability and epithelial barrier deterioration, contributing to bacterial and antigen translocation to the liver, triggering non-alcoholic fatty liver disease (NAFLD) progression. In this study, the potential therapeutic/beneficial effects of a combination of metabolic cofactors (a multi-ingredient; MI) (betaine, N-acetylcysteine, L-carnitine, and nicotinamide riboside) against NAFLD were evaluated. In addition, we investigated the effects of this metabolic cofactors' combination as a modulator of other players of the gut-liver axis during the disease, including gut barrier dysfunction and microbiota dysbiosis. Diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (NAFLD group) or with a combination of metabolic cofactors (NAFLD-MI group), and small intestines were harvested from all animals for histological, molecular, and omics analysis. The MI treatment ameliorated gut morphological changes, decreased gut barrier permeability, and reduced gene expression of some proinflammatory cytokines. Moreover, epithelial cell proliferation and the number of goblet cells were increased after MI supplementation. In addition, supplementation with the MI combination promoted changes in the intestinal microbiota composition and diversity, as well as modulating short-chain fatty acids (SCFAs) concentrations in feces. Taken together, this specific combination of metabolic cofactors can reverse gut barrier disruption and microbiota dysbiosis contributing to the amelioration of NAFLD progression by modulating key players of the gut-liver axis.
Collapse
|
26
|
Zhang H, Zuo Y, Zhao H, Zhao H, Wang Y, Zhang X, Zhang J, Wang P, Sun L, Zhang H, Liang H. Folic acid ameliorates alcohol-induced liver injury via gut–liver axis homeostasis. Front Nutr 2022; 9:989311. [PMID: 36337656 PMCID: PMC9632181 DOI: 10.3389/fnut.2022.989311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The gut–liver axis (GLA) plays an important role in the development of alcohol-induced liver injury. Alcohol consumption is typically associated with folic acid deficiency. However, no clear evidence has confirmed the effect of folic acid supplementation on alcohol-induced liver injury via GLA homeostasis. In this study, male C57BL/6J mice were given 56% (v/v) ethanol and 5.0 mg/kg folic acid daily by gavage for 10 weeks to investigate potential protective mechanisms of folic acid in alcohol-induced liver injury via GLA homeostasis. Histopathological and biochemical analyses showed that folic acid improved lipid deposition and inflammation in the liver caused by alcohol consumption and decreased the level of ALT, AST, TG, and LPS in serum. Folic acid inhibited the expression of the TLR4 signaling pathway and its downstream inflammatory mediators in the liver and upregulated the expression of ZO-1, claudin 1, and occludin in the intestine. But compared with the CON group, folic acid did not completely eliminate alcohol-induced intestine and liver injury. Furthermore, folic acid regulated alcohol-induced alterations in gut microbiota. In alcohol-exposed mice, the relative abundance of Bacteroidota was significantly increased, and the relative abundance of unclassified_Lachnospiraceae was significantly decreased. Folic acid supplementation significantly increased the relative abundance of Verrucomicrobia, Lachnospiraceae_NK4A136_group and Akkermansia, and decreased the relative abundance of Proteobacteria. The results of Spearman’s correlation analysis showed that serum parameters and hepatic inflammatory cytokines were significantly correlated with several bacteria, mainly including Bacteroidota, Firmicutes, and unclassified_Lachnospiraceae. In conclusion, folic acid could ameliorate alcohol-induced liver injury in mice via GLA homeostasis to some extent, providing a new idea and method for prevention of alcohol-induced liver injury.
Collapse
Affiliation(s)
- Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yuwei Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huichao Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yutong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huizhen Zhang
- Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Hui Liang,
| |
Collapse
|
27
|
Srivastava AK, Venkata BS, Sweat YY, Rizzo HR, Jean-François L, Zuo L, Kurgan KW, Moore P, Shashikanth N, Smok I, Sachleben JR, Turner JR, Meredith SC. Serine 408 phosphorylation is a molecular switch that regulates structure and function of the occludin α-helical bundle. Proc Natl Acad Sci U S A 2022; 119:e2204618119. [PMID: 35969745 PMCID: PMC9407527 DOI: 10.1073/pnas.2204618119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Occludin is a tetramembrane-spanning tight junction protein. The long C-terminal cytoplasmic domain, which represents nearly half of occludin sequence, includes a distal bundle of three α-helices that mediates interactions with other tight junction components. A short unstructured region just proximal to the α-helical bundle is a phosphorylation hotspot within which S408 phosphorylation acts as molecular switch that modifies tight junction protein interactions and barrier function. Here, we used NMR to define the effects of S408 phosphorylation on intramolecular interactions between the unstructured region and the α-helical bundle. S408 pseudophosphorylation affected conformation at hinge sites between the three α-helices. Further studies using paramagnetic relaxation enhancement and microscale thermophoresis indicated that the unstructured region interacts with the α-helical bundle. These interactions between the unstructured domain are enhanced by S408 phosphorylation and allow the unstructured region to obstruct the binding site, thereby reducing affinity of the occludin tail for zonula occludens-1 (ZO-1). Conversely, S408 dephosphorylation attenuates intramolecular interactions, exposes the binding site, and increases the affinity of occludin binding to ZO-1. Consistent with an increase in binding to ZO-1, intravital imaging and fluorescence recovery after photobleaching (FRAP) analyses of transgenic mice demonstrated increased tight junction anchoring of enhanced green fluorescent protein (EGFP)-tagged nonphosphorylatable occludin relative to wild-type EGFP-occludin. Overall, these data define the mechanisms by which S408 phosphorylation modifies occludin tail conformation to regulate tight junction protein interactions and paracellular permeability.
Collapse
Affiliation(s)
| | | | - Yan Y. Sweat
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - Heather R. Rizzo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - Léa Jean-François
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
- Anhui Medical University, Hefei, China, 230032
| | | | - Patrick Moore
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Nitesh Shashikanth
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - Izabela Smok
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | | | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | | |
Collapse
|
28
|
Wang L, Cao ZM, Zhang LL, Li JM, Lv WL. The Role of Gut Microbiota in Some Liver Diseases: From an Immunological Perspective. Front Immunol 2022; 13:923599. [PMID: 35911738 PMCID: PMC9326173 DOI: 10.3389/fimmu.2022.923599] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is a microecosystem composed of various microorganisms. It plays an important role in human metabolism, and its metabolites affect different tissues and organs. Intestinal flora maintains the intestinal mucosal barrier and interacts with the immune system. The liver is closely linked to the intestine by the gut-liver axis. As the first organ that comes into contact with blood from the intestine, the liver will be deeply influenced by the gut microbiota and its metabolites, and the intestinal leakage and the imbalance of the flora are the trigger of the pathological reaction of the liver. In this paper, we discuss the role of gut microbiota and its metabolites in the pathogenesis and development of autoimmune liver diseases((including autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis), metabolic liver disease such as non-alcoholic fatty liver disease, cirrhosisits and its complications, and liver cancer from the perspective of immune mechanism. And the recent progress in the treatment of these diseases was reviewed from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | - Zheng-Min Cao
- *Correspondence: Li Wang, ; Zheng-Min Cao, ; Juan-mei Li, ; Wen-liang Lv,
| | | | - Juan-mei Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-liang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Xu Q, Zhang R, Mu Y, Song Y, Hao N, Wei Y, Wang Q, Mackay CR. Propionate Ameliorates Alcohol-Induced Liver Injury in Mice via the Gut-Liver Axis: Focus on the Improvement of Intestinal Permeability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6084-6096. [PMID: 35549256 DOI: 10.1021/acs.jafc.2c00633] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alcohol-related liver disease (ALD) is a major cause of chronic liver disease worldwide with limited therapeutic options. Here, we first revealed the promising beneficial effect of gut microbiota-derived propionate on alcoholic liver injury in mice. This effect was dependent on the modulation of homeostasis of the gut-liver axis, especially the improvement of intestinal permeability. Dietary supplementation with propionate protected against ethanol-induced loss of hepatic function and hepatic steatosis in mice. Meanwhile, propionate treatment attenuated intestinal epithelial barrier dysfunction, restored the expression of intestinal mucus layer components, suppressed intestinal inflammation, and altered intestinal microbiota dysbiosis, which inhibited the intestinal hyperpermeability and subsequently reduced lipopolysaccharide leakage in ALD mice. Furthermore, as a consequence of endotoxemia amelioration, the liver inflammation-related TLR4-NF-κB pathway was inhibited. Collectively, our results suggested that propionate supplementation may be a promising option for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Qi Xu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yan Mu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yue Song
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Hao
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yunbo Wei
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| |
Collapse
|
30
|
Untersmayr E, Brandt A, Koidl L, Bergheim I. The Intestinal Barrier Dysfunction as Driving Factor of Inflammaging. Nutrients 2022; 14:949. [PMID: 35267924 PMCID: PMC8912763 DOI: 10.3390/nu14050949] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The intestinal barrier, composed of the luminal microbiota, the mucus layer, and the physical barrier consisting of epithelial cells and immune cells, the latter residing underneath and within the epithelial cells, plays a special role in health and disease. While there is growing knowledge on the changes to the different layers associated with disease development, the barrier function also plays an important role during aging. Besides changes in the composition and function of cellular junctions, the entire gastrointestinal physiology contributes to essential age-related changes. This is also reflected by substantial differences in the microbial composition throughout the life span. Even though it remains difficult to define physiological age-related changes and to distinguish them from early signs of pathologies, studies in centenarians provide insights into the intestinal barrier features associated with longevity. The knowledge reviewed in this narrative review article might contribute to the definition of strategies to prevent the development of diseases in the elderly. Thus, targeted interventions to improve overall barrier function will be important disease prevention strategies for healthy aging in the future.
Collapse
Affiliation(s)
- Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria;
| | - Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
31
|
Ellagic Acid Alleviates Oxidative Stress by Mediating Nrf2 Signaling Pathways and Protects against Paraquat-Induced Intestinal Injury in Piglets. Antioxidants (Basel) 2022; 11:antiox11020252. [PMID: 35204135 PMCID: PMC8868335 DOI: 10.3390/antiox11020252] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract is a key source of superoxide so as to be one of the most vulnerable to oxidative stress damage. Ellagic acid (EA), a polyphenol displays widely biological activities owing to its strong antioxidant properties. Here, we investigated the protective benefits of EA on oxidative stress and intestinal barrier injury in paraquet (PQ)-challenged piglets. A total of 40 weaned piglets were randomly divided into five groups: Control, PQ, 0.005% EA-PQ, 0.01% EA-PQ, and 0.02% EA-PQ. Piglets were intraperitoneally injected with 4 mg/kg (BW) PQ or saline on d-18, and sacrificed on d-21 of experiment. EA treatments eliminated growth-check induced by PQ and increased serum superoxide dismutase (SOD) activity but decreased serum malondialdehyde (MDA) level as compared to PQ group. EA supplementation promoted Nrf2 nuclear translocation and enhanced heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) protein abundances of small intestinal mucosa. Additionally, EA improved PQ-induced crypt deepening, goblet cells loss, and villi morphological damage. Consistently, EA increased tight junction protein expression as was evident from the decreased serum diamine oxidase (DAO) levels. EA could ameliorate the PQ-induced oxidative stress and intestinal damage through mediating Nrf2 signaling pathway. Intake of EA-rich food might prevent oxidative stress-mediated gut diseases.
Collapse
|
32
|
Giraud J, Saleh M. Host-Microbiota Interactions in Liver Inflammation and Cancer. Cancers (Basel) 2021; 13:cancers13174342. [PMID: 34503151 PMCID: PMC8430654 DOI: 10.3390/cancers13174342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a difficult to treat liver cancer that generally arises in individuals suffering from alcoholic or non-alcoholic fatty liver diseases. Inflammation, tissue injury and fibrosis are important precursors of HCC. In this review, we explore the links between the microbiota, inflammation and carcinogenesis in the context of HCC. We discuss how the gut and liver communicate and how microbial molecules, including structural components and metabolites, elicit inflammation and tumorigenesis in the liver. A better understanding of microbiota-dependent mechanisms of liver cancer development might lead to novel microbial-based therapeutic approaches. Abstract Hepatocellular carcinoma (HCC) is a classical inflammation-promoted cancer that occurs in a setting of liver diseases, including nonalcoholic fatty liver disease (NAFLD) or alcoholic liver disease (ALD). These pathologies share key characteristics, notably intestinal dysbiosis, increased intestinal permeability and an imbalance in bile acids, choline, fatty acids and ethanol metabolites. Translocation of microbial- and danger-associated molecular patterns (MAMPs and DAMPs) from the gut to the liver elicits profound chronic inflammation, leading to severe hepatic injury and eventually HCC progression. In this review, we first describe how the gut and the liver communicate and discuss mechanisms by which the intestinal microbiota elicit hepatic inflammation and HCC. We focus on the role of microbial products, e.g., MAMPs, host inflammatory effectors and host–microbiome-derived metabolites in tumor-promoting mechanisms, including cell death and senescence. Last, we explore the potential of harnessing the microbiota to treat liver diseases and HCC.
Collapse
Affiliation(s)
- Julie Giraud
- ImmunoConcEpT, CNRS, UMR 5164, University of Bordeaux, F-33000 Bordeaux, France;
| | - Maya Saleh
- ImmunoConcEpT, CNRS, UMR 5164, University of Bordeaux, F-33000 Bordeaux, France;
- Department of Medicine, McGill University, Montreal, QC H3G 0B1, Canada
- Correspondence:
| |
Collapse
|
33
|
Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Durán-González P, Morales-García JÁ, Segovia-Rodríguez L, Rodríguez de Fonseca F, Giné E, López-Moreno JA. The Immune System through the Lens of Alcohol Intake and Gut Microbiota. Int J Mol Sci 2021; 22:ijms22147485. [PMID: 34299105 PMCID: PMC8303153 DOI: 10.3390/ijms22147485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
The human gut is the largest organ with immune function in our body, responsible for regulating the homeostasis of the intestinal barrier. A diverse, complex and dynamic population of microorganisms, called microbiota, which exert a significant impact on the host during homeostasis and disease, supports this role. In fact, intestinal bacteria maintain immune and metabolic homeostasis, protecting our organism against pathogens. The development of numerous inflammatory disorders and infections has been linked to altered gut bacterial composition or dysbiosis. Multiple factors contribute to the establishment of the human gut microbiota. For instance, diet is considered as one of the many drivers in shaping the gut microbiota across the lifetime. By contrast, alcohol is one of the many factors that disrupt the proper functioning of the gut, leading to a disruption of the intestinal barrier integrity that increases the permeability of the mucosa, with the final result of a disrupted mucosal immunity. This damage to the permeability of the intestinal membrane allows bacteria and their components to enter the blood tissue, reaching other organs such as the liver or the brain. Although chronic heavy drinking has harmful effects on the immune system cells at the systemic level, this review focuses on the effect produced on gut, brain and liver, because of their significance in the link between alcohol consumption, gut microbiota and the immune system.
Collapse
Affiliation(s)
- Javier Calleja-Conde
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Victor Echeverry-Alzate
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
- Universidad Nebrija, Campus Madrid-Princesa, 28015 Madrid, Spain
| | - Kora-Mareen Bühler
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Pedro Durán-González
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Jose Ángel Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lucía Segovia-Rodríguez
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
| | - Elena Giné
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Jose Antonio López-Moreno
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Correspondence:
| |
Collapse
|
34
|
Wang K, Ding Y, Xu C, Hao M, Li H, Ding L. Cldn-7 deficiency promotes experimental colitis and associated carcinogenesis by regulating intestinal epithelial integrity. Oncoimmunology 2021; 10:1923910. [PMID: 34026335 PMCID: PMC8118418 DOI: 10.1080/2162402x.2021.1923910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intestinal epithelial barrier protects intestine from infection and injury, while chronic inflammation is a trigger for tumorigenesis. As a member of tight junctions (TJs) family, Claudin-7 (Cldn-7) is dedicated to maintaining cell polarity and TJs barrier integrity, and closely related to the development of inflammation and tumors. However, potential roles of Cldn-7 in intestinal inflammation and colitis-associated colorectal cancer (CAC) have not been well characterized in vivo. Here, we analyzed the expression profile of Cldn-7 in inflammatory bowel disease (IBD) and CAC. Colitis and colitis-cancer transformation models were established based on inducible intestinal conditional Cldn-7 gene knockout mice (Cldn7fl/fl;villin-CreERT2), by intraperitoneal injection of azomethane (AOM) and dextran sodium sulfate (DSS) feeding. Cldn-7 knockout promoted susceptibility to colitis and CAC, aggravated clinical symptoms, severely damaged intestinal epithelium, increased mucosal inflammation accompanied dysregulated cell proliferation-apoptosis. Epithelial barrier integrity was destroyed, and intercellular permeability was increased. After AOM/DSS induction, tumor burden and volume were increased, characterized by enhanced proliferation and activation of Wnt/β-catenin signaling pathway. Mechanistically, Cldn-7 deficiency promoted colitis and subsequently malignant transformation by destroying TJs integrity and increasing inflammatory cascade. Overall, based on Cldn-7 knockout mouse model, we have first demonstrated the key roles of Cldn-7 in maintaining intestinal homeostasis and preventing IBD and consequent CAC. Abbreviations: AJs: adherens junctions; AOM: azomethane; Cldn-7: Claudin-7; CRC: colorectal cancer; CAC: colitis-associated colorectal cancer; CD: Crohn's disease; DSS: dextran sodium sulfate; DAI: disease activity index; EMT: epithelial-mesenchymal transition; FITC: fluorescence isothiocyanate; HB: hemoglobin; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; ISCs: intestinal stem cells; PLT: platelet; RBC: red blood cell; ROS: reactive oxygen species; TAM: tamoxifen; TJs: tight junctions; TCF/LEF: T-cell factor/lymphoid enhancer factor; UC: ulcerative colitis; WBC: white blood cell.
Collapse
Affiliation(s)
- Kun Wang
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Yuhan Ding
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Chang Xu
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Hepato-Pancreato-Biliary Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mengdi Hao
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Huimin Li
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Lei Ding
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
35
|
Wang X, Gao Y, Wang L, Yang D, Bu W, Gou L, Huang J, Duan X, Pan Y, Cao S, Gao Z, Cheng C, Feng Z, Xie J, Yao R. Troxerutin Improves Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2729-2744. [PMID: 33621077 DOI: 10.1021/acs.jafc.0c06755] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Screening potential compounds for improving ulcerative colitis (UC) from clinical medication is an effective strategy for drug repurposing. We applied bioinformatics and network pharmacology to the drug screening process in this study, which helped us to screen out troxerutin that could improve UC. Troxerutin belongs to flavonoids and is used clinically as an anticoagulant and thrombolytic agent. This study found a new pharmacological activity of troxerutin, that is, it had a significant improvement effect on UC in mice. Experimental results of in vitro and in vivo levels showed that troxerutin could effectively reduce the level of oxidative stress that caused damages in intestinal epithelial cells and colonic tissue, maintain the distribution and expression of tight junction-related proteins, and protect the barrier function of colon tissue. In addition to the oxidative stress, severe inflammatory response is also an important pathological factor that aggravates UC. However, troxerutin could reduce the infiltration of inflammatory cells in the colon tissue and decrease the expression of inflammation-related proteins and proinflammatory cytokines. Due to its antioxidant and anti-inflammatory effects, troxerutin inhibited the process of cell apoptosis in the colon tissue and relieved the degree of colonic fibrosis. Bioinformatics analysis showed that the ameliorating effect of troxerutin on UC was probably related to its network regulation of signaling pathways. In summary, we discovered a new pharmacological activity of the flavonoid troxerutin against UC, which is conducive to the expansion and application of flavonoids in the treatment of human diseases.
Collapse
Affiliation(s)
- Xingqi Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Yuzhi Gao
- Department of Cell Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221009, Jiangsu, China
| | - Lei Wang
- Department of Cell Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221009, Jiangsu, China
| | - Di Yang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Wei Bu
- Institute of Science and Technology, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, Jiangsu, China
| | - Jinjin Huang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Xinyue Duan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Yue Pan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Shuyan Cao
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Zixuan Gao
- Department of Cell Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221009, Jiangsu, China
| | - Chao Cheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Zhaojun Feng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Jun Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China
| | - Ruiqin Yao
- Department of Cell Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221009, Jiangsu, China
| |
Collapse
|
36
|
Translational Approaches with Antioxidant Phytochemicals against Alcohol-Mediated Oxidative Stress, Gut Dysbiosis, Intestinal Barrier Dysfunction, and Fatty Liver Disease. Antioxidants (Basel) 2021; 10:antiox10030384. [PMID: 33806556 PMCID: PMC8000766 DOI: 10.3390/antiox10030384] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging data demonstrate the important roles of altered gut microbiomes (dysbiosis) in many disease states in the peripheral tissues and the central nervous system. Gut dysbiosis with decreased ratios of Bacteroidetes/Firmicutes and other changes are reported to be caused by many disease states and various environmental factors, such as ethanol (e.g., alcohol drinking), Western-style high-fat diets, high fructose, etc. It is also caused by genetic factors, including genetic polymorphisms and epigenetic changes in different individuals. Gut dysbiosis, impaired intestinal barrier function, and elevated serum endotoxin levels can be observed in human patients and/or experimental rodent models exposed to these factors or with certain disease states. However, gut dysbiosis and leaky gut can be normalized through lifestyle alterations such as increased consumption of healthy diets with various fruits and vegetables containing many different kinds of antioxidant phytochemicals. In this review, we describe the mechanisms of gut dysbiosis, leaky gut, endotoxemia, and fatty liver disease with a specific focus on the alcohol-associated pathways. We also mention translational approaches by discussing the benefits of many antioxidant phytochemicals and/or their metabolites against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease.
Collapse
|
37
|
Khan A, Ding Z, Ishaq M, Bacha AS, Khan I, Hanif A, Li W, Guo X. Understanding the Effects of Gut Microbiota Dysbiosis on Nonalcoholic Fatty Liver Disease and the Possible Probiotics Role: Recent Updates. Int J Biol Sci 2021; 17:818-833. [PMID: 33767591 PMCID: PMC7975705 DOI: 10.7150/ijbs.56214] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is leading chronic liver syndrome worldwide. Gut microbiota dysbiosis significantly contributes to the pathogenesis and severity of NAFLD. However, its role is complex and even unclear. Treatment of NAFLD through chemotherapeutic agents have been questioned because of their side effects on health. In this review, we highlighted and discussed the current understanding on the importance of gut microbiota, its dysbiosis and its effects on the gut-liver axis and gut mucosa. Further, we discussed key mechanisms involved in gut dysbiosis to provide an outline of its role in progression to NAFLD and liver cirrhosis. In addition, we also explored the potential role of probiotics as a treatment approach for the prevention and treatment of NAFLD. Based on the latest findings, it is evident that microbiota targeted interventions mostly the use of probiotics have shown promising effects and can possibly alleviate the gut microbiota dysbiosis, regulate the metabolic pathways which in turn inhibit the progression of NAFLD through the gut-liver axis. However, very limited studies in humans are available on this issue and suggest further research work to identify a specific core microbiome association with NAFLD and to discover its mechanism of pathogenesis, which will help to enhance the therapeutic potential of probiotics to NAFLD.
Collapse
Affiliation(s)
- Ashiq Khan
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
- Department of Microbiology, Balochistan University of Information Technology Engineering & Management Sciences Quetta 87300, Pakistan
| | - Zitong Ding
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Muhammad Ishaq
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Ali Sher Bacha
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Israr Khan
- School of Life Sciences, Institute of Microbiology Lanzhou University, Lanzhou 730000, PR China
| | - Anum Hanif
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Wenyuan Li
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
38
|
Lamas-Paz A, Morán L, Peng J, Salinas B, López-Alcántara N, Sydor S, Vilchez-Vargas R, Asensio I, Hao F, Zheng K, Martín-Adrados B, Moreno L, Cogolludo A, Gómez del Moral M, Bechmann L, Martínez-Naves E, Vaquero J, Bañares R, Nevzorova YA, Cubero FJ. Intestinal Epithelial Cell-Derived Extracellular Vesicles Modulate Hepatic Injury via the Gut-Liver Axis During Acute Alcohol Injury. Front Pharmacol 2020; 11:603771. [PMID: 33408632 PMCID: PMC7779758 DOI: 10.3389/fphar.2020.603771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Binge drinking, i.e., heavy episodic drinking in a short time, has recently become an alarming societal problem with negative health impact. However, the harmful effects of acute alcohol injury in the gut-liver axis remain elusive. Hence, we focused on the physiological and pathological changes and the underlying mechanisms of experimental binge drinking in the context of the gut-liver axis. Eight-week-old mice with a C57BL/6 background received a single dose (p.o.) of ethanol (EtOH) [6 g/kg b.w.] as a preclinical model of acute alcohol injury. Controls received a single dose of PBS. Mice were sacrificed 8 h later. In parallel, HepaRGs and Caco-2 cells, human cell lines of differentiated hepatocytes and intestinal epithelial cells intestinal epithelial cells (IECs), respectively, were challenged in the presence or absence of EtOH [0-100 mM]. Extracellular vesicles (EVs) isolated by ultracentrifugation from culture media of IECs were added to hepatocyte cell cultures. Increased intestinal permeability, loss of zonula occludens-1 (ZO-1) and MUCIN-2 expression, and alterations in microbiota-increased Lactobacillus and decreased Lachnospiraceae species-were found in the large intestine of mice exposed to EtOH. Increased TUNEL-positive cells, infiltration of CD11b-positive immune cells, pro-inflammatory cytokines (e.g., tlr4, tnf, il1β), and markers of lipid accumulation (Oil Red O, srbep1) were evident in livers of mice exposed to EtOH, particularly in females. In vitro experiments indicated that EVs released by IECs in response to ethanol exerted a deleterious effect on hepatocyte viability and lipid accumulation. Overall, our data identified a novel mechanism responsible for driving hepatic injury in the gut-liver axis, opening novel avenues for therapy.
Collapse
Affiliation(s)
- Arantza Lamas-Paz
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Servicio de Aparato Digestivo del Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jin Peng
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Beatriz Salinas
- Servicio de Aparato Digestivo del Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Madrid, Spain
- Centro de Investigación Biomédico en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
| | - Iris Asensio
- Servicio de Aparato Digestivo del Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Fengjie Hao
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of General Surgery, Hepatobiliary Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Zheng
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Beatriz Martín-Adrados
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Laura Moreno
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
- Department of Pharmacology and Toxicology, Complutense University School of Medicine and Centre for Biomedical Research, Network on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Angel Cogolludo
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
- Department of Pharmacology and Toxicology, Complutense University School of Medicine and Centre for Biomedical Research, Network on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Manuel Gómez del Moral
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Cell Biology, Complutense University School of Medicine, Madrid, Spain
| | - Lars Bechmann
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo del Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo del Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| |
Collapse
|
39
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
40
|
Zheng TX, Pu SL, Tan P, Du YC, Qian BL, Chen H, Fu WG, Huang MZ. Liver Metabolomics Reveals the Effect of Lactobacillus reuteri on Alcoholic Liver Disease. Front Physiol 2020; 11:595382. [PMID: 33281626 PMCID: PMC7689281 DOI: 10.3389/fphys.2020.595382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD), a type of chronic liver disease that is prevalent worldwide, is still identified to have a poor prognosis despite many medical treatment protocols. Thus, it is urgent to develop and test new treatment protocols for ALD. Lactobacillus reuteri (L. reuteri) has been widely used in the clinical treatment of digestive system diseases, but studies on the protective effect of L. reuteri on ALD are considered to be rare. Therefore, in the present study, we examined the effect of L. reuteri on ALD and provide data that are significant in the development of new treatment protocols for ALD. An ALD model has been established in C57BL/6J mice treated according to the Gao-binge modeling method. Mice in the treatment group were administered with L. reuteri. Hematoxylin and eosin (H&E) staining, oil red O staining, immunohistochemistry, and biochemical analyses were performed to detect the phenotypic changes in the liver among mice in the different treatment groups. L. reuteri treatment reversed inflammatory cell infiltration and lipid accumulation. Moreover, AST, ALT, TG, and TCH levels were also reduced in the probiotics-treatment group. Five candidate biomarkers were found in the liver metabolites of different treatment groups by UPLC/QTOF-MS and a multivariate analysis. Several fatty acid metabolic pathways such as linoleic acid metabolism and glycerolipid metabolism were involved. All these findings suggested that L. reuteri treatment reversed the phenotype of ethanol-induced hepatitis and metabolic disorders. These findings provide evidence that L. reuteri might serve as a new therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Tian-Xiang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shi-Lin Pu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi-Chao Du
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bao-Lin Qian
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wen-Guang Fu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mei-Zhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
41
|
Kuprys PV, Cannon AR, Shieh J, Iftekhar N, Park SK, Eberhardt JM, Ding X, Choudhry MA. Alcohol decreases intestinal ratio of Lactobacillus to Enterobacteriaceae and induces hepatic immune tolerance in a murine model of DSS-colitis. Gut Microbes 2020; 12:1-16. [PMID: 33180663 PMCID: PMC7671045 DOI: 10.1080/19490976.2020.1838236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Alcohol can potentiate disease in a mouse model of dextran sodium sulfate (DSS) colitis; however, the underlying mechanism remains to be established. In this study, we assessed whether the potentiated disease could be related to Enterobacteriaceae and Lactobacillus, as changes in their relative abundance can impact intestinal health. We also assessed whether the intestinal barrier is compromised after alcohol and DSS as it may increase bacterial translocation and liver inflammation. Mice were administered DSS followed by binge ethanol or water vehicle, generating four experimental groups: (Control+Vehicle, Control+Ethanol, DSS+Vehicle, DSS+Ethanol). DNA was isolated from colon and cecal contents followed by qPCR for levels of Enterobacteriaceae and Lactobacillus. Colon and liver sections were taken for histology. Intestinal epithelial cells were isolated from the colon for RNA expression. DSS+Ethanol cecal contents exhibited a 1 log increase in Enterobacteriaceae (p < .05), a 0.5 log decrease in Lactobacillus, and a 1.5 log decrease (p < .05) in the Lactobacillus:Enterobacteriaceae ratio compared to DSS+Vehicle, with similar trends in colon contents. These changes correlated with shorter colons and more weight loss. Irrespective of ethanol administration, DSS compromised the mucosal barrier integrity, however only DSS+Ethanol exhibited significant increases in circulating endotoxin. Furthermore, the livers of DSS+Ethanol mice had significantly increased levels of triglycerides, mononuclear cells, yet exhibited significantly depressed expression of liver inflammatory pathways, suggestive of tolerance induction, compared to mice receiving DSS+Vehicle. Our results suggest that ethanol after DSS colitis increases the intestinal burden of Enterobacteriaceae which may contribute to intestinal and liver damage, and the induction of immune tolerance.
Collapse
Affiliation(s)
- Paulius V. Kuprys
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Abigail R. Cannon
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Jennifer Shieh
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Noama Iftekhar
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Sun K. Park
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Joshua M. Eberhardt
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| | - Mashkoor A. Choudhry
- Alcohol Research Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, IL, USA
| |
Collapse
|
42
|
Rawat M, Nighot M, Al-Sadi R, Gupta Y, Viszwapriya D, Yochum G, Koltun W, Ma TY. IL1B Increases Intestinal Tight Junction Permeability by Up-regulation of MIR200C-3p, Which Degrades Occludin mRNA. Gastroenterology 2020; 159:1375-1389. [PMID: 32569770 PMCID: PMC11752806 DOI: 10.1053/j.gastro.2020.06.038] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Defects in the epithelial tight junction (TJ) barrier contribute to development of intestinal inflammation associated with diseases. Interleukin 1 beta (IL1B) increases intestinal permeability in mice. We investigated microRNAs that are regulated by IL1B and their effects on expression of TJ proteins and intestinal permeability. METHODS We used Targetscan to identify microRNAs that would bind the 3' untranslated region (3'UTR) of occludin mRNA; regions that interacted with microRNAs were predicted using the V-fold server and Assemble2, and 3-dimensional models were created using UCSF Chimera linked with Assemble2. Caco-2 cells were transfected with vectors that express microRNAs, analyzed by immunoblots and real-time polymerase chain reaction (PCR), and grown as monolayers; permeability in response to IL1B was assessed with the marker inulin. Male C57BL/6 mice were given intraperitoneal injections of IL1B and intestinal recycling perfusion was measured; some mice were given dextran sodium sulfate to induce colitis and/or gavage with an antagonist to MIR200C-3p (antagomiR-200C) or the nonspecific antagomiR (control). Intestinal tissues were collected from mice and analyzed by histology and real-time PCR; enterocytes were isolated by laser capture microdissection. We also analyzed colon tissues and organoids from patients with and without ulcerative colitis. RESULTS Incubation of Caco-2 monolayers with IL1B increased TJ permeability and reduced levels of occludin protein and mRNA without affecting the expression of other transmembrane TJ proteins. Targetscan identified MIR122, MIR200B-3p, and MIR200C-3p, as miRNAs that might bind to the occludin 3'UTR. MIR200C-3p was rapidly increased in Caco-2 cells incubated with IL1B; the antagomiR-200c prevented the IL1B-induced decrease in occludin mRNA and protein and reduced TJ permeability. Administration of IL1B to mice increased small intestinal TJ permeability, compared with mice given vehicle; enterocytes isolated from mice given IL1B had increased expression of MIR200C-3p and decreased levels of occludin messenger RNA (mRNA) and protein. Intestinal tissues from mice with colitis had increased levels of IL1B mRNA and MIR200C-3p and decreased levels of occludin mRNA; gavage of mice with antagomiR-200C reduced levels of MIR200C-3p and prevented the decrease in occludin mRNA and the increase in colonic permeability. Colon tissues and organoids from patients with ulcerative colitis had increased levels of IL1B mRNA and MIR200C-3p compared with healthy controls. Using 3-dimensional molecular modeling and mutational analyses, we identified the nucleotide bases in the occluding mRNA 3'UTR that interact with MIR200C-3p. CONCLUSIONS Intestine tissues from patients with ulcerative colitis and mice with colitis have increased levels of IL1B mRNA and MIR200C-3p, which reduces expression of occludin by enterocytes and thereby increases TJ permeability. Three-dimensional modeling of the interaction between MIR200C-3p and the occludin mRNA 3'UTR identified sites of interaction. The antagomiR-200C prevents the decrease in occludin in enterocytes and intestine tissues of mice with colitis, maintaining the TJ barrier.
Collapse
Affiliation(s)
- Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Meghali Nighot
- Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Rana Al-Sadi
- Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Yash Gupta
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | | | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Thomas Y Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico; Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
43
|
Transcriptional analysis of cleft palate in TGFβ3 mutant mice. Sci Rep 2020; 10:14940. [PMID: 32913205 PMCID: PMC7483747 DOI: 10.1038/s41598-020-71636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Cleft palate (CP) is one of the most common craniofacial birth defects, impacting about 1 in 800 births in the USA. Tgf-β3 plays a critical role in regulating murine palate development, and Tgf-β3 null mutants develop cleft palate with 100% penetrance. In this study, we compared global palatal transcriptomes of wild type (WT) and Tgf-β3 −/− homozygous (HM) mouse embryos at the crucial palatogenesis stages of E14.5, and E16.5, using RNA-seq data. We found 1,809 and 2,127 differentially expressed genes at E16.5 vs. E14.5 in the WT and HM groups, respectively (adjusted p < 0.05; |fold change|> 2.0). We focused on the genes that were uniquely up/downregulated in WT or HM at E16.5 vs. E14.5 to identify genes associated with CP. Systems biology analysis relating to cell behaviors and function of WT and HM specific genes identified functional non-Smad pathways and preference of apoptosis to epithelial-mesenchymal transition. We identified 24 HM specific and 11 WT specific genes that are CP-related and/or involved in Tgf-β3 signaling. We validated the expression of 29 of the 35 genes using qRT-PCR and the trend of mRNA expression is similar to that of RNA-seq data . Our results enrich our understanding of genes associated with CP that are directly or indirectly regulated via TGF-β.
Collapse
|
44
|
Chopyk DM, Grakoui A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology 2020; 159:849-863. [PMID: 32569766 PMCID: PMC7502510 DOI: 10.1053/j.gastro.2020.04.077] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Intestinal barrier dysfunction and dysbiosis contribute to development of diseases in liver and other organs. Physical, immunologic, and microbiologic (bacterial, fungal, archaeal, viral, and protozoal) features of the intestine separate its nearly 100 trillion microbes from the rest of the human body. Failure of any aspect of this barrier can result in translocation of microbes into the blood and sustained inflammatory response that promote liver injury, fibrosis, cirrhosis, and oncogenic transformation. Alterations in intestinal microbial populations or their functions can also affect health. We review the mechanisms that regulate intestinal permeability and how changes in the intestinal microbiome contribute to development of acute and chronic liver diseases. We discuss individual components of the intestinal barrier and how these are disrupted during development of different liver diseases. Learning more about these processes will increase our understanding of the interactions among the liver, intestine, and its flora.
Collapse
Affiliation(s)
- Daniel M. Chopyk
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
45
|
Ge L, Lin Z, Le G, Hou L, Mao X, Liu S, Liu D, Gan F, Huang K. Nontoxic-dose deoxynivalenol aggravates lipopolysaccharides-induced inflammation and tight junction disorder in IPEC-J2 cells through activation of NF-κB and LC3B. Food Chem Toxicol 2020; 145:111712. [PMID: 32877744 PMCID: PMC7456579 DOI: 10.1016/j.fct.2020.111712] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS) is the key factor in various intestinal inflammation which could disrupt the epithelial barrier function. Deoxynivalenol (DON), a well-known mycotoxin, can induce intestinal injury. However, the combined enterotoxicity of LPS and DON has rarely been studied. In this study, IPEC-J2 cell monolayers were exposed to LPS and nontoxic-dose DON for 12 and 24 h to investigate the effects of DON on LPS-induced inflammatory response and tight junction variation, and specific inhibitor and CRISPR-Cas9 were used to explore the underlying mechanisms. Our results showed that nontoxic-dose DON aggravated LPS-induced cellular inflammatory response, reflecting on more significant changes of inflammatory cytokines mRNA expression, higher protein expression of NOD-like receptor protein 3 (NLRP3) and procaspase-1. Moreover, nontoxic-dose DON aggravated LPS-induced mRNA and protein expression decreased, and distribution confused of tight junction proteins. We found that DON further enhanced LPS-induced phosphorylation and nucleus translocation of p65, and expression of LC3B-Ⅱ. NF-κB inhibitor and CRISPR-Cas9-mediated knockout of LC3B attenuated the effects of combination which indicated nontoxic-dose DON aggravated LPS-induced intestinal inflammation and tight junction disorder through activating NF-κB signaling pathway and autophagy-related protein LC3B. It further warns that ingesting low doses of mycotoxins may exacerbate the effects of intestinal pathogens on the body. Nontoxic-dose DON aggravates LPS-induced cellular inflammatory response in IPEC-J2 cell monolayers. Nontoxic-dose DON aggravates LPS-induced decrease and distribution disorder of tight junction in IPEC-J2 cell monolayers. Nontoxic-dose DON aggravates LPS-induced inflammatory response and tight junction disorder by activating NF-κB and LC3B.
Collapse
Affiliation(s)
- Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
46
|
Wang G, Sun S, Wu X, Yang S, Wu Y, Zhao J, Zhang H, Chen W. Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110590. [PMID: 32283409 DOI: 10.1016/j.ecoenv.2020.110590] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 05/26/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a recently identified and persistent organic pollutant that becomes enriched in living organisms via bioaccumulation and the food chain. PFOS can induce various disorders, including liver toxicity, neurotoxicity and metabolic dysregulation. Most recent studies have shown a close association of the gut microbiota with the occurrence of diseases. However, few studies have explored the effects of PFOS on the gut environment, including the intestinal flora and barrier. In this study, we evaluated the effects of PFOS in C57BL/6J male mice and explored the relationship between tissue damage and the gut environment. Mice were orally exposed to PFOS for 16 days. Liver damage was assessed by examining the inflammatory reaction in the liver and serum liver enzyme concentrations. Metabolic function was assessed by the hepatic cholesterol level and the serum concentrations of glucose, high-density lipoprotein cholesterol, total cholesterol and triglycerides. Intestinal environmental disorders were assessed by evaluating the gut microbiota, SCFAs production, inflammatory reactions and intestinal tight junction protein expression. Our results indicated that PFOS affected inflammatory reactions in the liver and colon and promoted the development of metabolic disorders (especially of cholesterol and glucose metabolism). Moreover, PFOS dysregulated various populations in the gut microbiota (e.g., Firmicutes, Bacteroides, Proteobacteria, Gammaproteobacteria, Clostridiales, Enterobacteriales, Lactobacillales, Erysipelotrichaceae, Rikenellaceae, Ruminococcaceae and Blautia) and induced a loss of gut barrier integrity by reducing short-chain fatty acids (SCFAs) production and intestinal tight junction protein expression. A Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis mainly identified metabolic pathways (e.g., the adipocytokine signalling pathway), endocrine system pathways (e.g., steroid hormone biosynthesis, flavonoid biosynthesis), the latter of which is widely considered to be associated with metabolism. Overall, our results suggest that PFOS damages various aspects of the gut environment, including the microbiota, SCFAs and barrier function, and thereby exacerbates the toxicity associated with liver, gut and metabolic disorders.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shanshan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaobing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shurong Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Yanmin Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
47
|
Funk MC, Zhou J, Boutros M. Ageing, metabolism and the intestine. EMBO Rep 2020; 21:e50047. [PMID: 32567155 PMCID: PMC7332987 DOI: 10.15252/embr.202050047] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium serves as a dynamic barrier to the environment and integrates a variety of signals, including those from metabolites, commensal microbiota, immune responses and stressors upon ageing. The intestine is constantly challenged and requires a high renewal rate to replace damaged cells in order to maintain its barrier function. Essential for its renewal capacity are intestinal stem cells, which constantly give rise to progenitor cells that differentiate into the multiple cell types present in the epithelium. Here, we review the current state of research of how metabolism and ageing control intestinal stem cell function and epithelial homeostasis. We focus on recent insights gained from model organisms that indicate how changes in metabolic signalling during ageing are a major driver for the loss of stem cell plasticity and epithelial homeostasis, ultimately affecting the resilience of an organism and limiting its lifespan. We compare findings made in mouse and Drosophila and discuss differences and commonalities in the underlying signalling pathways and mechanisms in the context of ageing.
Collapse
Affiliation(s)
- Maja C Funk
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Jun Zhou
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
48
|
Nighot P, Ma T. Endocytosis of Intestinal Tight Junction Proteins: In Time and Space. Inflamm Bowel Dis 2020; 27:283-290. [PMID: 32497180 PMCID: PMC7813749 DOI: 10.1093/ibd/izaa141] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells take up macromolecules and particles from the surrounding milieu and also internalize membrane proteins via a precise process of endocytosis. The role of endocytosis in diverse physiological processes such as cell adhesion, cell signaling, tissue remodeling, and healing is well recognized. The epithelial tight junctions (TJs), present at the apical lateral membrane, play a key role in cell adhesion and regulation of paracellular pathway. These vital functions of the TJ are achieved through the dynamic regulation of the presence of pore and barrier-forming proteins within the TJ complex on the plasma membrane. In response to various intracellular and extracellular clues, the TJ complexes are actively regulated by intracellular trafficking. The intracellular trafficking consists of endocytosis and recycling cargos to the plasma membrane or targeting them to the lysosomes for degradation. Increased intestinal TJ permeability is a pathological factor in inflammatory bowel disease (IBD), and the TJ permeability could be increased due to the altered endocytosis or recycling of TJ proteins. This review discusses the current information on endocytosis of intestinal epithelial TJ proteins. The knowledge of the endocytic regulation of the epithelial TJ barrier will provide further understanding of pathogenesis and potential targets for IBD and a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA,Address correspondence to: Prashant Nighot, Department of Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Room C5814B, Hershey, PA, 17033, USA. E-mail:
| | - Thomas Ma
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
49
|
Glaser T, Baiocchi L, Zhou T, Francis H, Lenci I, Grassi G, Kennedy L, Liangpunsakul S, Glaser S, Alpini G, Meng F. Pro-inflammatory signalling and gut-liver axis in non-alcoholic and alcoholic steatohepatitis: Differences and similarities along the path. J Cell Mol Med 2020; 24:5955-5965. [PMID: 32314869 PMCID: PMC7294142 DOI: 10.1111/jcmm.15182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) represent a spectrum of injury, ranging from simple steatosis to steatohepatitis and cirrhosis. In humans, in fact, fatty changes in the liver, possibly leading to end-stage disease, were observed after chronic alcohol intake or in conditions of metabolic impairment. In this article, we examined the features and the pro-inflammatory pathways leading to non-alcoholic and alcoholic steatohepatitis. The involvement of several events (hits) and multiple inter-related pathways in the pathogenesis of these diseases suggest that a single therapeutic agent is unlikely to be an effective treatment strategy. Hence, a combination treatment towards multiple pro-inflammatory targets would eventually be required. Gut-liver crosstalk is involved not only in the impairment of lipid and glucose homoeostasis leading to steatogenesis, but also in the initiation of inflammation and fibrogenesis in both NAFLD and ALD. Modulation of the gut-liver axis has been suggested as a possible therapeutic approach since gut-derived components are likely to be involved in both the onset and the progression of liver damage. This review summarizes the translational mechanisms underlying pro-inflammatory signalling and gut-liver axis in non-alcoholic and alcoholic steatohepatitis. With a multitude of people being affected by liver diseases, identification of possible treatments and the elucidation of pathogenic mechanisms are elements of paramount importance.
Collapse
Affiliation(s)
- Trenton Glaser
- Texas A&M University College of MedicineCollege StationTXUSA
| | - Leonardo Baiocchi
- Liver UnitDepartment of MedicineUniversity of Rome Tor VergataRomeItaly
| | - Tianhao Zhou
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Heather Francis
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Ilaria Lenci
- Liver UnitDepartment of MedicineUniversity of Rome Tor VergataRomeItaly
| | - Giuseppe Grassi
- Liver UnitDepartment of MedicineUniversity of Rome Tor VergataRomeItaly
| | | | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Shannon Glaser
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Fanyin Meng
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
50
|
A Role for Gut Microbiome Fermentative Pathways in Fatty Liver Disease Progression. J Clin Med 2020; 9:jcm9051369. [PMID: 32392712 PMCID: PMC7291163 DOI: 10.3390/jcm9051369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease in which environmental and genetic factors are involved. Although the molecular mechanisms involved in NAFLD onset and progression are not completely understood, the gut microbiome (GM) is thought to play a key role in the process, influencing multiple physiological functions. GM alterations in diversity and composition directly impact disease states with an inflammatory course, such as non-alcoholic steatohepatitis (NASH). However, how the GM influences liver disease susceptibility is largely unknown. Similarly, the impact of strategies targeting the GM for the treatment of NASH remains to be evaluated. This review provides a broad insight into the role of gut microbiota in NASH pathogenesis, as a diagnostic tool, and as a therapeutic target in this liver disease. We highlight the idea that the balance in metabolic fermentations can be key in maintaining liver homeostasis. We propose that an overabundance of alcohol-fermentation pathways in the GM may outcompete healthier, acid-producing members of the microbiota. In this way, GM ecology may precipitate a self-sustaining vicious cycle, boosting liver disease progression.
Collapse
|