1
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Wei H. Intranasal Lithium Chloride Nanoparticles Inhibit Inflammatory Pyroptosis in Brains and Ameliorate Memory Loss and Depression Behavior in 5xFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613794. [PMID: 39345574 PMCID: PMC11430220 DOI: 10.1101/2024.09.18.613794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This study compares the changes in lithium concentrations in the brain and blood following the administration of intranasal or oral lithium chloride (LiCl) dissolved in either Ryanodex Formulation Vehicle (RFV) or water, as well as the therapeutic effectiveness and side effects of intranasal versus oral lithium chloride (LiCl) in RFV, and their mechanisms for inhibiting inflammation and pyroptosis in 5xFAD Alzheimer's Disease (AD) mice brains. In comparison to oral LiCl in RFV, intranasal LiCl in RFV decreased lithium blood concentrations but increased brain concentrations and duration, resulting in a significantly higher brain/blood lithium concentration ratio than intranasal LiCl in water or oral LiCl in RFV in young adult mice. Intranasal LiCl in RFV robustly protects both memory loss and depressive behavior in both young and old 5xFAD mice, with no side effects or thyroid/kidney toxicity. In fact, intranasal LiCl in RFV protects against age-dependent kidney function impairment in 5xFAD mice. This lithium mediated neuroprotection was associated with its potent effects on the inhibition of InsP3R-1 Ca 2+ channel receptor increase, ameliorating pathological inflammation and activation of the pyroptosis pathway, and the associated loss of synapse proteins. Intranasal LiCl in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and treat both dementia and depression with no or minimal side effects/organ toxicity, particular in AD.
Collapse
|
2
|
Ilari S, Nucera S, Passacatini LC, Scarano F, Macrì R, Caminiti R, Ruga S, Serra M, Giancotti LA, Lauro F, Dagostino C, Mazza V, Ritorto G, Oppedisano F, Maiuolo J, Palma E, Malafoglia V, Tomino C, Mollace V, Muscoli C. Exploring the Role of Bergamot Polyphenols in Alleviating Morphine-Induced Hyperalgesia and Tolerance through Modulation of Mitochondrial SIRT3. Nutrients 2024; 16:2620. [PMID: 39203757 PMCID: PMC11357234 DOI: 10.3390/nu16162620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Morphine is an important pain reliever employed in pain management, its extended utilize is hindered by the onset of analgesic tolerance and oxidative stress. Long-term morphine administration causes elevated production of reactive oxygen species (ROS), disrupting mitochondrial function and inducing oxidation. Sirtuin 3 (SIRT3), a mitochondrial protein, is essential in modulating ROS levels by regulating mitochondrial antioxidant enzymes as manganese superoxide dismutase (MnSOD). Our investigation focused on the impact of SIRT3 on hyperalgesia and morphine tolerance in mice, as evaluating the antioxidant effect of the polyphenolic fraction of bergamot (BPF). Mice were administered morphine twice daily for four consecutive days (20 mg/kg). On the fifth day, mice received an acute dose of morphine (3 mg/kg), either alone or in conjunction with BPF or Mn (III)tetrakis (4-benzoic acid) porphyrin (MnTBAP). We evaluated levels of malondialdehyde (MDA), nitration, and the activity of SIRT3, MnSOD, glutamine synthetase (GS), and glutamate 1 transporter (GLT1) in the spinal cord. Our findings demonstrate that administering repeated doses of morphine led to the development of antinociceptive tolerance in mice, accompanied by increased superoxide production, nitration, and inactivation of mitochondrial SIRT3, MnSOD, GS, and GLT1. The combined administration of morphine with either BPF or MnTBAP prevented these effects.
Collapse
Affiliation(s)
- Sara Ilari
- IRCCS San Raffaele Roma, 00166 Rome, Italy; (S.I.); (L.C.P.); (V.M.); (C.T.)
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | | | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Luigino Antonio Giancotti
- Department of Pharmacology and Physiology, School of Medicine and Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO 63103, USA
| | - Filomena Lauro
- Department of Pharmacology and Physiology, School of Medicine and Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO 63103, USA
| | - Concetta Dagostino
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Valeria Mazza
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Giovanna Ritorto
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | | | - Carlo Tomino
- IRCCS San Raffaele Roma, 00166 Rome, Italy; (S.I.); (L.C.P.); (V.M.); (C.T.)
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (F.S.); (R.M.); (R.C.); (S.R.); (M.S.); (C.D.); (V.M.); (G.R.); (F.O.); (J.M.); (E.P.); (V.M.)
| |
Collapse
|
3
|
Feng L, Sun J, Xia L, Shi Q, Hou Y, Zhang L, Li M, Fan C, Sun B. Ferroptosis mechanism and Alzheimer's disease. Neural Regen Res 2024; 19:1741-1750. [PMID: 38103240 PMCID: PMC10960301 DOI: 10.4103/1673-5374.389362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 09/09/2023] [Indexed: 12/18/2023] Open
Abstract
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Lina Feng
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Jingyi Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Ling Xia
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qiang Shi
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Yajun Hou
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Lili Zhang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, Shandong Province, China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Cundong Fan
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Baoliang Sun
- Shandong Key Laboratory of TCM Multi-Target Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
4
|
Tarbali S, Dadkhah M, Saadati H. Lipophilic fluorescent products as a potential biomarker of oxidative stress: A link between central (brain) and peripheral (blood). JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:38. [PMID: 39239084 PMCID: PMC11376719 DOI: 10.4103/jrms.jrms_671_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/06/2024] [Accepted: 04/22/2024] [Indexed: 09/07/2024]
Abstract
Oxidative stress plays a key role in brain damage because of the sensitivity of brain tissue to oxidative damage. Biomarkers with easy measurement can be a candidate for reflecting the oxidative stress issue in humans. For this reason, we need to focus on specific metabolic products of the brain. End products of free radical reactions such as malondialdehydes form fluorescent products known as lipophilic fluorescent products (LFPs). The distinctive feature of LFPs is their autofluorescent properties. LFPs are detectable in the brain and cerebrospinal fluid. Furthermore, because of the diffusion into the bloodstream, these lipophilic molecules can be detected in the blood. Accumulations of these compounds produce more reactive oxygen species and increase the sensitivity of cells to oxidative damage. Hence, LFPs can be considered a danger signal for neurons and can be introduced as a strong index of oxidative damage both in the central and in the peripheral.
Collapse
Affiliation(s)
- Sepideh Tarbali
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Yang A, Yi X, Zhang H, Chen Q, Shen R, Kou X. Study of multifunctional anti-AD ligands: design, synthesis, X-ray crystal structure and biological evaluation of diosmetin derivatives. Mol Divers 2024:10.1007/s11030-024-10913-w. [PMID: 38935304 DOI: 10.1007/s11030-024-10913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The development of anti-AD drugs has attracted much attention as the number of AD patients is increasing year by year. Five diosmetin derivatives (1-5) were designed and synthesized by introducing carbamate groups. The crystal structure of 1 was analyzed by X-ray diffraction, which showed a large conjugated coplanar structure and might be favorable for the insertion into the Aβ folding. Meanwhile, in vitro experiments were carried out to investigate the anticholinesterase activity, metal chelating property, antioxidant activity, and anti-Aβ aggregation ability of 1-5. The results showed that 1-5 had good cholinesterase inhibitory activities. Compound 4 showed the highest inhibitory activities against butyrylcholinesterase (IC50 = 0.0760 μM). Further kinetic experiments and molecular docking studies showed that 4 could bind well to butyrylcholinesterase. The molecular dynamics simulations also signified that compared with diosmetin, 4 could reduce the flexibility of the butyrylcholinesterase protein skeleton to a greater extent, and thus had a better inhibitory effect. In addition, 1-5 could selectively chelate copper ions and all of them had good antioxidant activity as well as anti-Aβ aggregation ability. Among them, 4 had the strongest activity to inhibit Cu2+-induced Aβ aggregation (51.09%) and had low cytotoxicity. In addition, in vivo ROS activity assay (Caenorhabditis elegans) showed that 4 had the ability to scavenge ROS. Besides, the in vivo Aβ aggregation assay showed that 4 could reduce Aβ aggregation. In conclusion, 4 has the potential to be developed into a multifunctional anti-AD drug.
Collapse
Affiliation(s)
- Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoyue Yi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongwei Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Quanzhen Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Su H, Masters CL, Bush AI, Barnham KJ, Reid GE, Vella LJ. Exploring the significance of lipids in Alzheimer's disease and the potential of extracellular vesicles. Proteomics 2024; 24:e2300063. [PMID: 37654087 DOI: 10.1002/pmic.202300063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin J Barnham
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura J Vella
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Jallow AW, Nguyen DPQ, Sanotra MR, Hsu CH, Lin YF, Lin YF. A comprehensive bibliometric analysis of global research on the role of acrolein in Alzheimer's disease pathogenesis: involvement of amyloid-beta. Front Aging Neurosci 2024; 16:1378260. [PMID: 38784445 PMCID: PMC11111988 DOI: 10.3389/fnagi.2024.1378260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive and behavioral decline. Acrolein, an environmental pollutant and endogenous compound, is implicated in AD development. This research employs bibliometric analysis to assess current trends and key areas concerning acrolein-AD interaction. Methods The Web of Science was used to extensively review literature on acrolein and AD. Relevant data were systematically gathered and analyzed using VOSviewer, CiteSpace, and an online bibliometric tool. Results We identified 120 English publications in this specialized field across 19 journals. The Journal of Alzheimer's Disease was the most prominent. The primary contributors, both in terms of scientific output and influence, were the USA, the University of Kentucky, and Ramassamy C, representing countries/regions, institutions, and authors, respectively. In this field, the primary focus was on thoroughly studying acrolein, its roles, and its mechanisms in AD utilizing both in vivo and in vitro approaches. A significant portion of the research was based on proteomics, revealing complex molecular processes. The main focuses in the field were "oxidative stress," "lipid peroxidation," "amyloid-beta," and "cognitive impairment." Anticipated future research trajectories focus on the involvement of the internalization pathway, covering key areas such as synaptic dysfunction, metabolism, mechanisms, associations, neuroinflammation, inhibitors, tau phosphorylation, acrolein toxicity, brain infarction, antioxidants, chemistry, drug delivery, and dementia. Our analysis also supported our previous hypothesis that acrolein can interact with amyloid-beta to form a protein adduct leading to AD-like pathology and altering natural immune responses. Conclusion This study provides a broad and all-encompassing view of the topic, offering valuable insights and guidance to fellow researchers. These emerging directions underscore the continuous exploration of the complexities associated with AD. The analyses and findings aim to enhance our understanding of the intricate relationship between acrolein and AD for future research.
Collapse
Affiliation(s)
- Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
| | - Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | | | - Chun-Hsien Hsu
- Department of Family Medicine, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Peggion C, Calì T, Brini M. Mitochondria Dysfunction and Neuroinflammation in Neurodegeneration: Who Comes First? Antioxidants (Basel) 2024; 13:240. [PMID: 38397838 PMCID: PMC10885966 DOI: 10.3390/antiox13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) encompass an assorted array of disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, each characterised by distinct clinical manifestations and underlying pathological mechanisms. While some cases have a genetic basis, many NDs occur sporadically. Despite their differences, these diseases commonly feature chronic neuroinflammation as a hallmark. Consensus has recently been reached on the possibility that mitochondria dysfunction and protein aggregation can mutually contribute to the activation of neuroinflammatory response and thus to the onset and progression of these disorders. In the present review, we discuss the contribution of mitochondria dysfunction and neuroinflammation to the aetiology and progression of NDs, highlighting the possibility that new potential therapeutic targets can be identified to tackle neurodegenerative processes and alleviate the progression of these pathologies.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Marisa Brini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
9
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
10
|
Lv N, Huang C, Huang H, Dong Z, Chen X, Lu C, Zhang Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants (Basel) 2023; 12:1970. [PMID: 38001822 PMCID: PMC10668987 DOI: 10.3390/antiox12111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.
Collapse
Affiliation(s)
- Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Zhiqiang Dong
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chengcan Lu
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
- Jiangning Clinical Medical College, Jiangsu University, Nanjing 211100, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| |
Collapse
|
11
|
Yamashima T, Seike T, Mochly-Rosen D, Chen CH, Kikuchi M, Mizukoshi E. Implication of the cooking oil-peroxidation product "hydroxynonenal" for Alzheimer's disease. Front Aging Neurosci 2023; 15:1211141. [PMID: 37693644 PMCID: PMC10486274 DOI: 10.3389/fnagi.2023.1211141] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that reduces cell injuries via detoxification of lipid-peroxidation product, 4-hydroxy-2-nonenal (hydroxynonenal). It is generated exogenously via deep-frying of linoleic acid-rich cooking oils and/or endogenously via oxidation of fatty acids involved in biomembranes. Although its toxicity for human health is widely accepted, the underlying mechanism long remained unknown. In 1998, Yamashima et al. have formulated the "calpain-cathepsin hypothesis" as a molecular mechanism of ischemic neuronal death. Subsequently, they found that calpain cleaves Hsp70.1 which became vulnerable after the hydroxynonenal-induced carbonylation at the key site Arg469. Since it is the pivotal aberration that induces lysosomal membrane rupture, they suggested that neuronal death in Alzheimer's disease similarly occurs by chronic ischemia via the calpain-cathepsin cascade triggered by hydroxynonenal. For nearly three decades, amyloid β (Aβ) peptide was thought to be a root substance of Alzheimer's disease. However, because of both the insignificant correlations between Aβ depositions and occurrence of neuronal death or dementia, and the negative results of anti-Aβ medicines tested so far in the patients with Alzheimer's disease, the strength of the "amyloid cascade hypothesis" has been weakened. Recent works have suggested that hydroxynonenal is a mediator of programmed cell death not only in the brain, but also in the liver, pancreas, heart, etc. Increment of hydroxynonenal was considered an early event in the development of Alzheimer's disease. This review aims at suggesting ways out of the tunnel, focusing on the implication of hydroxynonenal in this disease. Herein, the mechanism of Alzheimer neuronal death is discussed by focusing on Hsp70.1 with a dual function as chaperone protein and lysosomal stabilizer. We suggest that Aβ is not a culprit of Alzheimer's disease, but merely a byproduct of autophagy/lysosomal failure resulting from hydroxynonenal-induced Hsp70.1 disorder. Enhancing ALDH2 activity to detoxify hydroxynonenal emerges as a promising strategy for preventing and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
12
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
13
|
Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M. The old second messenger cAMP teams up with novel cell death mechanisms: potential translational therapeutical benefit for Alzheimer's disease and Parkinson's disease. Front Physiol 2023; 14:1207280. [PMID: 37405135 PMCID: PMC10315612 DOI: 10.3389/fphys.2023.1207280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent neurodegenerative disorders severely impacting life expectancy and quality of life of millions of people worldwide. AD and PD exhibit both a very distinct pathophysiological disease pattern. Intriguingly, recent researches, however, implicate that overlapping mechanisms may underlie AD and PD. In AD and PD, novel cell death mechanisms, encompassing parthanatos, netosis, lysosome-dependent cell death, senescence and ferroptosis, apparently rely on the production of reactive oxygen species, and seem to be modulated by the well-known, "old" second messenger cAMP. Signaling of cAMP via PKA and Epac promotes parthanatos and induces lysosomal cell death, while signaling of cAMP via PKA inhibits netosis and cellular senescence. Additionally, PKA protects against ferroptosis, whereas Epac1 promotes ferroptosis. Here we review the most recent insights into the overlapping mechanisms between AD and PD, with a special focus on cAMP signaling and the pharmacology of cAMP signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Minh D. A. Luu
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ulrich L. M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Abeer MI, Abdulhasan A, Haguar Z, Narayanaswami V. Isoform-specific modification of apolipoprotein E by 4-hydroxynonenal: protective role of apolipoprotein E3 against oxidative species. FEBS J 2023; 290:3006-3025. [PMID: 36661393 PMCID: PMC11296219 DOI: 10.1111/febs.16729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
High levels of 4-hydroxynonenal (HNE), arising from lipid peroxidation, and HNE-modified proteins have been identified in postmortem brains of ageing and Alzheimer's disease (AD) patients. The goal of this study is to understand the effect of HNE modification on the structure and function of recombinant apolipoprotein E3 (apoE3) and apolipoprotein E4 (apoE4), which play a critical role in brain cholesterol homeostasis. The two isoforms differ in a single amino acid at position 112: Cys in apoE3 and Arg in apoE4. Immunoblot with HNE-specific antibody indicates HNE modification of apoE3 and apoE4 with a major band at ~ 36 kDa, while LC-MS/MS revealed Michael addition at His140 (60-70% abundance) and His299 (3-5% abundance) in apoE3 and apoE4, and Cys112 adduct in apoE3 (75% abundance). Circular dichroism spectroscopy revealed no major differences in the overall secondary structure or helical content between unmodified and HNE-modified apoE. HNE modification did not affect their ability to promote cholesterol efflux from J774.1 macrophages. However, it led to a 3-fold decrease in their ability to bind lipids and 25-50% decrease in the ability of cerebral cortex endothelial cells to uptake lipoproteins bearing HNE-modified HNE-apoE3 or HNE-apoE4 as noted by fluorescence microscopy and flow cytometry. Taken together, the data indicate that HNE modification impairs lipid binding and cellular uptake of both isoforms, and that apoE3, bearing a Cys, offers a protective role by sequestering lipid peroxidation products that would otherwise cause indiscriminate damage to biomolecules. ApoE4, lacking Cys, is unable to protect against oxidative damage that is commensurate with ageing.
Collapse
Affiliation(s)
- Muhammad I Abeer
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Abbas Abdulhasan
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Zahraa Haguar
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, CA, USA
| |
Collapse
|
15
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
16
|
Liuzzi GM, Petraglia T, Latronico T, Crescenzi A, Rossano R. Antioxidant Compounds from Edible Mushrooms as Potential Candidates for Treating Age-Related Neurodegenerative Diseases. Nutrients 2023; 15:nu15081913. [PMID: 37111131 PMCID: PMC10145943 DOI: 10.3390/nu15081913] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The last century has seen an increase in our life expectancy. As a result, various age-related diseases, such as neurodegenerative diseases (NDs), have emerged, representing new challenges to society. Oxidative stress (OS), a condition of redox imbalance resulting from excessive production of reactive oxygen species, represents a common feature that characterizes the brains of elderly people, thus contributing to NDs. Consequently, antioxidant supplementation or dietary intake of antioxidant-containing foods could represent an effective preventive and therapeutic intervention to maintain the integrity and survival of neurons and to counteract the neurodegenerative pathologies associated with aging. Food contains numerous bioactive molecules with beneficial actions for human health. To this purpose, a wide range of edible mushrooms have been reported to produce different antioxidant compounds such as phenolics, flavonoids, polysaccharides, vitamins, carotenoids, ergothioneine, and others, which might be used for dietary supplementation to enhance antioxidant defenses and, consequently, the prevention of age-related neurological diseases. In this review, we summarized the role of oxidative stress in age-related NDs, focusing on the current knowledge of the antioxidant compounds present in edible mushrooms, and highlighting their potential to preserve healthy aging by counteracting age-associated NDs.
Collapse
Affiliation(s)
- Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Aniello Crescenzi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
17
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
18
|
Sarkar P, Kumar A, Behera PS, Thirumurugan K. Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:415-455. [PMID: 37437986 DOI: 10.1016/bs.apcsb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are characterized by degeneration or cellular atrophy within specific structures of the brain. Neurons are the major target of neurodegeneration. Neurons utilize 75-80% of the energy produced in the brain. This energy is either formed by utilizing the glucose provided by the cerebrovascular blood flow or by the in-house energy producers, mitochondria. Mitochondrial dysfunction has been associated with neurodegenerative diseases. But recently it has been noticed that neurodegenerative diseases are often associated with cerebrovascular diseases. Cerebral blood flow requires vasodilation which to an extent regulated by mitochondria. We hypothesize that when mitochondrial functioning is disrupted, it is not able to supply energy to the neurons. This disruption also affects cerebral blood flow, further reducing the possibilities of energy supply. Loss of sufficient energy leads to neuronal dysfunction, atrophy, and degeneration. In this chapter, we will discuss the metabolic modifications of mitochondria in aging-related neurological disorders and the potential of phytocompounds targeting them.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Kumar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Partha Sarathi Behera
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
19
|
Jadiya P, Cohen HM, Kolmetzky DW, Kadam AA, Tomar D, Elrod JW. Neuronal loss of NCLX-dependent mitochondrial calcium efflux mediates age-associated cognitive decline. iScience 2023; 26:106296. [PMID: 36936788 PMCID: PMC10014305 DOI: 10.1016/j.isci.2023.106296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Mitochondrial calcium overload contributes to neurodegenerative disease development and progression. We recently reported that loss of the mitochondrial sodium/calcium exchanger (NCLX), the primary mechanism of mCa2+ efflux, promotes mCa2+ overload, metabolic derangement, redox stress, and cognitive decline in models of Alzheimer's disease (AD). However, whether disrupted mCa2+ signaling contributes to neuronal pathology and cognitive decline independent of pre-existing amyloid or tau pathology remains unknown. Here, we generated mice with neuronal deletion of the mitochondrial sodium/calcium exchanger (NCLX, Slc8b1 gene), and evaluated age-associated changes in cognitive function and neuropathology. Neuronal loss of NCLX resulted in an age-dependent decline in spatial and cued recall memory, moderate amyloid deposition, mild tau pathology, synaptic remodeling, and indications of cell death. These results demonstrate that loss of NCLX-dependent mCa2+ efflux alone is sufficient to induce an Alzheimer's disease-like pathology and highlights the promise of therapies targeting mCa2+ exchange.
Collapse
Affiliation(s)
- Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Henry M. Cohen
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Devin W. Kolmetzky
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ashlesha A. Kadam
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Dhanendra Tomar
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
20
|
Sun 孙意冉 Y, Yan C, He L, Xiang S, Wang P, Li Z, Chen Y, Zhao J, Yuan Y, Wang W, Zhang X, Su P, Su Y, Ma J, Xu J, Peng Q, Ma H, Xie Z, Zhang Z. Inhibition of ferroptosis through regulating neuronal calcium homeostasis: An emerging therapeutic target for Alzheimer's disease. Ageing Res Rev 2023; 87:101899. [PMID: 36871781 DOI: 10.1016/j.arr.2023.101899] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, generates a serious threat to the health of the elderly. The AD brain is microscopically characterized by amyloid plaques and neurofibrillary tangles. There are still no effective therapeutic drugs to restrain the progression of AD though much attention has been paid to exploit AD treatments. Ferroptosis, a type of programmed cell death, has been reported to promote the pathological occurrence and development of AD, and inhibition of neuronal ferroptosis can effectively improve the cognitive impairment of AD. Studies have shown that calcium (Ca2+) dyshomeostasis is closely related to the pathology of AD, and can drive the occurrence of ferroptosis through several pathways, such as interacting with iron, and regulating the crosstalk between endoplasmic reticulum (ER) and mitochondria. This paper mainly reviews the roles of ferroptosis and Ca2+ in the pathology of AD, and highlights that restraining ferroptosis through maintaining the homeostasis of Ca2+ may be an innovative target for the treatment of AD.
Collapse
Affiliation(s)
- Yiran Sun 孙意冉
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jie Zhao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang 330052, Jiangxi, China
| | - Xiaowei Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunfang Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinlian Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Quekun Peng
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
21
|
Yamashima T, Seike T, Oikawa S, Kobayashi H, Kido H, Yanagi M, Yamamiya D, Li S, Boontem P, Mizukoshi E. Hsp70.1 carbonylation induces lysosomal cell death for lifestyle-related diseases. Front Mol Biosci 2023; 9:1063632. [PMID: 36819480 PMCID: PMC9936620 DOI: 10.3389/fmolb.2022.1063632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease, type 2 diabetes, and non-alcoholic steatohepatitis (NASH) constitute increasingly prevalent disorders. Individuals with type 2 diabetes are well-known to be susceptible to Alzheimer's disease. Although the pathogenesis of each disorder is multifactorial and the causal relation remains poorly understood, reactive oxygen species (ROS)-induced lipid and protein oxidation conceivably plays a common role. Lipid peroxidation product was recently reported to be a key factor also for non-alcoholic steatohepatitis, because of inducing hepatocyte degeneration/death. Here, we focus on implication of the representative lipid-peroxidation product 'hydroxynonenal' for the cell degeneration/death of brain, pancreas, and liver. Since Hsp70.1 has dual roles as a chaperone and lysosomal membrane stabilizer, hydroxynonenal-mediated oxidative injury (carbonylation) of Hsp70.1 was highlighted. After intake of high-fat diets, oxidation of free fatty acids in mitochondria generates ROS which enhance oxidation of ω-6 polyunsaturated fatty acids (PUFA) involved within biomembranes and generate hydroxynonenal. In addition, hydroxynonenal is generated during cooking deep-fried foods with vegetable oils especially containing linoleic acids. These intrinsic and exogenous hydroxynonenal synergically causes an increase in its serum and organ levels to induce Hsp70.1 oxidation. As it is amphiphilic; being water-soluble but displays strong lipophilic characteristics, hydroxynonenal can diffuse within the cells and react with targets like senile and/or atheromatous plaques outside the cells. Hydroxynonenal can deepen and expand lysosomal injuries by facilitating 'calpain-mediated cleavage of the carbonylated Hsp70.1'. Despite the unique anatomical, physiological, and biochemical characteristics of each organ for its specific disease, there should be a common cascade of the cell degeneration/death which is caused by hydroxynonenal. This review aims to implicate hydroxynonenal-mediated Hsp70.1 carbonylation for lysosomal membrane permeabilization/rupture and the resultant cathepsin leakage for inducing cell degeneration/death. Given the tremendous number of worldwide people suffering various lifestyle-related diseases, it is valuable to consider how ω-6 PUFA-rich vegetable oils is implicated for the organ disorder.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan,*Correspondence: Tetsumori Yamashima,
| | - Takuya Seike
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Kido
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masahiro Yanagi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Daisuke Yamamiya
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shihui Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Piyakarn Boontem
- Department of Cell Metabolism and Nutrition, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
22
|
Petrovskaya AV, Tverskoi AM, Barykin EP, Varshavskaya KB, Dalina AA, Mitkevich VA, Makarov AA, Petrushanko IY. Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood-Brain Barrier Endothelium. Int J Mol Sci 2022; 24:ijms24010183. [PMID: 36613623 PMCID: PMC9820675 DOI: 10.3390/ijms24010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The Alzheimer's disease (AD)-associated breakdown of the blood-brain barrier (BBB) promotes the accumulation of beta-amyloid peptide (Aβ) in the brain as the BBB cells provide Aβ transport from the brain parenchyma to the blood, and vice versa. The breakdown of the BBB during AD may be caused by the emergence of blood-borne Aβ pathogenic forms, such as structurally and chemically modified Aβ species; their effect on the BBB cells has not yet been studied. Here, we report that the effects of Aβ42, Aβ42, containing isomerized Asp7 residue (iso-Aβ42) or phosphorylated Ser8 residue (p-Aβ42) on the mitochondrial potential and respiration are closely related to the redox status changes in the mouse brain endothelial cells bEnd.3. Aβ42 and iso-Aβ42 cause a significant increase in nitric oxide, reactive oxygen species, glutathione, cytosolic calcium and the mitochondrial potential after 4 h of incubation. P-Aβ42 either does not affect or its effect develops after 24 h of incubation. Aβ42 and iso-Aβ42 activate mitochondrial respiration compared to p-Aβ42. The isomerized form promotes a greater cytotoxicity and mitochondrial dysfunction, causing maximum oxidative stress. Thus, Aβ42, p-Aβ42 and iso-Aβ42 isoforms differently affect the BBBs' cell redox parameters, significantly modulating the functioning of the mitochondria. The changes in the level of modified Aβ forms can contribute to the BBBs' breakdown during AD.
Collapse
|
23
|
Scarfò G, Piccarducci R, Daniele S, Franzoni F, Martini C. Exploring the Role of Lipid-Binding Proteins and Oxidative Stress in Neurodegenerative Disorders: A Focus on the Neuroprotective Effects of Nutraceutical Supplementation and Physical Exercise. Antioxidants (Basel) 2022; 11:2116. [PMID: 36358488 PMCID: PMC9686611 DOI: 10.3390/antiox11112116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
The human brain is primarily composed of lipids, and their homeostasis is crucial to carry on normal neuronal functions. In order to provide an adequate amount of lipid transport in and out of the central nervous system, organisms need a set of proteins able to bind them. Therefore, alterations in the structure or function of lipid-binding proteins negatively affect brain homeostasis, as well as increase inflammation and oxidative stress with the consequent risk of neurodegeneration. In this regard, lifestyle changes seem to be protective against neurodegenerative processes. Nutraceutical supplementation with antioxidant molecules has proven to be useful in proving cognitive functions. Additionally, regular physical activity seems to protect neuronal vitality and increases antioxidant defenses. The aim of the present review was to investigate mechanisms that link lipid-binding protein dysfunction and oxidative stress to cognitive decline, also underlining the neuroprotective effects of diet and exercise.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
24
|
Lin J, Li H, Guo J, Xu Y, Li H, Yan J, Wang Y, Chen H, Yuan Z. Potential of fluorescent nanoprobe in diagnosis and treatment of Alzheimer's disease. Nanomedicine (Lond) 2022; 17:1191-1211. [PMID: 36154269 DOI: 10.2217/nnm-2022-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is well known for its insidious nature, slow progression and high incidence as a neurodegenerative disease. In the past, diagnosis of AD mainly depended on analysis of a patient's cognitive ability and behavior. Without a unified standard for analysis methods, this is prone to produce incorrect diagnoses. Currently, definitive diagnosis mainly relies on histopathological examination. Because of the advantages of precision, noninvasiveness, low toxicity and high spatiotemporal resolution, fluorescent nanoprobes are suitable for the early diagnosis of AD. This review summarizes the research progress of different kinds of fluorescent nanoprobes for AD diagnosis and therapy in recent years and provides an outlook on the development prospects of fluorescent nanoprobes.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hanhan Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jingxuan Guo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yuxin Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| |
Collapse
|
25
|
Olasz B, Fiser B, Szőri M, Viskolcz B, Owen MC. Computational Elucidation of the Solvent-Dependent Addition of 4-Hydroxy-2-nonenal (HNE) to Cysteine and Cysteinate Residues. J Org Chem 2022; 87:12909-12920. [PMID: 36148484 DOI: 10.1021/acs.joc.2c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lipid peroxidation end product, 4-hydroxy-2-nonenal (HNE), is a secondary mediator of oxidative stress due to its strong ability to form adducts to the side chains of lysine, histidine, and cysteine residues (Cys) at increasing reactivities. This reaction can take place in various cellular environments and may be dependent on solvent. Moreover, approximately 10% of cysteine residues within the cells exist as the negatively charged cysteinate, which may also have a distinct reactivity toward HNE. In this study, quantum chemical calculations are used to investigate the reactivity of HNE toward Cys and cysteinate in three distinct solvent environments to mimic the aqueous, polar, and hydrophobic regions within the cell. Water enhances the reactivity of HNE to cysteine compared to that of the polar and hydrophobic solvents, and the reactivity of HNE is further augmented when Cys is first ionized to cysteinate. This is also confirmed by the transition state rate constant calculations. This study reveals the role of solvent polarity in these reactions and how cysteinate can account for the seemingly high reactivity of HNE toward Cys compared to other amino acid residues and demonstrates how a strong nucleophile can enhance the reactivity of an antioxidant analogue of the Cys residue.
Collapse
Affiliation(s)
- Balázs Olasz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Ferenc Rákóczi II Transcarpathian Hungarian College of Higher Education, UA-90200 Beregszász, Transcarpathia, Ukraine
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| | - Michael C Owen
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| |
Collapse
|
26
|
Mehkri Y, McDonald B, Sriram S, Reddy R, Kounelis-Wuillaume S, Roberts JA, Lucke-Wold B. Recent Treatment Strategies in Alzheimer's Disease and Chronic Traumatic Encephalopathy. BIOMEDICAL RESEARCH AND CLINICAL REVIEWS 2022; 7:128. [PMID: 36743825 PMCID: PMC9897211 DOI: 10.31579/2692-9406/128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurotrauma has been well linked to the progression of neurodegenerative disease. Much work has been done characterizing chronic traumatic encephalopathy, but less has been done regarding the contribution to Alzheimer's Disease. This review focuses on AD and its association with neurotrauma. Emerging clinical trials are discussed as well as novel mechanisms. We then address how some of these mechanisms are shared with CTE and emerging pre-clinical studies. This paper is a user-friendly resource that summarizes the emerging findings and proposes further investigation into key areas of interest. It is intended to serve as a catalyst for both research teams and clinicians in the quest to improve effective treatment and diagnostic options.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville
| | | | - Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville
| | - Ramya Reddy
- Department of Neurosurgery, University of Florida, Gainesville
| | | | | | | |
Collapse
|
27
|
Na,K-ATPase Acts as a Beta-Amyloid Receptor Triggering Src Kinase Activation. Cells 2022; 11:cells11172753. [PMID: 36078160 PMCID: PMC9455167 DOI: 10.3390/cells11172753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Beta-amyloid (Aβ) has a dual role, both as an important factor in the pathology of Alzheimer's disease and as a regulator in brain physiology. The inhibitory effect of Aβ42 oligomers on Na,K-ATPase contributes to neuronal dysfunction in Alzheimer's disease. Still, the physiological role of the monomeric form of Aβ42 interaction with Na,K-ATPase remains unclear. We report that Na,K-ATPase serves as a receptor for Aβ42 monomer, triggering Src kinase activation. The co-localization of Aβ42 with α1- and β1-subunits of Na,K-ATPase, and Na,K-ATPase with Src kinase in SH-SY5Y neuroblastoma cells, was observed. Treatment of cells with 100 nM Aβ42 causes Src kinase activation, but does not alter Na,K-ATPase transport activity. The interaction of Aβ42 with α1β1 Na,K-ATPase isozyme leads to activation of Src kinase associated with the enzyme. Notably, prevention of Na,K-ATPase:Src kinase interaction by a specific inhibitor pNaKtide disrupts the Aβ-induced Src kinase activation. Stimulatory effect of Aβ42 on Src kinase was lost under hypoxic conditions, which was similar to the effect of specific Na,K-ATPase ligands, the cardiotonic steroids. Our findings identify Na,K-ATPase as a Aβ42 receptor, thus opening a prospect on exploring the physiological and pathological Src kinase activation caused by Aβ42 in the nervous system.
Collapse
|
28
|
Effect of macular pigment carotenoids on cognitive functions: A systematic review. Physiol Behav 2022; 254:113891. [PMID: 35752349 DOI: 10.1016/j.physbeh.2022.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Lutein and zeaxanthin-xanthophyll carotenoids with antioxidant and anti-inflammatory characteristics-are present in the retina and the brain. High concentrations of these carotenoids have been positively related to cognitive performance. Therefore, this systematic review analyses the relationship between macular pigment density and cognitive functions. Most relevant databases were scoured for studies on healthy people relating cognitive functions to macular pigment optical density (MPOD). There were no age, sex, or race limitations. PROSPERO registration: CRD42021254833. Nineteen studies were included, seven randomized controlled trials (RCT) and eleven observational studies. The general aim of the studies was to examine the association between carotenoids (lutein, meso‑zeaxanthin and zeaxanthin) and cognitive function. Most observational studies correlates MPOD levels with cognitive function or brain activity. Besides, RCTs compared the cognitive function and/or brain activity after increasing lutein and zeaxanthin intake though dietary supplementation or avocado consumption. Dietary lutein and zeaxanthin intake increased MPOD in six of the seven clinical trials and significantly improved most of the cognitive functions studied. A wide variety of test and methodologies for measuring cognitive functions were observed. Memory, processing speed, attention and reasoning were the cognitive function significantly related to MPOD levels in adults. Brain activity also was related to MPOD, but the results were inconsistent. Only four of the eleven observational studies were based on young people and all studies showed a significant relationship between MPOD and cognitive functions. This systematic review showed a direct relationship among cognitive functions, macular pigment and the intake of lutein and zeaxanthin.
Collapse
|
29
|
Rummel NG, Butterfield DA. Altered Metabolism in Alzheimer Disease Brain: Role of Oxidative Stress. Antioxid Redox Signal 2022; 36:1289-1305. [PMID: 34416829 PMCID: PMC9229240 DOI: 10.1089/ars.2021.0177] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Alzheimer disease (AD) is an all-too-common condition in the aging population. However, aging does not automatically equal neurodegeneration and memory decline. Recent Advances: This review article involves metabolic changes in the AD brain that are related to oxidative stress. Selected pathways are identified as potential targets for intervention in AD. Critical Issues: One of the main factors of AD is the oxidative imbalance within the central nervous system, causing a disruption in metabolic processes. Reactive oxygen species (ROS) are a natural consequence of many cellular processes, especially those associated with mitochondria, such as the electron transport chain. Some ROS, when kept under control and maintained at reasonable levels, often play roles in cell signaling. The cellular damage of ROS arises when oxidative imbalance occurs, in which case ROS are not controlled, leading to a myriad of alterations in cellular metabolic processes. These altered pathways include, among others, dysfunctional glycolysis, calcium regulation, lipid metabolism, mitochondrial processes, and mammalian target of rapamycin pathway dysregulation. Future Directions: Understanding how ROS can lead to these alterations can, ideally, elucidate therapeutic options for retarding AD progression in the aging population. Antioxid. Redox Signal. 36, 1289-1305.
Collapse
Affiliation(s)
- Nicole G Rummel
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA
| | - D Allan Butterfield
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
30
|
Majid S, Van Belleghem F, Ploem JP, Wouters A, Blust R, Smeets K. Interactive toxicity of copper and cadmium in regenerating and adult planarians. CHEMOSPHERE 2022; 297:133819. [PMID: 35114265 DOI: 10.1016/j.chemosphere.2022.133819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In a polluted environment, metals are present as complex mixtures. As a result, organisms are exposed to different metals at the same time, which affects both metal-specific as well as overall toxicity. Detailed information about the molecular mechanisms underlying the adverse effects of combined exposures remains limited in terms of different life stages. In this study, the freshwater planarian Schmidtea mediterranea was used to investigate developmental and physiological responses associated with a combined exposure to Cu and Cd. In addition, the cellular and molecular mechanisms underlying the provoked adverse effects were studied in different exposure scenarios. Mixed exposure resulted in a decline in survival, diverse non-lethal morphological changes, neuroregenerative impairments, altered behaviour and a limited repair capacity. Underlying to these effects, the cellular redox state was altered in all exposure conditions. In adult animals, this led to DNA damage and corresponding transcriptional changes in cell cycle and DNA repair genes. In regenerating animals, changes in hydrogen peroxide and glutathione contents led to regenerative defects. Overall, our results demonstrate that (1) developing organisms are more susceptible to metal exposures, and (2) the toxicity of an individual metal increases significantly in a mixed exposure scenario. These aspects have to be included in current risk assessment strategies.
Collapse
Affiliation(s)
- Sanah Majid
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Frank Van Belleghem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Department of Environmental Sciences, Faculty of Science, Open University of the Netherlands, Heerlen, 6419, AT, the Netherlands
| | - Jan-Pieter Ploem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Annelies Wouters
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Ronny Blust
- Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Karen Smeets
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
31
|
Lipidomics in Understanding Pathophysiology and Pharmacologic Effects in Inflammatory Diseases: Considerations for Drug Development. Metabolites 2022; 12:metabo12040333. [PMID: 35448520 PMCID: PMC9030008 DOI: 10.3390/metabo12040333] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 01/26/2023] Open
Abstract
The lipidome has a broad range of biological and signaling functions, including serving as a structural scaffold for membranes and initiating and resolving inflammation. To investigate the biological activity of phospholipids and their bioactive metabolites, precise analytical techniques are necessary to identify specific lipids and quantify their levels. Simultaneous quantification of a set of lipids can be achieved using high sensitivity mass spectrometry (MS) techniques, whose technological advancements have significantly improved over the last decade. This has unlocked the power of metabolomics/lipidomics allowing the dynamic characterization of metabolic systems. Lipidomics is a subset of metabolomics for multianalyte identification and quantification of endogenous lipids and their metabolites. Lipidomics-based technology has the potential to drive novel biomarker discovery and therapeutic development programs; however, appropriate standards have not been established for the field. Standardization would improve lipidomic analyses and accelerate the development of innovative therapies. This review aims to summarize considerations for lipidomic study designs including instrumentation, sample stabilization, data validation, and data analysis. In addition, this review highlights how lipidomics can be applied to biomarker discovery and drug mechanism dissection in various inflammatory diseases including cardiovascular disease, neurodegeneration, lung disease, and autoimmune disease.
Collapse
|
32
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
33
|
Dodson M, Benavides GA, Darley-Usmar V, Zhang J. Differential Effects of 2-Deoxyglucose and Glucose Deprivation on 4-Hydroxynonenal Dependent Mitochondrial Dysfunction in Primary Neurons. FRONTIERS IN AGING 2022; 3:812810. [PMID: 35821809 PMCID: PMC9261388 DOI: 10.3389/fragi.2022.812810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022]
Abstract
Mitochondrial dysfunction and metabolic decline are prevalent features of aging and age-related disorders, including neurodegeneration. Neurodegenerative diseases are associated with a progressive loss of metabolic homeostasis. This pathogenic decline in metabolism is the result of several factors, including decreased mitochondrial function, increased oxidative stress, inhibited autophagic flux, and altered metabolic substrate availability. One critical metabolite for maintaining neuronal function is glucose, which is utilized by the brain more than any other organ to meet its substantial metabolic demand. Enzymatic conversion of glucose into its downstream metabolites is critical for maintaining neuronal cell growth and overall metabolic homeostasis. Perturbation of glycolysis could significantly hinder neuronal metabolism by affecting key metabolic pathways. Here, we demonstrate that the glucose analogue 2-deoxyglucose (2DG) decreases cell viability, as well as both basal and maximal mitochondrial oxygen consumption in response to the neurotoxic lipid 4-hydroxynonenal (HNE), whereas glucose deprivation has a minimal effect. Furthermore, using a cell permeabilization assay we found that 2DG has a more pronounced effect on HNE-dependent inhibition of mitochondrial complex I and II than glucose deprivation. Importantly, these findings indicate that altered glucose utilization plays a critical role in dictating neuronal survival by regulating the mitochondrial response to electrophilic stress.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gloria A. Benavides
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Jianhua Zhang,
| |
Collapse
|
34
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
35
|
Ma C, Hong F, Yang S. Amyloidosis in Alzheimer's Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules 2022; 27:1210. [PMID: 35209007 PMCID: PMC8876037 DOI: 10.3390/molecules27041210] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
The amyloid hypothesis of Alzheimer's disease has long been the predominant theory, suggesting that Alzheimer's disease is caused by the accumulation of amyloid beta protein (Aβ) in the brain, leading to neuronal toxicity in the central nervous system (CNS). Because of breakthroughs in molecular medicine, the amyloid pathway is thought to be central to the pathophysiology of Alzheimer's disease (AD). Currently, it is believed that altered biochemistry of the Aβ cycle remains a central biological feature of AD and is a promising target for treatment. This review provides an overview of the process of amyloid formation, explaining the transition from amyloid precursor protein to amyloid beta protein. Moreover, we also reveal the relationship between autophagy, cerebral blood flow, ACHE, expression of LRP1, and amyloidosis. In addition, we discuss the detailed pathogenesis of amyloidosis, including oxidative damage, tau protein, NFTs, and neuronal damage. Finally, we list some ways to treat AD in terms of decreasing the accumulation of Aβ in the brain.
Collapse
Affiliation(s)
- Chen Ma
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330006, China;
- Queen Marry College, School of Medicine, Nanchang University, Nanchang 330036, China
| | - Fenfang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330006, China;
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Nanchang 344099, China
| |
Collapse
|
36
|
Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Mol Neurobiol 2021; 59:657-680. [PMID: 34751889 DOI: 10.1007/s12035-021-02617-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-β (Aβ) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aβ is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Saurabh Bhatia
- School of Health Science University of Petroleum and Energy Studies, Dehrandun, Uttarkhand, 248007, India
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Tanima Bhattacharya
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Chigurupati S, Alhowail A, Abdeen A, Ibrahim SF, Vargas-De-La-Cruz C, Sachdeva M, Bhatia S, Al-Harrasi A, Bungau S. Decrypting the potential role of α-lipoic acid in Alzheimer's disease. Life Sci 2021; 284:119899. [PMID: 34450170 DOI: 10.1016/j.lfs.2021.119899] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases with motor disturbances, cognitive decline, and behavioral impairment. It is characterized by the extracellular aggregation of amyloid-β plaques and the intracellular accumulation of tau protein. AD patients show a cognitive decline, which has been associated with oxidative stress, as well as mitochondrial dysfunction. Alpha-lipoic acid (α-LA), a natural antioxidant present in food and used as a dietary supplement, has been considered a promising agent for the prevention or treatment of neurodegenerative disorders. Despite multiple preclinical studies indicating beneficial effects of α-LA in memory functioning, and pointing to its neuroprotective effects, to date only a few studies have examined its effects in humans. Studies performed in animal models of memory loss associated with aging and AD have shown that α-LA improves memory in a variety of behavioral paradigms. Furthermore, molecular mechanisms underlying α-LA effects have also been investigated. Accordingly, α-LA shows antioxidant, antiapoptotic, anti-inflammatory, glioprotective, metal chelating properties in both in vivo and in vitro studies. In addition, it has been shown that α-LA reverses age-associated loss of neurotransmitters and their receptors. The review article aimed at summarizing and discussing the main studies investigating the neuroprotective effects of α-LA on cognition as well as its molecular effects, to improve the understanding of the therapeutic potential of α-LA in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with α-LA.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt; Center of Excellence for Screening of Environmental Contaminants, Benha University, Toukh, Egypt
| | - Samah F Ibrahim
- Clinical Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, College of Medicine, Cairo University, Cairo, Egypt
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Monika Sachdeva
- Fatima College of Health Sciences, Alain, United Arab Emirates
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
38
|
Berardesca E, Cameli N. Vitamin E supplementation in inflammatory skin diseases. Dermatol Ther 2021; 34:e15160. [PMID: 34655146 DOI: 10.1111/dth.15160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
Vitamin E is a powerful lipophilic antioxidant that protects membranes from lipid peroxidation, and consequently, oxidative damage. Oxidative stress plays a role in the development of neurodegenerative diseases. Vitamin E supplementation is recommended in patients with vitamin E deficiency due to fat malabsorption. The addition of vitamin E to the diet slows Alzheimer's disease progression and protects older patients against respiratory infections. Recent studies also point to the involvement of oxidative stress in the pathology of immune-mediated skin diseases, such as atopic dermatitis and psoriasis. We reviewed the available clinical trials that investigated the role of vitamin E supplementation in preventing and treating atopic dermatitis and psoriasis. Data from these studies point to a positive role of vitamin E supplementation in these diseases. Still, due to limitations in study design, further evidence is needed to reach a definite conclusion.
Collapse
Affiliation(s)
- Enzo Berardesca
- Phillip Frost Department of Dermatology, University of Miami, Miami, Florida, USA
| | - Norma Cameli
- San Gallicano Dermatological Institute, Rome, Italy
| |
Collapse
|
39
|
The Beneficial Role of Natural Endocrine Disruptors: Phytoestrogens in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3961445. [PMID: 34527172 PMCID: PMC8437597 DOI: 10.1155/2021/3961445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with a growing incidence rate primarily among the elderly. It is a neurodegenerative, progressive disorder leading to significant cognitive loss. Despite numerous pieces of research, no cure for halting the disease has been discovered yet. Phytoestrogens are nonestradiol compounds classified as one of the endocrine-disrupting chemicals (EDCs), meaning that they can potentially disrupt hormonal balance and result in developmental and reproductive abnormalities. Importantly, phytoestrogens are structurally, chemically, and functionally akin to estrogens, which undoubtedly has the potential to be detrimental to the organism. What is intriguing, although classified as EDCs, phytoestrogens seem to have a beneficial influence on Alzheimer's disease symptoms and neuropathologies. They have been observed to act as antioxidants, improve visual-spatial memory, lower amyloid-beta production, and increase the growth, survival, and plasticity of brain cells. This review article is aimed at contributing to the collective understanding of the role of phytoestrogens in the prevention and treatment of Alzheimer's disease. Importantly, it underlines the fact that despite being EDCs, phytoestrogens and their use can be beneficial in the prevention of Alzheimer's disease.
Collapse
|
40
|
Zahra KF, Lefter R, Ali A, Abdellah EC, Trus C, Ciobica A, Timofte D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965916. [PMID: 34394838 PMCID: PMC8360750 DOI: 10.1155/2021/9965916] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Oxygen-free radicals, reactive oxygen species (ROS) or reactive nitrogen species (RNS), are known by their "double-sided" nature in biological systems. The beneficial effects of ROS involve physiological roles as weapons in the arsenal of the immune system (destroying bacteria within phagocytic cells) and role in programmed cell death (apoptosis). On the other hand, the redox imbalance in favor of the prooxidants results in an overproduction of the ROS/RNS leading to oxidative stress. This imbalance can, therefore, be related to oncogenic stimulation. High levels of ROS disrupt cellular processes by nonspecifically attacking proteins, lipids, and DNA. It appears that DNA damage is the key player in cancer initiation and the formation of 8-OH-G, a potential biomarker for carcinogenesis. The harmful effect of ROS is neutralized by an antioxidant protection treatment as they convert ROS into less reactive species. However, contradictory epidemiological results show that supplementation above physiological doses recommended for antioxidants and taken over a long period can lead to harmful effects and even increase the risk of cancer. Thus, we are describing here some of the latest updates on the involvement of oxidative stress in cancer pathology and a double view on the role of the antioxidants in this context and how this could be relevant in the management and pathology of cancer.
Collapse
Affiliation(s)
- Kamal Fatima Zahra
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials/Agri-Food and Health, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Ech-Chahad Abdellah
- Faculty of Sciences and Techniques, Laboratory of Physical Chemistry of Processes and Materials, Hassan First University, B.P. 539, 26000 Settat, Morocco
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, 800008 Galati, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 11th Carol I Avenue, 700506 Iasi, Romania
| | - Daniel Timofte
- Faculty of Medicine, “Grigore T. Popa”, University of Medicine and Pharmacy, Strada Universitatii 16, 700115 Iasi, Romania
| |
Collapse
|
41
|
Redox Homeostasis and Prospects for Therapeutic Targeting in Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9971885. [PMID: 34394839 PMCID: PMC8355971 DOI: 10.1155/2021/9971885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022]
Abstract
Reactive species, such as those of oxygen, nitrogen, and sulfur, are considered part of normal cellular metabolism and play significant roles that can impact several signaling processes in ways that lead to either cellular sustenance, protection, or damage. Cellular redox processes involve a balance in the production of reactive species (RS) and their removal because redox imbalance may facilitate oxidative damage. Physiologically, redox homeostasis is essential for the maintenance of many cellular processes. RS may serve as signaling molecules or cause oxidative cellular damage depending on the delicate equilibrium between RS production and their efficient removal through the use of enzymatic or nonenzymatic cellular mechanisms. Moreover, accumulating evidence suggests that redox imbalance plays a significant role in the progression of several neurodegenerative diseases. For example, studies have shown that redox imbalance in the brain mediates neurodegeneration and alters normal cytoprotective responses to stress. Therefore, this review describes redox homeostasis in neurodegenerative diseases with a focus on Alzheimer's and Parkinson's disease. A clearer understanding of the redox-regulated processes in neurodegenerative disorders may afford opportunities for newer therapeutic strategies.
Collapse
|
42
|
Kim JH, Seo HJ, Pang QQ, Kwon YR, Kim JH, Cho EJ. Protective effects of krill oil on high fat diet-induced cognitive impairment by regulation of oxidative stress. Free Radic Res 2021; 55:799-809. [PMID: 34181501 DOI: 10.1080/10715762.2021.1944623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Consumption of high fat diet (HFD) increases risk of cognitive impairment and memory deficit by elevation of oxidative stress in the brain. In this study, we investigated the protective effects of krill oil (KO) against HFD-induced cognitive impairment in mice. The mice were fed with HFD for 10 weeks, and then KO was orally administered at doses of 100, 200, or 500 mg/kg/d for 4 weeks. To evaluate the cognitive abilities, we carried out the behavior tests, such as T-maze, novel object recognition test, and Morris water maze test. The HFD-induced cognitive impairment mice showed impairments in both spatial memory and novel object cognitive abilities. However, administration of KO at doses of 100, 200, or 500 mg/kg/d improved spatial memory ability and novel object cognition by increase of the exploration of new route and novel object. In addition, KO-administered group improved learning and memory abilities, showing shorter latency to reach hidden platform compared with control group. Furthermore, levels of reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) were significantly elevated by consumption of HFD, indicating that consumption of HFD induces oxidative stress in the brain. However, administration of KO attenuated oxidative stress by decrease of the ROS levels, lipid peroxidation, and NO. This study suggests that KO improves HFD-induced cognitive impairment by attenuation of oxidative stress in the brain. Therefore, KO may play as a promising agent in treatment and prevention of HFD-induced cognitive impairment.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea.,Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyo Jeong Seo
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Qi Qi Pang
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Yu Ri Kwon
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
43
|
Shakil S, Masjoan Juncos JX, Mariappan N, Zafar I, Amudhan A, Amudhan A, Aishah D, Siddiqui S, Manzoor S, Santana CM, Rumbeiha WK, Salim S, Ahmad A, Ahmad S. Behavioral and Neuronal Effects of Inhaled Bromine Gas: Oxidative Brain Stem Damage. Int J Mol Sci 2021; 22:6316. [PMID: 34204780 PMCID: PMC8231550 DOI: 10.3390/ijms22126316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The risk of accidental bromine (Br2) exposure to the public has increased due to its enhanced industrial use. Inhaled Br2 damages the lungs and the heart; however, adverse effects on the brain are unknown. In this study, we examined the neurological effects of inhaled Br2 in Sprague Dawley rats. Rats were exposed to Br2 (600 ppm for 45 min) and transferred to room air and cage behavior, and levels of glial fibrillary acidic protein (GFAP) in plasma were examined at various time intervals. Bromine exposure resulted in abnormal cage behavior such as head hitting, biting and aggression, hypervigilance, and hyperactivity. An increase in plasma GFAP and brain 4-hydroxynonenal (4-HNE) content also was observed in the exposed animals. Acute and delayed sympathetic nervous system activation was also evaluated by assessing the expression of catecholamine biosynthesizing enzymes, tryptophan hydroxylase (TrpH1 and TrpH2), and tyrosine hydroxylase (TyrH), along with an assessment of catecholamines and their metabolites. TyrH was found to be increased in a time-dependent manner. TrpH1 and TrpH2 were significantly decreased upon Br2 exposure in the brainstem. The neurotransmitter content evaluation indicated an increase in 5-HT and dopamine at early timepoints after exposure; however, other metabolites were not significantly altered. Taken together, our results predict brain damage and autonomic dysfunction upon Br2 exposure.
Collapse
Affiliation(s)
- Shazia Shakil
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Apoorva Amudhan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Archita Amudhan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Duha Aishah
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Simmone Siddiqui
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Shajer Manzoor
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Cristina M. Santana
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Wilson K. Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Samina Salim
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX 77004, USA;
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.S.); (J.X.M.J.); (N.M.); (I.Z.); (A.A.); (A.A.); (D.A.); (S.S.); (S.M.); (A.A.)
| |
Collapse
|
44
|
The effects of lutein and zeaxanthin on resting state functional connectivity in older Caucasian adults: a randomized controlled trial. Brain Imaging Behav 2021; 14:668-681. [PMID: 30680611 DOI: 10.1007/s11682-018-00034-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The carotenoids lutein (L) and zeaxanthin (Z) accumulate in retinal regions of the eye and have long been shown to benefit visual health. A growing literature suggests cognitive benefits as well, particularly in older adults. The present randomized controlled trial sought to investigate the effects of L and Z on brain function using resting state functional magnetic resonance imaging (fMRI). It was hypothesized that L and Z supplementation would (1) improve intra-network integrity of default mode network (DMN) and (2) reduce inter-network connectivity between DMN and other resting state networks. 48 community-dwelling older adults (mean age = 72 years) were randomly assigned to receive a daily L (10 mg) and Z (2 mg) supplement or a placebo for 1 year. Resting state fMRI data were acquired at baseline and post-intervention. A dictionary learning and sparse coding computational framework, based on machine learning principles, was used to investigate intervention-related changes in functional connectivity. DMN integrity was evaluated by calculating spatial overlap rate with a well-established DMN template provided in the neuroscience literature. Inter-network connectivity was evaluated via time series correlations between DMN and nine other resting state networks. Contrary to expectation, results indicated that L and Z significantly increased rather than decreased inter-network connectivity (Cohen's d = 0.89). A significant intra-network effect on DMN integrity was not observed. Rather than restoring what has been described in the available literature as a "youth-like" pattern of intrinsic brain activity, L and Z may facilitate the aging brain's capacity for compensation by enhancing integration between networks that tend to be functionally segregated earlier in the lifespan.
Collapse
|
45
|
Galaup C, Picard C, Couderc F, Gilard V, Collin F. Luminescent lanthanide complexes for reactive oxygen species biosensing and possible application in Alzheimer's diseases. FEBS J 2021; 289:2516-2539. [PMID: 33811448 DOI: 10.1111/febs.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Histopathological hallmarks of Alzheimer's disease (AD) are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the aggregated amyloid-beta peptide along with metal ions (copper, iron or zinc). In addition, oxidative stress is considered as an important factor in the etiology of AD and a multitude of metalloproteins and transporters is affected, leading to metal ion misregulation. Redox-active metal ions (e.g., copper) can catalyze the production of reactive oxygen species (ROS) in the presence of molecular oxygen and a reductant such as ascorbate. The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative stress conditions. Thus, detecting ROS in vivo or in biological models of AD is of interest for better understanding AD etiology. The use of biocompatible and highly specific and sensitive probes is needed for such a purpose, since ROS are transient species whose steady-state concentrations are very low. Luminescent lanthanide complexes are sensitive probes that can meet these criteria. The present review focuses on the recent advances in the use of luminescent lanthanide complexes for ROS biosensing. It shows why the use of luminescent lanthanide complexes is of particular interest for selectively detecting ROS ( O 2 · - , HO• , 1 O2 , H2 O2 , etc.) in biological samples in the µM-nM range. It particularly focuses on the most recent strategies and discusses what could be expected with the use of luminescent lanthanide complexes for better understanding some of the molecular mechanisms underlying the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Chantal Galaup
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Claude Picard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - François Couderc
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Véronique Gilard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| |
Collapse
|
46
|
Misrani A, Tabassum S, Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. Front Aging Neurosci 2021; 13:617588. [PMID: 33679375 PMCID: PMC7930231 DOI: 10.3389/fnagi.2021.617588] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria play a pivotal role in bioenergetics and respiratory functions, which are essential for the numerous biochemical processes underpinning cell viability. Mitochondrial morphology changes rapidly in response to external insults and changes in metabolic status via fission and fusion processes (so-called mitochondrial dynamics) that maintain mitochondrial quality and homeostasis. Damaged mitochondria are removed by a process known as mitophagy, which involves their degradation by a specific autophagosomal pathway. Over the last few years, remarkable efforts have been made to investigate the impact on the pathogenesis of Alzheimer’s disease (AD) of various forms of mitochondrial dysfunction, such as excessive reactive oxygen species (ROS) production, mitochondrial Ca2+ dyshomeostasis, loss of ATP, and defects in mitochondrial dynamics and transport, and mitophagy. Recent research suggests that restoration of mitochondrial function by physical exercise, an antioxidant diet, or therapeutic approaches can delay the onset and slow the progression of AD. In this review, we focus on recent progress that highlights the crucial role of alterations in mitochondrial function and oxidative stress in the pathogenesis of AD, emphasizing a framework of existing and potential therapeutic approaches.
Collapse
Affiliation(s)
- Afzal Misrani
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sidra Tabassum
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
47
|
Olajide OJ, Suvanto ME, Chapman CA. Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selective vulnerability during the pathogenesis of Alzheimer's disease. Biol Open 2021; 10:bio056796. [PMID: 33495355 PMCID: PMC7860115 DOI: 10.1242/bio.056796] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The entorhinal cortex (EC) is a vital component of the medial temporal lobe, and its contributions to cognitive processes and memory formation are supported through its extensive interconnections with the hippocampal formation. During the pathogenesis of Alzheimer's disease (AD), many of the earliest degenerative changes are seen within the EC. Neurodegeneration in the EC and hippocampus during AD has been clearly linked to impairments in memory and cognitive function, and a growing body of evidence indicates that molecular and functional neurodegeneration within the EC may play a primary role in cognitive decline in the early phases of AD. Defining the mechanisms underlying molecular neurodegeneration in the EC is crucial to determining its contributions to the pathogenesis of AD. Surprisingly few studies have focused on understanding the mechanisms of molecular neurodegeneration and selective vulnerability within the EC. However, there have been advancements indicating that early dysregulation of cellular and molecular signaling pathways in the EC involve neurodegenerative cascades including oxidative stress, neuroinflammation, glia activation, stress kinases activation, and neuronal loss. Dysfunction within the EC can impact the function of the hippocampus, which relies on entorhinal inputs, and further degeneration within the hippocampus can compound this effect, leading to severe cognitive disruption. This review assesses the molecular and cellular mechanisms underlying early degeneration in the EC during AD. These mechanisms may underlie the selective vulnerability of neuronal subpopulations in this brain region to the disease development and contribute both directly and indirectly to cognitive loss.This paper has an associated Future Leader to Watch interview with the first author of the article.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Division of Neurobiology, Department of Anatomy, University of Ilorin, Ilorin, Nigeria, PMB 1515
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Marcus E Suvanto
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Clifton Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
48
|
Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2020; 8:86-132. [PMID: 33490374 PMCID: PMC7815481 DOI: 10.3934/neuroscience.2021005] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease is a progressive neurodegenerative disorder, mainly affecting older people, which severely impairs patients' quality of life. In the recent years, the number of affected individuals has seen a rapid increase. It is estimated that up to 107 million subjects will be affected by 2050 worldwide. Research in this area has revealed a lot about the biological and environmental underpinnings of Alzheimer, especially its correlation with β-Amyloid and Tau related mechanics; however, the precise molecular events and biological pathways behind the disease are yet to be discovered. In this review, we focus our attention on the biological mechanics that may lie behind Alzheimer development. In particular, we briefly describe the genetic elements and discuss about specific biological processes potentially associated with the disease.
Collapse
Affiliation(s)
| | | | | | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
49
|
Esquivel AR, Douglas JC, Loughran RM, Rezendes TE, Reed KR, Cains THL, Emsley SA, Paddock WA, Videau P, Koyack MJ, Paddock BE. Assessing the influence of curcumin in sex-specific oxidative stress, survival and behavior in Drosophila melanogaster. J Exp Biol 2020; 223:jeb223867. [PMID: 33037110 DOI: 10.1242/jeb.223867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022]
Abstract
Oxidative stress, which occurs from an imbalance of reactive oxygen and nitrogen species (RONS) and both endogenous and exogenous antioxidants, promotes aging and underlies sex-specific differences in longevity and susceptibility to age-related neurodegeneration. Recent evidence suggests that curcumin, a yellow pigment derived from turmeric and shown to exhibit antioxidant properties as a RONS scavenger, influences the regulation of genetic elements in endogenous antioxidant pathways. To investigate the role of curcumin in sex-specific in vivo responses to oxidative stress, Drosophila were reared on media supplemented with 0.25, 2.5 or 25 mmol l-1 curcuminoids (consisting of curcumin, demethoxycurcumin and bisdemethoxycurcumin) and resistance to oxidative stress and neural parameters were assessed. High levels of curcuminoids exhibited two sex-specific effects: protection from hydrogen peroxide as an oxidative stressor and alterations in turning rate in an open field. Taken together, these results suggest that the influence of curcuminoids as antioxidants probably relies on changes in gene expression and that sexual dimorphism exists in the in vivo response to curcuminoids.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Jenna C Douglas
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Rachel M Loughran
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Thomas E Rezendes
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Kaela R Reed
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Tobias H L Cains
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - William A Paddock
- Department of Institutional Research, Arcadia University, Glenside, PA 19038 USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Marc J Koyack
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Brie E Paddock
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| |
Collapse
|
50
|
Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A Review of Human Studies. Antioxidants (Basel) 2020; 9:antiox9111128. [PMID: 33202952 PMCID: PMC7696060 DOI: 10.3390/antiox9111128] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Being characterized by progressive and severe damage in neuronal cells, neurodegenerative diseases (NDDs) are the major cause of disability and morbidity in the elderly, imposing a significant economic and social burden. As major components of the central nervous system, lipids play important roles in neural health and pathology. Disturbed lipid metabolism, particularly lipid peroxidation (LPO), is associated with the development of many NDDs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), all of which show elevated levels of LPO products and LPO-modified proteins. Thus, the inhibition of neuronal oxidation might slow the progression and reduce the severity of NDD; natural antioxidants, such as polyphenols and antioxidant vitamins, seem to be the most promising agents. Here, we summarize current literature data that were derived from human studies on the effect of natural polyphenols and vitamins A, C, and E supplementation in patients with AD, PD, and ALS. Although these compounds may reduce the severity and slow the progression of NDD, research gaps remain in antioxidants supplementation in AD, PD, and ALS patients, which indicates that further human studies applying antioxidant supplementation in different forms of NDDs are urgently needed.
Collapse
|