1
|
Sorci L, Minazzato G, Amici A, Mazzola F, Raffaelli N. Periplasmic binding proteins Bug69 and Bug27 from Bordetella pertussis are in vitro high-affinity quinolinate binders with a potential role in NAD biosynthesis. FEBS Open Bio 2024; 14:1718-1730. [PMID: 39118291 PMCID: PMC11452294 DOI: 10.1002/2211-5463.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Bordetella's genome contains a large family of periplasmic binding proteins (PBPs) known as Bugs, whose functions are mainly unassigned. Two members, Bug27 and Bug69, have previously been considered potential candidates for the uptake of small pyridine precursors, possibly linked to NAD biosynthesis. Here, we show an in vitro affinity of Bug27 and Bug69 for quinolinate in the submicromolar range, with a marked preference over other NAD precursors. A combined sequence similarity network and genome context analysis identifies a cluster of Bug69/27 homologs that are genomically associated with the NAD transcriptional regulator NadQ and the enzyme quinolinate phosphoribosyltransferase (QaPRT, gene nadC), suggesting a functional linkage to NAD metabolism. Integrating molecular docking and structure-based multiple alignments confirms that quinolinate is the preferred ligand for Bug27 and Bug69.
Collapse
Affiliation(s)
- Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Science and Engineering of Matter, Environment and Urban PlanningPolytechnic University of MarcheAnconaItaly
| | - Gabriele Minazzato
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Adolfo Amici
- Department of Clinical SciencesPolytechnic University of MarcheAnconaItaly
| | - Francesca Mazzola
- Department of Clinical SciencesPolytechnic University of MarcheAnconaItaly
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| |
Collapse
|
2
|
Gasparrini M, Giovannuzzi S, Nocentini A, Raffaelli N, Supuran CT. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) in cancer: a patent review. Expert Opin Ther Pat 2024; 34:565-582. [PMID: 38861278 DOI: 10.1080/13543776.2024.2367006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
3
|
Messana VG, Fascì A, Vitale N, Micillo M, Rovere M, Pesce NA, Martines C, Efremov DG, Vaisitti T, Deaglio S. A molecular circuit linking the BCR to the NAD biosynthetic enzyme NAMPT is an actionable target in Richter syndrome. Blood Adv 2024; 8:1920-1933. [PMID: 38359376 PMCID: PMC11021907 DOI: 10.1182/bloodadvances.2023011690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
ABSTRACT This works defines, to the best of our knowledge, for the first time a molecular circuit connecting nicotinamide mononucleoside phosphoribosyl transferase (NAMPT) activity to the B-cell receptor (BCR) pathway. Using 4 distinct xenograft models derived from patients with Richter syndrome (RS-PDX), we show that BCR cross-linking results in transcriptional activation of the nicotinamide adenine dinucleotide (NAD) biosynthetic enzyme NAMPT, with increased protein expression, in turn, positively affecting global cellular NAD levels and sirtuins activity. NAMPT blockade, by using the novel OT-82 inhibitor in combination with either BTK or PI3K inhibitors (BTKi or PI3Ki), induces rapid and potent apoptotic responses in all 4 models, independently of their mutational profile and the expression of the other NAD biosynthetic enzymes, including nicotinate phosphoribosyltransferase. The connecting link in the circuit is represented by AKT that is both tyrosine- and serine-phosphorylated by PI3K and deacetylated by sirtuin 1 and 2 to obtain full kinase activation. Acetylation (ie, inhibition) of AKT after OT-82 administration was shown by 2-dimensional gel electrophoresis and immunoprecipitation. Consistently, pharmacological inhibition or silencing of sirtuin 1 and 2 impairs AKT activation and induces apoptosis of RS cells in combination with PI3Ki or BTKi. Lastly, treatment of RS-PDX mice with the combination of PI3Ki and OT-82 results in significant inhibition of tumor growth, with evidence of in vivo activation of apoptosis. Collectively, these data highlight a novel application for NAMPT inhibitors in combination with BTKi or PI3Ki in aggressive lymphomas.
Collapse
Affiliation(s)
- Vincenzo G. Messana
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amelia Fascì
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnologies and Health Science, University of Turin, Turin, Italy
| | - Matilde Micillo
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Rovere
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Noemi A. Pesce
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Martines
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Dimitar G. Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Tiziana Vaisitti
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Membrez M, Migliavacca E, Christen S, Yaku K, Trieu J, Lee AK, Morandini F, Giner MP, Stiner J, Makarov MV, Garratt ES, Vasiloglou MF, Chanvillard L, Dalbram E, Ehrlich AM, Sanchez-Garcia JL, Canto C, Karagounis LG, Treebak JT, Migaud ME, Heshmat R, Razi F, Karnani N, Ostovar A, Farzadfar F, Tay SKH, Sanders MJ, Lillycrop KA, Godfrey KM, Nakagawa T, Moco S, Koopman R, Lynch GS, Sorrentino V, Feige JN. Trigonelline is an NAD + precursor that improves muscle function during ageing and is reduced in human sarcopenia. Nat Metab 2024; 6:433-447. [PMID: 38504132 DOI: 10.1038/s42255-024-00997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/26/2024] [Indexed: 03/21/2024]
Abstract
Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.
Collapse
Affiliation(s)
- Mathieu Membrez
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Stefan Christen
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alaina K Lee
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Francesco Morandini
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria Pilar Giner
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| | - Jade Stiner
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mikhail V Makarov
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Emma S Garratt
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Maria F Vasiloglou
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lucie Chanvillard
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Leonidas G Karagounis
- Nestlé Health Science, Translation Research, Lausanne, Switzerland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, F. P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Stacey K H Tay
- KTP-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Matthew J Sanders
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Karen A Lillycrop
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Keith M Godfrey
- Institute of Developmental Sciences, Human Developmental and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Sofia Moco
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo Sorrentino
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Chen C, Yan W, Tao M, Fu Y. NAD + Metabolism and Immune Regulation: New Approaches to Inflammatory Bowel Disease Therapies. Antioxidants (Basel) 2023; 12:1230. [PMID: 37371959 DOI: 10.3390/antiox12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial systemic inflammatory immune response. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme involved in cell signaling and energy metabolism. Calcium homeostasis, gene transcription, DNA repair, and cell communication involve NAD+ and its degradation products. There is a growing recognition of the intricate relationship between inflammatory diseases and NAD+ metabolism. In the case of IBD, the maintenance of intestinal homeostasis relies on a delicate balance between NAD+ biosynthesis and consumption. Consequently, therapeutics designed to target the NAD+ pathway are promising for the management of IBD. This review discusses the metabolic and immunoregulatory processes of NAD+ in IBD to examine the molecular biology and pathophysiology of the immune regulation of IBD and to provide evidence and theoretical support for the clinical use of NAD+ in IBD.
Collapse
Affiliation(s)
- Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meihui Tao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
A Versatile Continuous Fluorometric Enzymatic Assay for Targeting Nicotinate Phosphoribosyltransferase. Molecules 2023; 28:molecules28030961. [PMID: 36770640 PMCID: PMC9919730 DOI: 10.3390/molecules28030961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The maintenance of a proper NAD+ pool is essential for cell survival, and tumor cells are particularly sensitive to changes in coenzyme levels. In this view, the inhibition of NAD+ biosynthesis is considered a promising therapeutic approach. Current research is mostly focused on targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD+ biosynthesis from nicotinamide and nicotinic acid, respectively. In several types of cancer cells, both enzymes are relevant for NAD+ biosynthesis, with NAPRT being responsible for cell resistance to NAMPT inhibition. While potent NAMPT inhibitors have been developed, only a few weak NAPRT inhibitors have been identified so far, essentially due to the lack of an easy and fast screening assay. Here we present a continuous coupled fluorometric assay whereby the product of the NAPRT-catalyzed reaction is enzymatically converted to NADH, and NADH formation is measured fluorometrically. The assay can be adapted to screen compounds that interfere with NADH excitation and emission wavelengths by coupling NADH formation to the cycling reduction of resazurin to resorufin, which is monitored at longer wavelengths. The assay system was validated by confirming the inhibitory effect of some NA-related compounds on purified human recombinant NAPRT. In particular, 2-hydroxynicotinic acid, 2-amminonicotinic acid, 2-fluoronicotinic acid, pyrazine-2-carboxylic acid, and salicylic acid were confirmed as NAPRT inhibitors, with Ki ranging from 149 to 348 µM. Both 2-hydroxynicotinic acid and pyrazine-2-carboxylic acid were found to sensitize OVCAR-5 cells to the NAMPT inhibitor FK866 by decreasing viability and intracellular NAD+ levels.
Collapse
|
7
|
Dai Y, Lin J, Ren J, Zhu B, Wu C, Yu L. NAD + metabolism in peripheral neuropathic pain. Neurochem Int 2022; 161:105435. [PMID: 36273706 DOI: 10.1016/j.neuint.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an omnipresent metabolite that participates in redox reactions. Multiple NAD+-consuming enzymes are implicated in numerous biological processes, including transcription, signaling, and cell survival. Multiple pieces of evidence have demonstrated that NAD+-consuming enzymes, including poly(ADP-ribose) polymerases (PARPs), sirtuins (SIRTs), and sterile alpha and TIR motif-containing 1 (SARM1), play major roles in peripheral neuropathic pain of various etiologies. These NAD+ consumers primarily participate in peripheral neuropathic pain via mechanisms such as mitochondrial dysfunction, oxidative stress, and inflammation. Furthermore, NAD+ synthase and nicotinamide phosphoribosyltransferase (NAMPT) have recently been found to contribute to the regulation of pain. Here, we review the evidence indicating the involvement of NAD+ metabolism in the pathological mechanisms of peripheral neuropathic pain. Advanced understanding of the molecular and cellular mechanisms associated with NAD+ in peripheral neuropathic pain will facilitate the development of novel treatment options for diverse types of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Yi Dai
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jiaqi Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Bin Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Chengwei Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China.
| |
Collapse
|
8
|
Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2022:10.1007/s10571-022-01287-4. [PMID: 36180651 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
|
9
|
Willett E, Jiang V, Koder RL, Banta S. NAD + Kinase Enzymes Are Reversible, and NAD + Product Inhibition Is Responsible for the Observed Irreversibility of the Human Enzyme. Biochemistry 2022; 61:1862-1873. [PMID: 35984481 DOI: 10.1021/acs.biochem.2c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NAD+ kinase (NADK) is the only known enzyme capable of phosphorylating NAD(H) to NADP(H) and therefore it plays a crucial role in maintaining NAD(P)(H) homeostasis. All domains of life contain at least one NADK gene, and the commonly investigated isoforms have been measured, or assumed, to be functionally irreversible. In 1977, the kinetics of native pigeon liver NADK were thoroughly investigated, and it was reported to exhibit reversible activity, such that ATP and NAD+ can be formed from ADP and NADP+. We hypothesized that the reverse activity of the pigeon enzyme may enable compensation of the high picolinic acid carboxylase (PC) activity present in pigeon livers, which inhibits NAD+ biosynthesis from dietary tryptophan. Here, we report the characterization of four recombinantly expressed NADKs and explore their reversible activities. Duck and cat livers have higher PC activity than pigeon livers, and the recombinant duck and cat NADKs exhibit high activity in the reverse direction. The human NADK has an affinity for NAD+ that is ∼600 times higher than the pigeon, duck, and cat isoforms, and we conclude that NAD+ serves as a potent product inhibitor for the reverse activity of the human NADK, which accounts for the observed irreversible behavior. These results demonstrate that while all four NADKs are reversible, the reverse activity of the human enzyme alone is impeded via product inhibition. This mechanism─the conversion of a reversible to a unidirectional reaction by product inhibition─may be valuable in future metabolic engineering applications.
Collapse
Affiliation(s)
- Emma Willett
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Virginia Jiang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York 10031, United States.,Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, New York 10016, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Cao P, Chen Q, Shi C, Wang L, Gong Z. Fusobacterium nucleatum promotes the development of acute liver failure by inhibiting the NAD + salvage metabolic pathway. Gut Pathog 2022; 14:29. [PMID: 35765030 PMCID: PMC9238040 DOI: 10.1186/s13099-022-00503-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute liver failure (ALF) patients are often accompanied by severe energy metabolism abnormalities and intestinal microecological imbalance. The intestinal mucosal barrier is severely damaged. Intestinal endotoxin can induce intestinal endotoxemia through the "Gut-Liver axis". More and more evidence shows that members of the gut microbiota, especially Fusobacterium nucleatum (F. nucleatum), are related to inflammatory bowel disease, but whether F. nucleatum is involved in the development of ALF and whether it affects the liver energy metabolism is unclear. METHODS This study first detected the abundance of F. nucleatum and its effect on ALF disease, and explored whether F. nucleatum aggravated liver inflammation in vitro and in vivo. RESULTS Our data showed that liver tissues of ALF patients contained different abundances of F. nucleatum, which were related to the degree of liver inflammation. In addition, we found that F. nucleatum infection affected the energy metabolism of the liver during the development of ALF, inhibited the synthesis pathway of nicotinamide adenine dinucleotide (NAD+)'s salvage metabolism, and promoted inflammatory damage in the liver. In terms of mechanism, F. nucleatum inhibited NAD+ and the NAD+-dependent SIRT1/AMPK signaling pathway, and promoted liver damage of ALF. CONCLUSIONS Fusobacterium nucleatum coordinates a molecular network including NAD+ and SIRT1 to control the progress of ALF. Detection and targeting of F. nucleatum and its related pathways may provide valuable insights for the treatment of ALF.
Collapse
Affiliation(s)
- Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jie Fang Road, Wuhan, 430060, People's Republic of China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jie Fang Road, Wuhan, 430060, People's Republic of China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jie Fang Road, Wuhan, 430060, People's Republic of China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jie Fang Road, Wuhan, 430060, People's Republic of China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jie Fang Road, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
11
|
Gasparrini M, Audrito V. NAMPT: A critical driver and therapeutic target for cancer. Int J Biochem Cell Biol 2022; 145:106189. [PMID: 35219878 DOI: 10.1016/j.biocel.2022.106189] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) possesses a vital role in mammalian cells due to its activity as a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. NAD is an essential redox cofactor, but it also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain tumor growth and survival and energetic needs. A common strategy that several tumor types adopt to sustain NAD synthesis is to over-express NAMPT. However, beside its intracellular functions, this enzyme has a second life outside of cells exerting cytokine-like functions and mediating pro-inflammatory conditions activating signaling pathways. While the effects of NAMPT/NAD axis on energetic metabolism in tumors has been well-established, increasing evidence demonstrated the impact of NAMPT over-expression (intra-/extra-cellular) on several tumor cellular processes, including DNA repair, gene expression, signaling pathways, proliferation, invasion, stemness, phenotype plasticity, metastatization, angiogenesis, immune regulation, and drug resistance. For all these reasons, NAMPT targeting has emerged as promising anti-cancer strategy to deplete NAD and impair cellular metabolism, but also to counteract the other NAMPT-related functions. In this review, we summarize the key role of NAMPT in multiple biological processes implicated in cancer biology and the impact of NAMPT inhibition as therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Valentina Audrito
- Department of Molecular Biotechnology and Health Sciences & Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
12
|
Hu X, Zhang J, Zhang Y, Jiao F, Wang J, Chen H, Ouyang L, Wang Y. Dual-target inhibitors of poly (ADP-ribose) polymerase-1 for cancer therapy: Advances, challenges, and opportunities. Eur J Med Chem 2022; 230:114094. [PMID: 34998039 DOI: 10.1016/j.ejmech.2021.114094] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
Abstract
PARP1 plays a crucial role in DNA damage repair, making it an essential target for cancer therapy. PARP1 inhibitors are widely used to treat BRCA-deficient malignancies, and six PARP inhibitors have been approved for clinical use. However, excluding the great clinical success of PARP inhibitors, the concomitant toxicity, drug resistance, and limited scope of application restrict their clinical efficacy. To find solutions to these problems, dual-target inhibitors have shown great potential. In recent years, several studies have linked PAPR1 to other primary cancer targets. Many dual-target inhibitors have been developed using structural fusion, linkage, or library construction methods, overcoming the defects of many single-target inhibitors of PARP1 and achieving great success in clinical cancer therapy. This review summarizes the advance of dual-target PARP1 inhibitors in recent years, focusing on their structural optimization process, structure-activity relationships (SARs), and in vitro or in vivo analysis results.
Collapse
Affiliation(s)
- Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Fulun Jiao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Campelj D, Philp A. NAD + Therapeutics and Skeletal Muscle Adaptation to Exercise in Humans. Sports Med 2022; 52:91-99. [PMID: 36331703 PMCID: PMC9734213 DOI: 10.1007/s40279-022-01772-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a vital energy intermediate in skeletal muscle. The discovery of dietary-derived NAD+ precursors has led to the rapid development of NAD+ therapeutics designed to manipulate NAD+ content in target tissues. Of those developed, nicotinamide riboside and nicotinamide mononucleotide have been reported to display health benefit in humans under clinical scenarios of NAD+ deficiency. In contrast, relatively little is known regarding the potential benefit of nicotinamide riboside and nicotinamide mononucleotide supplementation in healthy individuals, with questions remaining as to whether NAD+ therapeutics can be used to support training adaptation or improve performance in athletic populations. Examining animal and human nicotinamide riboside supplementation studies, this review discusses current evidence suggesting that NAD+ therapeutics do not alter skeletal muscle metabolism or improve athletic performance in healthy humans. Further, we will highlight potential reasons why nicotinamide riboside supplementation studies do not translate to healthy populations and discuss the futility of testing NAD+ therapeutics outside of the clinical populations where NAD+ deficiency is present.
Collapse
Affiliation(s)
- Dean Campelj
- grid.248902.50000 0004 0444 7512Biology of Ageing Laboratory, Centenary Institute, Missenden Road, Camperdown, Sydney, NSW 2050 Australia ,grid.248902.50000 0004 0444 7512Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW Australia
| | - Andrew Philp
- grid.248902.50000 0004 0444 7512Biology of Ageing Laboratory, Centenary Institute, Missenden Road, Camperdown, Sydney, NSW 2050 Australia ,grid.248902.50000 0004 0444 7512Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Health, School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Ultimo, NSW Australia
| |
Collapse
|
14
|
Fortunato C, Mazzola F, Raffaelli N. The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions. IUBMB Life 2021; 74:562-572. [PMID: 34866305 PMCID: PMC9299865 DOI: 10.1002/iub.2584] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes a reaction central to all known NAD biosynthetic routes. In mammals, three isoforms with distinct molecular and catalytic properties, different subcellular and tissue distribution have been characterized. Each isoform is essential for cell survival, with a critical role in modulating NAD levels in a compartment‐specific manner. Each isoform supplies NAD to specific NAD‐dependent enzymes, thus regulating their activity with impact on several biological processes, including DNA repair, proteostasis, cell differentiation, and neuronal maintenance. The nuclear NMNAT1 and the cytoplasmic NMNAT2 are also emerging as relevant targets in specific types of cancers and NMNAT2 has a key role in the activation of antineoplastic compounds. This review recapitulates the biochemical properties of the three isoforms and focuses on recent advances on their protective function, involvement in human diseases and role as druggable targets.
Collapse
Affiliation(s)
- Carlo Fortunato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
15
|
Xiang B, Wang XY, Liu KJ. Dual Roles of Nicotinamide Phosphoribosyltransferase as a Promising Target for Cancer Radiotherapy. Radiat Res 2021; 196:429-435. [PMID: 34399423 DOI: 10.1667/rade-20-00273.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/31/2021] [Indexed: 11/03/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the key rate-limiting enzyme in the regulation of nicotinamide adenine dinucleotide (NAD) biosynthesis, and its activity is critical for the replenishment of NAD level as well as cell survival or death. As one of the most important components in the electron transport chain of complex I in mitochondrion, sustained supply of NAD is essential to the maintenance of energy metabolism both in normal and cancer cells. Recent research showed that X-ray radiation sharply downregulated the expression of NAMPT, which may be the main cause of radiation damage in salivary gland. Consistently, upregulation of NAMPT by phenylephrine restored the function and tissue structure of salivary gland, indicating the cytoprotective role of NAMPT in preventing radiation damage in normal tissues of patients with head and neck cancer during radiotherapy. On the other hand, NAMPT downregulation and NAD depletion could induce cell death in oral squamous cell cancer, suggesting that a combination of NAMPT inhibitor and radiotherapy presents a promising therapeutic strategy for cancer treatment. Based on our and other's studies, NAMPT may have dual roles in cancer radiotherapy: the upregulation of NAMPT could serve to suppress radiotherapy complications such as radiation sialadenitis, and combination regimens that involve NAMPT inhibitors may enhance efficacy of radiotherapy for cancer treatment.
Collapse
Affiliation(s)
- Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
16
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Exploratory study on the occurrence and dynamics of yeast-mediated nicotinamide riboside production in craft beers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Khaidizar FD, Bessho Y, Nakahata Y. Nicotinamide Phosphoribosyltransferase as a Key Molecule of the Aging/Senescence Process. Int J Mol Sci 2021; 22:3709. [PMID: 33918226 PMCID: PMC8037941 DOI: 10.3390/ijms22073709] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is a phenomenon underlined by complex molecular and biochemical changes that occur over time. One of the metabolites that is gaining strong research interest is nicotinamide adenine dinucleotide, NAD+, whose cellular level has been shown to decrease with age in various tissues of model animals and humans. Administration of NAD+ precursors, nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), to supplement NAD+ production through the NAD+ salvage pathway has been demonstrated to slow down aging processes in mice. Therefore, NAD+ is a critical metabolite now understood to mitigate age-related tissue function decline and prevent age-related diseases in aging animals. In human clinical trials, administration of NAD+ precursors to the elderly is being used to address systemic age-associated physiological decline. Among NAD+ biosynthesis pathways in mammals, the NAD+ salvage pathway is the dominant pathway in most of tissues, and NAMPT is the rate limiting enzyme of this pathway. However, only a few activators of NAMPT, which are supposed to increase NAD+, have been developed so far. In this review, we will focus on the importance of NAD+ and the possible application of an activator of NAMPT to promote successive aging.
Collapse
Affiliation(s)
- Fiqri D. Khaidizar
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0101, Japan;
| | - Yasukazu Nakahata
- Department of Neurobiology & Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
19
|
Gasparrini M, Sorci L, Raffaelli N. Enzymology of extracellular NAD metabolism. Cell Mol Life Sci 2021; 78:3317-3331. [PMID: 33755743 PMCID: PMC8038981 DOI: 10.1007/s00018-020-03742-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Extracellular NAD represents a key signaling molecule in different physiological and pathological conditions. It exerts such function both directly, through the activation of specific purinergic receptors, or indirectly, serving as substrate of ectoenzymes, such as CD73, nucleotide pyrophosphatase/phosphodiesterase 1, CD38 and its paralog CD157, and ecto ADP ribosyltransferases. By hydrolyzing NAD, these enzymes dictate extracellular NAD availability, thus regulating its direct signaling role. In addition, they can generate from NAD smaller signaling molecules, like the immunomodulator adenosine, or they can use NAD to ADP-ribosylate various extracellular proteins and membrane receptors, with significant impact on the control of immunity, inflammatory response, tumorigenesis, and other diseases. Besides, they release from NAD several pyridine metabolites that can be taken up by the cell for the intracellular regeneration of NAD itself. The extracellular environment also hosts nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase, which inside the cell catalyze key reactions in NAD salvaging pathways. The extracellular forms of these enzymes behave as cytokines, with pro-inflammatory functions. This review summarizes the current knowledge on the extracellular NAD metabolome and describes the major biochemical properties of the enzymes involved in extracellular NAD metabolism, focusing on the contribution of their catalytic activities to the biological function. By uncovering the controversies and gaps in their characterization, further research directions are suggested, also to better exploit the great potential of these enzymes as therapeutic targets in various human diseases.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
20
|
Gurnari C, Pagliuca S, Visconte V. The Interactome between Metabolism and Gene Mutations in Myeloid Malignancies. Int J Mol Sci 2021; 22:ijms22063135. [PMID: 33808599 PMCID: PMC8003366 DOI: 10.3390/ijms22063135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
The study of metabolic deregulation in myeloid malignancies has led to the investigation of metabolic-targeted therapies considering that cells undergoing leukemic transformation have excessive energy demands for growth and proliferation. However, the most difficult challenge in agents targeting metabolism is to determine a window of therapeutic opportunities between normal and neoplastic cells, considering that all or most of the metabolic pathways important for cancer ontogeny may also regulate physiological cell functions. Targeted therapies have used the properties of leukemic cells to produce altered metabolic products when mutated. This is the case of IDH1/2 mutations generating the abnormal conversion of α-ketoglutarate (KG) to 2-hydroxyglutarate, an oncometabolite inhibiting KG-dependent enzymes, such as the TET family of genes (pivotal in characterizing leukemia cells either by mutations, e.g., TET2, or by altered expression, e.g., TET1/2/3). Additional observations derive from the high sensitivity of leukemic cells to oxidative phosphorylation and its amelioration using BCL-2 inhibitors (Venetoclax) or by disrupting the mitochondrial respiration. More recently, nicotinamide metabolism has been described to mediate resistance to Venetoclax in patients with acute myeloid leukemia. Herein, we will provide an overview of the latest research on the link between metabolic pathways interactome and leukemogenesis with a comprehensive analysis of the metabolic consequences of driver genetic lesions and exemplificative druggable pathways.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Correspondence:
| |
Collapse
|
21
|
Okabe K, Nawaz A, Nishida Y, Yaku K, Usui I, Tobe K, Nakagawa T. NAD+ Metabolism Regulates Preadipocyte Differentiation by Enhancing α-Ketoglutarate-Mediated Histone H3K9 Demethylation at the PPARγ Promoter. Front Cell Dev Biol 2020; 8:586179. [PMID: 33330464 PMCID: PMC7732485 DOI: 10.3389/fcell.2020.586179] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Obesity has become a serious problem in public health worldwide, causing numerous metabolic diseases. Once the differentiation to mature adipocytes is disrupted, adipocyte hypertrophy and ectopic lipid accumulation leads to the inflammation in adipose tissue and systemic metabolic disorders. Intracellular metabolic state is known to change during cell differentiation and it affects the cell fate or the differentiation through epigenetic mechanism. Although the mechanism of preadipocyte differentiation has been well established, it is unknown how metabolic state changes and how it affects the differentiation in predipocyte differentiation. Nicotinamide adenine dinucleotide (NAD+) plays crucial roles in energy metabolism as a coenzyme in multiple redox reactions in major catabolic pathways and as a substrate of sirtuins or poly(ADP-ribose)polymerases. NAD+ is mainly synthesized from salvage pathway mediated by two enzymes, Nampt and Nmnat. The manipulation to NAD+ metabolism causes metabolic change in each tissue and changes in systemic metabolism. However, the role of NAD+ and Nampt in adipocyte differentiation remains unknown. In this study, we employed liquid chromatography-mass spectrometry (LC-MS)- and gas chromatography-mass spectrometry (GC-MS)-based targeted metabolomics to elucidate the metabolic reprogramming events that occur during 3T3-L1 preadipocyte differentiation. We found that the tricarboxylic acid (TCA) cycle was enhanced, which correlated with upregulated NAD+ synthesis. Additionally, increased alpha-ketoglutarate (αKG) contributed to histone H3K9 demethylation in the promoter region of PPARγ, leading to its transcriptional activation. Thus, we concluded that NAD+-centered metabolic reprogramming is necessary for the differentiation of 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Keisuke Okabe
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
22
|
Dickey B, Madhu LN, Shetty AK. Gulf War Illness: Mechanisms Underlying Brain Dysfunction and Promising Therapeutic Strategies. Pharmacol Ther 2020; 220:107716. [PMID: 33164782 DOI: 10.1016/j.pharmthera.2020.107716] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Gulf War Illness (GWI), a chronic multisymptom health problem, afflicts ~30% of veterans served in the first GW. Impaired brain function is among the most significant symptoms of GWI, which is typified by persistent cognitive and mood impairments, concentration problems, headaches, chronic fatigue, and musculoskeletal pain. This review aims to discuss findings from animal prototypes and veterans with GWI on mechanisms underlying its pathophysiology and emerging therapeutic strategies for alleviating brain dysfunction in GWI. Animal model studies have linked brain impairments to incessantly elevated oxidative stress, chronic inflammation, inhibitory interneuron loss, altered lipid metabolism and peroxisomes, mitochondrial dysfunction, modified expression of genes relevant to cognitive function, and waned hippocampal neurogenesis. Furthermore, the involvement of systemic alterations such as the increased intensity of reactive oxygen species and proinflammatory cytokines in the blood, transformed gut microbiome, and activation of the adaptive immune response have received consideration. Investigations in veterans have suggested that brain dysfunction in GWI is linked to chronic activation of the executive control network, impaired functional connectivity, altered blood flow, persistent inflammation, and changes in miRNA levels. Lack of protective alleles from Class II HLA genes, the altered concentration of phospholipid species and proinflammatory factors in the circulating blood have also been suggested as other aiding factors. While some drugs or combination therapies have shown promise for alleviating symptoms in clinical trials, larger double-blind, placebo-controlled trials are needed to validate such findings. Based on improvements seen in animal models of GWI, several antioxidants and anti-inflammatory compounds are currently being tested in clinical trials. However, reliable blood biomarkers that facilitate an appropriate screening of veterans for brain pathology need to be discovered. A liquid biopsy approach involving analysis of brain-derived extracellular vesicles in the blood appears efficient for discerning the extent of neuropathology both before and during clinical trials.
Collapse
Affiliation(s)
- Brandon Dickey
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA; Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA.
| |
Collapse
|
23
|
Chaput C, Sirard MA. Embryonic response to high beta-hydroxybutyrate (BHB) levels in postpartum dairy cows. Domest Anim Endocrinol 2020; 72:106431. [PMID: 32325411 DOI: 10.1016/j.domaniend.2019.106431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/21/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
Cows at the beginning of lactation often do not meet their energy needs by feeding and therefore mobilize body fat, which produces ketone bodies, including β-hydroxybutyrate (BHB). They are nevertheless usually inseminated around 60 d postpartum, when they are still in this characteristic period of energy deficit. The aim of this study was to observe the effects of negative energy balance on embryo quality and to identify ways to improve the fertility of dairy cows. Holstein cows (n = 18) grouped as high or low BHB based on blood measurement at day 45 postpartum were estrus-synchronized and treated with follicle-stimulating hormone to obtain multiple follicle development, induced to ovulate and inseminated with sexed semen around day 60 postpartum. Of the 290 embryos collected over 16 mo, 159 were of quality I to IV. Based on microarray analysis of gene expression, exposure to an energy deficit metabolic environment (high BHB) during early development appeared to modify signaling by the mTOR and sirtuins pathways in the embryo, implying mitochondrial dysfunction and inhibition of transcription, leading to slower cell division, thus programming the embryo to be more energy efficient. Altered methylation markers suggested that such coping mechanisms might persist into adulthood.
Collapse
Affiliation(s)
- C Chaput
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada
| | - M A Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
24
|
Joshi U, Evans JE, Pearson A, Saltiel N, Cseresznye A, Darcey T, Ojo J, Keegan AP, Oberlin S, Mouzon B, Paris D, Klimas N, Sullivan K, Mullan M, Crawford F, Abdullah L. Targeting sirtuin activity with nicotinamide riboside reduces neuroinflammation in a GWI mouse model. Neurotoxicology 2020; 79:84-94. [PMID: 32343995 DOI: 10.1016/j.neuro.2020.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Gulf War Illness (GWI) affects 30% of veterans from the 1991 Gulf War (GW), who suffer from symptoms that reflect ongoing mitochondria dysfunction. Brain mitochondria bioenergetics dysfunction in GWI animal models corresponds with astroglia activation and neuroinflammation. In a pilot study of GW veterans (n = 43), we observed that blood nicotinamide adenine dinucleotide (NAD) and sirtuin 1 (Sirt1) protein levels were decreased in the blood of veterans with GWI compared to healthy GW veterans. Since nicotinamide riboside (NR)-mediated targeting of Sirt1 is shown to improve mitochondria function, we tested whether NR can restore brain bioenergetics and reduce neuroinflammation in a GWI mouse model. We administered a mouse diet supplemented with NR at 100μg/kg daily for 2-months to GWI and control mice (n = 27). During treatment, mice were assessed for fatigue-type behavior using the Forced Swim Test (FST), followed by euthanasia for biochemistry and immunohistochemistry analyses. Fatigue-type behavior was elevated in GWI mice compared to control mice and lower in GWI mice treated with NR compared to untreated GWI mice. Levels of plasma NAD and brain Sirt1 were low in untreated GWI mice, while GWI mice treated with NR had higher levels, similar to those of control mice. Deacetylation of the nuclear-factor κB (NFκB) p65 subunit and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) was an increase in the brains of NR-treated GWI mice. This corresponded with a decrease in pro-inflammatory cytokines and lipid peroxidation and an increase in markers of mitochondrial bioenergetics in the brains of GWI mice. These findings suggest that targeting NR mediated Sirt1 activation restores brain bioenergetics and reduces inflammation in GWI mice. Further evaluation of NR in GWI is warranted to determine its potential efficacy in treating GWI.
Collapse
Affiliation(s)
- Utsav Joshi
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - James E Evans
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Andrew Pearson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Nicole Saltiel
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Adam Cseresznye
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Andrew P Keegan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Sarah Oberlin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States
| | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Daniel Paris
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Nancy Klimas
- Nova Southeastern University, Fort Lauderdale, United States
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, United States; Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, Florida, United States.
| |
Collapse
|
25
|
Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation. Front Oncol 2020; 10:358. [PMID: 32266141 PMCID: PMC7096376 DOI: 10.3389/fonc.2020.00358] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Dollerup OL, Chubanava S, Agerholm M, Søndergård SD, Altıntaş A, Møller AB, Høyer KF, Ringgaard S, Stødkilde-Jørgensen H, Lavery GG, Barrès R, Larsen S, Prats C, Jessen N, Treebak JT. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol 2019; 598:731-754. [PMID: 31710095 DOI: 10.1113/jp278752] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase. ABSTRACT Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide riboside (NR) boosts NAD+ levels and improves diseases associated with mitochondrial dysfunction. We aimed to determine if dietary NR supplementation in middle-aged, obese, insulin-resistant men affects mitochondrial respiration, content and morphology in skeletal muscle. In a randomized, placebo-controlled clinical trial, 40 participants received 1000 mg NR or placebo twice daily for 12 weeks. Skeletal muscle biopsies were collected before and after the intervention. Mitochondrial respiratory capacity was determined by high-resolution respirometry on single muscle fibres. Protein abundance and mRNA expression were measured by Western blot and quantitative PCR analyses, respectively, and in a subset of the participants (placebo n = 8; NR n = 8) we quantified mitochondrial fractional area and mitochondrial morphology by laser scanning confocal microscopy. Protein levels of nicotinamide phosphoribosyltransferase (NAMPT), an essential NAD+ biosynthetic enzyme in skeletal muscle, decreased by 14% with NR. However, steady-state NAD+ levels as well as gene expression and protein abundance of other NAD+ biosynthetic enzymes remained unchanged. Neither respiratory capacity of skeletal muscle mitochondria nor abundance of mitochondrial associated proteins were affected by NR. Moreover, no changes in mitochondrial fractional area or network morphology were observed. Our data do not support the hypothesis that dietary NR supplementation has significant impact on skeletal muscle mitochondria in obese and insulin-resistant men. Future studies on the effects of NR on human skeletal muscle may include both sexes and potentially provide comparisons between young and older people.
Collapse
Affiliation(s)
- Ole L Dollerup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Denmark
| | - Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stine D Søndergård
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Andreas B Møller
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Kasper F Høyer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,The MR Research Centre, Aarhus University Hospital, Denmark
| | | | | | - Gareth G Lavery
- Clinical and Experimental Medicine, University of Birmingham, UK
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Steen Larsen
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Clara Prats
- Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Denmark.,Department of Biomedicine, Aarhus University, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
27
|
Xing S, Hu Y, Huang X, Shen D, Chen C. Nicotinamide phosphoribosyltransferase‑related signaling pathway in early Alzheimer's disease mouse models. Mol Med Rep 2019; 20:5163-5171. [PMID: 31702813 PMCID: PMC6854586 DOI: 10.3892/mmr.2019.10782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that is characterized by progressive cognitive dysfunction and which ultimately leads to dementia. Studies have shown that energy dysmetabolism contributes significantly to the pathogenesis of a variety of aging-associated diseases and degenerative diseases of the nervous system, including AD. One focus of research thus has been how to regulate the expression of nicotinamide phosphoribosyltransferase (NAMPT) to prevent against neurodegenerative diseases. Therefore, the present study used 6-month-old APPswe/PS1ΔE9 (APP/PS1) transgenic mice as early AD mouse models and sought to evaluate nicotinamide adenine dinucleotide (NAD+) and FK866 (a NAMPT inhibitor) treatment in APP/PS1 mice to study NAMPT dysmetabolism in the process of AD and elucidate the underlying mechanisms. As a result of this treatment, the expression of NAMPT decreased, the synthesis of ATP and NAD+ became insufficient and the NAD+/NADH ratio was reduced. The administration of NAD+ alleviated the spatial learning and memory of APP/PS1 mice and reduced senile plaques. Administration of NAD+ may also increase the expression of the key protein NAMPT and its related protein sirtuin 1 as well as the synthesis of NAD+. Therefore, increasing NAMPT expression levels may promote NAD+ production. Their regulation could form the basis for a new therapeutic strategy.
Collapse
Affiliation(s)
- Sanli Xing
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Yiran Hu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Xujiao Huang
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Dingzhu Shen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
28
|
Managò A, Audrito V, Mazzola F, Sorci L, Gaudino F, Gizzi K, Vitale N, Incarnato D, Minazzato G, Ianniello A, Varriale A, D'Auria S, Mengozzi G, Politano G, Oliviero S, Raffaelli N, Deaglio S. Extracellular nicotinate phosphoribosyltransferase binds Toll like receptor 4 and mediates inflammation. Nat Commun 2019; 10:4116. [PMID: 31511522 PMCID: PMC6739309 DOI: 10.1038/s41467-019-12055-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/14/2019] [Indexed: 12/17/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are molecules that can be actively or passively released by injured tissues and that activate the immune system. Here we show that nicotinate phosphoribosyltransferase (NAPRT), detected by antibody-mediated assays and mass spectrometry, is an extracellular ligand for Toll-like receptor 4 (TLR4) and a critical mediator of inflammation, acting as a DAMP. Exposure of human and mouse macrophages to NAPRT activates the inflammasome and NF-κB for secretion of inflammatory cytokines. Furthermore, NAPRT enhances monocyte differentiation into macrophages by inducing macrophage colony-stimulating factor. These NAPRT-induced effects are independent of NAD-biosynthetic activity, but rely on NAPRT binding to TLR4. In line with our finding that NAPRT mediates endotoxin tolerance in vitro and in vivo, sera from patients with sepsis contain the highest levels of NAPRT, compared to patients with other chronic inflammatory conditions. Together, these data identify NAPRT as a endogenous ligand for TLR4 and a mediator of inflammation. The enzyme nicotinate phosphoribosyltransferase (NAPRT) mediates the rate-limiting step in NAD salvage pathway starting from nicotinic acid. Here the authors show that NAPRT can be detected extracellularly, binds to Toll like receptor 4, and activates NF-kB signaling and cytokine production in macrophage via NAD synthesis-independent pathways.
Collapse
Affiliation(s)
- Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Division of Bioinformatics and Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Nicoletta Vitale
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Gabriele Minazzato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alice Ianniello
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | | | | | - Giulio Mengozzi
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Gianfranco Politano
- Department of Control and Computer Engineering, Polytechnic University of Turin, Turin, Italy
| | - Salvatore Oliviero
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
29
|
Audrito V, Managò A, Gaudino F, Sorci L, Messana VG, Raffaelli N, Deaglio S. NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. Front Immunol 2019; 10:1720. [PMID: 31402913 PMCID: PMC6671870 DOI: 10.3389/fimmu.2019.01720] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements, including endothelial and stromal cells, as well as cells of immune origin, which can support tumor growth by providing the right conditions. On the other hand, local hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order to survive, proliferate, and disseminate: the same conditions are also responsible for building a tumor-suppressive microenvironment. In addition to tumor cells, it is now well-recognized that metabolic rewiring occurs in all cellular components of the tumor microenvironment, affecting epigenetic regulation of gene expression and influencing differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor for energy transduction in metabolic processes. It is also a key component of signaling pathways, through the regulation of NAD-consuming enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility. In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the extracellular environment, adding a new layer of complexity to the system. In this review we will discuss the role of the “NADome” in the metabolic cross-talk between cancer and infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye to therapeutic implications.
Collapse
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| | - Vincenzo Gianluca Messana
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
30
|
Yuasa HJ. A comprehensive comparison of the metazoan tryptophan degrading enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140247. [PMID: 31276825 DOI: 10.1016/j.bbapap.2019.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/15/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) have an independent origin; however, they have distinctly evolved to catalyze the same reaction. In general, TDO is a single-copy gene in each metazoan species, and TDO enzymes demonstrate similar enzyme activity regardless of their biological origin. In contrast, multiple IDO paralogues are observed in many species, and they display various enzymatic properties. Similar to vertebrate IDO2, invertebrate IDOs generally show low affinity/catalytic efficiency for L-Trp. Meanwhile, two IDO isoforms from scallop (IDO-I and -III) and sponge IDOs show high L-Trp catalytic activity, which is comparable to vertebrate IDO1. Site-directed mutagenesis experiments have revealed that primarily two residues, Tyr located at the 2nd residue on the F-helix (F2nd) and His located at the 9th residue on the G-helix (G9th), are crucial for the high affinity/catalytic efficiency of these 'high performance' invertebrate IDOs. Conversely, those two amino acid substitutions (F2nd/Tyr and G9th/His) resulted in high affinity and catalytic activity in other molluscan 'low performance' IDOs. In human IDO1, G9th is Ser167, whereas the counterpart residue of G9th in human TDO is His76. Previous studies have shown that Ser167 could not be substituted by His because the human IDO1 Ser167His variant showed significantly low catalytic activity. However, this may be specific for human IDO1 because G9th/His was demonstrated to be very effective in increasing the L-Trp affinity even in vertebrate IDOs. Therefore, these findings indicate that the active sites of TDO and IDO are more similar to each other than previously expected.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Applied Science, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan.
| |
Collapse
|
31
|
Kumar C, P.T.V. L, Arunachalam A. Structure based pharmacophore study to identify possible natural selective PARP-1 trapper as anti-cancer agent. Comput Biol Chem 2019; 80:314-323. [DOI: 10.1016/j.compbiolchem.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
32
|
Visfatin serum concentration and hepatic mRNA expression in chronic hepatitis C. Clin Exp Hepatol 2019; 5:147-154. [PMID: 31501791 PMCID: PMC6728865 DOI: 10.5114/ceh.2019.85074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022] Open
Abstract
Aim of the study Chronic hepatitis C (CHC) is a viral disease with metabolic disturbances involved in its pathogenesis. Adipokines may influence the inflammatory response and contribute to development of metabolic abnormalities in CHC. Visfatin exerts immunomodulatory and insulin-mimetic effects. The aim was to measure visfatin serum concentrations and its mRNA hepatic expression in non-obese CHC patients and to assess the relationships with metabolic and histological parameters. Material and methods In a group of 63 non-obese CHC patients (29 M/34 F) infected with genotype 1b aged 46.6 ±14.6 years, body mass index (BMI) 24.8 ±3.0 kg/m2, serum visfatin levels and its mRNA hepatic expression were examined and the subsequent associations with metabolic and histopathological features were assessed. Results Serum visfatin levels were significantly higher in CHC patients compared to controls (22.7 ±5.7 vs. 17.8 ±1.5 ng/ml, p < 0.001). There was no difference in serum visfatin and its mRNA hepatic expression regardless of sex, BMI, insulin sensitivity and lipids concentrations. There was no mutual correlation between serum visfatin and visfatin mRNA hepatic expression. Hepatic visfatin mRNA levels but not visfatin serum levels were higher in patients with steatosis (1.35 ±0.75 vs. 0.98 ±0.34, p = 0.009). Conclusions Serum visfatin levels may reflect its involvement in chronic inflammatory processes accompanying HCV infection. Increased visfatin mRNA hepatic expression in patients with steatosis seems to be a compensatory mechanism enabling hepatocytes to survive metabolic abnormalities resulting from virus-related lipid droplet deposition prerequisite to HCV replication.
Collapse
|
33
|
Sharif T, Martell E, Dai C, Ghassemi-Rad MS, Kennedy BE, Lee PWK, Gujar S. Regulation of Cancer and Cancer-Related Genes via NAD . Antioxid Redox Signal 2019; 30:906-923. [PMID: 29334761 DOI: 10.1089/ars.2017.7478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE NAD+ is an essential redox cofactor in cellular metabolism and has emerged as an important regulator of a wide spectrum of disease conditions, most notably, cancers. As such, various strategies targeting NAD+ synthesis in cancers are in clinical trials. Recent Advances: Being a substrate required for the activity of various enzyme families, especially sirtuins and poly(adenosine diphosphate [ADP]-ribose) polymerases, NAD+-mediated signaling plays an important role in gene expression, calcium release, cell cycle progression, DNA repair, and cell proliferation. Many strategies exploring the potential of interfering with NAD+ metabolism to sensitize cancer cells to achieve anticancer benefits are highly promising, and are being pursued. CRITICAL ISSUES With the multifaceted roles of NAD+ in cancer, it is important to understand how cellular processes are reliant on NAD+. This review summarizes how NAD+ metabolism regulates various pathophysiological processes in cancer, and how this knowledge can be exploited to devise effective anticancer therapies in clinical settings. FUTURE DIRECTIONS In line with the redundant pathways that facilitate NAD+ metabolism, further studies should comprehensively understand the roles of the various NAD+-synthesizing as well as NAD+-utilizing biomolecules to understand its true potential in cancer treatment.
Collapse
Affiliation(s)
- Tanveer Sharif
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Emma Martell
- 2 Department of Pathology, Dalhousie University, Halifax, Canada
| | - Cathleen Dai
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | | | - Barry E Kennedy
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Patrick W K Lee
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.,2 Department of Pathology, Dalhousie University, Halifax, Canada
| | - Shashi Gujar
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.,2 Department of Pathology, Dalhousie University, Halifax, Canada.,3 Department of Biology, Dalhousie University, Halifax, Canada.,4 Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, Canada
| |
Collapse
|
34
|
Bilz NC, Jahn K, Lorenz M, Lüdtke A, Hübschen JM, Geyer H, Mankertz A, Hübner D, Liebert UG, Claus C. Rubella Viruses Shift Cellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with a Strain-Specific Requirement for Glutamine. J Virol 2018; 92:e00934-18. [PMID: 29950419 PMCID: PMC6096829 DOI: 10.1128/jvi.00934-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
The flexible regulation of cellular metabolic pathways enables cellular adaptation to changes in energy demand under conditions of stress such as posed by a virus infection. To analyze such an impact on cellular metabolism, rubella virus (RV) was used in this study. RV replication under selected substrate supplementation with glucose, pyruvate, and glutamine as essential nutrients for mammalian cells revealed its requirement for glutamine. The assessment of the mitochondrial respiratory (based on the oxygen consumption rate) and glycolytic (based on the extracellular acidification rate) rate and capacity by respective stress tests through Seahorse technology enabled determination of the bioenergetic phenotype of RV-infected cells. Irrespective of the cellular metabolic background, RV infection induced a shift of the bioenergetic state of epithelial cells (Vero and A549) and human umbilical vein endothelial cells to a higher oxidative and glycolytic level. Interestingly there was a RV strain-specific, but genotype-independent demand for glutamine to induce a significant increase in metabolic activity. While glutaminolysis appeared to be rather negligible for RV replication, glutamine could serve as donor of its amide nitrogen in biosynthesis pathways for important metabolites. This study suggests that the capacity of RVs to induce metabolic alterations could evolve differently during natural infection. Thus, changes in cellular bioenergetics represent an important component of virus-host interactions and could complement our understanding of the viral preference for a distinct host cell population.IMPORTANCE RV pathologies, especially during embryonal development, could be connected with its impact on mitochondrial metabolism. With bioenergetic phenotyping we pursued a rather novel approach in virology. For the first time it was shown that a virus infection could shift the bioenergetics of its infected host cell to a higher energetic state. Notably, the capacity to induce such alterations varied among different RV isolates. Thus, our data add viral adaptation of cellular metabolic activity to its specific needs as a novel aspect to virus-host evolution. In addition, this study emphasizes the implementation of different viral strains in the study of virus-host interactions and the use of bioenergetic phenotyping of infected cells as a biomarker for virus-induced pathological alterations.
Collapse
Affiliation(s)
- Nicole C Bilz
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - Kristin Jahn
- Institute of Virology, University of Leipzig, Leipzig, Germany
- Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | | | - Anja Lüdtke
- Institute of Virology, University of Leipzig, Leipzig, Germany
- Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Judith M Hübschen
- WHO European Regional Reference Laboratory for Measles and Rubella, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Grand-Duchy of Luxembourg
| | - Henriette Geyer
- WHO European Regional Reference Laboratory for Measles and Rubella, Robert Koch Institute, Berlin, Germany
| | - Annette Mankertz
- WHO European Regional Reference Laboratory for Measles and Rubella, Robert Koch Institute, Berlin, Germany
| | - Denise Hübner
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - Uwe G Liebert
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - Claudia Claus
- Institute of Virology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
35
|
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a novel marker for patients with BRAF-mutated metastatic melanoma. Oncotarget 2018; 9:18997-19005. [PMID: 29721178 PMCID: PMC5922372 DOI: 10.18632/oncotarget.24871] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Metastatic melanoma carrying BRAF mutations represent a still unmet medical need as success of BRAF inhibitors is limited by development of resistance. Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme in NAD biosynthesis. An extracellular form (eNAMPT) possesses cytokine-like functions and is up-regulated in inflammatory disorders, including cancer. Here we show that eNAMPT is actively released in culture supernatants of melanoma cell lines. Furthermore, cells that become resistant to BRAF inhibitors (BiR) show a significant increase of eNAMPT levels. Plasma from mice xenografted with BiR cell lines contain higher eNAMPT levels compared to tumor-free animals. Consistently, eNAMPT levels are elevated in 113 patients with BRAF-mutated metastatic melanoma compared to 50 with localized disease or to 38 healthy donors, showing a direct correlation with markers of tumor burden, such as LDH, or aggressive disease (such as PD-L1). eNAMPT concentrations decrease in response to therapy with BRAF/MEK inhibitors, but increase again at progression, as inferred from the serial analysis of 50 patients. Lastly, high eNAMPT levels correlate with a significantly shorter overall survival. Our findings suggest that eNAMPT is a novel marker of tumor burden and response to therapy in patients with metastatic melanoma carrying BRAF mutations.
Collapse
|
36
|
Abstract
SIGNIFICANCE Extranuclear sirtuins in cytosol (SIRT2) and mitochondria (SIRT3, SIRT4, and SIRT5) are key regulators of metabolic enzymes and the antioxidative defense mechanisms. They play an important role in the adjustment of metabolic pathways in alterations of the nutritional status. Recent Advances: Recent studies have shown that in addition to lysine deacetylation, sirtuins catalyze several different lysine deacylation reactions, removal of lipid modifications, and adenosine diphosphate-ribosylation. Large-scale studies have revealed hundreds of target proteins regulated by different sirtuin modifications. CRITICAL ISSUES Sensing of the metabolic state and regulation of the sirtuin function and expression are critical components of the machinery, optimizing cellular functions in the switch from fed to fasting condition. Overfeeding, obesity, and metabolic diseases cause metabolic stress that dysregulates the sirtuins, which may play a role in the pathogenesis and complications of metabolic diseases such as type 2 diabetes, fatty liver disease, and cardiac diseases. In the current review, we will discuss the significance of the extranuclear sirtuins as metabolic regulators and in protection against the reactive oxygen species, and also how these sirtuins are regulated by metabolic status and their putative role in metabolic diseases. FUTURE DIRECTIONS To efficiently utilize sirtuins as drug targets for treatment of the metabolic diseases, better understanding of the sirtuin functions, targets, regulation, and cross talk is needed. Furthermore, more studies in humans are needed to confirm the many observations mainly made in animal and cell models so far. Antioxid. Redox Signal. 28, 662-676.
Collapse
Affiliation(s)
- Mahmoud-Sobhy Elkhwanky
- 1 Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu , Oulu, Finland .,2 Medical Research Center Oulu, Oulu University Hospital and University of Oulu , Oulu, Finland
| | - Jukka Hakkola
- 1 Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu , Oulu, Finland .,2 Medical Research Center Oulu, Oulu University Hospital and University of Oulu , Oulu, Finland
| |
Collapse
|
37
|
Audrito V, Managò A, La Vecchia S, Zamporlini F, Vitale N, Baroni G, Cignetto S, Serra S, Bologna C, Stingi A, Arruga F, Vaisitti T, Massi D, Mandalà M, Raffaelli N, Deaglio S. Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Target in BRAF-Mutated Metastatic Melanoma. J Natl Cancer Inst 2018; 110:290-303. [DOI: 10.1093/jnci/djx198] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Sofia La Vecchia
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnologies and Health Science, University of Turin, Italy
| | - Gianna Baroni
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Italy
| | - Simona Cignetto
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Sara Serra
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Cinzia Bologna
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Aureliano Stingi
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Daniela Massi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Italy
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
38
|
Pellicciari R, Liscio P, Giacchè N, De Franco F, Carotti A, Robertson J, Cialabrini L, Katsyuba E, Raffaelli N, Auwerx J. α-Amino-β-carboxymuconate-ε-semialdehyde Decarboxylase (ACMSD) Inhibitors as Novel Modulators of De Novo Nicotinamide Adenine Dinucleotide (NAD +) Biosynthesis. J Med Chem 2018; 61:745-759. [PMID: 29345930 DOI: 10.1021/acs.jmedchem.7b01254] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
NAD+ has a central function in linking cellular metabolism to major cell-signaling and gene-regulation pathways. Defects in NAD+ homeostasis underpin a wide range of diseases, including cancer, metabolic disorders, and aging. Although the beneficial effects of boosting NAD+ on mitochondrial fitness, metabolism, and lifespan are well established, to date, no therapeutic enhancers of de novo NAD+ biosynthesis have been reported. Herein we report the discovery of 3-[[[5-cyano-1,6-dihydro-6-oxo-4-(2-thienyl)-2-pyrimidinyl]thio]methyl]phenylacetic acid (TES-1025, 22), the first potent and selective inhibitor of human ACMSD (IC50 = 0.013 μM) that increases NAD+ levels in cellular systems. The results of physicochemical-property, ADME, and safety profiling, coupled with in vivo target-engagement studies, support the hypothesis that ACMSD inhibition increases de novo NAD+ biosynthesis and position 22 as a first-class molecule for the evaluation of the therapeutic potential of ACMSD inhibition in treating disorders with perturbed NAD+ supply or homeostasis.
Collapse
Affiliation(s)
| | - Paride Liscio
- TES Pharma S.r.l. , IT-06073 Corciano, Perugia, Italy
| | | | | | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia , IT-06123 Perugia, Italy
| | | | - Lucia Cialabrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche , IT-60131 Ancona, Italy
| | - Elena Katsyuba
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne CH-1015 Lausanne, Switzerland
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche , IT-60131 Ancona, Italy
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne CH-1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Martino Carpi F, Cortese M, Orsomando G, Polzonetti V, Vincenzetti S, Moreschini B, Coleman M, Magni G, Pucciarelli S. Simultaneous quantification of nicotinamide mononucleotide and related pyridine compounds in mouse tissues by UHPLC-MS/MS. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201700024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry; Polytechnic University of Marche; Ancona Italy
| | - Valeria Polzonetti
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| | - Silvia Vincenzetti
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| | - Benedetta Moreschini
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| | | | - Giulio Magni
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| | - Stefania Pucciarelli
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| |
Collapse
|
40
|
Chini CCS, Tarragó MG, Chini EN. NAD and the aging process: Role in life, death and everything in between. Mol Cell Endocrinol 2017; 455:62-74. [PMID: 27825999 PMCID: PMC5419884 DOI: 10.1016/j.mce.2016.11.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline.
Collapse
Affiliation(s)
- Claudia C S Chini
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mariana G Tarragó
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Eduardo N Chini
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Oncology Research, GI Signaling Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Abstract
Vascular repair plays important roles in postischemic remodeling and rehabilitation in cardiovascular and cerebrovascular disease, such as stroke and myocardial infarction. Nicotinamide adenine dinucleotide (NAD), a well-known coenzyme involved in electron transport chain for generation of adenosine triphosphate, has emerged as an important controller regulating various biological signaling pathways. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for NAD biosynthesis in mammals. NAMPT may also act in a nonenzymatic manner, presumably mediated by unknown receptor(s). Rapidly accumulating data in the past decade show that NAMPT and NAMPT-controlled NAD metabolism regulate fundamental biological functions in endothelial cells, vascular smooth muscle cells, and endothelial progenitor cells. The NAD-consuming proteins, including sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38, may contribute to the regulatory effects of NAMPT-NAD axis in these cells and vascular repair. This review discusses the current data regarding NAMPT and NAMPT-controlled NAD metabolism in vascular repair and the clinical potential translational application of NAMPT-related products in treatment of cardiovascular and cerebrovascular disease.
Collapse
|
42
|
Elhassan YS, Philp AA, Lavery GG. Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule. J Endocr Soc 2017; 1:816-835. [PMID: 29264533 PMCID: PMC5686634 DOI: 10.1210/js.2017-00092] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an established cofactor for enzymes serving cellular metabolic reactions. More recent research identified NAD+ as a signaling molecule and substrate for sirtuins and poly-adenosine 5'-diphosphate polymerases; enzymes that regulate protein deacetylation and DNA repair, and translate changes in energy status into metabolic adaptations. Deranged NAD+ homeostasis and concurrent alterations in mitochondrial function are intrinsic in metabolic disorders, such as type 2 diabetes, nonalcoholic fatty liver, and age-related diseases. Contemporary NAD+ precursors show promise as nutraceuticals to restore target tissue NAD+ and have demonstrated the ability to improve mitochondrial function and sirtuin-dependent signaling. This review discusses the accumulating evidence for targeting NAD+ metabolism in metabolic disease, maps the different strategies for NAD+ boosting, and addresses the challenges and open questions in the field. The health potential of targeting NAD+ homeostasis will inform clinical study design to identify nutraceutical approaches for combating metabolic disease and the unwanted effects of aging.
Collapse
Affiliation(s)
- Yasir S. Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, United Kingdom
| | - Andrew A. Philp
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
43
|
Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res 2017; 118:1593-611. [PMID: 27174952 DOI: 10.1161/circresaha.116.307505] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Qun Chen
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Charles L Hoppel
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH.
| |
Collapse
|
44
|
Hamity MV, White SR, Walder RY, Schmidt MS, Brenner C, Hammond DL. Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. Pain 2017; 158:962-972. [PMID: 28346814 DOI: 10.1097/j.pain.0000000000000862] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Injury to sensory afferents may contribute to the peripheral neuropathies that develop after administration of chemotherapeutic agents. Manipulations that increase levels of nicotinamide adenine dinucleotide (NAD) can protect against neuronal injury. This study examined whether nicotinamide riboside (NR), a third form of vitamin B3 and precursor of NAD, diminishes tactile hypersensitivity and place escape-avoidance behaviors in a rodent model of paclitaxel-induced peripheral neuropathy. Female Sprague-Dawley rats received 3 intravenous injections of 6.6 mg/kg paclitaxel over 5 days. Daily oral administration of 200 mg/kg NR beginning 7 days before paclitaxel treatment and continuing for another 24 days prevented the development of tactile hypersensitivity and blunted place escape-avoidance behaviors. These effects were sustained after a 2-week washout period. This dose of NR increased blood levels of NAD by 50%, did not interfere with the myelosuppressive effects of paclitaxel, and did not produce adverse locomotor effects. Treatment with 200 mg/kg NR for 3 weeks after paclitaxel reversed the well-established tactile hypersensitivity in a subset of rats and blunted escape-avoidance behaviors. Pretreatment with 100 mg/kg oral acetyl-L-carnitine (ALCAR) did not prevent paclitaxel-induced tactile hypersensitivity or blunt escape-avoidance behaviors. ALCAR by itself produced tactile hypersensitivity. These findings suggest that agents that increase NAD, a critical cofactor for mitochondrial oxidative phosphorylation systems and cellular redox systems involved with fuel utilization and energy metabolism, represent a novel therapeutic approach for relief of chemotherapy-induced peripheral neuropathies. Because NR is a vitamin B3 precursor of NAD and a nutritional supplement, clinical tests of this hypothesis may be accelerated.
Collapse
Affiliation(s)
| | | | | | | | | | - Donna L Hammond
- Departments of Anesthesia.,Pharmacology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
45
|
Synthesis and Degradation of Adenosine 5'-Tetraphosphate by Nicotinamide and Nicotinate Phosphoribosyltransferases. Cell Chem Biol 2017; 24:553-564.e4. [PMID: 28416276 DOI: 10.1016/j.chembiol.2017.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/03/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022]
Abstract
Adenosine 5'-tetraphosphate (Ap4) is a ubiquitous metabolite involved in cell signaling in mammals. Its full physiological significance remains unknown. Here we show that two enzymes committed to NAD biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPT), can both catalyze the synthesis and degradation of Ap4 through their facultative ATPase activity. We propose a mechanism for this unforeseen additional reaction, and demonstrate its evolutionary conservation in bacterial orthologs of mammalian NAMPT and NAPT. Furthermore, evolutionary distant forms of NAMPT were inhibited in vitro by the FK866 drug but, remarkably, it does not block synthesis of Ap4. In fact, FK866-treated murine cells showed decreased NAD but increased Ap4 levels. Finally, murine cells and plasma with engineered or naturally fluctuating NAMPT levels showed matching Ap4 fluctuations. These results suggest a role of Ap4 in the actions of NAMPT, and prompt to evaluate the role of Ap4 production in the actions of NAMPT inhibitors.
Collapse
|
46
|
Martínez-Moñino AB, Zapata-Pérez R, García-Saura AG, Gil-Ortiz F, Pérez-Gilabert M, Sánchez-Ferrer Á. Characterization and mutational analysis of a nicotinamide mononucleotide deamidase from Agrobacterium tumefaciens showing high thermal stability and catalytic efficiency. PLoS One 2017; 12:e0174759. [PMID: 28388636 PMCID: PMC5384747 DOI: 10.1371/journal.pone.0174759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/15/2017] [Indexed: 01/07/2023] Open
Abstract
NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organismal homeostasis. Among the enzymes involved in its recycling, nicotinamide mononucleotide (NMN) deamidase is one of the key players in the bacterial pyridine nucleotide cycle, where it catalyzes the conversion of NMN into nicotinic acid mononucleotide (NaMN), which is later converted to NAD+ in the Preiss-Handler pathway. The biochemical characteristics of bacterial NMN deamidases have been poorly studied, although they have been investigated in some firmicutes, gamma-proteobacteria and actinobacteria. In this study, we present the first characterization of an NMN deamidase from an alphaproteobacterium, Agrobacterium tumefaciens (AtCinA). The enzyme was active over a broad pH range, with an optimum at pH 7.5. Moreover, the enzyme was quite stable at neutral pH, maintaining 55% of its activity after 14 days. Surprisingly, AtCinA showed the highest optimal (80°C) and melting (85°C) temperatures described for an NMN deamidase. The above described characteristics, together with its high catalytic efficiency, make AtCinA a promising biocatalyst for the production of pure NaMN. In addition, six mutants (C32A, S48A, Y58F, Y58A, T105A and R145A) were designed to study their involvement in substrate binding, and two (S31A and K63A) to determine their contribution to the catalysis. However, only four mutants (C32A, S48A Y58F and T105A) showed activity, although with reduced catalytic efficiency. These results, combined with a thermal and structural analysis, reinforce the Ser/Lys catalytic dyad mechanism as the most plausible among those proposed.
Collapse
Affiliation(s)
- Ana Belén Martínez-Moñino
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | - Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | - Antonio Ginés García-Saura
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | | | - Manuela Pérez-Gilabert
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|
47
|
Kropp EM, Broniowska KA, Waas M, Nycz A, Corbett JA, Gundry RL. Cardiomyocyte Differentiation Promotes Cell Survival During Nicotinamide Phosphoribosyltransferase Inhibition Through Increased Maintenance of Cellular Energy Stores. Stem Cells Transl Med 2017; 6:1191-1201. [PMID: 28224719 PMCID: PMC5442850 DOI: 10.1002/sctm.16-0151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 10/02/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
To address concerns regarding the tumorigenic potential of undifferentiated human pluripotent stem cells (hPSC) that may remain after in vitro differentiation and ultimately limit the broad use of hPSC‐derivatives for therapeutics, we recently described a method to selectively eliminate tumorigenic hPSC from their progeny by inhibiting nicotinamide phosphoribosyltransferase (NAMPT). Limited exposure to NAMPT inhibitors selectively removes hPSC from hPSC‐derived cardiomyocytes (hPSC‐CM) and spares a wide range of differentiated cell types; yet, it remains unclear when and how cells acquire resistance to NAMPT inhibition during differentiation. In this study, we examined the effects of NAMPT inhibition among multiple time points of cardiomyocyte differentiation. Overall, these studies show that in vitro cardiomyogenic commitment and continued culturing provides resistance to NAMPT inhibition and cell survival is associated with the ability to maintain cellular ATP pools despite depletion of NAD levels. Unlike cells at earlier stages of differentiation, day 28 hPSC‐CM can survive longer periods of NAMPT inhibition and maintain ATP generation by glycolysis and/or mitochondrial respiration. This is distinct from terminally differentiated fibroblasts, which maintain mitochondrial respiration during NAMPT inhibition. Overall, these results provide new mechanistic insight into how regulation of cellular NAD and energy pools change with hPSC‐CM differentiation and further inform how NAMPT inhibition strategies could be implemented within the context of cardiomyocyte differentiation. Stem Cells Translational Medicine2017;6:1191–1201
Collapse
Affiliation(s)
- Erin M Kropp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Matthew Waas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alyssa Nycz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
48
|
Mitochondrial Dysfunction in Cardiovascular Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:451-464. [PMID: 28551802 DOI: 10.1007/978-3-319-55330-6_24] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are the prime source of ATP in cardiomyocytes. Impairment of mitochondrial metabolism results in damage to existing proteins and DNA. Such deleterious effects are part and parcel of the aging process, reducing the ability of cardiomyocytes to counter stress, such as myocardial infarction and consequent reperfusion. In such conditions, mitochondria in the heart of aged individuals exhibit decreased oxidative phosphorylation, decreased ATP production, and increased net reactive oxygen species production; all of these effects are independent of the decrease in number of mitochondria that occurs in these situations. Rather than being associated with the mitochondrial population in toto, these defects are almost exclusively confined to those organelles positioned between myofibrils (interfibrillar mitochondria). It is in complex III and IV where these dysfunctional aspects are manifested. In an apparent effort to correct mitochondrial metabolic defects, affected organelles are to some extent eliminated by mitophagy; at the same time, new, unaffected organelles are generated by fission of mitochondria. Because these cardiac health issues are localized to specific mitochondria, these organelles offer potential targets for therapeutic approaches that could favorably affect the aging process in heart.
Collapse
|
49
|
Sociali G, Raffaghello L, Magnone M, Zamporlini F, Emionite L, Sturla L, Bianchi G, Vigliarolo T, Nahimana A, Nencioni A, Raffaelli N, Bruzzone S. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model. Oncotarget 2016; 7:2968-84. [PMID: 26658104 PMCID: PMC4823084 DOI: 10.18632/oncotarget.6502] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 12/02/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, β-methylene adenosine 5′-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors.
Collapse
Affiliation(s)
- Giovanna Sociali
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| | | | - Mirko Magnone
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Laura Emionite
- Animal Facility, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| | - Giovanna Bianchi
- Laboratorio di Oncologia Istituto G. Gaslini, 16147 Genova, Italy
| | - Tiziana Vigliarolo
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, 1011-CHUV, Lausanne, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy.,IRCCS A.O.U. San Martino IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, 16132 Genova, Italy
| |
Collapse
|
50
|
Wang F, Travins J, Lin Z, Si Y, Chen Y, Powe J, Murray S, Zhu D, Artin E, Gross S, Santiago S, Steadman M, Kernytsky A, Straley K, Lu C, Pop A, Struys EA, Jansen EEW, Salomons GS, David MD, Quivoron C, Penard-Lacronique V, Regan KS, Liu W, Dang L, Yang H, Silverman L, Agresta S, Dorsch M, Biller S, Yen K, Cang Y, Su SSM, Jin S. A small molecule inhibitor of mutant IDH2 rescues cardiomyopathy in a D-2-hydroxyglutaric aciduria type II mouse model. J Inherit Metab Dis 2016; 39:807-820. [PMID: 27469509 PMCID: PMC5065612 DOI: 10.1007/s10545-016-9960-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 10/25/2022]
Abstract
D-2-hydroxyglutaric aciduria (D2HGA) type II is a rare neurometabolic disorder caused by germline gain-of-function mutations in isocitrate dehydrogenase 2 (IDH2), resulting in accumulation of D-2-hydroxyglutarate (D2HG). Patients exhibit a wide spectrum of symptoms including cardiomyopathy, epilepsy, developmental delay and limited life span. Currently, there are no effective therapeutic interventions. We generated a D2HGA type II mouse model by introducing the Idh2R140Q mutation at the native chromosomal locus. Idh2R140Q mice displayed significantly elevated 2HG levels and recapitulated multiple defects seen in patients. AGI-026, a potent, selective inhibitor of the human IDH2R140Q-mutant enzyme, suppressed 2HG production, rescued cardiomyopathy, and provided a survival benefit in Idh2R140Q mice; treatment withdrawal resulted in deterioration of cardiac function. We observed differential expression of multiple genes and metabolites that are associated with cardiomyopathy, which were largely reversed by AGI-026. These findings demonstrate the potential therapeutic benefit of an IDH2R140Q inhibitor in patients with D2HGA type II.
Collapse
Affiliation(s)
- Fang Wang
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Jeremy Travins
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Zhizhong Lin
- Oncology Business Unit, WuXi AppTec, Shanghai, China
| | - Yaguang Si
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Yue Chen
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Josh Powe
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Stuart Murray
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Dongwei Zhu
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Erin Artin
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Stefan Gross
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Stephanie Santiago
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Mya Steadman
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Andrew Kernytsky
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Kimberly Straley
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Chenming Lu
- Oncology Business Unit, WuXi AppTec, Shanghai, China
| | - Ana Pop
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center/ Neuroscience Campus, Amsterdam, The Netherlands
| | - Eduard A Struys
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center/ Neuroscience Campus, Amsterdam, The Netherlands
| | - Erwin E W Jansen
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center/ Neuroscience Campus, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Center/ Neuroscience Campus, Amsterdam, The Netherlands
| | - Muriel D David
- Institut National de la Santé et de la Recherche Médicale, INSERM U1170, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Cyril Quivoron
- Institut National de la Santé et de la Recherche Médicale, INSERM U1170, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Virginie Penard-Lacronique
- Institut National de la Santé et de la Recherche Médicale, INSERM U1170, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Karen S Regan
- Regan Pathology/Toxicology Services, Ashland, OH, USA
| | - Wei Liu
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Lenny Dang
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Hua Yang
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Lee Silverman
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Samuel Agresta
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Marion Dorsch
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Scott Biller
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Katharine Yen
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Yong Cang
- Oncology Business Unit, WuXi AppTec, Shanghai, China
| | - Shin-San Michael Su
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA
| | - Shengfang Jin
- Agios Pharmaceuticals Inc., 88 Sidney Street, Cambridge, MA, 02139-4169, USA.
| |
Collapse
|