1
|
Gellisch M, Bablok M, Brand-Saberi B, Schäfer T. Neurobiological stress markers in educational research: A systematic review of physiological insights in health science education. Trends Neurosci Educ 2024; 37:100242. [PMID: 39638492 DOI: 10.1016/j.tine.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Traditional self-reported measures in health science education often overlook the physiological processes underlying cognitive and emotional responses. PURPOSE This review aims to analyze the frequency, sensitivity, and utility of physiological markers in understanding cognitive and emotional dynamics in learning environments. METHODS A systematic PubMed search identified 156 records, with 13 studies meeting inclusion criteria. Markers analyzed included heart rate (HR), heart rate variability (HRV), cortisol, alpha-amylase, testosterone, s-IgA, blood pressure, oxygen saturation, and respiratory rate. MAIN FINDINGS HR and HRV were sensitive to educational stressors. Cortisol and alpha-amylase showed mixed results, while testosterone and s-IgA showed limited utility in directly assessing stress responses. No consistent link was found between any marker and immediate learning success. CONCLUSION Physiological markers in learning environments can offer valuable insights into emotional and cognitive dynamics but should not be misconstrued as direct indicators of learning outcomes.
Collapse
Affiliation(s)
- Morris Gellisch
- Center for Medical Education, Ruhr-University Bochum, 44801 Bochum, Germany; Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; Faculty of Health, Department of Dental Medicine, Department of Operative and Preventive Dentistry, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, Witten 58448, Germany.
| | - Martin Bablok
- Center for Medical Education, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Thorsten Schäfer
- Center for Medical Education, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Fischer S, Ferlinc Z, Hirschenhauser K, Taborsky B, Fusani L, Tebbich S. Does the stress axis mediate behavioural flexibility in a social cichlid, Neolamprologus pulcher? Physiol Behav 2024; 287:114694. [PMID: 39260667 DOI: 10.1016/j.physbeh.2024.114694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/15/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Behavioural flexibility plays a major role in the way animals cope with novel situations, and physiological stress responses are adaptive and highly efficient mechanisms to cope with unpredictable events. Previous studies investigating the role of stress responses in mediating behavioural flexibility were mostly done in laboratory rodents using stressors and cognitive challenges unrelated to the ecology of the species. To better understand how stress mediates behavioural flexibility in a natural context, direct manipulations of the stress response and cognitive tests in ecologically relevant contexts are needed. To this aim, we pharmacologically blocked glucocorticoid receptors (GR) in adult Neolamprologus pulcher using a minimally invasive application of a GR antagonist. GR blockade prevents the recovery after a stressful event, which we predicted to impair behavioural flexibility. After the application of the GR antagonist, we repeatedly exposed fish to a predator and tested their behavioural flexibility using a detour task, i.e. fish had to find a new, longer route to the shelter when the shortest route was blocked. While the latencies to find the shelter were not different between treatments, GR blocked fish showed more failed attempts during the detour tasks than control fish. Furthermore, weak performance during the detour tasks was accompanied by an increase of fear related behaviours. This suggests that blocking GR changed the perception of fear and resulted in an impaired behavioural flexibility. Therefore, our results support a potential link between the capacity to recover from stressors and behavioural flexibility in N. pulcher with potential consequences for an effective and adaptive coping with changing environments.
Collapse
Affiliation(s)
- Stefan Fischer
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria; Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Zala Ferlinc
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Katharina Hirschenhauser
- University College for Education of Upper Austria (PH OÖ), Kaplanhofstraße 40, 4020 Linz, Austria
| | - Barbara Taborsky
- Division of Behavioural Ecology, University of Bern, Wohlenstrasse 50a, CH-3032 Hinterkappelen, Switzerland
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160 Vienna, Austria; Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Sabine Tebbich
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
3
|
Halcomb CJ, Philipp TR, Dhillon PS, Cox JH, Aguilar-Alvarez R, Vanderhoof SO, Jasnow AM. Sex divergent behavioral responses in platform-mediated avoidance and glucocorticoid receptor blockade. Psychoneuroendocrinology 2024; 159:106417. [PMID: 37925931 PMCID: PMC10872426 DOI: 10.1016/j.psyneuen.2023.106417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/17/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Women are more likely than men to develop anxiety or stress-related disorders. A core behavioral symptom of all anxiety disorders is avoidance of fear or anxiety eliciting cues. Recent rodent models of avoidance show reliable reproduction of this behavioral phenomenon in response to learned aversive associations. Here, a modified version of platform-mediated avoidance that lacked an appetitive task was utilized to investigate the learning and extinction of avoidance in male and female C57BL6/J mice. Here, we found a robust sex difference in the acquisition and extinction of platform-mediated avoidance. Across three experiments, 63.7% of female mice acquired avoidance according to our criterion, whereas 83.8% of males acquired it successfully. Of those females that acquired avoidance, they displayed persistent avoidance after extinction compared to males. Given their role in regulating stress responses and habitual behaviors, we investigated if glucocorticoid receptors (GR) mediated avoidance learning in males and females. We found that a subcutaneous injection (25 mg/kg) of the GR antagonist, RU486 (Mifepristone), significantly reduced persistent avoidance in females but did not further reduce avoidance in males after extinction. These data suggest that GR activation during avoidance learning may contribute to persistent avoidance in females that is resistant to extinction.
Collapse
Affiliation(s)
- Carly J Halcomb
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Trey R Philipp
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Parker S Dhillon
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - J Hunter Cox
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Ricardo Aguilar-Alvarez
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | - Aaron M Jasnow
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
4
|
Halcomb CJ, Philipp TR, Dhillon PS, Cox JH, Aguilar-Alvarez R, Vanderhoof SO, Jasnow AM. Sex divergent behavioral responses in platform-mediated avoidance and glucocorticoid receptor blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559122. [PMID: 37808636 PMCID: PMC10557728 DOI: 10.1101/2023.09.26.559122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Women are more likely than men to develop anxiety or stress-related disorders. A core behavioral symptom of all anxiety disorders is avoidance of fear or anxiety eliciting cues. Recent rodent models of avoidance show reliable reproduction of this behavioral phenomenon in response to learned aversive associations. Here, a modified version of platform-mediated avoidance that lacked an appetitive task was utilized to investigate the learning and extinction of avoidance in male and female C57BL6/J mice. Here, we found a robust sex difference in the acquisition and extinction of platform-mediated avoidance. Across three experiments, 63.7% of female mice acquired avoidance according to our criterion, whereas 83.8% of males acquired it successfully. Of those females that acquired avoidance, they displayed persistent avoidance after extinction compared to males. Given their role in regulating stress responses and habitual behaviors, we investigated if glucocorticoid receptors (GR) mediated avoidance learning in males and females. Here we found that a subcutaneous injection (25mg/kg) of the GR antagonist, RU486 (mifepristone), significantly reduced persistent avoidance in females but did not further reduce avoidance in males after extinction. These data suggest that GR activation during avoidance learning may contribute to persistent avoidance in females that is resistant to extinction.
Collapse
|
5
|
Hill A, Johnston C, Agranoff I, Gavade S, Spencer-Segal J. Corticosterone enhances formation of non-fear but not fear memory during infectious illness. Front Behav Neurosci 2023; 17:1144173. [PMID: 37091592 PMCID: PMC10118046 DOI: 10.3389/fnbeh.2023.1144173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Survivors of critical illness are at high risk of developing post-traumatic stress disorder (PTSD) but administration of glucocorticoids during the illness can lower that risk. The mechanism is not known but may involve glucocorticoid modulation of hippocampal- and amygdala-dependent memory formation. In this study, we sought to determine whether glucocorticoids given during an acute illness influence the formation and persistence of fear and non-fear memories from the time of the illness. Methods We performed cecal ligation and puncture in male and female mice to induce an acute infectious illness. During the illness, mice were introduced to a neutral object in their home cage and separately underwent contextual fear conditioning. We then tested the persistence of object and fear memories after recovery. Results Glucocorticoid treatment enhanced object discrimination but did not alter the expression of contextual fear memory. During context re-exposure, neural activity was elevated in the dentate gyrus irrespective of fear conditioning. Conclusions Our results suggest that glucocorticoids given during illness enhance hippocampal-dependent non-fear memory processes. This indicates that PTSD outcomes in critically ill patients may be improved by enhancing non-fear memories from the time of their illness.
Collapse
Affiliation(s)
- Alice Hill
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Colin Johnston
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Isaac Agranoff
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Swapnil Gavade
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Joanna Spencer-Segal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Corticosterone enhances formation of non-fear but not fear memory during infectious illness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.526836. [PMID: 36798285 PMCID: PMC9934541 DOI: 10.1101/2023.02.07.526836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Survivors of critical illness are at high risk of developing post-traumatic stress disorder (PTSD) but administration of glucocorticoids during the illness can lower that risk. The mechanism is not known but may involve glucocorticoid modulation of hippocampal- and amygdalar-dependent memory formation. In this study, we sought to determine whether glucocorticoids given during an acute illness influence the formation and persistence of fear and non-fear memories from the time of the illness. We performed cecal ligation and puncture in male and female mice to induce an acute infectious illness. During the illness, mice were introduced to a neutral object in their home cage and separately underwent contextual fear conditioning. We then tested the persistence of object and fear memories after recovery. Glucocorticoid treatment enhanced object discrimination but did not alter the expression of contextual fear memory. During context re-exposure, neural activity was elevated in the dentate gyrus irrespective of fear conditioning. Our results suggest that glucocorticoids given during illness enhance hippocampal-dependent non-fear memory processes. This indicates that PTSD outcomes in critically ill patients may be improved by enhancing non-fear memories from the time of their illness.
Collapse
|
7
|
Wheelan N, Seckl JR, Yau JLW. 11β-Hydroxysteroid dehydrogenase 1 deficiency prevents PTSD-like memory in young adult mice. Psychoneuroendocrinology 2022; 146:105945. [PMID: 36183622 DOI: 10.1016/j.psyneuen.2022.105945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/21/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by the co-existence of a persistent strong memory of the traumatic experience and amnesia for the peritraumatic context. Most animal models, however, fail to account for the contextual amnesia which is considered to play a critical role in the etiology of PTSD intrusive memories. It is also unclear how aging affects PTSD-like memory. Glucocorticoids alter the formation and retention of fear-associated memory. Here, we investigated whether a deficiency of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) (an intracellular glucocorticoid generating enzyme) and aging modulates fear conditioning and PTSD-like memory in mice. We first measured memory in 6 months and 24 months old 11β-HSD1 deficient (HSD1 KO) and wildtype (WT) mice following paired tone-shock fear conditioning. Then, separate groups of mice were exposed to restraint stress immediately after unpaired tone-shock contextual fear conditioning. Compared with young controls, aged WT mice exhibited enhanced auditory cued fear memory, but contextual fear memory was not different. Contextual fear memory retention was attenuated in both young and aged HSD1 KO mice. In contrast, auditory cued fear memory was reduced 24 h after training only in aged HSD1 KO mice. When fear conditioned with stress, WT mice displayed PTSD-like memory (i.e., increased fear to tone not predictive of shock and reduced fear to 'aversive' conditioning context); this was unchanged with aging. In contrast, young HSD1 KO mice fear conditioned with stress showed normal fear memory (i.e., increased fear response to conditioning context), as observed in WT mice fear conditioned alone. While aged HSD1 KO mice fear conditioned with stress also displayed normal contextual fear memory, the fear response to the 'safe' tone remained. Thus, a deficiency of 11β-HSD1 protects against both amnesia for the conditioning context and hypermnesia for a salient tone in young adult mice but only contextual amnesia is prevented in aged mice. These results suggest that brain 11β-HSD1 generated glucocorticoids make a significant contribution to fear conditioning and PTSD-like memory. 11β-HSD1 inhibition may be useful in prevention and/or treatment of PTSD.
Collapse
Affiliation(s)
- Nicola Wheelan
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Jonathan R Seckl
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Joyce L W Yau
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
8
|
Hodges TE, Lieblich SE, Rechlin RK, Galea LAM. Sex differences in inflammation in the hippocampus and amygdala across the lifespan in rats: associations with cognitive bias. Immun Ageing 2022; 19:43. [PMID: 36203171 PMCID: PMC9535862 DOI: 10.1186/s12979-022-00299-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Background Cognitive symptoms of major depressive disorder, such as negative cognitive bias, are more prevalent in women than in men. Cognitive bias involves pattern separation which requires hippocampal neurogenesis and is modulated by inflammation in the brain. Previously, we found sex differences in the activation of the amygdala and the hippocampus in response to negative cognitive bias in rats that varied with age. Given the association of cognitive bias to neurogenesis and inflammation, we examined associations between cognitive bias, neurogenesis in the hippocampus, and cytokine and chemokine levels in the ventral hippocampus (HPC) and basolateral amygdala (BLA) of male and female rats across the lifespan. Results After cognitive bias testing, males had more IFN-γ, IL-1β, IL-4, IL-5, and IL-10 in the ventral HPC than females in adolescence. In young adulthood, females had more IFN-γ, IL-1β, IL-6, and IL-10 in the BLA than males. Middle-aged rats had more IL-13, TNF-α, and CXCL1 in both regions than younger groups. Adolescent male rats had higher hippocampal neurogenesis than adolescent females after cognitive bias testing and young rats that underwent cognitive bias testing had higher levels of hippocampal neurogenesis than controls. Neurogenesis in the dorsal hippocampus was negatively associated with negative cognitive bias in young adult males. Conclusions Overall, the association between negative cognitive bias, hippocampal neurogenesis, and inflammation in the brain differs by age and sex. Hippocampal neurogenesis and inflammation may play greater role in the cognitive bias of young males compared to a greater role of BLA inflammation in adult females. These findings lay the groundwork for the discovery of sex-specific novel therapeutics that target region-specific inflammation in the brain and hippocampal neurogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00299-4. • Adolescent male rats had more hippocampal inflammation than females after cognitive bias testing. • Adult female rats had more basolateral amygdalar inflammation than males after cognitive bias testing. • HPC neurogenesis was negatively associated to cognitive bias in young adult male rats.
Collapse
Affiliation(s)
- Travis E. Hodges
- grid.17091.3e0000 0001 2288 9830Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Stephanie E. Lieblich
- grid.17091.3e0000 0001 2288 9830Department of Psychology, University of British Columbia, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Rebecca K. Rechlin
- grid.17091.3e0000 0001 2288 9830Department of Psychology, University of British Columbia, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Liisa A. M. Galea
- grid.17091.3e0000 0001 2288 9830Department of Psychology, University of British Columbia, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Corticosterone in the dorsolateral striatum facilitates the extinction of stimulus-response memory. Neurobiol Learn Mem 2021; 183:107481. [PMID: 34166790 DOI: 10.1016/j.nlm.2021.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Glucocorticoid hormones are crucially involved in modulating mnemonic processing of stressful or emotionally arousing experiences. They are known to enhance the consolidation of new memories, including those that extinguish older memories. In this study, we investigated whether glucocorticoids facilitate the extinction of a striatum-dependent, and behaviorally more rigid, stimulus-response memory. For this, male rats were initially trained for six days on a stimulus-response task in a T-maze to obtain a reward after making an egocentric right-turn body response, regardless of the starting position in this maze. This training phase was followed by three extinction sessions in which right-turn body responses were not reinforced. Corticosterone administration into the dorsolateral region of the striatum after the first extinction session dose-dependently enhanced the consolidation of extinction memory: Rats administered the higher dose of corticosterone (30 ng), but not lower doses (5 or 10 ng), exhibited significantly fewer right-turn body responses and had longer latencies compared to vehicle-treated animals on the second and third extinction sessions. Co-administration of the glucocorticoid receptor antagonist RU 486 (10 ng) prevented the corticosterone effect, indicating that glucocorticoids enhance the extinction of stimulus-response memory via activation of the glucocorticoid receptor. Corticosterone administration into the dorsomedial striatum did not affect extinction memory. These findings indicate that stress-response mechanisms involving corticosterone actions in the dorsolateral striatum facilitate the extinction of stimulus-response memory that might allow for the development of an opportune behavioral strategy.
Collapse
|
10
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
11
|
Fan Z, Chen J, Li L, Wang H, Gong X, Xu H, Wu L, Yan C. Environmental enrichment modulates HPA axis reprogramming in adult male rats exposed to early adolescent stress. Neurosci Res 2021; 172:63-72. [PMID: 33901553 DOI: 10.1016/j.neures.2021.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Exposure to early stressful events increases susceptibility to post-traumatic stress disorder (PTSD) in adulthood, in which the hypothalamic-pituitary-adrenal (HPA) axis plays a crucial role. Studies have found that environmental enrichment (EE) mitigates the detrimental outcomes of early adversity. However, the HPA-related mechanism remains unclear. In this study, we used the single prolonged stress (SPS) paradigm to explore the long-term effects of early adolescent stress on behavior, HPA axis activity, as well as expression levels of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), corticotropin-releasing hormone receptor 1 (CRF1R) and CRF2R in the hypothalamus and hippocampus. Meanwhile, the protective effects of EE intervention were examined. We found that adult male rats exposed to adolescent stress showed reduced locomotor activity, increased anxiety-like behaviors, enhanced contextual fear memory, elevated basal plasma ACTH levels, and enhanced HPA negative feedback inhibition, as indicated by decreased plasma ACTH levels in the dexamethasone suppression test (DST). Furthermore, EE normalized the behavioral abnormalities and enhanced HPA negative feedback in stressed rats, possibly through down-regulating GR expression in the hippocampus and hypothalamus. These findings suggested that EE could ameliorate adolescent stress-induced PTSD-like behaviors and aberrant reprogramming of the HPA axis, reducing the risk of developing PTSD in adulthood.
Collapse
Affiliation(s)
- Zhixin Fan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jie Chen
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling Li
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hanzhang Wang
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiayu Gong
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hanfang Xu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lili Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Taylor WW, Imhoff BR, Sathi ZS, Liu WY, Garza KM, Dias BG. Contributions of glucocorticoid receptors in cortical astrocytes to memory recall. Learn Mem 2021; 28:126-133. [PMID: 33723032 PMCID: PMC7970741 DOI: 10.1101/lm.053041.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Dysfunctions in memory recall lead to pathological fear; a hallmark of trauma-related disorders, like posttraumatic stress disorder (PTSD). Both, heightened recall of an association between a cue and trauma, as well as impoverished recall that a previously trauma-related cue is no longer a threat, result in a debilitating fear toward the cue. Glucocorticoid-mediated action via the glucocorticoid receptor (GR) influences memory recall. This literature has primarily focused on GRs expressed in neurons or ignored cell-type specific contributions. To ask how GR action in nonneuronal cells influences memory recall, we combined auditory fear conditioning in mice and the knockout of GRs in astrocytes in the prefrontal cortex (PFC), a brain region implicated in memory recall. We found that knocking out GRs in astrocytes of the PFC disrupted memory recall. Specifically, we found that knocking out GRs in astrocytes in the PFC (AstroGRKO) after fear conditioning resulted in higher levels of freezing to the CS+ tone when compared with controls (AstroGRintact). While we did not find any differences in extinction of fear toward the CS+ between these groups, AstroGRKO female but not male mice showed impaired recall of extinction training. These results suggest that GRs in cortical astrocytes contribute to memory recall. These data demonstrate the need to examine GR action in cortical astrocytes to elucidate the basic neurobiology underlying memory recall and potential mechanisms that underlie female-specific biases in the incidence of PTSD.
Collapse
Affiliation(s)
- William W Taylor
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90007, USA
- Developmental Neuroscience and Neurogenetics Program, Division of Research on Children, Youth, and Families, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | - Barry R Imhoff
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA
| | - Zakia Sultana Sathi
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA
| | - Wei Y Liu
- Developmental Neuroscience and Neurogenetics Program, Division of Research on Children, Youth, and Families, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | - Kristie M Garza
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Brian G Dias
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90007, USA
- Developmental Neuroscience and Neurogenetics Program, Division of Research on Children, Youth, and Families, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| |
Collapse
|
13
|
Abstract
Treatment for critical illness typically focuses on a patient's short-term physical recovery; however, recent work has broadened our understanding of the long-term implications of illness and treatment strategies. In particular, survivors of critical illness have significantly elevated risk of developing lasting cognitive impairment and psychiatric disorders. In this review, we examine the role of endogenous and exogenous glucocorticoids in neuropsychiatric outcomes following critical illness. Illness is marked by acute elevation of free cortisol and adrenocorticotropic hormone suppression, which typically normalize after recovery; however, prolonged dysregulation can sometimes occur. High glucocorticoid levels can cause lasting alterations to the plasticity and structural integrity of the hippocampus and prefrontal cortex, and this mechanism may plausibly contribute to impaired memory and cognition in critical illness survivors, though specific evidence is lacking. Glucocorticoids may also exacerbate inflammation-associated neural damage. Conversely, current evidence indicates that glucocorticoids during illness may protect against the development of post-traumatic stress disorder. We propose future directions for research in this field, including determining the role of persistent glucocorticoid elevations after illness in neuropsychiatric outcomes, the role of systemic vs neuroinflammation, and probing unexplored lines of investigation on the role of mineralocorticoid receptors and the gut-brain axis. Progress toward personalized medicine in this area has the potential to produce tangible improvements to the lives patients after a critical illness, including Coronavirus Disease 2019.
Collapse
Affiliation(s)
- Alice R Hill
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joanna L Spencer-Segal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Deparment of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Bertagna NB, Dos Santos PGC, Queiroz RM, Fernandes GJD, Cruz FC, Miguel TT. Involvement of the ventral, but not dorsal, hippocampus in anxiety-like behaviors in mice exposed to the elevated plus maze: participation of CRF1 receptor and PKA pathway. Pharmacol Rep 2020; 73:57-72. [PMID: 33175366 DOI: 10.1007/s43440-020-00182-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The hippocampus is a limbic structure involved in anxiety-like behaviors. We aimed to evaluate the role of the dorsal (DH) and ventral (VH) hippocampus in anxiety-like behaviors in the elevated plus maze (EPM). METHODS We inhibited these brain regions using cobalt chloride (CoCl2: 1.0 nmol) microinjections. We also investigated the involvement of corticotropin-releasing factor (CRF) action and protein kinase A (PKA) pathway using intra-DH and intra-VH microinjections of the CRF1 receptor antagonist CP376395 (0, 3.0, or 6.0 nmol) and the PKA inhibitor H-89 (0, 2.5, or 5.0 nmol). RESULTS The results indicated that intra-VH CoCl2 microinjection increased the percentage of time spent and entries in the open arms. The mice also exhibited fewer stretch attend postures in the protected area and increased percentage of open arm entries. Further, intra-VH injection of 3.0 nmol CP376395 increased time spent in the open arms. Intra-DH injection of 6.0 nmol CP376395 increased the frequency of unprotected head dipping, whereas intra-VH injection of 6 nmol CP376395 increased the frequency of protected head dipping. Intra-VH, but not intra-DH, microinjection of 2.5 nmol H-89 increased the percentages of open arm entries and time spent in the open arms. Microinjection of 2.5 and 5.0 nmol H-89 reduced the frequency of protected head dipping behavior. CONCLUSIONS This study demonstrated that VH modulates anxiety-like behaviors in EPM. Moreover, CRF and the cAMP/PKA pathway seem to modulate these effects.
Collapse
Affiliation(s)
- Natalia Bonetti Bertagna
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil
| | - Paulla Giovanna Cabral Dos Santos
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil
| | - Rafaella Misael Queiroz
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil
| | - Gustavo Juliate Damaceno Fernandes
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil
| | - Fabio Cardoso Cruz
- Psychopharmacology Laboratory, Pharmacology Department, Federal University of São Paulo, São Paulo, Brazil
| | - Tarciso Tadeu Miguel
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil.
| |
Collapse
|
15
|
Santori A, Morena M, Hill MN, Campolongo P. Hippocampal 2-Arachidonoyl Glycerol Signaling Regulates Time-of-Day- and Stress-Dependent Effects on Rat Short-Term Memory. Int J Mol Sci 2020; 21:ijms21197316. [PMID: 33023013 PMCID: PMC7582511 DOI: 10.3390/ijms21197316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Cannabinoids induce biphasic effects on memory depending on stress levels. We previously demonstrated that different stress intensities, experienced soon after encoding, impaired rat short-term recognition memory in a time-of-day-dependent manner, and that boosting endocannabinoid anandamide (AEA) levels restored memory performance. Here, we examined if two different stress intensities and time-of-day alter hippocampal endocannabinoid tone, and whether these changes modulate short-term memory. Methods: Male Sprague-Dawley rats were subjected to an object recognition task and exposed, at two different times of the day (i.e., morning or afternoon), to low or high stress conditions, immediately after encoding. Memory retention was assessed 1 hr later. Hippocampal AEA and 2-arachidonoyl glycerol (2-AG) content and the activity of their primary degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), were measured soon after testing. Results: Consistent with our previous findings, low stress impaired 1-hr memory performance only in the morning, whereas exposure to high stress impaired memory independently of testing time. Stress exposure decreased AEA levels independently of memory alterations. Interestingly, exposure to high stress decreased 2-AG content and, accordingly, increased MAGL activity, selectively in the afternoon. Thus, to further evaluate 2-AG’s role in the modulation of short-term recognition memory, rats were given bilateral intra-hippocampal injections of the 2-AG hydrolysis inhibitor KML29 immediately after training, then subjected to low or high stress conditions and tested 1 hr later. Conclusions: KML29 abolished the time-of-day-dependent impairing effects of stress on short-term memory, ameliorating short-term recognition memory performance.
Collapse
Affiliation(s)
- Alessia Santori
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy;
- Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.M.); (M.N.H.)
- Department of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Matthew N. Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.M.); (M.N.H.)
- Department of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy;
- Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
- Correspondence: ; Tel.: +0039-06-4991-2450; Fax: +0039-06-4991-2480
| |
Collapse
|
16
|
Kaouane N, Ducourneau EG, Marighetto A, Segal M, Desmedt A. False Opposing Fear Memories Are Produced as a Function of the Hippocampal Sector Where Glucocorticoid Receptors Are Activated. Front Behav Neurosci 2020; 14:144. [PMID: 33005133 PMCID: PMC7479235 DOI: 10.3389/fnbeh.2020.00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Injection of corticosterone (CORT) in the dorsal hippocampus (DH) can mimic post-traumatic stress disorder (PTSD)-related memory in mice: both maladaptive hypermnesia for a salient but irrelevant simple cue and amnesia for the traumatic context. However, accumulated evidence indicates a functional dissociation within the hippocampus such that contextual learning is primarily associated with the DH whereas emotional processes are more linked to the ventral hippocampus (VH). This suggests that CORT might have different effects on fear memories as a function of the hippocampal sector preferentially targeted and the type of fear learning (contextual vs. cued) considered. We tested this hypothesis in mice using CORT infusion into the DH or VH after fear conditioning, during which a tone was either paired (predicting-tone) or unpaired (predicting-context) with the shock. We first replicate our previous results showing that intra-DH CORT infusion impairs contextual fear conditioning while inducing fear responses to the not predictive tone. Second, we show that, in contrast, intra-VH CORT infusion has opposite effects on fear memories: in the predicting-tone situation, it blocks tone fear conditioning while enhancing the fear responses to the context. In both situations, a false fear memory is formed based on an erroneous selection of the predictor of the threat. Third, these opposite effects of CORT on fear memory are both mediated by glucocorticoid receptor (GR) activation, and reproduced by post-conditioning stress or systemic CORT injection. These findings demonstrate that false opposing fear memories can be produced depending on the hippocampal sector in which the GRs are activated.
Collapse
Affiliation(s)
- Nadia Kaouane
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Eva-Gunnel Ducourneau
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Aline Marighetto
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | - Aline Desmedt
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| |
Collapse
|
17
|
León LA, Brandão ML, Cardenas FP, Parra D, Krahe TE, Cruz APM, Landeira-Fernandez J. Distinct patterns of brain Fos expression in Carioca High- and Low-conditioned Freezing Rats. PLoS One 2020; 15:e0236039. [PMID: 32702030 PMCID: PMC7377485 DOI: 10.1371/journal.pone.0236039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The bidirectional selection of high and low anxiety-like behavior is a valuable tool for understanding the neurocircuits that are responsible for anxiety disorders. Our group developed two breeding lines of rats, known as Carioca High- and Low-conditioned Freezing (CHF and CLF), based on defensive freezing in the contextual fear conditioning paradigm. A random selected line was employed as a control (CTL) comparison group for both CHF and CLF lines of animals. The present study performed Fos immunochemistry to investigate changes in neural activity in different brain structures among CHF and CLF rats when they were exposed to contextual cues that were previously associated with footshock. RESULTS The study indicated that CHF rats expressed high Fos expression in the locus coeruleus, periventricular nucleus of the hypothalamus (PVN), and lateral portion of the septal area and low Fos expression in the medial portion of the septal area, dentate gyrus, and prelimbic cortex (PL) compared to CTL animals. CLF rats exhibited a decrease in Fos expression in the PVN, PL, and basolateral nucleus of the amygdala and increase in the cingulate and perirhinal cortices compared to CTL animals. CONCLUSIONS Both CHF and CLF rats displayed Fos expression changes key regions of the anxiety brain circuitry. The two bidirectional lines exhibit different pattern of neural activation and inhibition with opposing influences on the PVN, the main structure involved in regulating the hypothalamic-pituitary-adrenal neuroendocrine responses observed in anxiety disorders.
Collapse
Affiliation(s)
- Laura A. León
- Laboratory of Neuropsychopharmacology, FFCLRP, Behavioral Neuroscience Institute (INeC), São Paulo University, Campus USP, Ribeirão Preto, São Paulo, Brazil
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Psicología, Universidad Sergio Arboleda, Bogotá, Colombia
| | - Marcus L. Brandão
- Laboratory of Neuropsychopharmacology, FFCLRP, Behavioral Neuroscience Institute (INeC), São Paulo University, Campus USP, Ribeirão Preto, São Paulo, Brazil
| | - Fernando P. Cardenas
- Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Bogotá, Colombia
| | - Diana Parra
- Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Bogotá, Colombia
| | - Thomas E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
18
|
Sun J, Lu Y, Yang J, Song Z, Lu W, Wang JH. mRNA and microRNA Profiles in the Amygdala Are Relevant to Susceptibility and Resilience to Psychological Stress Induced in Mice. J Mol Neurosci 2020; 70:1771-1796. [DOI: 10.1007/s12031-020-01570-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
|
19
|
Kolodziejczyk MH, Fendt M. Corticosterone Treatment and Incubation Time After Contextual Fear Conditioning Synergistically Induce Fear Memory Generalization in Neuropeptide S Receptor-Deficient Mice. Front Neurosci 2020; 14:128. [PMID: 32231512 PMCID: PMC7081924 DOI: 10.3389/fnins.2020.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Fear memory generalization is a learning mechanism that promotes flexible fear responses to novel situations. While fear generalization has adaptive value, overgeneralization of fear memory is a characteristic feature of the pathology of anxiety disorders. The neuropeptide S (NPS) receptor (NPSR) has been shown to be associated with anxiety disorders and has recently been identified as a promising target for treating anxiety disorders. Moreover, stress hormones play a role in regulating both physiological and pathological fear memories and might therefore also be involved in anxiety disorders. However, little is known about the interplay between stress hormone and the NPS system in the development of overgeneralized fear. Here, we hypothesize that NPSR-deficient mice with high corticosterone (CORT) levels during the fear memories consolidation are more prone to develop generalized fear. To address this hypothesis, NPSR-deficient mice were submitted to a contextual fear conditioning procedure. Immediately after conditioning, mice received CORT injections (2.5 or 5 mg/kg). One day and 1 month later, the mice were tested for the specificity and strength of their fear memory, their anxiety level, and their startle response. Moreover, CORT blood levels were monitored throughout the experiment. Using this protocol, a specific contextual fear memory was observed in all experimental groups, despite the 5-mg/kg CORT-treated NPSR-deficient mice. This group of mice showed a generalization of contextual fear memory and a decreased startle response, and the females of this group had significantly less body weight gain. These findings indicate that interplay between CORT and the NPS system during the consolidation of fear memories is critical for the generalization of contextual fear.
Collapse
Affiliation(s)
- Malgorzata H Kolodziejczyk
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
20
|
Ponce-Lina R, Serafín N, Carranza M, Arámburo C, Prado-Alcalá RA, Luna M, Quirarte GL. Differential Phosphorylation of the Glucocorticoid Receptor in Hippocampal Subregions Induced by Contextual Fear Conditioning Training. Front Behav Neurosci 2020; 14:12. [PMID: 32116592 PMCID: PMC7031480 DOI: 10.3389/fnbeh.2020.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
Aversive events induce the release of glucocorticoid stress hormones that facilitate long-term memory consolidation, an effect that depends on the activation of glucocorticoid receptors (GRs). GRs are distributed widely in the hippocampus. The dorsal region of the hippocampus has been related to cognitive functions and the ventral region to stress and emotion. GR acts as a transcription factor which after hormone binding becomes phosphorylated, affecting its cellular distribution and transcriptional activity. Two functionally well-described GR phosphorylation sites are serine 232 (pSer232), which enhances gene expression, and serine 246 (pSer246), having the opposite effect. Since gene expression is one of the plastic mechanisms needed for memory consolidation, we investigated if an aversive learning task would induce GR phosphorylation in the dorsal (DH) and the ventral (VH) hippocampus. We trained rats in contextual fear conditioning (CFC) using different foot-shock intensities (0.0, 0.5, or 1.5 mA). One subgroup of animals trained with each intensity was sacrificed 15 min after training and blood was collected to quantify corticosterone (CORT) levels in serum. Another subgroup was sacrificed 1 h after training and brains were collected to evaluate the immunoreactivity (IR) to GR, pSer232 and pSer246 by SDS-PAGE/Western blot in DH and VH, and by immunohistochemistry in dorsal and ventral CA1, CA2, CA3, and dentate gyrus (DG) hippocampal regions. The conditioned freezing response increased in animals trained with 0.5 and 1.5 mA during training and extinction sessions. The degree of retention and CORT levels were directly related to the intensity of the foot-shock. Although total GR-IR remained unaffected after conditioning, we observed a significant increase of pSer246-IR in the dorsal region of CA1 and in both dorsal and ventral DG. The only region in which pSer232-IR was significantly elevated was ventral CA3. Our results indicate that fear conditioning training is related to GR phosphorylation in specific subregions of the hippocampus, suggesting that its transcriptional activity for gene expression is favored in ventral CA3, whereas its repressor activity for gene-silencing is increased in dorsal CA1 and in both dorsal and ventral DG.
Collapse
Affiliation(s)
- Renata Ponce-Lina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Norma Serafín
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
21
|
Activation of mineralocorticoid receptors facilitate the acquisition of fear memory extinction and impair the generalization of fear memory in diabetic animals. Psychopharmacology (Berl) 2020; 237:529-542. [PMID: 31713655 DOI: 10.1007/s00213-019-05388-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
RATIONALE Studies point out a higher prevalence of posttraumatic stress disorder (PTSD) in individuals with diabetes mellitus. It is known that glucocorticoid (GR) and mineralocorticoid (MR) receptors are implicated in fear memory processes and PTSD. However, there is no preclinical studies addressing the involvement of these receptors on abnormal fear memories related to diabetic condition. OBJECTIVES By inducing a contextual conditioned fear memory, we generate a suitable condition to investigate the extinction and the generalization of the fear memory in streptozotocin-induced diabetic (DBT) rats alongside the expression of the cytosolic and nuclear GR and MR in the hippocampus (HIP) and prefrontal cortex (PFC). Moreover, we investigated the involvement of the MR or GR on the acquisition of fear memory extinction and on the generalization of this fear memory. When appropriate, anxiety-related behavior was evaluated. METHODS Male Wistar rats received one injection of steptozotocin (i.p.) to induce diabetes. After 4 weeks, the animals (DBTs and non-DBTs) were subjected to a conditioned contextual fear protocol. RESULTS The expression of MR and GR in the HIP and PFC was similar among all the groups. The single injection of MR agonist was able to facilitate the acquisition of the impaired fear memory extinction in DBTs animals together with the impairment of its generalization. However, the GR antagonism impaired only the generalization of this fear memory which was blocked by the previous injection of the MR antagonist. All treatments were able to exert anxiolytic-like effects. CONCLUSIONS The results indicate that MR activation in DBT animals disrupts the overconsolidation of aversive memory, without discarding the involvement of emotional behavior in these processes.
Collapse
|
22
|
The behavioral and neurochemical effects of methylprednisolone or metyrapone in a post-traumatic stress disorder rat model. North Clin Istanb 2020; 6:327-333. [PMID: 31909376 PMCID: PMC6936935 DOI: 10.14744/nci.2019.69345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/21/2019] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE: Mechanisms contributing to the post-traumatic stress disorder (PTSD) that involve several physiological systems, and the activation of the hypothalamic-pituitary-adrenal axis (HPA) is one of the most known systems in the PTSD pathophysiology. The present study investigates the potential effects of methylprednisolone, metyrapone and their association with the noradrenergic system within the rostral pons, a region containing the locus coeruleus (LC) in a rat model of PTSD induced with predator scent. METHODS: In this study, Sprague-Dawley rats were exposed to the stress by exposure to the scent of dirty cat litter, which is a natural stressor of a predator. One week later, the rats were re-exposed to a situational reminder (clean cat litter). The rats were treated using either methylprednisolone, metyrapone or physiological saline before exposure to a situational reminder (n=8 in each group). Noradrenaline (NA) levels in the rostral pons homogenates were analysed using ELISA. RESULTS: The anxiety indices of the rats exposed to the trauma were found to be significantly higher than the anxiety indices of the control rats. Metyrapone produced a significant increase in the anxiety indices of the non-stressed rats, and methylprednisolone did not produce a change in the anxiety indices of the non-stressed rats. Methylprednisolone treatment suppressed the anxiety in the stressed rats. Metyrapone treatment increased the anxiety indices in the stressed rats but still being lower than that of the saline-treated stressed rats. Significant decrease in the freezing time was observed following the methylprednisolone treatment both in the stressed and non-stressed rats. NA content in the rostral pons of the stressed rats was significantly higher than that of the non-stressed rats. Methylprednisolone or metyrapone treatments decreased the NA content in the non-stressed rats as compared to the saline treatment. However, these decreases were not significant. CONCLUSION: In this study, findings suggest that stress may give rise to endocrine, autonomic and behavioural responses. The anxiety indices and NA levels in the rostral pons increased with the traumatic event. The methylprednisolone treatment may suppress anxiety through interactions between the LC and the HPA axis.
Collapse
|
23
|
Bonhomme D, Alfos S, Webster SP, Wolff M, Pallet V, Touyarot K. Vitamin A deficiency impairs contextual fear memory in rats: Abnormalities in the glucocorticoid pathway. J Neuroendocrinol 2019; 31:e12802. [PMID: 31613407 DOI: 10.1111/jne.12802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Vitamin A and its active metabolite, retinoic acid (RA), play a key role in the maintenance of cognitive functions in the adult brain. Depletion of RA using the vitamin A deficiency (VAD) model in Wistar rats leads to spatial memory deficits in relation to elevated intrahippocampal basal corticosterone (CORT) levels and increased hippocampal 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. All of these effects are normalised by vitamin A supplementation. However, it is unknown whether vitamin A status also modulates contextual fear conditioning (CFC) in a glucocorticoid-associated fear memory task dependent on the functional integrity of the hippocampus. In the present study, we investigated the impact of VAD and vitamin A supplementation in adult male rats on fear memory processing, plasma CORT levels, hippocampal retinoid receptors and 11β-HSD1 expression following a novelty-induced stress. We also examined whether vitamin A supplementation or a single injection of UE2316, a selective 11β-HSD1 inhibitor, known to modulate local glucocorticoid levels, had any beneficial effects on contextual fear memory and biochemical parameters in VAD rats. We provide evidence that VAD rats exhibit a decreased fear conditioning response during training with a poor contextual fear memory 24 hours later. These VAD-induced cognitive impairments are associated with elevated plasma CORT levels under basal conditions, as well as following a stressful event, with saturated CORT release, altered hippocampal retinoid receptors and 11β-HSD1 expression. Vitamin A supplementation normalises VAD-induced fear conditioning training deficits and all biochemical effects, although it cannot prevent fear memory deficits. Moreover, a single injection of UE2316 not only impairs contextual fear memory, but also reduces plasma CORT levels, regardless of the vitamin A status and decreases slightly hippocampal 11β-HSD1 activity in VAD rats following stress. The present study highlights the importance of vitamin A status with respect to modulating fear memory conditioning in relation to plasma CORT levels and hippocampal 11β-HSD1.
Collapse
Affiliation(s)
- Damien Bonhomme
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
| | - Serge Alfos
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| | - Scott P Webster
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mathieu Wolff
- UMR 5287, CNRS, INCIA, Bordeaux, France
- UMR 5287, INCIA, Université de Bordeaux, Bordeaux, France
| | - Véronique Pallet
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| | - Katia Touyarot
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| |
Collapse
|
24
|
Cannizzaro E, Ramaci T, Cirrincione L, Plescia F. Work-Related Stress, Physio-Pathological Mechanisms, and the Influence of Environmental Genetic Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4031. [PMID: 31640269 PMCID: PMC6843930 DOI: 10.3390/ijerph16204031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/16/2022]
Abstract
Work-related stress is a growing health problem in modern society. The stress response is characterized by numerous neurochemicals, neuroendocrine and immune modifications that involve various neurological systems and circuits, and regulation of the gene expression of the different receptors. In this regard, a lot of research has focused the attention on the role played by the environment in influencing gene expression, which in turn can control the stress response. In particular, genetic factors can moderate the sensitivities of specific types of neural cells or circuits mediating the imprinting of the environment on different biological systems. In this current review, we wish to analyze systematic reviews and recent experimental research on the physio-pathological mechanisms that underline stress-related responses. In particular, we analyze the relationship between genetic and epigenetic factors in the stress response.
Collapse
Affiliation(s)
- Emanuele Cannizzaro
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities "Giuseppe D'Alessandro", University of Palermo, via del Vespro 133, 90127 Palermo, Italy.
| | - Tiziana Ramaci
- Faculty of Human and Social Sciences, Kore University of Enna, 94100 Enna, Italy.
| | - Luigi Cirrincione
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities "Giuseppe D'Alessandro", University of Palermo, via del Vespro 133, 90127 Palermo, Italy.
| | - Fulvio Plescia
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities "Giuseppe D'Alessandro", University of Palermo, via del Vespro 133, 90127 Palermo, Italy.
| |
Collapse
|
25
|
Asok A, Kandel ER, Rayman JB. The Neurobiology of Fear Generalization. Front Behav Neurosci 2019; 12:329. [PMID: 30697153 PMCID: PMC6340999 DOI: 10.3389/fnbeh.2018.00329] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The generalization of fear memories is an adaptive neurobiological process that promotes survival in complex and dynamic environments. When confronted with a potential threat, an animal must select an appropriate defensive response based on previous experiences that are not identical, weighing cues and contextual information that may predict safety or danger. Like other aspects of fear memory, generalization is mediated by the coordinated actions of prefrontal, hippocampal, amygdalar, and thalamic brain areas. In this review article, we describe the current understanding of the behavioral, neural, genetic, and biochemical mechanisms involved in the generalization of fear. Fear generalization is a hallmark of many anxiety and stress-related disorders, and its emergence, severity, and manifestation are sex-dependent. Therefore, to improve the dialog between human and animal studies as well as to accelerate the development of effective therapeutics, we emphasize the need to examine both sex differences and remote timescales in rodent models.
Collapse
Affiliation(s)
- Arun Asok
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Eric R. Kandel
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Howard Hughes Medical Institute (HHMI), Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
| | - Joseph B. Rayman
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
26
|
Tertil M, Skupio U, Barut J, Dubovyk V, Wawrzczak-Bargiela A, Soltys Z, Golda S, Kudla L, Wiktorowska L, Szklarczyk K, Korostynski M, Przewlocki R, Slezak M. Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Transl Psychiatry 2018; 8:255. [PMID: 30487639 PMCID: PMC6261947 DOI: 10.1038/s41398-018-0300-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/15/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Stress elicits the release of glucocorticoids (GCs) that regulate energy metabolism and play a role in emotional memory. Astrocytes express glucocorticoid receptors (GR), but their contribution to cognitive effects of GC's action in the brain is unknown. To address this question, we studied how astrocyte-specific elimination of GR affects animal behavior known to be regulated by stress. Mice with astrocyte-specific ablation of GR presented impaired aversive memory expression in two different paradigms of Pavlovian learning: contextual fear conditioning and conditioned place aversion. These mice also displayed compromised regulation of genes encoding key elements of the glucose metabolism pathway upon GR stimulation. In particular, we identified that the glial, but not the neuronal isoform of a crucial stress-response molecule, Sgk1, undergoes GR-dependent regulation in vivo and demonstrated the involvement of SGK1 in regulation of glucose uptake in astrocytes. Together, our results reveal astrocytes as a central element in GC-dependent formation of aversive memory and suggest their relevance for stress-induced alteration of brain glucose metabolism. Consequently, astrocytes should be considered as a cellular target of therapies of stress-induced brain diseases.
Collapse
Affiliation(s)
- Magdalena Tertil
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Urszula Skupio
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Justyna Barut
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Valentyna Dubovyk
- Team Brain Microcircuits in Psychiatric Diseases, BioMed X Innovation Center, Heidelberg, 69120 Germany
| | - Agnieszka Wawrzczak-Bargiela
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Zbigniew Soltys
- 0000 0001 2162 9631grid.5522.0Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, 30-387 Poland
| | - Slawomir Golda
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Lucja Kudla
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Lucja Wiktorowska
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Klaudia Szklarczyk
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Michal Korostynski
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Ryszard Przewlocki
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Michal Slezak
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343, Poland. .,Team Brain Microcircuits in Psychiatric Diseases, BioMed X Innovation Center, Heidelberg, 69120, Germany.
| |
Collapse
|
27
|
Lim PH, Shi G, Wang T, Jenz ST, Mulligan MK, Redei EE, Chen H. Genetic Model to Study the Co-Morbid Phenotypes of Increased Alcohol Intake and Prior Stress-Induced Enhanced Fear Memory. Front Genet 2018; 9:566. [PMID: 30538720 PMCID: PMC6277590 DOI: 10.3389/fgene.2018.00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Posttraumatic Stress Disorder (PTSD) is a complex illness, frequently co-morbid with depression, caused by both genetics, and the environment. Alcohol Use Disorder (AUD), which also co-occurs with depression, is often co-morbid with PTSD. To date, very few genes have been identified for PTSD and even less for PTSD comorbidity with AUD, likely because of the phenotypic heterogeneity seen in humans, combined with each gene playing a relatively small role in disease predisposition. In the current study, we investigated whether a genetic model of depression-like behavior, further developed from the depression model Wistar Kyoto (WKY) rat, is a suitable vehicle to uncover the genetics of co-morbidity between PTSD and AUD. The by-now inbred WKY More Immobile (WMI) and the WKY Less Immobile (WLI) rats were generated from the WKY via bidirectional selective breeding using the forced swim test, a measure of despair-like behavior, as the functional selector. The colonies of the WMIs that show despair-like behavior and the control strain showing less or no despair-like behavior, the WLI, are maintained with strict inbreeding over 40 generations to date. WMIs of both sexes intrinsically self-administer more alcohol than WLIs. Alcohol self-administration is increased in the WMIs without sucrose fading, water deprivation or any prior stress, mimicking the increased voluntary alcohol-consumption of subjects with AUD. Prior Stress-Enhanced Fear Learning (SEFL) is a model of PTSD. WMI males, but not females, show increased SEFL after acute restraint stress in the context-dependent fear conditioning paradigm, a sexually dimorphic pattern similar to human data. Plasma corticosterone differences between stressed and not-stressed WLI and WMI male and female animals immediately prior to fear conditioning predict SEFL results. These data demonstrate that the WMI male and its genetically close, but behaviorally divergent control the WLI male, would be suitable for investigating the underlying genetic basis of comorbidity between SEFL and alcohol self-administration.
Collapse
Affiliation(s)
- Patrick Henry Lim
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guang Shi
- Liaoning Provincial People's Hospital, Liaoning Sheng, China
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sophia T Jenz
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Megan K Mulligan
- Department of Genetics Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
28
|
Caldwell KK, Solomon ER, Smoake JJW, Djatche de Kamgaing CD, Allan AM. Sex-specific deficits in biochemical but not behavioral responses to delay fear conditioning in prenatal alcohol exposure mice. Neurobiol Learn Mem 2018; 156:1-16. [PMID: 30316893 DOI: 10.1016/j.nlm.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Studies in clinical populations and preclinical models have shown that prenatal alcohol exposure (PAE) is associated with impairments in the acquisition, consolidation and recall of information, with deficits in hippocampal formation-dependent learning and memory being a common finding. The glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and extracellular signal-regulated kinase 2 (ERK2) are key regulators of hippocampal formation development, structure and functioning and, thus, are potential mediators of PAE's effects on this brain region. In the present studies, we employed a well-characterized mouse model of PAE to identify biochemical mechanisms that may underlie activity-dependent learning and memory deficits associated with PAE. METHODS Mouse dams consumed either 10% (w/v) ethanol in 0.066% (w/v) saccharin (SAC) or 0.066% (w/v) SAC alone using a limited (4-h) access, drinking-in-the-dark paradigm. Male and female offspring (∼180-days of age) were trained using a delay conditioning procedure and contextual fear responses (freezing behavior) were measured 24 h later. Hippocampal formation tissue and blood were collected from three behavioral groups of animals: 20 min following conditioning (conditioning only group), 20 min following the re-exposure to the context (conditioning plus re-exposure group), and behaviorally naïve (naïve group) mice. Plasma corticosterone levels were measured by enzyme immunoassay. Immunoblotting techniques were used to measure protein levels of the GR, MR, ERK1 and ERK2 in nuclear and membrane fractions prepared from the hippocampal formation. RESULTS Adult SAC control male and female mice displayed similar levels of contextual fear. However, significant sex differences were observed in freezing exhibited during the conditioning session. Compared to same-sex SAC controls, male and female PAE mice demonstrated context fear deficits While plasma corticosterone concentrations were elevated in PAE males and females relative to their respective SAC naïve controls, plasma corticosterone concentrations in the conditioning only and conditioning plus re-exposure groups were similar in SAC and PAE animals. Relative to the respective naïve group, nuclear GR protein levels were increased in SAC, but not PAE, male hippocampal formation in the conditioning only group. In contrast, no difference was observed between nuclear GR levels in the naïve and conditioning plus re-exposure groups. In females, nuclear GR levels were significantly reduced by PAE but there was no effect of behavioral group or interaction between prenatal treatment and behavioral group. In males, nuclear MR levels were significantly elevated in the SAC conditioning plus re-exposure group compared to SAC naïve mice. In PAE females, nuclear MR levels were elevated in both the conditioning only and conditioning plus re-exposure groups relative to the naïve group. Levels of activated ERK2 (phospho-ERK2 expressed relative to total ERK2) protein were elevated in SAC, but not PAE, males following context re-exposure, and a significant interaction between prenatal exposure group and behavioral group was found. No main effects or interactions of behavioral group and prenatal treatment on nuclear ERK2 were found in female mice. These findings suggest a sex difference in which molecular pathways are activated during fear conditioning in mice. CONCLUSIONS In PAE males, the deficits in contextual fear were associated with the loss of responsiveness of hippocampal formation nuclear GR, MR and ERK2 to signals generated by fear conditioning and context re-exposure. In contrast, the contextual fear deficit in PAE female mice does not appear to be associated with activity-dependent changes in GR and MR levels or ERK2 activation during training or memory recall, although an overall reduction in nuclear GR levels may play a role. These studies add to a growing body of literature demonstrating that, at least partially, different mechanisms underlie learning, memory formation and memory recall in males and females and that these pathways are differentially affected by PAE.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jane J W Smoake
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Chrys D Djatche de Kamgaing
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
29
|
Mukilan M, Bogdanowicz W, Marimuthu G, Rajan KE. Odour discrimination learning in the Indian greater short-nosed fruit bat ( Cynopterus sphinx): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus. ACTA ACUST UNITED AC 2018; 221:jeb.175364. [PMID: 29674380 DOI: 10.1242/jeb.175364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Abstract
Activity-dependent expression of immediate-early genes (IEGs) is induced by exposure to odour. The present study was designed to investigate whether there is differential expression of IEGs (Egr-1, C-fos) in the brain region mediating olfactory memory in the Indian greater short-nosed fruit bat, Cynopterus sphinx We assumed that differential expression of IEGs in different brain regions may orchestrate a preference odour (PO) and aversive odour (AO) memory in C. sphinx We used preferred (0.8% w/w cinnamon powder) and aversive (0.4% w/v citral) odour substances, with freshly prepared chopped apple, to assess the behavioural response and induction of IEGs in the olfactory bulb, hippocampus and amygdala. After experiencing PO and AO, the bats initially responded to both, later only engaging in feeding bouts in response to the PO food. The expression pattern of EGR-1 and c-Fos in the olfactory bulb, hippocampus and amygdala was similar at different time points (15, 30 and 60 min) following the response to PO, but was different for AO. The response to AO elevated the level of c-Fos expression within 30 min and reduced it at 60 min in both the olfactory bulb and the hippocampus, as opposed to the continuous increase noted in the amygdala. In addition, we tested whether an epigenetic mechanism involving protein phosphatase-1 (PP-1) acts on IEG expression. The observed PP-1 expression and the level of unmethylated/methylated promoter revealed that C-fos expression is possibly controlled by odour-mediated regulation of PP-1. These results in turn imply that the differential expression of C-fos in the hippocampus and amygdala may contribute to olfactory learning and memory in C. sphinx.
Collapse
Affiliation(s)
- Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Wieslaw Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland
| | - Ganapathy Marimuthu
- Department of Animal Behavior and Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
30
|
Infralimbic dopamine D2 receptors mediate glucocorticoid-induced facilitation of auditory fear memory extinction in rats. Brain Res 2018; 1682:84-92. [PMID: 29329984 DOI: 10.1016/j.brainres.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 11/23/2022]
Abstract
The infralimbic (IL) cortex of the medial prefrontal cortex plays an important role in the extinction of fear memory. Also, it has been showed that both brain glucocorticoid and dopamine receptors are involved in many processes such as fear extinction that drive learning and memory; however, the interaction of these receptors in the IL cortex remains unclear. We examined a putative interaction between the effects of glucocorticoid and dopamine receptors stimulation in the IL cortex on fear memory extinction in an auditory fear conditioning paradigm in male rats. Corticosterone (the endogenous glucocorticoid receptor ligand), or RU38486 (the synthetic glucocorticoid receptor antagonist) microinfusion into the IL cortex 10 min before test 1 attenuated auditory fear expression at tests 1-3, suggesting as an enhancement of fear extinction. The effect of corticosterone, but not RU38486 was counteracted by the dopamine D2 receptor antagonist sulpiride pre-treatment administered into the IL (at a dose that failed to alter freezing behavior on its own). In contrast, intra-IL infusion of the dopamine D1 receptor antagonist SCH23390 pre-treatment failed to alter freezing behavior. These findings provide evidence for the involvement of the IL cortex D2 receptors in CORT-induced facilitation of fear memory extinction.
Collapse
|
31
|
Shoshan N, Akirav I. The effects of cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala and hippocampus on the consolidation of a traumatic event. Neurobiol Learn Mem 2017; 144:248-258. [PMID: 28818702 DOI: 10.1016/j.nlm.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/10/2017] [Accepted: 08/13/2017] [Indexed: 12/26/2022]
Abstract
Ample evidence demonstrates that fear learning contributes significantly to many anxiety pathologies including post-traumatic stress disorder (PTSD). The endocannabinoid (eCB) system may offer therapeutic benefits for PTSD and it is a modulator of the hypothalamic pituitary adrenal (HPA) axis. Here we compared the separated and combined effects of blocking glucocorticoid receptors (GRs) using the GR antagonist RU486 and enhancing CB1r signaling using the CB1/2 receptor agonist WIN55,212-2 in the CA1 and basolateral amygdala (BLA) on the consolidation of traumatic memory. Traumatic memory was formed by exposure to a severe footshock in an inhibitory avoidance apparatus followed by exposure to trauma reminders. Intra-BLA RU486 (10ng/side) and WIN55,212-2 (5μg/side) administered immediately after shock exposure dampened the consolidation of the memory about the traumatic event and attenuated the increase in acoustic startle response in rats exposed to shock and reminders. In the CA1, WIN55,212-2 impaired consolidation and attenuated the increase in acoustic startle response whereas RU486 had no effect. The effects of WIN55,212-2 were found to be mediated by CB1 receptors, but not by GRs. Moreover, post-shock systemic WIN55,212-2 (0.5mg/kg) administration prevented the increase in GRs and CB1 receptor levels in the CA1 and BLA in rats exposed to shock and reminders. The findings suggest that the BLA is a locus of action of cannabinoids and glucocorticoids in modulating consolidation of traumatic memory in a rat model of PTSD. Also, the findings highlight novel targets for the treatment of emotional disorders and PTSD in particular.
Collapse
Affiliation(s)
- Noa Shoshan
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
32
|
Hartmann J, Dedic N, Pöhlmann ML, Häusl A, Karst H, Engelhardt C, Westerholz S, Wagner KV, Labermaier C, Hoeijmakers L, Kertokarijo M, Chen A, Joëls M, Deussing JM, Schmidt MV. Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor. Mol Psychiatry 2017; 22:466-475. [PMID: 27240530 DOI: 10.1038/mp.2016.87] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
Anxiety disorders constitute a major disease and social burden worldwide; however, many questions concerning the underlying molecular mechanisms still remain open. Besides the involvement of the major excitatory (glutamate) and inhibitory (gamma aminobutyric acid (GABA)) neurotransmitter circuits in anxiety disorders, the stress system has been directly implicated in the pathophysiology of these complex mental illnesses. The glucocorticoid receptor (GR) is the major receptor for the stress hormone cortisol (corticosterone in rodents) and is widely expressed in excitatory and inhibitory neurons, as well as in glial cells. However, currently it is unknown which of these cell populations mediate GR actions that eventually regulate fear- and anxiety-related behaviors. In order to address this question, we generated mice lacking the receptor specifically in forebrain glutamatergic or GABAergic neurons by breeding GRflox/flox mice to Nex-Cre or Dlx5/6-Cre mice, respectively. GR deletion specifically in glutamatergic, but not in GABAergic, neurons induced hypothalamic-pituitary-adrenal axis hyperactivity and reduced fear- and anxiety-related behavior. This was paralleled by reduced GR-dependent electrophysiological responses in the basolateral amygdala (BLA). Importantly, viral-mediated GR deletion additionally showed that fear expression, but not anxiety, is regulated by GRs in glutamatergic neurons of the BLA. This suggests that pathological anxiety likely results from altered GR signaling in glutamatergic circuits of several forebrain regions, while modulation of fear-related behavior can largely be ascribed to GR signaling in glutamatergic neurons of the BLA. Collectively, our results reveal a major contribution of GRs in the brain's key excitatory, but not inhibitory, neurotransmitter system in the regulation of fear and anxiety behaviors, which is crucial to our understanding of the molecular mechanisms underlying anxiety disorders.
Collapse
Affiliation(s)
- J Hartmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - N Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M L Pöhlmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Häusl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - H Karst
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands
| | - C Engelhardt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - S Westerholz
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - K V Wagner
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - C Labermaier
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - L Hoeijmakers
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Kertokarijo
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands
| | - J M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
33
|
Zhu H, Zhu W, Hu R, Wang H, Ma D, Li X. The effect of pre-eclampsia-like syndrome induced by L-NAME on learning and memory and hippocampal glucocorticoid receptor expression: A rat model. Hypertens Pregnancy 2016; 36:36-43. [PMID: 27786581 DOI: 10.1080/10641955.2016.1228957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We aimed to study the impacts of pre-eclampsia on the cognitive and learning capabilities of adolescent rat offspring and to explore the possible underlying mechanisms at the molecular level. METHODS Pregnant rats were subcutaneously injected with saline solution (control) (n = 16) or NG-nitro-L-arginine methyl ester (L-NAME) (n = 16) from the 13th day of gestation until parturition. The brain tissues from fetal rats delivered by cesarean section were examined in both groups with hematoxylin and eosin (H&E) staining. Rats born vaginally in both groups were subjected to the Morris water maze test when 8-week-old and their hippocampi were analyzed for glucocorticoid receptor (GR) expression. RESULTS A pre-eclampsia-like model was successfully built in pregnant rats by infusion of the NO synthase inhibitor L-NAME, including phenotypes as maternal hypertension and proteinuria, high stillbirth rate, and fetal growth retardation. Neuroepithelial cell proliferation was found in the hippocampus of fetal rats in the L-NAME group. Grown to 8-week-old, the L-NAME group showed significantly longer escape latency than the control group in the beginning as well as in the end of navigation trials. At the same time, the swimming distance achieved by the L-NAME group was significantly longer than that of the control group. Such differences in cognitive and learning capabilities between the two groups were not gender dependent. Besides, the 8-week-old rats in the L-NAME group had increased GR expression in the hippocampus than the control group. CONCLUSION Pre-eclampsia would impair cognitive and learning capabilities in adolescent offspring, and the upregulated expression of hippocampal GR may be involved in the underlying mechanisms.
Collapse
Affiliation(s)
- Hao Zhu
- a Obstetrics & Gynecology Hospital , Shanghai , China
| | - Weimin Zhu
- a Obstetrics & Gynecology Hospital , Shanghai , China
| | - Rong Hu
- a Obstetrics & Gynecology Hospital , Shanghai , China
| | - Huijun Wang
- b Institute of Biomedical Science, Fudan University , Shanghai , China.,c Key Laboratory of Molecular Medicine, Ministry of Education Department of Biochemistry and Molecular Biology , Shanghai Medical College, Fudan University , Shanghai , China
| | - Duan Ma
- b Institute of Biomedical Science, Fudan University , Shanghai , China.,c Key Laboratory of Molecular Medicine, Ministry of Education Department of Biochemistry and Molecular Biology , Shanghai Medical College, Fudan University , Shanghai , China
| | - Xiaotian Li
- a Obstetrics & Gynecology Hospital , Shanghai , China.,b Institute of Biomedical Science, Fudan University , Shanghai , China.,d Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases , Shanghai , China
| |
Collapse
|
34
|
Identification and Characterization of GABAergic Projection Neurons from Ventral Hippocampus to Amygdala. Brain Sci 2015; 5:299-317. [PMID: 26264032 PMCID: PMC4588141 DOI: 10.3390/brainsci5030299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022] Open
Abstract
GABAergic local circuit neurons are critical for the network activity and functional interaction of the amygdala and hippocampus. Previously, we obtained evidence for a GABAergic contribution to the hippocampal projection into the basolateral amygdala. Using fluorogold retrograde labeling, we now demonstrate that this projection indeed has a prominent GABAergic component comprising 17% of the GABAergic neurons in the ventral hippocampus. A majority of the identified GABAergic projection neurons are located in the stratum oriens of area CA1, but cells are also found in the stratum pyramidale and stratum radiatum. We could detect the expression of different markers of interneuron subpopulations, including parvalbumin and calbindin, somatostatin, neuropeptide Y, and cholecystokinin in such retrogradely labeled GABA neurons. Thus GABAergic projection neurons to the amygdala comprise a neurochemically heterogeneous group of cells from different interneuron populations, well situated to control network activity patterns in the amygdalo-hippocampal system.
Collapse
|
35
|
Boitard C, Maroun M, Tantot F, Cavaroc A, Sauvant J, Marchand A, Layé S, Capuron L, Darnaudery M, Castanon N, Coutureau E, Vouimba RM, Ferreira G. Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids. J Neurosci 2015; 35:4092-103. [PMID: 25740536 PMCID: PMC6605580 DOI: 10.1523/jneurosci.3122-14.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 11/21/2022] Open
Abstract
In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence during adolescence is particularly alarming since recent evidence indicates that obesity can affect hippocampal function during this developmental period. Adolescence is a decisive period for maturation of the amygdala and the hypothalamic-pituitary-adrenal (HPA) stress axis, both required for lifelong cognitive and emotional processing. However, little data are available on the impact of obesity during adolescence on amygdala function. Herein, we therefore evaluate in rats whether juvenile high-fat diet (HFD)-induced obesity alters amygdala-dependent emotional memory and whether it depends on HPA axis deregulation. Exposure to HFD from weaning to adulthood, i.e., covering adolescence, enhances long-term emotional memories as assessed by odor-malaise and tone-shock associations. Juvenile HFD also enhances emotion-induced neuronal activation of the basolateral complex of the amygdala (BLA), which correlates with protracted plasma corticosterone release. HFD exposure restricted to adulthood does not modify all these parameters, indicating adolescence is a vulnerable period to the effects of HFD-induced obesity. Finally, exaggerated emotional memory and BLA synaptic plasticity after juvenile HFD are alleviated by a glucocorticoid receptor antagonist. Altogether, our results demonstrate that juvenile HFD alters HPA axis reactivity leading to an enhancement of amygdala-dependent synaptic and memory processes. Adolescence represents a period of increased susceptibility to the effects of diet-induced obesity on amygdala function.
Collapse
Affiliation(s)
- Chloé Boitard
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France, Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 31905, Israel
| | - Frédéric Tantot
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France, Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Amandine Cavaroc
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France, Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Julie Sauvant
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France, Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Alain Marchand
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France, and Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France, Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Lucile Capuron
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France, Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Muriel Darnaudery
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France, Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Nathalie Castanon
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France, Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
| | - Etienne Coutureau
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France, and Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
| | - Rose-Marie Vouimba
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France, and Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France, Université de Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France,
| |
Collapse
|
36
|
Wheelan N, Webster SP, Kenyon CJ, Caughey S, Walker BR, Holmes MC, Seckl JR, Yau JLW. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice. Neuropharmacology 2014; 91:71-6. [PMID: 25497454 PMCID: PMC4389269 DOI: 10.1016/j.neuropharm.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 02/03/2023]
Abstract
High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Aged mice were treated with UE2316 using a vehicle-controlled crossover design. Short-term UE2316 treatment improves spatial memory in a reversible manner. Contextual fear memory retention was impaired with UE2316. Contextual fear memory effects persisted following reversal of treatment.
Collapse
Affiliation(s)
- Nicola Wheelan
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Scott P Webster
- Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Christopher J Kenyon
- Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Sarah Caughey
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Brian R Walker
- Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Megan C Holmes
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Jonathan R Seckl
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Joyce L W Yau
- Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, UK; Endocrinology Unit, BHF Centre for Cardiovascular Science, University of Edinburgh, UK.
| |
Collapse
|
37
|
Behavioral testing-related changes in the expression of Synapsin I and glucocorticoid receptors in standard and enriched aged Wistar rats. Exp Gerontol 2014; 58:292-302. [PMID: 25218493 DOI: 10.1016/j.exger.2014.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/28/2014] [Accepted: 09/08/2014] [Indexed: 11/22/2022]
Abstract
Our aim was to assess the changes in the Synapsin I and glucocorticoid receptor (GR) expression induced by behavioral testing in the dorsal and ventral hippocampi of standard and enriched aged Wistar rats. The environmental enrichment (EE) was carried out 3h/day over a period of two months and then, the rats were tested in the elevated zero-maze (EZM) and radial-arm water maze (RAWM). Behavioral results showed that, even at an advanced age, EE was able to reduce anxiety-related behaviors and improve the performance in the RAWM. Regarding the neurobiological data, Synapsin I expression in the dorsal CA3, but not in the ventral, was enhanced both in enriched and standard rats when they performed the behavioral testing. Interestingly, the EE exposure was enough to increase Synapsin I in the ventral CA3. The analysis of GR in the dorsal hippocampus showed an increase of this receptor in the dDG both in enriched and standard rats when they performed the behavioral testing, whereas in the dCA1 and dCA3, the effect of the testing depended on the previous housing condition. In the ventral region, we found that the effects of EE were higher because on the one hand, the GR expression induced by the behavioral testing was enhanced in the dSUB, vCA1 and vCA3 when the rats were previously enriched and on the other hand, EE, regardless of the behavioral testing, increased the GR expression in the vDG and vSUB. Therefore, our results suggest that the effect of the behavioral testing on the neurobiological mechanisms studied is different depending on the previous housing condition of aged rats.
Collapse
|
38
|
Chronic corticosterone administration facilitates aversive memory retrieval and increases GR/NOS immunoreactivity. Behav Brain Res 2014; 267:46-54. [DOI: 10.1016/j.bbr.2014.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 01/06/2023]
|
39
|
Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 2014; 39:1880-92. [PMID: 24525710 PMCID: PMC4059896 DOI: 10.1038/npp.2014.35] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 11/09/2022]
Abstract
Synaptic consolidation is a process thought to consolidate memory in the brain. Although lesion studies have mainly implicated the hippocampus (HPC) in this process, it is unknown which cell type(s) or regions of the HPC might be essential for synaptic consolidation. To selectively and reversibly suppress hippocampal neuronal activity during this process, we developed a new Gi-DREADD (hM4Di) transgenic mouse for in vivo manipulation of neuronal activity in freely moving animals. We found that CA1 pyramidal neurons could be dose-dependently inactivated by clozapine-n-oxide (CNO). Inactivation of hippocampal neurons within 6 h immediately after conditioned fear training successfully impaired the consolidation of contextual memory, without disturbing cued memory. To anatomically define the brain subregion critical for the behavioral effects, hM4Di viral vectors were transduced and selectively expressed in the glutamatergic neurons in either the dorsal or ventral HPC. Significantly, we found that selective inactivation of ventral but not dorsal glutamatergic hippocampal neurons suppressed the synaptic consolidation of contextual memory.
Collapse
|
40
|
Myers B, McKlveen JM, Herman JP. Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front Neuroendocrinol 2014; 35:180-196. [PMID: 24361584 PMCID: PMC4422101 DOI: 10.1016/j.yfrne.2013.12.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
Environmental stimuli that signal real or potential threats to homeostasis lead to glucocorticoid secretion by the hypothalamic-pituitary-adrenocortical (HPA) axis. Glucocorticoids promote energy redistribution and are critical for survival and adaptation. This adaptation requires the integration of multiple systems and engages key limbic-neuroendocrine circuits. Consequently, glucocorticoids have profound effects on synaptic physiology, circuit regulation of stress responsiveness, and, ultimately, behavior. While glucocorticoids initiate adaptive processes that generate energy for coping, prolonged or inappropriate glucocorticoid secretion becomes deleterious. Inappropriate processing of stressful information may lead to energetic drive that does not match environmental demand, resulting in risk factors for pathology. Thus, dysregulation of the HPA axis may promote stress-related illnesses (e.g. depression, PTSD). This review summarizes the latest developments in central glucocorticoid actions on synaptic, neuroendocrine, and behavioral regulation. Additionally, these findings will be discussed in terms of the energetic integration of stress and the importance of context-specific regulation of glucocorticoids.
Collapse
Affiliation(s)
- Brent Myers
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| | - Jessica M McKlveen
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| |
Collapse
|
41
|
Sink KS, Davis M, Walker DL. CGRP antagonist infused into the bed nucleus of the stria terminalis impairs the acquisition and expression of context but not discretely cued fear. Learn Mem 2013; 20:730-9. [PMID: 24255102 PMCID: PMC3834624 DOI: 10.1101/lm.032482.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcitonin gene-related peptide (CGRP) infusions into the bed nucleus of the stria terminalis (BNST) evoke increases in startle amplitude and increases in anxiety-like behavior in the plus maze. Conversely, intra-BNST infusions of the CGRP antagonist CGRP8–37 block unconditioned startle increases produced by fox odor. Here we evaluate the contribution of CGRP signaling in the BNST to the development and expression of learned fear. Rats received five pairings of a 3.7-sec light and footshock and were tested for fear-potentiated startle one or more days later. Neither pre-training (Experiment 1) nor pre-test (Experiment 2) infusions of the CGRP antagonist CGRP8–37 (800 ng/BNST) disrupted fear-potentiated startle to the 3.7-sec visual cue. However, in both experiments, CGRP8–37 infusions disrupted baseline startle increases that occurred when rats were tested in the same context as that in which they previously received footshock (Experiment 3). Intra-BNST CGRP8–37 infusions did not disrupt shock-evoked corticosterone release (Experiment 4). These data confirm previous findings implicating BNST CGRP receptors in fear and anxiety. They extend those results by showing an important contribution to learned fear and, specifically, to fear evoked by a shock-associated context rather than a discrete cue. This pattern is consistent with previous models of BNST function that have posited a preferential role in sustained anxiety as opposed to phasic fear responses. More generally, the results add to a growing body of evidence indicating behaviorally, possibly clinically, relevant modulation of BNST function by neuroactive peptides.
Collapse
Affiliation(s)
- Kelly S Sink
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | |
Collapse
|
42
|
Finsterwald C, Alberini CM. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiol Learn Mem 2013; 112:17-29. [PMID: 24113652 DOI: 10.1016/j.nlm.2013.09.017] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/20/2013] [Accepted: 09/25/2013] [Indexed: 12/17/2022]
Abstract
A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitary-adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of strong long-term memories because the activation of hippocampal GRs after learning is coupled to the recruitment of the growth and pro-survival BDNF/cAMP response element-binding protein (CREB) pathway, which is well-know to be a general mechanism required for long-term memory formation. We will then speculate about how these results may explain the negative effects of traumatic or chronic stress on memory and cognitive functions.
Collapse
|
43
|
Ganon-Elazar E, Akirav I. Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit. Psychoneuroendocrinology 2013; 38:1675-87. [PMID: 23433741 DOI: 10.1016/j.psyneuen.2013.01.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/02/2013] [Accepted: 01/30/2013] [Indexed: 11/19/2022]
Abstract
Considerable evidence suggests that cannabinoids modulate the behavioral and physiological response to stressful events. We have recently shown that activating the cannabinoid system using the CB1/CB2 receptor agonist WIN55,212-2 (WIN) in proximity to exposure to single-prolonged stress (SPS), a rat model of emotional trauma, prevented the stress-induced enhancement of acoustic startle response, the impairment in avoidance extinction and the enhanced negative feedback on the hypothalamic-pituitary-adrenal (HPA) axis (Ganon-Elazar and Akirav, 2012). Some of the effects were found to be mediated by CB1 receptors in the basolateral amygdala (BLA). Here we examined whether cannabinoid receptor activation in a putative brain circuit that includes the BLA, hippocampus and prefrontal cortex (PFC), could prevent the effects of traumatic stress on contextual fear extinction and alterations in glucocorticoid receptor (GR) protein levels. We found that: (i) SPS impaired contextual fear extinction tested one week after trauma exposure and that WIN prevented the stress-induced impairment of extinction when microinjected immediately after trauma exposure into the BLA or hippocampus (5 μg), but not when microinjected into the PFC, (ii) the ameliorating effects of WIN on contextual extinction were prevented by blocking GRs in the BLA and hippocampus, and (iii) SPS up regulated GRs in the BLA, PFC and hippocampus and systemic WIN administration (0.5 mg/kg) after trauma exposure normalized GR levels in the BLA and hippocampus, but not in the PFC. Cannabinoid receptor activation in the aftermath of trauma exposure may regulate the emotional response to the trauma and prevent stress-induced impairment of extinction and GR up regulation through the mediation of CB1 receptors in the BLA and hippocampus. Taken together, the findings suggest that the interaction between the cannabinoid and glucocorticoid systems is crucial in the modulation of emotional trauma.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/physiopathology
- Animals
- Benzoxazines/pharmacology
- Cannabinoids/pharmacology
- Electroshock
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Fear/drug effects
- Fear/physiology
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Hippocampus/drug effects
- Hippocampus/physiopathology
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Microinjections
- Mifepristone/pharmacology
- Models, Psychological
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Piperidines/pharmacology
- Pituitary-Adrenal System/physiopathology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/physiopathology
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Eti Ganon-Elazar
- Department of Psychology, University of Haifa, Haifa 31905, Israel
| | | |
Collapse
|
44
|
Glucocorticoid-induced enhancement of contextual fear memory consolidation in rats: Involvement of D1 receptor activity of hippocampal area CA1. Brain Res 2013; 1524:26-33. [DOI: 10.1016/j.brainres.2013.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/01/2013] [Accepted: 05/19/2013] [Indexed: 01/01/2023]
|
45
|
Stress and excitatory synapses: from health to disease. Neuroscience 2013; 248:626-36. [PMID: 23727506 DOI: 10.1016/j.neuroscience.2013.05.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/01/2013] [Accepted: 05/21/2013] [Indexed: 01/20/2023]
Abstract
Individuals are exposed to stressful events in their daily life. The effects of stress on brain function ranges from highly adaptive to increasing the risk to develop psychopathology. For example, stressful experiences are remembered well which can be seen as a highly appropriate behavioral adaptation. On the other hand, stress is an important risk factor, in susceptible individuals, for depression and anxiety. An important question that remains to be addressed is how stress regulates brain function and what determines the threshold between adaptive and maladaptive responses. Excitatory synapses play a crucial role in synaptic transmission, synaptic plasticity and behavioral adaptation. In this review we discuss how brief and prolonged exposure to stress, in adulthood and early life, regulate the function of these synapses, and how these effects may contribute to behavioral adaptation and psychopathology.
Collapse
|
46
|
Stress-induced memory retrieval impairments: different time-course involvement of corticosterone and glucocorticoid receptors in dorsal and ventral hippocampus. Neuropsychopharmacology 2012; 37:2870-80. [PMID: 22948976 PMCID: PMC3499833 DOI: 10.1038/npp.2012.170] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study was aimed at determining the relative contribution of the dorsal (DH) and ventral (VH) hippocampus in stress-induced memory retrieval impairments. Thus, we studied the temporal involvement of corticosterone and its receptors, i.e. mineralocorticoid (MR) and glucocorticoid (GR) in the DH and VH, in relation with the time-course evolution of stress-induced memory retrieval impairments. In a first experiment, double microdialysis allowed showing on the same animal that an acute stress (electric footshocks) induced an earlier corticosterone rise in the DH (15-60 min post-stress) and then in the VH (90-105 min post-stress). The return to baseline was faster in the DH (105 min) than in the VH (120 min). Memory deficits assessed by delayed alternation occurred at 15-, 60-, and 105-min delays after stress and were closely related to the kinetic of corticosterone rises within the DH and VH. In a second experiment, the GR antagonist RU-38486 and the MR antagonist RU-28318 were administered in the DH or VH 15 min before stress. RU-38486 restored memory at 60 but not at 105 min post-stress delays in the DH, whereas the opposite pattern was observed in the VH. By contrast, RU-28318 had no effect on memory impairments at both the 60- and 105-min post-stress delays, showing that MR receptors are not involved at these delays. However, RU-28318 administered in the DH restored memory when administered at a shorter post-stress delay (15 min). Overall, our data are first to evidence that stress induces a functional switch from the DH to VH via different corticosterone time-course evolutions in these areas and the sequential GR receptors involvement in the DH and then in the VH, as regards the persistence of stress-induced memory retrieval deficits over time.
Collapse
|
47
|
Wichmann R, Fornari RV, Roozendaal B. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning. Neurobiol Learn Mem 2012; 98:197-205. [DOI: 10.1016/j.nlm.2012.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 12/29/2022]
|
48
|
Knox D, Nault T, Henderson C, Liberzon I. Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model. Neuroscience 2012; 223:163-73. [PMID: 22863672 DOI: 10.1016/j.neuroscience.2012.07.047] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/29/2022]
Abstract
Single prolonged stress (SPS) is a rodent model of post traumatic stress disorder that is comprised of serial application of restraint (r), forced swim (fs), and ether (eth) followed by a 7-day quiescent period. SPS induces extinction retention deficits and it is believed that these deficits are caused by the combined stressful effect of serial exposure to r, fs, and eth. However, this hypothesis remains untested. Neurobiological mechanisms by which SPS induces extinction retention deficits are unknown, but SPS enhances glucocorticoid receptor (GR) expression in the hippocampus, which is critical for contextual modulation of extinction retrieval. Upregulation of GRs in extinction circuits may be a mechanism by which SPS induces extinction retention deficits, but this hypothesis has not been examined. In this study, we systematically altered the stressors that constitute SPS (i.e. r, fs, eth), generating a number of partial SPS (p-SPS) groups, and observed the effects SPS and p-SPSs had on extinction retention and GR levels in the hippocampus and prefrontal cortex (PFC). PFC GRs were assayed, because regions of the PFC are critical for maintaining extinction. We predicted that only exposure to full SPS would result in extinction retention deficits and enhance hippocampal and PFC GR levels. Only exposure to full SPS induced extinction retention deficits. Hippocampal and PFC GR expression was enhanced by SPS and most p-SPSs, however hippocampal GR expression was significantly larger following the full SPS exposure than all other conditions. Our findings suggest that the combined stressful effect of serial exposure to r, fs, and eth results in extinction retention deficits. The results also suggest that simple enhancements in GR expression in the hippocampus and PFC are insufficient to result in extinction retention deficits, but raise the possibility that a threshold-enhancement in hippocampal GR expression contributes to SPS-induced extinction retention deficits.
Collapse
Affiliation(s)
- D Knox
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
49
|
Krugers HJ, Karst H, Joels M. Interactions between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance. Front Cell Neurosci 2012; 6:15. [PMID: 22509154 PMCID: PMC3321636 DOI: 10.3389/fncel.2012.00015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/20/2012] [Indexed: 11/13/2022] Open
Abstract
One of the core reactions in response to a stressful situation is the activation of the hypothalamus-pituitary-adrenal axis which increases the release of glucocorticoid hormones from the adrenal glands. In concert with other neuro-modulators, such as (nor)adrenaline, these hormones enable and promote cognitive adaptation to stressful events. Recent studies have demonstrated that glucocorticoid hormones and noradrenaline, via their receptors, can both rapidly and persistently regulate the function of excitatory synapses which are critical for storage of information. Here we will review how glucocorticoids and noradrenaline alone and in synergy dynamically tune these synapses in the hippocampus and amygdala, and discuss how these hormones interact to promote behavioral adaptation to stressful situations.
Collapse
Affiliation(s)
- Harm J Krugers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | | |
Collapse
|
50
|
Khajehpour L, Alizadeh-Makvandi A, Kesmati M, Eshagh-Harooni H. Involvement of basolateral amygdala GABAA receptors in the effect of dexamethasone on memory in rats. J Zhejiang Univ Sci B 2012; 12:900-8. [PMID: 22042654 DOI: 10.1631/jzus.b1000340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study we investigated whether GABA(A) receptors of the basolateral amygdala (BLA) interact with the effect of dexamethasone on the retrieval stage of memory. Adult male Wistar rats were bilaterally cannulated in the BLA by stereotaxic surgery. The animals were trained in step-through apparatus by induction of electric shock (1.5 mA, 3 s) and were tested for memory retrieval after 1 d. The time of latency for entering the dark compartment of the instrument and the time spent by rats in this chamber were recorded for evaluation of the animals' retrieval in passive avoidance memory. Administration of dexamethasone (0.3 and 0.9 mg/kg, subcutaneously (s.c.)), immediately after training, enhanced memory retrieval. This effect was reduced by intra-BLA microinjection of muscimol (0.125, 0.250 and 0.500 µg/rat), when administered before 0.9 mg/kg of dexamethasone. Microinjection of bicuculline (0.75 µg/rat, intra-BLA) with an ineffective dose of dexamethasone (0.1 mg/kg, s.c.) increased memory retrieval. However, the same doses of muscimol and bicuculline without dexamethasone did not affect memory processes. Our data support reports that dexamethasone enhances memory retrieval. It seems that GABA(A) receptors of the BLA mediate the effect of dexamethasone on memory retrieval in rats.
Collapse
Affiliation(s)
- Lotfollah Khajehpour
- Department of Biology, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | | | |
Collapse
|