1
|
Rosete C, Ciernia AV. The Two Faces of HDAC3: Neuroinflammation in Disease and Neuroprotection in Recovery. Epigenomics 2024; 16:1373-1388. [PMID: 39513228 DOI: 10.1080/17501911.2024.2419357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Histone deacetylase 3 (HDAC3) is a critical regulator of gene expression, influencing a variety of cellular processes in the central nervous system. As such, dysfunction of this enzyme may serve as a key driver in the pathophysiology of various neuropsychiatric disorders and neurodegenerative diseases. HDAC3 plays a crucial role in regulating neuroinflammation, and is now widely recognized as a major contributor to neurological conditions, as well as in promoting neuroprotective recovery following brain injury, hemorrhage and stroke. Emerging evidence suggests that pharmacological inhibition of HDAC3 can mitigate behavioral and neuroimmune deficits in various brain diseases and disorders, offering a promising therapeutic strategy. Understanding HDAC3 in the healthy brain lays the necessary foundation to define and resolve its dysfunction in a disease state. This review explores the mechanisms of HDAC3 in various cell types and its involvement in disease pathology, emphasizing the potential of HDAC3 inhibition to address neuroimmune, gene expression and behavioral deficits in a range of neurodegenerative and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cal Rosete
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| |
Collapse
|
2
|
Burke MR, Sotiropoulos I, Waites CL. The multiple roles of chronic stress and glucocorticoids in Alzheimer's disease pathogenesis. Trends Neurosci 2024; 47:933-948. [PMID: 39307629 PMCID: PMC11563862 DOI: 10.1016/j.tins.2024.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 11/15/2024]
Abstract
Chronic stress and the accompanying long-term elevation of glucocorticoids (GCs), the stress hormones of the body, increase the risk and accelerate the progression of Alzheimer's disease (AD). Signatures of AD include intracellular tau (MAPT) tangles, extracellular amyloid β (Aβ) plaques, and neuroinflammation. A growing body of work indicates that stress and GCs initiate cellular processes underlying these pathologies through dysregulation of protein homeostasis and trafficking, mitochondrial bioenergetics, and response to damage-associated stimuli. In this review, we integrate findings from mechanistic studies in rodent and cellular models, wherein defined chronic stress protocols or GC administration have been shown to elicit AD-related pathology. We specifically discuss the effects of chronic stress and GCs on tau pathogenesis, including hyperphosphorylation, aggregation, and spreading, amyloid precursor protein (APP) processing and trafficking culminating in Aβ production, immune priming by proinflammatory cytokines and disease-associated molecular patterns, and alterations to glial cell and blood-brain barrier (BBB) function.
Collapse
Affiliation(s)
- Mia R Burke
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Pathobiology and Mechanisms of Disease Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences and Applications, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, Greece
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Ahmadi E, Pourmotabbed A, Aghaz N, Nedaei SE, Veisi M, Salimi Z, Zarei F, Jalili C, Moradpour F, Zeinivand M. Curcumin and exercise prevent depression via alleviating hippocampus injury and improve depressive-like behaviors in chronically stressed depression rats. Res Pharm Sci 2024; 19:509-519. [PMID: 39691296 PMCID: PMC11648346 DOI: 10.4103/rps.rps_94_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/13/2023] [Accepted: 09/07/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose Depression is a growing public health concern worldwide, characterized by cognitive impairment and structural abnormalities of the hippocampus. Current antidepressant treatment sometimes causes the late onset of results and the much faster occurrence of side effects. For this reason, the interest in new treatment strategies including exercise and natural products such as curcumin has increased to treat depression. The present study investigated the role of curcumin and exercise in improving depressive-like behavior and hippocampal damage induced by mild unpredictable chronic stress in male rats. Experimental approach This study analyzed the effects of curcumin (100 mg/kg/day, P.O for 14 days) and exercise (treadmill running, 45 min/day for 14 days) on immobility behavior (forced swimming test), locomotor activity (open field test), anhedonia (sucrose preference test) and cell survival (Nissl staining) of the hippocampal CA3 region in chronically stressed depression rats. Findings/Results In the current study, curcumin treatment combined with exercise effectively improved immobility behavior, locomotor activity, and increased hippocampal cell survival resulted in preventing the development of hippocampus dysfunction and depressive-like behaviors. Conclusion and implications This study demonstrated a new prospect for treating depression. The current findings give researchers the confidence to continue the investigations on the effects of curcumin accompanied with exercise as a novel therapy for the treatment of depression.
Collapse
Affiliation(s)
- Elaheh Ahmadi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Ali Pourmotabbed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Nilofar Aghaz
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Mojgan Veisi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Zahra Salimi
- Department of Biology, Faculty of Science, University of Qom, Qom, I.R. Iran
| | - Fatemeh Zarei
- Department of Biology, Faculty of Science, Razi University, Kermanshah, I.R. Iran
| | - Cyrus Jalili
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Farshad Moradpour
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Motahareh Zeinivand
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| |
Collapse
|
4
|
Sales ISL, de Souza AG, Chaves Filho AJM, Sampaio TL, da Silva DMA, Valentim JT, Chaves RDC, Soares MVR, Costa Júnior DC, Barbosa Filho JM, Macêdo DS, de Sousa FCF. Antidepressant-like effect of riparin I and riparin II against CUMS-induced neuroinflammation via astrocytes and microglia modulation in mice. Behav Pharmacol 2024; 35:314-326. [PMID: 39094014 DOI: 10.1097/fbp.0000000000000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15 th to the 22 nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29 th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1β) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1β levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.
Collapse
Affiliation(s)
- Iardja S L Sales
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Alana G de Souza
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
- Brazilian Hospital Services Company (EBSERH) - University Hospital, Federal University of Goias, Goiania
| | - Adriano J M Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Tiago L Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, Ceara
| | - Daniel M A da Silva
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - José T Valentim
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Raquell de C Chaves
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Michelle V R Soares
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Dilailson C Costa Júnior
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - José M Barbosa Filho
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Federal University of Paraiba, João Pessoa, Brazil
| | - Danielle S Macêdo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| | - Francisca Cléa Florenço de Sousa
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza
| |
Collapse
|
5
|
Zhang Y, Zhang H, Zheng X, Hou Y, Chang X, Zhang L, Wang Y, Chen S. Identification of differentially expressed genes in the medial prefrontal cortex of rats subjected to chronic unpredictable mild stress and treated with electroacupuncture. Genomics 2024; 116:110901. [PMID: 39047876 DOI: 10.1016/j.ygeno.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Major depressive disorder is a chronic mental health condition that seriously impacts afflicted individuals. Although electroacupuncture has proven to be an effective therapy for depression, its underlying biological mechanism remains largely unknown. In this study, we aimed to investigate the effects of electroacupuncture on depression-like behavior and to identify potential target genes related to those effects. To achieve this, we subjected rats to chronic unpredictable mild stress (CUMS) and used sucrose preference, forced swimming, and open-field tests to determine their depression-like behavior in the absence or after receipt of electroacupuncture treatment. RNA sequencing technology was then used to reveal the differentially expressed genes associated with depression and electroacupuncture treatment effects in the medial prefrontal cortex (mPFC). Repeated electroacupuncture treatments at the Baihui (GV20) and Taichong (LR3) acupoints significantly alleviated depression-like behavioral defects in the animals. Genomic RNA sequencing revealed several significant changes in the mPFC transcriptome of rats that received treatment. Through differential gene expression analysis, we found that electroacupuncture reversed the CUMS-induced downregulation of 46 genes and upregulation of 13 genes. Among the differentially expressed genes, Casr, Bdkrb2, Gnb3, and Ccl1 were found to be associated with depression and electroacupuncture treatment effects. In conclusion, we verified that electroacupuncture treatment has an effective antidepressant effect, and the underlying mechanism involves multiple systems and targets.
Collapse
Affiliation(s)
- Yujiao Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Haiyan Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Xinjie Zheng
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Yi Hou
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoli Chang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Lili Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Ying Wang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China.
| | - Shaozong Chen
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China.
| |
Collapse
|
6
|
Zhao M, Xu X, Xu H, Yang S, Li M, Wang W. The regulation of social factors on anxiety and microglial activity in nucleus accumbens of adolescent male mice: Influence of social interaction strategy. J Affect Disord 2024; 352:525-535. [PMID: 38403135 DOI: 10.1016/j.jad.2024.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Adolescence is a period characterized by a high vulnerability to emotional disorders, which are modulated by biological, psychological, and social factors. However, the underlying mechanisms remain poorly understood. METHODS Combining physical or emotional social defeat stress (PS and ES) and pair or isolation rearing conditions, we investigated the effects of stress type and social support on emotional behavior and central immune molecules in adolescent mice, including anxiety, social fear, and social interaction strategies, as well as changes in microglia-specific molecules (ionized calcium-binding adaptor molecule 1 (Iba1) and a cluster of differentiation molecule 11b (CD11b)) in the medial prefrontal cortex (mPFC), hippocampus (HIP), amygdala (AMY), and nucleus accumbens (NAc). RESULTS Mice exposed to both physical stress and isolated rearing condition exhibited the highest levels of anxiety, social fear, and microglial CD11b expression in the NAc. In terms of social support, pair-housing with siblings ameliorated social fear and NAc molecular changes in ES mice, but not in PS mice. The reason for the differential benefit from social support was attributed to the fact that ES mice exhibited more active and less passive social strategies in social environment compared to PS mice. Further, the levels of stress-induced social fear were positively associated with the expression of microglial CD11b in the NAc. CONCLUSION These findings offer extensive evidence regarding the intricate effects of multiple social factors on social anxiety and immune alteration in the NAc of adolescent mice. Additionally, they suggest potential behavioral and immune intervention strategies for anxiety-related disorders in adolescents.
Collapse
Affiliation(s)
- Mingyue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueping Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Shuming Yang
- Division of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510062, China
| | - Man Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Faculty of Psychology, Tianjin Normal University, Tianjin, China.
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Rostami-Faradonbeh N, Amini-Khoei H, Zarean E, Bijad E, Lorigooini Z. Anethole as a promising antidepressant for maternal separation stress in mice by modulating oxidative stress and nitrite imbalance. Sci Rep 2024; 14:7766. [PMID: 38565927 PMCID: PMC10987547 DOI: 10.1038/s41598-024-57959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.
Collapse
Affiliation(s)
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Zarean
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Psychiatry, School of Medicine, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
8
|
Somelar-Duracz K, Jürgenson M, Viil J, Zharkovsky A, Jaako K. 'Unpredictable chronic mild stress does not exacerbate memory impairment or altered neuronal and glial plasticity in the hippocampus of middle-aged vitamin D deficient mice'. Eur J Neurosci 2024; 59:1696-1722. [PMID: 38269959 DOI: 10.1111/ejn.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Vitamin D deficiency is a worldwide health concern, especially in the elderly population. Much remains unknown about the relationship between vitamin D deficiency (VDD), stress-induced cognitive dysfunctions and depressive-like behaviour. In this study, 4-month-old male C57Bl/6J mice were fed with control or vitamin D free diet for 6 months, followed by unpredictable chronic stress (UCMS) for 8 weeks. VDD induced cognitive impairment and reduced grooming behaviour, but did not induce depressive-like behaviour. While UCMS in vitamin D sufficient mice induced expected depressive-like phenotype and impairments in the contextual fear memory, chronic stress did not manifest as an additional risk factor for memory impairments and depressive-like behaviour in VDD mice. In fact, UCMS restored self-care behaviour in VDD mice. At the histopathological level, VDD mice exhibited cell loss in the granule cell layer, reduced survival of newly generated cells, accompanied with an increased number of apoptotic cells and alterations in glial morphology in the hippocampus; however, these effects were not exacerbated by UCMS. Interestingly, UCMS reversed VDD induced loss of microglial cells. Moreover, tyrosine hydroxylase levels decreased in the striatum of VDD mice, but not in stressed VDD mice. These findings indicate that long-term VDD in adulthood impairs cognition but does not augment behavioural response to UCMS in middle-aged mice. While VDD caused cell loss and altered glial response in the DG of the hippocampus, these effects were not exacerbated by UCMS and could contribute to mechanisms regulating altered stress response.
Collapse
Affiliation(s)
- Kelli Somelar-Duracz
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Janeli Viil
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Külli Jaako
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
Bodemeier Loayza Careaga M, Wu TJ. Chronically stressed male and female mice show a similar peripheral and central pro-inflammatory profile after an immune challenge. PLoS One 2024; 19:e0297776. [PMID: 38381770 PMCID: PMC10880960 DOI: 10.1371/journal.pone.0297776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
Although acute stressors are known for stimulating the production of glucocorticoids and pro-inflammatory cytokines in rodents, the effects of chronic stressors on cytokine levels and the activation of the hypothalamic-pituitary-adrenal (HPA) axis, especially in response to a subsequent challenge, are less clear. In this study, male and female mice were exposed to 6 weeks of chronic variable stress (CVS) and the peripheral and central levels of IL-1β, IL-6, and TNF-α, as well as the HPA axis reactivity, were measured after an acute injection of LPS. The findings indicate that the pro-inflammatory profile in the plasma, regardless of stress exposure, was similar between male and female animals, whereas there was a region-, sex-, and stress-dependent pattern in the brain. Exposure to chronic stressors blunted the HPA reactivity to the LPS challenge, indicating a modulatory effect on the stress axis responsiveness.
Collapse
Affiliation(s)
- Mariella Bodemeier Loayza Careaga
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - T. John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Ghaffari-Nasab A, Javani G, Yousefi H, Sharafkhani R, Taghizadeh S. Prolonged stress-induced depression-like behaviors in aged rats are mediated by endoplasmic reticulum stress and apoptosis in the hippocampus. Neurosci Res 2024; 198:39-46. [PMID: 37392834 DOI: 10.1016/j.neures.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Structural and functional recovery from stress-induced depression is impaired in the context of aging brain. Since investigating the molecular substrates that facilitate behavioral recovery may have important implications for understanding brain plasticity and resilience of individuals, we studied depressive-like behaviors in young and aged rats 6 weeks after chronic stress exposure as a recovery period and examined the levels of TNF-α and IL-6 inflammatory cytokines, NADH oxidase activity, NADPH oxidase, endoplasmic reticulum (ER) stress markers, and apoptosis in the hippocampus. Young (3 months old) and aged (22 months old) male Wistar rats were divided into four groups; young control (Young), depression model of young rats that received chronic stress procedure followed by a 6-week recovery period (Young+S), aged control (Aged), and depression model of aged rats that received chronic stress procedure followed by a 6-week recovery period (Aged+S). After the recovery period, aged but not young rats showed depression-like behaviors, evaluated by the sucrose preference test (SPT) and forced swimming test (FST), coincided with the altered levels of TNF-α, IL-6, NADH oxidase activity, NADPH oxidase, GRP78, CHOP, and cleaved caspase-12 in the hippocampus of these animals. These data suggested that oxidative and ER stress-induced apoptosis in the aging hippocampus may affect the recovery-related outcomes after the stress paradigm.
Collapse
Affiliation(s)
- Arshad Ghaffari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| | - Gonja Javani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, the Islamic Republic of Iran.
| | - Rahim Sharafkhani
- School of Health, Khoy University of Medical Sciences, Khoy, the Islamic Republic of Iran
| | - Sajjad Taghizadeh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| |
Collapse
|
11
|
Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation 2023; 20:283. [PMID: 38012702 PMCID: PMC10683283 DOI: 10.1186/s12974-023-02964-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
12
|
Grabowska K, Ziemichód W, Biała G. Recent Studies on the Development of Nicotine Abuse and Behavioral Changes Induced by Chronic Stress Depending on Gender. Brain Sci 2023; 13:brainsci13010121. [PMID: 36672102 PMCID: PMC9857036 DOI: 10.3390/brainsci13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Nowadays, stressful situations are an unavoidable element of everyday life. Stressors activate a number of complex mental and physiological reactions in the organism, thus affecting the state of health of an individual. Stress is the main risk factor in the development of mental disorders, such as depression and other disorders developing as a result of addiction. Studies indicate that women are twice as likely as men to develop anxiety, depression and therefore addiction, e.g., to nicotine. Even though the data presented is indicative of significant differences between the sexes in the prevalence of these disorders, the majority of preclinical animal models for investigating stress-induced disorders use predominantly male subjects. However, the recent data indicates that this type of studies has also been launched in female rodents. Therefore, conducting research on both sexes allows for a more accurate understanding and assessment of the impact of stress on stress-induced behavioral, peripheral and molecular changes in the body and brain. In this manuscript we have gathered the data from 41 years (from 1981-2022) on the influence of stress on the development of depression and nicotine addiction in both sexes.
Collapse
|
13
|
Shade RD, Ross JA, Van Bockstaele EJ. Targeting the cannabinoid system to counteract the deleterious effects of stress in Alzheimer’s disease. Front Aging Neurosci 2022; 14:949361. [PMID: 36268196 PMCID: PMC9577232 DOI: 10.3389/fnagi.2022.949361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder characterized histologically in postmortem human brains by the presence of dense protein accumulations known as amyloid plaques and tau tangles. Plaques and tangles develop over decades of aberrant protein processing, post-translational modification, and misfolding throughout an individual’s lifetime. We present a foundation of evidence from the literature that suggests chronic stress is associated with increased disease severity in Alzheimer’s patient populations. Taken together with preclinical evidence that chronic stress signaling can precipitate cellular distress, we argue that chronic psychological stress renders select circuits more vulnerable to amyloid- and tau- related abnormalities. We discuss the ongoing investigation of systemic and cellular processes that maintain the integrity of protein homeostasis in health and in degenerative conditions such as Alzheimer’s disease that have revealed multiple potential therapeutic avenues. For example, the endogenous cannabinoid system traverses the central and peripheral neural systems while simultaneously exerting anti-inflammatory influence over the immune response in the brain and throughout the body. Moreover, the cannabinoid system converges on several stress-integrative neuronal circuits and critical regions of the hypothalamic-pituitary-adrenal axis, with the capacity to dampen responses to psychological and cellular stress. Targeting the cannabinoid system by influencing endogenous processes or exogenously stimulating cannabinoid receptors with natural or synthetic cannabis compounds has been identified as a promising route for Alzheimer’s Disease intervention. We build on our foundational framework focusing on the significance of chronic psychological and cellular stress on the development of Alzheimer’s neuropathology by integrating literature on cannabinoid function and dysfunction within Alzheimer’s Disease and conclude with remarks on optimal strategies for treatment potential.
Collapse
Affiliation(s)
- Ronnie D. Shade
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jennifer A. Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
- *Correspondence: Jennifer A. Ross,
| | - Elisabeth J. Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Abdelmeguid NE, Hammad TM, Abdel-Moneim AM, Salam SA. Effect of Epigallocatechin-3-gallate on Stress-Induced Depression in a Mouse Model: Role of Interleukin-1β and Brain-Derived Neurotrophic Factor. Neurochem Res 2022; 47:3464-3475. [PMID: 35939172 PMCID: PMC9546794 DOI: 10.1007/s11064-022-03707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) is a natural polyphenolic antioxidant in green tea leaves with well-known health-promoting properties. However, the influence of EGCG on a chronic animal model of depression remains to be fully investigated, and the details of the molecular and cellular changes are still unclear. Therefore, the present study aimed to investigate the antidepressant effect of EGCG in mice subjected to chronic unpredictable mild stress (CUMS). After eight consecutive weeks of CUMS, the mice were treated with EGCG (200 mg/kg b.w.) by oral gavage for two weeks. A forced swimming test (FST) was used to assess depressive symptoms. EGCG administration significantly alleviated CUMS-induced depression-like behavior in mice. EGCG also effectively decreased serum interleukin-1β (IL-1β) and increased the mRNA expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampal CA3 region of CUMS mice. Furthermore, electron microscopic examination of CA3 neurons in CUMS mice showed morphological features of apoptosis, loss or disruption of the myelin sheath, and degenerating synapses. These neuronal injuries were diminished with the administration of EGCG. The treatment effect of EGCG in CUMS-induced behavioral alterations was comparable with that of clomipramine hydrochloride (Anafranil), a tricyclic antidepressant drug. In conclusion, our study demonstrates that the antidepressive action of EGCG involves downregulation of serum IL-1β, upregulation of BDNF mRNA in the hippocampus, and reduction of CA3 neuronal lesions.
Collapse
Affiliation(s)
- Nabila E Abdelmeguid
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Tasneem M Hammad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.,Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Ashraf M Abdel-Moneim
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
15
|
Hersey M, Reneaux M, Berger SN, Mena S, Buchanan AM, Ou Y, Tavakoli N, Reagan LP, Clopath C, Hashemi P. A tale of two transmitters: serotonin and histamine as in vivo biomarkers of chronic stress in mice. J Neuroinflammation 2022; 19:167. [PMID: 35761344 PMCID: PMC9235270 DOI: 10.1186/s12974-022-02508-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Stress-induced mental illnesses (mediated by neuroinflammation) pose one of the world’s most urgent public health challenges. A reliable in vivo chemical biomarker of stress would significantly improve the clinical communities’ diagnostic and therapeutic approaches to illnesses, such as depression. Methods Male and female C57BL/6J mice underwent a chronic stress paradigm. We paired innovative in vivo serotonin and histamine voltammetric measurement technologies, behavioral testing, and cutting-edge mathematical methods to correlate chemistry to stress and behavior. Results Inflammation-induced increases in hypothalamic histamine were co-measured with decreased in vivo extracellular hippocampal serotonin in mice that underwent a chronic stress paradigm, regardless of behavioral phenotype. In animals with depression phenotypes, correlations were found between serotonin and the extent of behavioral indices of depression. We created a high accuracy algorithm that could predict whether animals had been exposed to stress or not based solely on the serotonin measurement. We next developed a model of serotonin and histamine modulation, which predicted that stress-induced neuroinflammation increases histaminergic activity, serving to inhibit serotonin. Finally, we created a mathematical index of stress, Si and predicted that during chronic stress, where Si is high, simultaneously increasing serotonin and decreasing histamine is the most effective chemical strategy to restoring serotonin to pre-stress levels. When we pursued this idea pharmacologically, our experiments were nearly identical to the model’s predictions. Conclusions This work shines the light on two biomarkers of chronic stress, histamine and serotonin, and implies that both may be important in our future investigations of the pathology and treatment of inflammation-induced depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02508-9.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Melissa Reneaux
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Navid Tavakoli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.,Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. .,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Dandekar MP, Palepu MSK, Satti S, Jaiswal Y, Singh AA, Dash SP, Gajula SNR, Sonti R. Multi-strain Probiotic Formulation Reverses Maternal Separation and Chronic Unpredictable Mild Stress-Generated Anxiety- and Depression-like Phenotypes by Modulating Gut Microbiome-Brain Activity in Rats. ACS Chem Neurosci 2022; 13:1948-1965. [PMID: 35735411 DOI: 10.1021/acschemneuro.2c00143] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Depression is a debilitating mental disorder that affects >322 million people worldwide. Despite the availability of several antidepressant agents, many patients remain treatment refractory. A growing literature study has indicated the role of gut microbiota in neuropsychiatric disorders. Herein, we examined the psychobiotic-like activity of multi-strain probiotic formulation in maternal separation (MS) and chronic unpredictable mild stress (CUMS) models of anxiety- and depression-like phenotypes in Sprague-Dawley rats. Early- and late-life stress was employed in both male and female rats by exposing them to MS and CUMS. The multi-strain probiotic formulation (Cognisol) containing Bacillus coagulans Unique IS-2, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Bifidobacterium lactis UBBLa-70, Bifidobacterium breve UBBr-01, and Bifidobacterium infantis UBBI-01 at a total strength of 10 billion cfu along with l-glutamine was administered for 6 weeks via drinking water. Neurobehavioral assessment was done using the forced swim test (FST), sucrose preference test (SPT), elevated plus maze (EPM), and open field test (OFT). Animals were sacrificed after behavioral assessment, and blood, brain, and intestine samples were collected to analyze the levels of cytokines, metabolites, and neurotransmitters and histology. Animals exposed to stress showed increased passivity, consumed less sucrose solution, and minimally explored the open arms in the FST, SPT, and EPM, respectively. Administration of multi-strain probiotics along with l-glutamine for 6 weeks ameliorated the behavioral abnormalities. The locomotor activity of animals in the OFT and their body weight remained unchanged across the groups. Cognisol treatment reversed the decreased BDNF and serotonin levels and increased CRP, TNF-α, and dopamine levels in the hippocampus and/or frontal cortex. Administration of Cognisol also restored the plasma levels of l-tryptophan, l-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid; the Firmicutes-to-Bacteroides ratio; the levels of acetate, propionate, and butyrate in fecal samples; the villi/crypt ratio; and the goblet cell count, which manifested in the restoration of intestinal functions. We suggest that the multi-strain probiotic and glutamine formulation (Cognisol) ameliorated the MS + UCMS-generated anxiety- and depression-like phenotypes by reshaping the gut microbiome-brain activity in both sexes.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srilakshmi Satti
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Yash Jaiswal
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Aditya A Singh
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Surya Prakash Dash
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
17
|
Chronic clomipramine treatment increases hippocampal volume in rats exposed to chronic unpredictable mild stress. Transl Psychiatry 2022; 12:245. [PMID: 35688836 PMCID: PMC9187713 DOI: 10.1038/s41398-022-02006-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
It is well known that neuroinflammation is closely related to the pathophysiology of depression. Due to individual differences in clinical research, the reduction of hippocampal volume in patients with depression is still controversial. In this experiment, we studied a typical kind of tricyclic antidepressant, clomipramine. We designed a series of experiments to find its role in depressive-like behavior, hippocampal neuroinflammation as well as hippocampal volume changes induced by chronic unpredictable mild stress (CMS). Rats exhibited defective behavior and hippocampal neuroinflammation after 12 weeks of CMS, which included elevated expression of cleaved interleukin-1β (IL-1β) and NLRP3 inflammasome together with the activation of microglia. Rats exposed to CMS showed weakened behavioral defects, reduced expression of IL-18, IL-6, and IL-1β along with reversed activation of microglia after clomipramine treatment. This indicates that the antidepressant effect of clomipramine may be related to the reduced expression of NLRP3 inflammasome and cleaved IL-1β. Moreover, we found an increased hippocampal volume in rats exposed to CMS after clomipramine treatment while CMS failed to affect hippocampal volume. All these results indicate that the NLRP3 inflammasome of microglia in the hippocampus is related to the antidepressant effects of clomipramine and CMS-induced depressive-like behavior in rats.
Collapse
|
18
|
Neuroprotective effects of dimethyl fumarate against depression-like behaviors via astrocytes and microglia modulation in mice: possible involvement of the HCAR2/Nrf2 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1029-1045. [PMID: 35665831 DOI: 10.1007/s00210-022-02247-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iβ by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iβ expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.
Collapse
|
19
|
Pereira M, Siba IP, Acco A, Correia D, Lapa FR, Santos ARS, Ruani AP, Pizzolatti MG, Andreatini R. Myricitrin exhibits antidepressant-like effects and reduces IL-6 hippocampal levels in the chronic mild stress model. Behav Brain Res 2022; 429:113905. [PMID: 35490774 DOI: 10.1016/j.bbr.2022.113905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
The flavonoid myricitrin showed an antidepressant-like effect in the tail suspension test and increased hippocampal neurogenesis, as well as demonstrating anti-inflammatory effects. Interestingly, inflammation has been linked to depression, and anti-inflammatory drugs showed promising results as antidepressant-like drugs. Thus, the present study evaluated the effects of myricitrin in the chronic mild stress (CMS) model, a translational and valid animal model of depression, using the mini-experiment design to improve the reproducibility of the findings. The sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) were the readouts of depressive-like phenotypes induced by CMS. Relative adrenal weight was employed as an index of the hypothalamus-pituitary-adrenal (HPA) axis activation. Interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha levels were measured in the hippocampus. Myricitrin (10 mg/kg, intraperitoneally, for 14 days) reversed depressive-like behaviors induced by CMS (increased immobility in the FST, the TST and anhedonia), as well as decreased adrenal hypertrophy and hippocampal levels of IL-6 in stressed mice. Similar results were observed by imipramine (20 mg/kg, intraperitoneally, for 14 days), a serotonin and norepinephrine reuptake inhibitor (positive control). A significant correlation was observed between immobility time in the TST, and hippocampal IL-6 levels. Hippocampal TNF-α levels were not affected by CMS or drug treatment. In conclusion, myricitrin exhibited an antidepressant-like profile in CMS, and this effect may be associated with its anti-inflammatory activity.
Collapse
Affiliation(s)
- Marcela Pereira
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil
| | - Isadora P Siba
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil
| | - Alexandra Acco
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil
| | - Diego Correia
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil
| | - Fernanda R Lapa
- Federal University of Santa Catarina, Laboratory of Neurobiology of Pain and Inflammation, Physiological Sciences Department, Santa Catarina, Brazil
| | - Adair R S Santos
- Federal University of Santa Catarina, Laboratory of Neurobiology of Pain and Inflammation, Physiological Sciences Department, Santa Catarina, Brazil
| | - Ana P Ruani
- Federal University of Santa Catarina, Chemistry Department, Santa Catarina, Brazil
| | - Moacir G Pizzolatti
- Federal University of Santa Catarina, Chemistry Department, Santa Catarina, Brazil
| | - Roberto Andreatini
- Federal University of Paraná, Pharmacology Department, Curitiba, Brazil.
| |
Collapse
|
20
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
21
|
Dopamine D3 receptor in the nucleus accumbens alleviates neuroinflammation in a mouse model of depressive-like behavior. Brain Behav Immun 2022; 101:165-179. [PMID: 34971757 DOI: 10.1016/j.bbi.2021.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
We recently reported that dopamine D3 receptor (D3R) was involved in inflammation-related depression. Nucleus accumbens (NAc) inflammation is implicated in the development and progression of depression, but its regulatory mechanism remains largely unknown. In a mouse model of NAc neuroinflammation induced by bilateral NAc injection of lipopolysaccharide (LPS), we observed that NAc neuroinflammation triggered depressive-like behaviors, and D3R expression decline and microglial activation in the NAc. A selective knockdown of D3R in the NAc elicited depressive-like behaviors, while re-expression of D3R in the NAc of global D3RKO mice alleviated depressive-like behaviors induced by D3R deficiency. D3R downregulation in the NAc shifted microglia toward a proinflammatory state, which was validated with cultured mouse microglial cultures. Further in vitro results demonstrated that D3R inhibition induced microglia to enter a proinflammatory state primarily through the Akt signaling pathway. In conclusion, our results suggest that D3R expression in the NAc may inhibit microglial proinflammatory responses in the NAc, thus alleviating NAc neuroinflammation and subsequent depressive-like behaviors through the Akt signaling pathway.
Collapse
|
22
|
Nazir S, Farooq RK, Nasir S, Hanif R, Javed A. Therapeutic effect of Thymoquinone on behavioural response to UCMS and neuroinflammation in hippocampus and amygdala in BALB/c mice model. Psychopharmacology (Berl) 2022; 239:47-58. [PMID: 35029704 DOI: 10.1007/s00213-021-06038-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE Major depressive disorder is the leading cause of disability worldwide. The corticolimbic system plays a critical role in the emotional and cognitive aspects of major depressive disorder. Owing to the unsatisfactory efficacy of conventional antidepressants, there is a need to explore novel therapies. OBJECTIVES The current study aimed to explore the antidepressant potential of thymoquinone, a natural compound with anti-inflammatory activity, and propose its underlying mechanism of action in the unpredictable chronic mild stress (UCMS) mouse model. METHODS Coat state, forced swim test, elevated plus maze test, novelty suppressed feeding test and social interaction test were performed to quantify the behavioural shift induced by UCMS and the effect of thymoquinone and fluoxetine treatment. In addition, messenger RNA (mRNA) expression levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and BDNF and NeuN were analysed by a quantitative real-time polymerase chain reaction in the hippocampus and amygdala of experimental and control groups. RESULTS UCMS significantly deteriorated coat state. Thymoquinone reinstated the resignation behaviour and latency to feed affected by UCMS. UCMS induced an increase in inflammatory cytokines (IL-1β, IL-6 and TNF-α) in the hippocampus and amygdala, which was decreased by thymoquinone. UCMS caused an increase in BDNF and NeuN mRNA levels in the amygdala while a decrease in the hippocampus. This opposite effect on BDNF was also compensated by thymoquinone; however, thymoquinone did not significantly change Ki67 and NeuN mRNA levels in the hippocampus. CONCLUSIONS Thymoquinone restored the behavioural changes induced by UCMS. In addition, the antidepressant effect of thymoquinone is in line with changes in inflammatory parameters and changes in BDNF in the hippocampus and amygdala.
Collapse
Affiliation(s)
- Sadia Nazir
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sadia Nasir
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Rumeza Hanif
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Aneela Javed
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan.
| |
Collapse
|
23
|
Morcuende A, García-Gutiérrez MS, Tambaro S, Nieto E, Manzanares J, Femenia T. Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders. Front Psychiatry 2022; 13:866052. [PMID: 35492718 PMCID: PMC9051035 DOI: 10.3389/fpsyt.2022.866052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Emotional behavior, memory, and learning have been associated with alterations in the immune system in neuropsychiatric and neurodegenerative diseases. In recent years, several studies pointed out the involvement of the cannabinoid receptor 2 (CB2r) in the immune system and the regulation of inflammation. This receptor is widely distributed in different tissues and organs with higher expression in spleen and immune system cells. However, CB2r has also been detected in several brain areas and different brain cell types, such as neurons and glia. These findings suggest that CB2r may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions. Therefore, we review the studies that may help elucidate the molecular bases of CB2r in regulating inflammation in different brain cells and its role in the pathophysiology of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Simone Tambaro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Nieto
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Teresa Femenia
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain
| |
Collapse
|
24
|
A new experimental design to study inflammation-related versus non-inflammation-related depression in mice. J Neuroinflammation 2021; 18:290. [PMID: 34895261 PMCID: PMC8666053 DOI: 10.1186/s12974-021-02330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Major depressive disorder (MDD) represents a major public health concern, particularly due to its steadily rising prevalence and the poor responsiveness to standard antidepressants notably in patients afflicted with chronic inflammatory conditions, such as obesity. This highlights the need to improve current therapeutic strategies, including by targeting inflammation based on its role in the pathophysiology and treatment responsiveness of MDD. Nevertheless, dissecting the relative contribution of inflammation in the development and treatment of MDD remains a major issue, further complicated by the lack of preclinical depression models suitable to experimentally dissociate inflammation-related vs. inflammation-unrelated depression. Methods While current models usually focus on one particular MDD risk factor, we compared in male C57BL/6J mice the behavioral, inflammatory and neurobiological impact of chronic exposure to high-fat diet (HFD), a procedure known to induce inflammation-related depressive-like behaviors, and unpredictable chronic mild stress (UCMS), a stress-induced depression model notably renowned for its responsivity to antidepressants. Results While both paradigms induced neurovegetative, depressive-like and anxiety-like behaviors, inflammation and downstream neurobiological pathways contributing to inflammation-driven depression were specifically activated in HFD mice, as revealed by increased circulating levels of inflammatory factors, as well as brain expression of microglial activation markers and enzymes from the kynurenine and tetrahydrobiopterin (BH4) pathways. In addition, serotoninergic and dopaminergic systems were differentially impacted, depending on the experimental condition. Conclusions These data validate an experimental design suitable to deeply study the mechanisms underlying inflammation-driven depression comparatively to non-inflammatory depression. This design could help to better understand the pathophysiology of treatment resistant depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02330-9.
Collapse
|
25
|
Microglia react to partner loss in a sex- and brain site-specific manner in prairie voles. Brain Behav Immun 2021; 96:168-186. [PMID: 34058309 PMCID: PMC8319132 DOI: 10.1016/j.bbi.2021.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Positive social relationships are paramount for the survival of mammals and beneficial for mental and physical health, buffer against stressors, and even promote appropriate immune system functioning. By contrast, impaired social relationships, social isolation, or the loss of a bonded partner lead to aggravated physical and mental health. For example, in humans partner loss is detrimental for the functioning of the immune system and heightens the susceptibility for the development of post-traumatic stress disorders, anxiety disorders, and major depressive disorders. To understand potential underlying mechanisms, the monogamous prairie vole can provide important insights. In the present study, we separated pair bonded male and female prairie voles after five days of co-housing, subjected them to the forced swim test on the fourth day following separation, and studied their microglia morphology and activation in specific brain regions. Partner loss increased passive stress-coping in male, but not female, prairie voles. Moreover, partner loss was associated with microglial priming within the parvocellular region of the paraventricular nucleus of the hypothalamus (PVN) in male prairie voles, whereas in female prairie voles the morphological activation within the whole PVN and the prelimbic cortex (PrL) was decreased, marked by a shift towards ramified microglial morphology. Expression of the immediate early protein c-Fos following partner loss was changed within the PrL of male, but not female, prairie voles. However, the loss of a partner did not affect the investigated aspects of the peripheral immune response. These data suggest a potential sex-dependent mechanism for the regulation of microglial activity following the loss of a partner, which might contribute to the observed differences in passive stress-coping. This study furthers our understanding of the effects of partner loss and its short-term impact on the CNS as well as the CNS immune system and the peripheral innate immune system in both male and female prairie voles.
Collapse
|
26
|
Hashiesh HM, Jha NK, Sharma C, Gupta PK, Jha SK, Patil CR, Goyal SN, Ojha SK. Pharmacological potential of JWH133, a cannabinoid type 2 receptor agonist in neurodegenerative, neurodevelopmental and neuropsychiatric diseases. Eur J Pharmacol 2021; 909:174398. [PMID: 34332924 DOI: 10.1016/j.ejphar.2021.174398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The pharmacological activation of cannabinoid type 2 receptors (CB2R) gained attention due to its ability to mitigate neuroinflammatory events without eliciting psychotropic actions, a limiting factor for the drugs targeting cannabinoid type 1 receptors (CB1R). Therefore, ligands activating CB2R are receiving enormous importance for therapeutic targeting in numerous neurological diseases including neurodegenerative, neuropsychiatric and neurodevelopmental disorders as well as traumatic injuries and neuropathic pain where neuroinflammation is a common accompaniment. Since the characterization of CB2R, many CB2R selective synthetic ligands have been developed with high selectivity and functional activity. Among numerous ligands, JWH133 has been found one of the compounds with high selectivity for CB2R. JWH133 has been reported to exhibit numerous pharmacological activities including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory. Recent studies have shown that JWH133 possesses potent neuroprotective properties in several neurological disorders, including neuropathic pain, anxiety, epilepsy, depression, alcoholism, psychosis, stroke, and neurodegeneration. Additionally, JWH133 showed to protect neurons from oxidative damage and inflammation, promote neuronal survival and neurogenesis, and serve as an immunomodulatory agent. The present review comprehensively examined neuropharmacological activities of JWH133 in neurological disorders including neurodegenerative, neurodevelopmental and neuropsychiatric using synoptic tables and elucidated pharmacological mechanisms based on reported observations. Considering the cumulative data, JWH133 appears to be a promising CB2R agonist molecule for further evaluation and it can be a prototype agent in drug discovery and development for a unique class of agents in neurotherapeutics. Further, regulatory toxicology and pharmacokinetic studies are required to determine safety and proceed for clinical evaluation.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, New Delhi, 110017, India
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
27
|
Fan Y, Bi Y, Chen H. Salidroside Improves Chronic Stress Induced Depressive Symptoms Through Microglial Activation Suppression. Front Pharmacol 2021; 12:635762. [PMID: 34168556 PMCID: PMC8217647 DOI: 10.3389/fphar.2021.635762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
Depression is a severe neurological disorder highly associated with chronic mental stress stimulation, which involves chronic inflammation and microglial activation in the central nervous system (CNS). Salidroside (SLDS) has been reported to exhibit anti-neuroinflammatory and protective properties on neurological diseases. However, the mechanism underlying the effect of SLDS on depressive symptoms has not been well elaborated. In the present study, the effects of SLDS on depressive behaviors and microglia activation in mice CNS were investigated. Behavioral tests, including Forced swimming test (FST), Open field test (OFT) and Morris water maze (MWM) revealed that SLDS treatment attenuated the depressive behaviors in stress mice. SLDS treatment significantly reduced the microglial immunoreactivity for both Iba-1 and CD68, characteristic of deleterious M1 phenotype in hippocampus of stress mice. Additionally, SLDS inhibited microglial activation involving the suppression of ERK1/2, P38 MAPK and p65 NF-κB activation and thus reduced the expression and release of neuroinflammatory cytokines in stress mice as well as in lipopolysaccharide (LPS)-induced primary microglia. Also, SLDS changed microglial morphology, attachment and reduced the phagocytic ability in LPS-induced primary microglia. The results demonstrated that SLDS treatment could improve the depressive symptoms caused by unpredictable chronic stress, indicating a potential therapeutic application of SLDS in depression treatment by interfering microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Haixia Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Asslih S, Damri O, Agam G. Neuroinflammation as a Common Denominator of Complex Diseases (Cancer, Diabetes Type 2, and Neuropsychiatric Disorders). Int J Mol Sci 2021; 22:ijms22116138. [PMID: 34200240 PMCID: PMC8201050 DOI: 10.3390/ijms22116138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
The term neuroinflammation refers to inflammation of the nervous tissue, in general, and in the central nervous system (CNS), in particular. It is a driver of neurotoxicity, it is detrimental, and implies that glial cell activation happens prior to neuronal degeneration and, possibly, even causes it. The inflammation-like glial responses may be initiated in response to a variety of cues such as infection, traumatic brain injury, toxic metabolites, or autoimmunity. The inflammatory response of activated microglia engages the immune system and initiates tissue repair. Through translational research the role played by neuroinflammation has been acknowledged in different disease entities. Intriguingly, these entities include both those directly related to the CNS (commonly designated neuropsychiatric disorders) and those not directly related to the CNS (e.g., cancer and diabetes type 2). Interestingly, all the above-mentioned entities belong to the same group of "complex disorders". This review aims to summarize cumulated data supporting the hypothesis that neuroinflammation is a common denominator of a wide variety of complex diseases. We will concentrate on cancer, type 2 diabetes (T2DM), and neuropsychiatric disorders (focusing on mood disorders).
Collapse
|
29
|
Albrecht DS, Kim M, Akeju O, Torrado-Carvajal A, Edwards RR, Zhang Y, Bergan C, Protsenko E, Kucyi A, Wasan AD, Hooker JM, Napadow V, Loggia ML. The neuroinflammatory component of negative affect in patients with chronic pain. Mol Psychiatry 2021; 26:864-874. [PMID: 31138890 PMCID: PMC7001732 DOI: 10.1038/s41380-019-0433-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 01/29/2023]
Abstract
Negative affect (NA) is a significant cause of disability for chronic pain patients. While little is known about the mechanism underlying pain-comorbid NA, previous studies have implicated neuroinflammation in the pathophysiology of both depression and chronic pain. Here, we tested the hypothesis that NA in pain patients is linked to elevations in the brain levels of the glial marker 18 kDa translocator protein (TSPO), and changes in functional connectivity. 25 cLBP patients (42.4 ± 13 years old; 13F, 12M) with chronic low back pain (cLBP) and 27 healthy control subjects (48.9 ± 13 years old; 14F, 13M) received an integrated (i.e., simultaneous) positron emission tomography (PET)/magnetic resonance imaging (MRI) brain scan with the second-generation TSPO ligand [11C]PBR28. The relationship between [11C]PBR28 signal and NA was assessed first with regression analyses against Beck Depression Inventory (BDI) scores in patients, and then by comparing cLBP patients with little-to-no, or mild-to-moderate depression against healthy controls. Further, the relationship between PET signal, BDI and frontolimbic functional connectivity was evaluated in patients with mediation models. PET signal was positively associated with BDI scores in patients, and significantly elevated in patients with mild-to-moderate (but not low) depression compared with controls, in anterior middle and pregenual anterior cingulate cortices (aMCC, pgACC). In the pgACC, PET signal was also associated with this region's functional connectivity to the dorsolateral PFC (pgACC-dlPFC), and mediated of the association between pgACC-dlPFC connectivity and BDI. These observations support a role for glial activation in pain-comorbid NA, identifying in neuroinflammation a potential therapeutic target for this condition.
Collapse
Affiliation(s)
- DS Albrecht
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - M Kim
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - O Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, MGH / HMS, Boston, MA
| | - A Torrado-Carvajal
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - RR Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, HMS, Boston, MA
| | - Y Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, MGH / HMS, Boston, MA
| | - C Bergan
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - E Protsenko
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - A Kucyi
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA,Department of Neurology, Stanford University Medical Center, Stanford, CA
| | - AD Wasan
- Departments of Anesthesiology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - JM Hooker
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - V Napadow
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, HMS, Boston, MA
| | - ML Loggia
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA,Corresponding author, lead contact: Marco L. Loggia, PhD, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Room 2301, Charlestown, MA 02129,
| |
Collapse
|
30
|
Roohi E, Jaafari N, Hashemian F. On inflammatory hypothesis of depression: what is the role of IL-6 in the middle of the chaos? J Neuroinflammation 2021; 18:45. [PMID: 33593388 PMCID: PMC7884972 DOI: 10.1186/s12974-021-02100-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Many patients with major depressive disorder (MDD) are reported to have higher levels of multiple inflammatory cytokines including interleukin 6 (IL-6). Recent studies both pre-clinical and clinical have advocated for the functional role of IL-6 in development of MDD and suggested a great potential for targeting this cytokine to open new avenues in pharmacotherapy of depression. The purpose of the present narrative review was to provide an integrated account of how IL-6 may contribute to development of depression. All peer-reviewed journal articles published before July 2020 for each area discussed were searched by WOS, PubMed, MEDLINE, Scopus, Google Scholar, for original research, review articles, and book chapters. Publications between 1980 and July 2020 were included. Alterations in IL-6 levels, both within the periphery and the brain, most probably contribute to depression symptomatology in numerous ways. As IL-6 acts on multiple differing target tissues throughout the body, dysregulation of this particular cytokine can precipitate a multitude of events relevant to depression and blocking its effects can prevent further escalation of inflammatory responses, and potentially pave the way for opening new avenues in diagnosis, treatment, and prevention of this debilitating disorder.
Collapse
Affiliation(s)
- Elnaz Roohi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran
| | - Nematollah Jaafari
- Université de Poitiers, Unité de recherche clinique intersectorielle Pierre Deniker du Centre Hospitalier Henri Laborit F-86022 France, Groupement De Recherche CNRS 3557, Poitiers, France
| | - Farshad Hashemian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran.
| |
Collapse
|
31
|
Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, Thuret S, Pariante CM. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 2021; 91:24-47. [PMID: 32755644 DOI: 10.1016/j.bbi.2020.07.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
Unpredictable chronic mild stress (UCMS) is one of the most commonly used, robust and translatable models for studying the neurobiological basis of major depression. Although the model currently has multiple advantages, it does not entirely follow the trajectory of the disorder, whereby depressive symptomology can often present months after exposure to stress. Furthermore, patients with depression are more likely to withdraw in response to their stressful experience, or as a symptom of their depression, and, in turn, this withdrawal/isolation can further exacerbate the stressful experience and the depressive symptomology. Therefore, we investigated the effect(s) of 6 weeks of UCMS followed by another 6 weeks of social isolation (referred to as UCMSI), on behaviour, corticosterone stress responsivity, immune system functioning, and hippocampal neurogenesis, in young adult male mice. We found that UCMSI induced several behavioural changes resembling depression but did not induce peripheral inflammation. However, UCMSI animals showed increased microglial activation in the ventral dentate gyrus (DG) of the hippocampus and astrocyte activation in both the dorsal and ventral DG, with increased GFAP-positive cell immunoreactivity, GFAP-positive cell hypertrophy and process extension, and increased s100β-positive cell density. Moreover, UCMSI animals had significantly reduced neurogenesis in the DG and reduced levels of peripheral vascular endothelial growth factor (VEGF) - a trophic factor produced by astrocytes and that stimulates neurogenesis. Finally, UCMSI mice also had normal baseline corticosterone levels but a smaller increase in corticosterone following acute stress, that is, the Porsolt Swim Test. Our work gives clinically relevant insights into the role that microglial and astrocyte functioning, and hippocampal neurogenesis may play in the context of stress, social isolation and depression, offering a potentially new avenue for therapeutic target.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Diletta Onorato
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Inez Eiben
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Martin Egeland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
32
|
Zhu HX, Cheng LJ, Ou Yang RW, Li YY, Liu J, Dai D, Wang W, Yang N, Li Y. Reduced Amygdala Microglial Expression of Brain-Derived Neurotrophic Factor and Tyrosine Kinase Receptor B (TrkB) in a Rat Model of Poststroke Depression. Med Sci Monit 2020; 26:e926323. [PMID: 33206632 PMCID: PMC7682116 DOI: 10.12659/msm.926323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies have implicated reduced brain-derived neurotrophic factor (BDNF) expression and BDNF-TrkB receptor signaling as well as microglial activation and neuroinflammation in poststroke depression (PSD). However, the contributions of microglial BDNF-TrkB signaling to PSD pathogenesis are unclear. Material/Methods We compared depression-like behaviors as well as neuronal and microglial BDNF and TrkB expression levels in the amygdala, a critical mood-relating limbic structure, in rat models of stroke, depression, and PSD. Depression-like behaviors were assessed using the sucrose preference test, open-field test, and weight measurements, while immunofluorescence double staining was employed to estimate BDNF and TrkB expression by CD11b-positive amygdala microglia and NeuN-positive amygdala neuron. Another group of PSD model rats were examined following daily intracerebroventricular injection of proBDNF, tissue plasminogen activator (t-PA), or normal saline (NS) for 7 days starting 4 weeks after chronic unpredictable mild stress (CUMS). Results The numbers of BDNF/CD11b- and TrkB/CD11b-immunofluorescence-positive cells were lowest in the PSD group at 4 and 8 weeks after CUMS (P<0.05). PSD rats also showed reduced weight, sucrose preference, locomotion, and rearing compared with controls (P<0.05). The coexpression of BDNF/NeuN- and TrkB/NeuN-positive cells were not significantly different between groups at 4 and 8 weeks after CUMS (P>0.05). Injection of t-PA increased BDNF/CD11b- and TrkB/CD11b-positive cells in the amygdala of PSD rats and normalized behavior compared with NS or proBDNF injection (P<0.05). In contrast, proBDNF injection reduced BDNF and TrkB expression compared with NS (P<0.05). Conclusions These results suggest that decreased BDNF and TrkB expression by amygdala microglia may contribute to PSD pathogenesis and depression-like behaviors.
Collapse
Affiliation(s)
- Han-Xiao Zhu
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Li-Jing Cheng
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Ri-Wei Ou Yang
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Yang-Yang Li
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Jian Liu
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Dan Dai
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Wei Wang
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Ning Yang
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China (mainland)
| |
Collapse
|
33
|
Wu SJ, Chang CY, Lai YT, Shyu YT. Increasing γ-Aminobutyric Acid Content in Vegetable Soybeans via High-Pressure Processing and Efficacy of Their Antidepressant-Like Activity in Mice. Foods 2020; 9:E1673. [PMID: 33207592 PMCID: PMC7696959 DOI: 10.3390/foods9111673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
This study applied high-pressure processing (HPP) technology to enrich the gamma aminobutyric acid (GABA) content in vegetable soybeans and evaluated its antidepressant efficacy on mice, with depression induced by the unpredictable chronic mild stress (UCMS) model. The optimal conditions for HPP, storage time, and storage temperature, as well as antidepressant-like effects of vegetable soybeans, were evaluated and discussed. HPP could effectively and significantly increase GABA content in soybean, with optimum conditions at 200 MPa. The GABA content in the whole vegetable soybean was 436.05 mg/100 g. In mice animal tests, the tail suspension test (TST) showed that the immobility time of the GABA group was significantly shorter than that of the control group. The total travel distance in the open field test (OFT) showed that depressed mice fed with the GABA feed exhibited exploratory behavior. The GABA group showed a significantly higher degree of sucrose preference than the control group. Both results indicate that the GABA feed could effectively alleviate depressive symptomatology. Regarding biochemical parameters, the fecal and serum corticosterone (CORT) levels in the control group increased to 104.86 pg/mg after the onset of depression. In contrast, the fecal CORT level in the GABA group was significantly reduced to 23.98 pg/mg and was comparable to that in the control group (33.38 pg/mg). Reduced serum CORT level in the GABA group suggests an improvement in depressive symptomatology. The serotonin concentration was maintained in the GABA group after the induction of depression, suggesting its preventive activity. The HPP GABA-enriched soybeans exerted modulatory effects on the behaviors of depressed mice and displayed a potential for commercialization.
Collapse
Affiliation(s)
| | | | | | - Yuan-Tay Shyu
- Department of Horticulture and Landscape Architecture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; (S.-J.W.); (C.-Y.C.); (Y.-T.L.)
| |
Collapse
|
34
|
Berk A, Yılmaz İ, Abacıoğlu N, Kaymaz MB, Karaaslan MG, Kuyumcu Savan E. Antidepressant effect of Gentiana olivieri Griseb. in male rats exposed to chronic mild stress. Libyan J Med 2020; 15:1725991. [PMID: 32048914 PMCID: PMC7034455 DOI: 10.1080/19932820.2020.1725991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: The flowering parts of Gentiana olivieri, known as ‘Afat’ in the southeastern Anatolia region of Turkey, are used as a tonic, an appetizer, and for the treatment of several mental disorders, including depression. The purpose of this study is to investigate the antidepressant effect of G. olivieri ethanol extract (GOEE) in a chronic mild stress-induced rat model, which was used to mimic a depressive state in humans, and to compare the effect with that of imipramine. Methods: Male Sprague-Dawley rats were randomly divided into six groups: control, stress, treated with imipramine (positive control) and treated with GOEE at three different (200, 500, 1000 mg/kg) doses groups. The rats in all groups, except the control group, were exposed to chronic mild stress. At the end of the 3-week experimental period, biochemical and behavioral parameters were examined. Results: The results showed that treatment with GOEE or imipramine significantly improved rats’ sucrose consumption which was diminished by chronic mild stress, restored serum levels of corticosterone and proinflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)), prevented the increase of liver index of rats. Moreover, in the hippocampus tissue, decreased serotonin and noradrenaline levels were significantly increased by treatment with GOEE or imipramine, and antioxidant parameters (thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and glutathione (GSH)) were significantly improved by treatment with GOEE though not with imipramine. Conclusion: The data demonstrate that G. olivieri may exert its antidepressant activity by improving monoaminergic system disorders, and by favorably affecting the antioxidant, inflammatory and the endocrine mechanisms.
Collapse
Affiliation(s)
- Ahmet Berk
- Department of Pharmacy, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - İsmet Yılmaz
- Department of Pharmacology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Nurettin Abacıoğlu
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Mersin, Turkey
| | | | | | - Ebru Kuyumcu Savan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| |
Collapse
|
35
|
Zavvari F, Nahavandi A. Fluoxetine increases hippocampal neural survival by improving axonal transport in stress-induced model of depression male rats. Physiol Behav 2020; 227:113140. [PMID: 32828030 DOI: 10.1016/j.physbeh.2020.113140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Axonal transport deficit is a key mechanism involved in neurodegenerative conditions. Fluoxetine, a commonly used antidepressant for treatment of depression, is known to regulate several important structural and neurochemical aspects of hippocampal functions. However, the mechanisms underlying these effects are still poorly understood. This study aimed to investigate the effects of chronic fluoxetine treatment on axonal transport in the hippocampus of rat stress-induced model of depression. METHODS We have analyzed the effects of chronic fluoxetine treatment (20 mg/kg/day, 24 days) on immobility behavior (forced swimming test), hippocampal iNOS (inflammatory factor) expression (RT-PCR) as well as hippocampal BDNF, kinesin and dynein expression (RT-PCR) and hippocampal neuronal survival (Nissl staining). RESULTS This study provided evidence that fluoxetine could effectively suppress iNOS expression following unpredictable chronic mild stress (P < 0.01), increase hippocampal BDNF (P < 0.01), kinesin (P < 0.05) and dynein (P < 0.01) gene expression, and control neuronal death in CA1 (P < 0.01) and CA3 regions (P < 0.01) of the hippocampus and thereby improve immobility behavior (P < 0.001). CONCLUSION Based on the findings of this study, we concluded the neuroprotective effect of fluoxetine may be due to its ability to improve axonal transmission, followed by increased energy supply and neurotrophin concentration and function.
Collapse
Affiliation(s)
- Fahime Zavvari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Arezo Nahavandi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
36
|
Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Mol Neurobiol 2020; 57:4825-4844. [PMID: 32803490 DOI: 10.1007/s12035-020-02066-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is the primary response by immune cells in the nervous system to protect against infection. Chronic and uncontrolled neuroinflammation triggers neuronal injury and neuronal death resulting in a variety of neurodegenerative disorders. Therefore, fine tuning of the immune response in the nervous system is now extensively considered as a potential therapeutic intervention for those diseases. The immune cells of the nervous system express Toll-like receptor 4 (TLR4) together with myeloid differentiation factor 2 (MD-2) to protect against the pathogens. Over the last 10 years, antagonists targeting the functional domains of MD-2 have become attractive pharmacological intervention strategies in pre-clinical studies into neuroinflammation and its associated brain pathologies. This review aims to summarize and discuss the roles of TLR4-MD-2 signaling pathway activation in various models of neuroinflammation. This review article also highlights the studies reporting the effect of MD-2 antagonists on neuroinflammation in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
37
|
Nazir S, Farooq RK, Khan H, Alam T, Javed A. Thymoquinone harbors protection against Concanavalin A-induced behavior deficit in BALB/c mice model. J Food Biochem 2020; 45:e13348. [PMID: 32618005 DOI: 10.1111/jfbc.13348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 01/23/2023]
Abstract
Global health estimates indicated approximately 322 million people living with depression. Rising cost of depressive illness treatment and non-responsiveness to existing therapies demand continued research to explore new and more potent therapies. Exploring the potential of natural compounds for their potent antidepressant potentials is becoming topic of interest for scientists. Anti-inflammatory activity of thymoquinone, the active ingredient of Nigella sativa, has been well documented. Current study tested thymoquinone for its antidepressant effect in a Concanavalin A (Con A)-induced depressive-like behavior in BALB/c mice. Thymoquinone successfully protected against Con A-induced behavioral despair and anxiety-like behavior. Reduced grooming behavior as a function of Con A treatment, was also reinstated. Underlying mechanism responsible for antidepressant activity of thymoquinone was analyzed by molecular docking. Thymoquinone interacts in halogen-binding pocket (HBP) of serotonin reuptake transporter indicating its potential as serotonin reuptake inhibitor. Results of current study anticipate thymoquinone as a potential antidepressant drug candidate. PRACTICAL APPLICATIONS: Black seeds of Nigella sativa are consumed with traditional and religious reference since centuries. Thymoquinone, active, and abundant component of Nigella sativa, has shown positive effects in multiple studies against arthritis, asthma, hepatic injury, neurodegeneration, and cancer owing to its immunomodulatory and anti-inflammatory attributes. Considering inflammation as one of central components involved in pathophysiology of major depressive disorder, thymoquinone has been evaluated in current study for its antidepressant potential. Positive results of current study propose thymoquinone as an affordable, natural antidepressant drug candidate with better safety profile than currently available antidepressant regimes. Thymoquinone might provide benefits against inflammation-related sickness behavior that is associated with poorer outcome of clinical depression, thus, paving the way for effective drug development against treatment-resistant depression.
Collapse
Affiliation(s)
- Sadia Nazir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hina Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tahseen Alam
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
38
|
Wang W, Qin X, Wang R, Xu J, Wu H, Khalid A, Jiang H, Liu D, Pan F. EZH2 is involved in vulnerability to neuroinflammation and depression-like behaviors induced by chronic stress in different aged mice. J Affect Disord 2020; 272:452-464. [PMID: 32553389 DOI: 10.1016/j.jad.2020.03.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/15/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Microglial activation and pro-inflammatory cytokines expression is closely related to pathogenesis of depression. Aging is a known risk factor for neuroinflammation in the central nervous system and subsequent behavioral impairment. Enhancer of zeste homolog 2 (EZH2), a methyltransferase of histone H3 lysine 27 which regulates microglial activation, plays a crucial role in proinflammatory cytokines expression. However, whether the EZH2 is involved in susceptibility to depression in different ages remains elusive. METHODS Young and aged C57BL/6 mice were exposed to chronic unpredictable mild stress for three weeks. Depression- and anxiety-like behaviors, spatial memory impairment, and the expression of pro-inflammatory cytokines, P-p65, EZH2, H3K27me3 and SOCS3 in the prefrontal cortex and hippocampus were measured using an established behavioral battery, ELISA, immunohistochemistry and western blotting techniques. Moreover, EPZ-6438, an inhibitor of EZH2, was utilized to detect the role of EZH2 in neuroinflammation and behavioral abnormalities. RESULTS CUMS induced depression-like behaviors and spatial memory impairment, elevated levels of proinflammatory cytokines and P-p65, enhanced M1 microglia activation, and increased levels of EZH2, H3K27me3 and SOCS3 in the prefrontal cortex and hippocampus in young and aged mice. Both unstressed and stressed aged mice displayed attention-deficit behavioral outcomes, alteration of protein levels compared with young mice. However, inhibition of EZH2 could relieve most of behavioral and molecular alterations. LIMITATIONS A relative small sample size is a limitation. CONCLUSIONS EZH2 might be involved in susceptibility to neuroinflammation and depression-like behaviors in different aged mice.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaqing Qin
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Xu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huiran Wu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Arslan Khalid
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong Jiang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
39
|
Kiarash Fekri, Nayebi AM, Sadigh-Eteghad S, Farajdokht F, Mahmoudi J. The Neurochemical Changes Involved in Immobilization Stress-Induced Anxiety and Depression: Roles for Oxidative Stress and Neuroinflammation. NEUROCHEM J+ 2020. [DOI: 10.1134/s181971242002004x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Emmerzaal TL, Preston G, Geenen B, Verweij V, Wiesmann M, Vasileiou E, Grüter F, de Groot C, Schoorl J, de Veer R, Roelofs M, Arts M, Hendriksen Y, Klimars E, Donti TR, Graham BH, Morava E, Rodenburg RJ, Kozicz T. Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice. Transl Psychiatry 2020; 10:176. [PMID: 32488052 PMCID: PMC7266820 DOI: 10.1038/s41398-020-0858-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Mitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological domains linked to the pathobiology of depression, a novel mouse model was created. These mice harbor a gene trap in the first intron of the Ndufs4 gene (Ndufs4GT/GT mice), encoding the NDUFS4 protein, a structural component of complex I (CI), the first enzyme of the mitochondrial electron transport chain. We performed a comprehensive behavioral screening with a broad range of behavioral, physiological, and endocrine markers, high-resolution ex vivo brain imaging, brain immunohistochemistry, and multi-platform targeted mass spectrometry-based metabolomics. Ndufs4GT/GT mice presented with a 25% reduction of CI activity in the hippocampus, resulting in a relatively mild phenotype of reduced body weight, increased physical activity, decreased neurogenesis and neuroinflammation compared to WT littermates. Brain metabolite profiling revealed characteristic biosignatures discriminating Ndufs4GT/GT from WT mice. Specifically, we observed a reversed TCA cycle flux and rewiring of amino acid metabolism in the prefrontal cortex. Next, exposing mice to chronic variable stress (a model for depression-like behavior), we found that Ndufs4GT/GT mice showed altered stress response and coping strategies with a robust stress-associated reprogramming of amino acid metabolism. Our data suggest that impaired mitochondrial CI function is a candidate driver for altered stress reactivity and stress-induced brain metabolic reprogramming. These changes result in unique phenomic and metabolomic signatures distinguishing groups based on their mitochondrial genotype.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bram Geenen
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Maximilian Wiesmann
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Elisavet Vasileiou
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Femke Grüter
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Corné de Groot
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jeroen Schoorl
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Renske de Veer
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Monica Roelofs
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martijn Arts
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yara Hendriksen
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Eva Klimars
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
41
|
Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V. Neuroinflammation and depression: A review. Eur J Neurosci 2020; 53:151-171. [DOI: 10.1111/ejn.14720] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Pascal Barone
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Samuel Leman
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Thomas Desmidt
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Bruno Brizard
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Wissam El Hage
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Vincent Camus
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| |
Collapse
|
42
|
Løvmo SD, Madaro A, Whatmore P, Bardal T, Ostensen MA, Sandve SR, Olsen RE. Mid and hindgut transcriptome profiling analysis of Atlantic salmon ( Salmon salar) under unpredictable chronic stress. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191480. [PMID: 32257316 PMCID: PMC7062075 DOI: 10.1098/rsos.191480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
The intestinal epithelium is a selectively permeable barrier for nutrients, electrolytes and water, while maintaining effective protection against pathogens. Combinations of stressors throughout an animal's life, especially in agriculture and aquaculture settings, may affect the regular operativity of this organ with negative consequences for animal welfare. In the current study, we report the effects of a three-week unpredictable chronic stress (UCS) period on the intestinal morphology and transcriptome response of Atlantic salmon (Salmon salar) parr midgut and hindgut. Midgut and hindgut from both control and UCS fish were collected for histology and RNA-sequencing analysis to identify respective changes in the membrane structures and putative genes and pathways responding to UCS. Histological analysis did not show any significant effect on morphometric parameters. In the midgut, 1030 genes were differentially expressed following UCS, resulting in 279 genes which were involved in 13 metabolic pathways, including tissue repair pathways. In the hindgut, following UCS, 591 differentially expressed genes were detected with 426 downregulated and 165 upregulated. A total of 53 genes were related to three pathways. Downregulated genes include cellular senescence pathways, p53 signalling and cytokine-cytokine receptor pathways. The overall results corroborate that salmon parr were at least partly habituating to the UCS treatment. In midgut, the main upregulation was related to cell growth and repair, while in the hindgut there were indications of the activated apoptotic pathway, reduced cell repair and inhibited immune/anti-inflammatory capacity. This may be the trade-off between habituating to UCS and health resilience. This study suggests possible integrated genetic regulatory mechanisms that are tuned when farmed Atlantic salmon parr attempt to cope with UCS.
Collapse
Affiliation(s)
- Signe Dille Løvmo
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Angelico Madaro
- Institute of Marine Research, Animal Welfare Science Group, Matredal 5984, Norway
| | - Paul Whatmore
- Institute of Marine Research, Animal Welfare Science Group, Matredal 5984, Norway
| | - Tora Bardal
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Mari-Ann Ostensen
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | | | - Rolf Erik Olsen
- Institute of Marine Research, Animal Welfare Science Group, Matredal 5984, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
43
|
Tian L, Sun SS, Cui LB, Wang SQ, Peng ZW, Tan QR, Hou WG, Cai M. Repetitive Transcranial Magnetic Stimulation Elicits Antidepressant- and Anxiolytic-like Effect via Nuclear Factor-E2-related Factor 2-mediated Anti-inflammation Mechanism in Rats. Neuroscience 2020; 429:119-133. [PMID: 31918011 DOI: 10.1016/j.neuroscience.2019.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) treatment is widely accepted as an evidence-based treatment option for depression and anxiety. However, the underlying mechanism of this treatment maneuver has not been clearly understood. The chronic unpredictable mild stress (CUMS) procedure was used to establish depression and anxiety-like behavior in rats. The rTMS was performed with a commercially available stimulator for seven consecutive days, and then depression and anxiety-like behaviors were subsequently measured. The expression of nuclear factor-E2-related factor 2 (Nrf2) was measured by western-blot, and the level of tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and interleukin-6 (IL-6) was measured with Enzyme-linked immunesorbent assay (ELISA) analyzing kits. Furthermore, a small interfering RNA was employed to knockdown Nrf2, after which the neurobehavioral assessment, Nrf2 nuclear expression, and the amount of inflammation factors were evaluated. Application of rTMS exhibited a significant antidepressant and anxiolytic-like effect, which was associated with the increased Nrf2 nuclear translocation and reduced level of TNF-α, iNOS, IL-1β, and IL-6 in the hippocampus. Following Nrf2 silencing, the antidepressant and anxiolytic-like effect produced by rTMS was abolished. Moreover, the elevated Nrf2 nuclear translocation, and the reduced production of TNF-α, iNOS, IL-1β, and IL-6 in hippocampus mediated by rTMS, were reversed by Nrf2 knockdown. Together, these results reveal that the Nrf2-induced anti-inflammation effect is crucial in regulating antidepressant-related behaviors produced by rTMS.
Collapse
Affiliation(s)
- Li Tian
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Si-Si Sun
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China; Medical Department of Xi'an Emergency Center, the 111th of Fengcheng 4th Road, Xi'an 718900, Shaanxi, China
| | - Long-Biao Cui
- School of Medical Psychology, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Shi-Quan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Wu-Gang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, the 127th of Changle Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
44
|
Microglial activation contributes to depressive-like behavior in dopamine D3 receptor knockout mice. Brain Behav Immun 2020; 83:226-238. [PMID: 31626970 DOI: 10.1016/j.bbi.2019.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
We previously demonstrated that the dopamine D3 receptor (D3R) inhibitor, NGB2904, increases susceptibility to depressive-like symptoms, elevates pro-inflammatory cytokine expression, and alters brain-derived neurotrophic factor (BDNF) levels in mesolimbic dopaminergic regions, including the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) in mice. The mechanisms by which D3R inhibition affects neuroinflammation and onset of depression remain unclear. Here, using D3R-knockout (D3RKO) and congenic wild-type C56BL/6 (WT) mice, we demonstrated that D3RKO mice displayed depressive-like behaviors, increased tumornecrosisfactor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 levels, and altered BDNF expression in selected mesolimbic dopaminergic regions. D3R expression was localized to astrocytes or microglia in the mPFC, NAc, and VTA in WT mice. D3RKO mice exhibited a large number of Iba1-labelled microglia in the absence of glial fibrillary acidic protein (GFAP)-labelled astrocytes in mesolimbic dopaminergic brain areas. Inhibition or ablation of microglia by minocycline (25 mg/kg and 50 mg/kg) or PLX3397 (40 mg/kg) treatment ameliorated depressive-like symptoms, alterations in pro-inflammatory cytokine levels, and BDNF expression in the indicated brain regions in D3RKO mice. Minocycline therapy alleviated the increase in synaptic density in the NAc in D3RKO mice. These findings suggest that microglial activation in selected mesolimbic reward regions affects depressive-like behaviors induced by D3R deficiency.
Collapse
|
45
|
Anti-Inflammatory and Anticancer Properties of Bioactive Compounds from Sesamum indicum L.-A Review. Molecules 2019; 24:molecules24244426. [PMID: 31817084 PMCID: PMC6943436 DOI: 10.3390/molecules24244426] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
The use of foodstuff as natural medicines has already been established through studies demonstrating the pharmacological activities that they exhibit. Knowing the nutritional and pharmacological significance of foods enables the understanding of their role against several diseases. Among the foods that can potentially be considered as medicine, is sesame or Sesamum indicum L., which is part of the Pedaliaceae family and is composed of its lignans such as sesamin, sesamol, sesaminol and sesamolin. Its lignans have been widely studied and are known to possess antiaging, anticancer, antidiabetes, anti-inflammatory and antioxidant properties. Modern chronic diseases, which can transform into clinical diseases, are potential targets of these lignans. The prime example of chronic diseases is rheumatic inflammatory diseases, which affect the support structures and the organs of the body and can also develop into malignancies. In line with this, studies emphasizing the anti-inflammatory and anticancer activities of sesame have been discussed in this review.
Collapse
|
46
|
Géa LP, Colombo R, Rosa EDD, Antqueviezc B, Aguiar ÉZD, Hizo GH, Schmidt GB, Oliveira LFD, Stein DJ, Rosa AR. Anhedonic-like behavior correlates with IFNγ serum levels in a two-hit model of depression. Behav Brain Res 2019; 373:112076. [DOI: 10.1016/j.bbr.2019.112076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
|
47
|
Yohn CN, Ashamalla SA, Bokka L, Gergues MM, Garino A, Samuels BA. Social instability is an effective chronic stress paradigm for both male and female mice. Neuropharmacology 2019; 160:107780. [PMID: 31536736 DOI: 10.1016/j.neuropharm.2019.107780] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
Despite stress-associated disorders having a higher incidence rate in females, preclinical research mainly focuses on males. Chronic stress paradigms, such as chronic social defeat and chronic corticosterone (CORT) administration, were mainly designed and validated in males and subsequent attempts to use these paradigms in females has demonstrated sex differences in the behavioral and HPA axis response to stress. Here, we assessed the behavioral response to chronic CORT exposure and developed a social stress paradigm, social instability stress (SIS), which exposes adult mice to unstable social hierarchies every 3 days for 7 weeks. Sex differences in response to chronic CORT emerged, with negative valence behaviors induced in CORT treated males, not females. SIS effectively induces negative valence behaviors in the open field, light dark, and novelty suppressed feeding tests, increases immobility in the forced swim test, and activates the hypothalamus-pituitary-adrenal (HPA) axis in both males and females. Importantly, while there were effects of estrous cycle on behavior, this variability did not impact the overall effects of SIS on behavior, suggesting estrous does not need to be tracked while utilizing SIS. Furthermore, the effects of SIS on negative valence behaviors were also reversed following chronic antidepressant treatment with fluoxetine (FLX) in both males and females. SIS also reduced adult hippocampal neurogenesis in female mice, while chronic FLX treatment increased adult hippocampal neurogenesis in both males and females. Overall, these data demonstrate that the SIS paradigm is an ethologically valid approach that effectively induces chronic stress in both adult male and adult female mice.
Collapse
Affiliation(s)
- Christine N Yohn
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Sandra A Ashamalla
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Leshya Bokka
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Mark M Gergues
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Alexander Garino
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Benjamin A Samuels
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA.
| |
Collapse
|
48
|
Lian J, Li K, Gao J, Tan X, Yang Z. Legumain acts on neuroinflammatory to affect CUS-induced cognitive impairment. Behav Brain Res 2019; 376:112219. [PMID: 31509774 DOI: 10.1016/j.bbr.2019.112219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022]
Abstract
Cognitive impairment has been widely recognized as a central feature of depression. Legumain, a lysosomal cysteine protease, plays an important role in cancer, atherosclerosis, inflammation and other pathological conditions. Meanwhile, it has been reported that the activation of legumain aggravates the cognitive impairment in neurodegenerative diseases. In this study, we explored the role of legumain in cognitive impairment of stressed mice. Legumain knockout (legumain KO) and wildtype (WT) mice were divided into four groups: control group, chronic mild unpredictable stressed (CUS) group, legumain KO group and legumain KO + CUS group. Our results demonstrated that CUS (4 weeks) induced cognitive impairment in mice effectively based on Morris water maze (MWM) test and novel object recognition (NOR) test and decreased the synaptic plasticity. Additionally, CUS exposure significantly decreased the expression of hippocampal synapse related proteins and the cell density in the DG region, accompanied by increasing the expression of hippocampal inflammatory cytokines and promoting the activation of microglia in the hippocampus. Legumain KO distinctly restored the CUS-induced negative effects on the indicators mentioned above. In conclusion, our results suggested that legumain may be an effective therapeutic target for cognitive impairment as was seen within the CUS model and legumain KO reduced the level of neuroinflammation, thereby improving the hippocampal synaptic plasticity and cognitive impairment of stressed mice.
Collapse
Affiliation(s)
- Jianxing Lian
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Kai Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jing Gao
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
49
|
Lisitsyna TA, Veltishchev DY, Lila AM, Nasonov EL. Interleukin 6 as a pathogenic factor mediating clinical manifestations and a therapeutic target for rheumatic diseases and depressive disorders. RHEUMATOLOGY SCIENCE AND PRACTICE 2019. [DOI: 10.14412/1995-4484-2019-318-327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The review summarizes current idea on the key role of interleukin 6 (IL-6) in the pathogenesis of rheumatic diseases (RDs) and depressive disorders. It considers in detail the mechanisms by which IL6 induces the clinical and laboratory manifestations of RDs and depression; the influence of precipitating and predisposing stress factors, including childhood mental traumas, which increase the risk of RDs and depression, on IL-6 production. Particular attention is paid to the consideration of prospects for using IL-6 inhibitors in the therapy of depression.
Collapse
Affiliation(s)
| | - D. Yu. Veltishchev
- Moscow Research Institute of Psychiatry, Branch, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of Russia; N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology
| | - E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
| |
Collapse
|
50
|
Glucocorticoid receptor dysfunction orchestrates inflammasome effects on chronic obstructive pulmonary disease-induced depression: A potential mechanism underlying the cross talk between lung and brain. Brain Behav Immun 2019; 79:195-206. [PMID: 30738183 DOI: 10.1016/j.bbi.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/21/2018] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
Depression is highly prevalent among patients with chronic obstructive pulmonary disease (COPD). However, depression with COPD comorbidity is often underdiagnosed and undertreated, and pathogenic research is also insufficient. In the present study, we characterised pulmonary and hippocampal dysfunction by researching the interaction between inflammasome-regulated cytokines and glucocorticoid receptor (GR) signalling by investigating the role of fluoxetine (FLU), one of the most widely used antidepressants in clinical practice. Mice were exposed to cigarette smoke (CS) to induce the model of COPD with comorbid depression, and pathological alterations in serum, hippocampus, lung, and bronchoalveolar lavage fluid were determined. Our results showed that the CS procedure induced the accumulation of inflammatory cells (macrophages, neutrophils, and lymphocytes), the production of cytokines, the activation of inflammasome components (NLRP3, ASC, caspase-1), depression-related behaviours, and the stimulation of GR signalling. Intriguingly, glucocorticoid resistance occurred in CS-exposed mice, with elevated serum corticosterone and suppressed hippocampal GR levels, which suggested a novel potential regulatory mechanism underlying COPD-induced depression comorbidity. Furthermore, chronic CS exposure decreased the pGR-S211/pGR-S226 ratio, increased the active nuclear GR, and impaired cytosolic GR binding capacity and GR transcriptional activity, which might be responsible for the activation of the inflammasome-induced inflammatory cascade. These alterations were reversed by chronic FLU treatment, indicating that FLU-mediated GR signalling was involved in the COPD induced inflammasome activation. Our research explored the underlying molecular mechanism of comorbid COPD/depression and provided in vivo evidence that glucocorticoid resistance occurred during CS-induced central nervous system inflammation, a potential mechanism underlying the cross talk between the lung and brain.
Collapse
|