1
|
Campanile AA, Eckel LA, Keel PK. Elevated interleukin-6 in women with binge-eating spectrum disorders. Int J Eat Disord 2024; 57:1510-1517. [PMID: 38445571 PMCID: PMC11262979 DOI: 10.1002/eat.24183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Binge-eating spectrum disorders (BESD) involve large eating episodes accompanied by a sense of loss of control that occur in individuals with body weights spanning the full body mass index (BMI) spectrum. While research links BESD with peripheral inflammation, this literature is limited by underpowered studies and a failure to control for confounding variables that could promote inflammation independent of dysregulated eating, specifically elevated body adiposity and depression. Our study examined plasma interleukin-6 (IL-6), a marker of peripheral inflammation, in a sample of women with BESD and non-eating disorder controls, controlling for BMI, body adiposity, and depression. METHOD Participants (N = 94) included women with BESD (n = 73) or no eating disorder (n = 21) who completed structured clinical interviews in a larger study, selected to represent BMI categories ranging from underweight to obese in both groups. Fasting blood samples were processed for plasma IL-6 concentration via enzyme-linked immunosorbent assays. In addition to assessing group differences in plasma IL-6, exploratory analyses examined associations between IL-6 and biological and clinical markers of BESD. RESULTS Significantly elevated plasma IL-6 was found in women with BESD, relative to controls, that was not accounted for by BMI, adiposity, or depression. Plasma IL-6 was positively correlated with plasma leptin concentration, clinical assessments of eating disorder severity, and participants' largest self-reported eating episode. DISCUSSION Peripheral inflammation is specifically linked to presence of dysregulated eating independently from weight, adiposity, and depression in BESD. Future research should probe the potential role of neuroinflammation in altered eating behavior. PUBLIC SIGNIFICANCE This study provides the first demonstration that inflammation, characterized by elevated plasma IL-6 concentration, is uniquely associated with dysregulated eating in a transdiagnostic group of individuals with BESD. A better understanding of whether immune factors contribute to dysregulated eating could help identify novel biological targets for intervention.
Collapse
Affiliation(s)
- Alexis A. Campanile
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Lisa A. Eckel
- Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Pamela K. Keel
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
2
|
Casile A, Marraudino M, Bonaldo B, Micioni Di Bonaventura MV, Nasini S, Cifani C, Gotti S. Novel rat model of gaming disorder: assessment of social reward and sex differences in behavior and c-Fos brain activity. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06576-y. [PMID: 38575792 DOI: 10.1007/s00213-024-06576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
RATIONALE In 2018, the International Classification of Diseases (ICD-11) classified Gaming Disorder (GD) as a mental disorder. GD mainly occurs among adolescents, who, after developing addiction, show psychopathological traits, such as social anxiety, depression, social isolation, and attention deficit. However, the different studies conducted in humans so far show several limitations, such as the lack of demographic heterogeneity and equal representation of age, differences in the type of game and in the follow-up period. Furthermore, at present, no animal models specific to GD are available. OBJECTIVES To address the lack of an experimental model for GD, in the present work, we proposed a new GD rat model to investigate some peculiar tracts of the disorder. METHODS Two-month-old Wistar Kyoto rats, both males and females, were subject to a five-week training with a new innovative touch-screen platform. After five weeks of training, rats were assessed for: (a) their attachment to the play under several conditions, (b) their hyperactivity during gaming, and (c) the maintenance of these conditions after a period of game pause and reward interruption. After sacrifice, using immunohistochemistry techniques, the immunoreactivity of c-Fos (a marker of neuronal activity) was analyzed to study different neural areas. RESULTS After the training, the rats subjected to GD protocol developed GD-related traits (e.g., hyperactivity, loss control), and the behavioral phenotype was maintained consistently over time. These aspects were completely absent in the control groups. Lastly, the analysis of c-Fos immunoreactivity in prelimbic cortex (PrL), orbitofrontal cortex (OFC), nucleus Accumbens, amygdala and bed nucleus of stria terminalis (BNST) highlighted significant alterations in the GD groups compared to controls, suggesting modifications in neural activity related to the development of the GD phenotype. CONCLUSIONS The proposal of a new GD rat model could represent an innovative tool to investigate, in both sexes, the behavioral and neurobiological features of this disorder, the possible role of external factors in the predisposition and susceptibility and the development of new pharmacological therapies.
Collapse
Affiliation(s)
- Antonino Casile
- School of Pharmacy, Pharmacology Unit, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole, 10, Orbassano, Turin, TO, 10043, Italy.
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole, 10, Orbassano, Turin, TO, 10043, Italy
- Department of Neuroscience "Rita Levi-Montalcini", Via Cherasco 15, Turin, TO, 10126, Italy
| | - Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole, 10, Orbassano, Turin, TO, 10043, Italy
- Department of Neuroscience "Rita Levi-Montalcini", Via Cherasco 15, Turin, TO, 10126, Italy
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | | | - Sofia Nasini
- Laboratory of Molecular and Cellular Pharmacology, Department of Pharmacology, University of Padua, Largo Egidio Meneghetti, 2, Padua, 35131, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy.
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole, 10, Orbassano, Turin, TO, 10043, Italy
- Department of Neuroscience "Rita Levi-Montalcini", Via Cherasco 15, Turin, TO, 10126, Italy
| |
Collapse
|
3
|
Geng S, Chen D, Wang Y, Yu X, Zuo D, Lv X, Zhou X, Hu C, Yang X, Ma X, Hu W, Xi J, Yu S. Serum levels of Vanin-2 increase with obesity in relation to inflammation of adipose tissue and may be a predictor of bariatric surgery outcomes. Front Nutr 2023; 10:1270435. [PMID: 38156278 PMCID: PMC10753581 DOI: 10.3389/fnut.2023.1270435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Excessive obesity can lead to dysfunction in adipose tissue, which contributes to the development of comorbidities associated with obesity, such as type 2 diabetes (T2D), cardiovascular and cerebrovascular disease, among others. Previous research has mainly focused on the Vanin family in systemic inflammatory diseases or predicting its role in tumor prognosis, while neglecting its role as a secretory protein in adipose tissue inflammation and metabolism. The objective of this study was to compare the changes in Vanin-2 levels in the circulating blood of normal and obese individuals, and to assess its correlation with inflammatory factors in vivo. Furthermore, the study aimed to systematically evaluate its effectiveness in human weight loss surgery. Methods Serum concentrations of Vanin-2 and inflammatory indicators were measured in 518 volunteers. Furthermore, the concentrations of Vanin-2 were measured both before and after weight loss through a dietetic program or laparoscopic sleeve gastrectomy (LSG). Additionally, we assessed the levels of insulin, adiponectin, and inflammation-related factors. The hormonal profile and changes in body weight were evaluated at baseline and 3 months after surgery. Results Serum levels of Vanin-2 were found to be significantly increased in individuals with overweight/obesity (OW/OB) group (controls 438.98 ± 72.44, OW/OB 530.89 ± 79.39 ug/L; p < 0.001). These increased levels were associated with IL-18, BMI, FAT%, and HOMA-IR. However, levels of Vanin-2 remained unchanged after conventional dietary treatment. On the other hand, weight loss induced by LSG resulted in a significant decrease in Vanin-2 concentrations from 586.44 ± 48.84 to 477.67 ± 30.27 ug/L (p < 0.001), and this decrease was associated with the Vanin-2 concentrations observed before the operation. Conclusion Serum Vanin-2 is a highly effective biomarker for assessing adipose tissue inflammation in obesity and has the potential to serve as a predictor of bariatric surgery outcomes.
Collapse
Affiliation(s)
- Shan Geng
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Dongmei Chen
- Department of Otorhinolaryngology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xingrui Yu
- Institute of Information, Xiamen University, Xiamen, China
| | - Dan Zuo
- Department of Clinical Nutrition, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xinlu Lv
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelian Zhou
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Chengju Hu
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xuesong Yang
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xujue Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Wenjing Hu
- Department of Clinical Nutrition, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhuang Xi
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Shaohong Yu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Feng B, Harms J, Chen E, Gao P, Xu P, He Y. Current Discoveries and Future Implications of Eating Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6325. [PMID: 37510558 PMCID: PMC10379623 DOI: 10.3390/ijerph20146325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Eating disorders (EDs) are characterized by severe disturbances in eating behaviors and can sometimes be fatal. Eating disorders are also associated with distressing thoughts and emotions. They can be severe conditions affecting physical, psychological, and social functions. Preoccupation with food, body weight, and shape may also play an important role in the regulation of eating disorders. Common eating disorders have three major types: anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED). In some cases, EDs can have serious consequences for an individual's physical and mental health. These disorders often develop during adolescence or early adulthood and affect both males and females, although they are more commonly diagnosed in young adult females. Treatment for EDs typically involves a combination of therapy, nutrition counseling, and medical care. In this narrative review, the authors summarized what is known of EDs and discussed the future directions that may be worth exploring in this emerging area.
Collapse
Affiliation(s)
- Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Jerney Harms
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
- Biology Department, Centenary College of Louisiana, Shreveport, LA 71104, USA
| | - Emily Chen
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Peiyu Gao
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- The Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| |
Collapse
|
5
|
Endocannabinoid System Regulation in Female Rats with Recurrent Episodes of Binge Eating. Int J Mol Sci 2022; 23:ijms232315228. [PMID: 36499556 PMCID: PMC9738776 DOI: 10.3390/ijms232315228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.
Collapse
|
6
|
Somm E, Jornayvaz FR. Interleukin-18 in metabolism: From mice physiology to human diseases. Front Endocrinol (Lausanne) 2022; 13:971745. [PMID: 36313762 PMCID: PMC9596921 DOI: 10.3389/fendo.2022.971745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a classical member of the IL-1 superfamily of cytokines. As IL-1β, IL-18 precursor is processed by inflammasome/caspase-1 into a mature and biologically active form. IL-18 binds to its specific receptor composed of two chains (IL-18Rα and IL-18Rβ) to trigger a similar intracellular signaling pathway as IL-1, ultimately leading to activation of NF-κB and inflammatory processes. Independently of this IL-1-like signaling, IL-18 also specifically induces IFN-γ production, driving the Th1 immune response. In circulation, IL-18 binds to the IL-18 binding protein (IL-18BP) with high affinity, letting only a small fraction of free IL-18 able to trigger receptor-mediated signaling. In contrast to other IL-1 family members, IL-18 is produced constitutively by different cell types, suggesting implications in normal physiology. If the roles of IL-18 in inflammatory processes and infectious diseases are well described, recent experimental studies in mice have highlighted the action of IL-18 signaling in the control of energy homeostasis, pancreatic islet immunity and liver integrity during nutritional stress. At the same time, clinical observations implicate IL-18 in various metabolic diseases including obesity, type 1 and 2 diabetes and nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). In the present review, we summarize and discuss both the physiological actions of IL-18 in metabolism and its potential roles in pathophysiological mechanisms leading to the most common human metabolic disorders, such as obesity, diabetes and NAFLD/NASH.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
do Rosário Caldas N, Braulio VB, Brasil MAA, Furtado VCS, de Carvalho DP, Cotrik EM, Dantas JR, Zajdenverg L. Binge eating disorder, frequency of depression, and systemic inflammatory state in individuals with obesity - A cross sectional study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:489-497. [PMID: 35758834 PMCID: PMC10697643 DOI: 10.20945/2359-3997000000489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Introduction Binge eating disorder (BED) is the most prevalent eating disorder in individuals with obesity. Its association with factors that control hunger and satiety has not yet been elucidated. We evaluated whether levels of inflammatory markers, frequency of psychiatric comorbidities, and appetite-related hormones levels differ between individuals with obesity with and without BED. Subjects and methods The Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders-5 - Clinician Version (SCID-5-CV), Binge Eating Scale, and Hospital Anxiety and Depression Scale were evaluated in 39 individuals with obesity. Plasma levels of C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), leptin, ghrelin, and glucagon-like peptide-1 (GLP-1) were measured. Results Individuals of the BED group exhibited significantly higher percentages of altered eating patterns (hyperphagia, bingeing, post-dinner eating, feeling "stuffed", and emotional eating), higher depressive symptom scores and levels of leptin, CRP, and TNF-α, compared to those from the non-BED group. Logistic regression showed that BED was independently associated with depressive symptoms and CRP levels. Conclusion Individuals with obesity and BED showed greater psychiatric comorbidity, worse eating patterns and worse inflammatory profile than those without BED. BED should be assessed as an indicator of clinical severity in patients with obesity.
Collapse
Affiliation(s)
- Nelson do Rosário Caldas
- Universidade Federal do Rio de Janeiro, Serviço de Psiquiatria e Psicologia Médica, Rio de Janeiro, RJ, Brasil,
| | - Valeria Bender Braulio
- Universidade Federal do Rio de Janeiro, Serviço de Nutrologia, Rio de Janeiro, RJ, Brasil
| | - Marco Antônio Alves Brasil
- Universidade Federal do Rio de Janeiro, Serviço de Psiquiatria e Psicologia Médica, Rio de Janeiro, RJ, Brasil
| | | | - Denise Pires de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - Ervin Michelstaedter Cotrik
- Universidade Federal do Rio de Janeiro, Serviço de Psiquiatria e Psicologia Médica, Rio de Janeiro, RJ, Brasil
| | - Joana Rodrigues Dantas
- Universidade Federal do Rio de Janeiro, Serviço de Nutrologia, Rio de Janeiro, RJ, Brasil
| | - Lenita Zajdenverg
- Universidade Federal do Rio de Janeiro, Serviço de Nutrologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
8
|
Kirson D, Spierling Bagsic SR, Murphy J, Chang H, Vlkolinsky R, Pucci SN, Prinzi J, Williams CA, Fang SY, Roberto M, Zorrilla EP. Decreased excitability of leptin-sensitive anterior insula pyramidal neurons in a rat model of compulsive food demand. Neuropharmacology 2022; 208:108980. [PMID: 35122838 PMCID: PMC9055870 DOI: 10.1016/j.neuropharm.2022.108980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Compulsive eating is an overlapping construct with binge eating that shares many characteristics with substance use disorders. Compulsive eating may impact millions of Americans; presenting in some cases of binge eating disorders, overweight/obesity, and among individuals who have not yet been diagnosed with a recognized eating disorder. To study the behavioral and neurobiological underpinnings of compulsive eating, we employ a published rodent model using cyclic intermittent access to a palatable diet to develop a self-imposed binge-withdrawal cycle. Here, we further validated this model of compulsive eating in female Wistar rats, through the lens of behavioral economic analyses and observed heightened demand intensity, inelasticity and essential value as well as increased food-seeking during extinction. Using electrophysiological recordings in the anterior insular cortex, a region previously implicated in modulating compulsive-like eating in intermittent access models, we observed functional adaptations of pyramidal neurons. Within the same neurons, application of leptin led to further functional adaptations, suggesting a previously understudied, extrahypothalamic role of leptin in modulating feeding-related cortical circuits. Collectively, the findings suggest that leptin may modulate food-related motivation or decision-making via a plastic cortical circuit that is influenced by intermittent access to a preferred diet. These findings warrant further study of whether behavioral economics analysis of compulsive eating can impact disordered eating outcomes in humans and of the translational relevance of a leptin-sensitive anterior insular circuit implicated in these behaviors.
Collapse
Affiliation(s)
- Dean Kirson
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA; University of Tennessee Health Science Center, Department of Pharmacology, Addiction Science, and Toxicology, 71 S Manassas, Memphis, TN, 38103, USA
| | - Samantha R Spierling Bagsic
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA; Scripps Health, Scripps Whittier Diabetes Institute, 10140 Campus Point Drive, San Diego, CA, 92121, USA
| | - Jiayuan Murphy
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Hang Chang
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Roman Vlkolinsky
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Sarah N Pucci
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Julia Prinzi
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Casey A Williams
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Savannah Y Fang
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Eric P Zorrilla
- The Scripps Research Institute, Department of Molecular Medicine, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Ubaldi M, Cannella N, Borruto AM, Petrella M, Micioni Di Bonaventura MV, Soverchia L, Stopponi S, Weiss F, Cifani C, Ciccocioppo R. Role of Nociceptin/Orphanin FQ-NOP Receptor System in the Regulation of Stress-Related Disorders. Int J Mol Sci 2021; 22:12956. [PMID: 34884757 PMCID: PMC8657682 DOI: 10.3390/ijms222312956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Nazzareno Cannella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Anna Maria Borruto
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Michele Petrella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Maria Vittoria Micioni Di Bonaventura
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Laura Soverchia
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Serena Stopponi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Roberto Ciccocioppo
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| |
Collapse
|
10
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 2021; 172:105847. [PMID: 34438062 DOI: 10.1016/j.phrs.2021.105847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy.
| | | |
Collapse
|
11
|
Cifani C, Alboni S, Mucci A, Benatti C, Botticelli L, Brunello N, Micioni Di Bonaventura MV, Righi V. Serum metabolic signature of binge-like palatable food consumption in female rats by nuclear magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2021; 34:e4469. [PMID: 33458898 DOI: 10.1002/nbm.4469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Maladaptive eating behavior is a growing public health problem and compulsively eating excessive food in a short time, or binge eating, is a key symptom of many eating disorders. In order to investigate the binge-like eating behavior in female rats, induced by intermittent food restrictions/refeeding and frustration stress, we analyzed for the first time the metabolic profile obtained from serum of rats, through nuclear magnetic resonance (NMR) spectroscopy. In this experimental protocol, rats were exposed to chow food restricting/refeeding and frustration stress manipulation. This stress procedure consists of 15 min exposure to the odor and sight of a familiar chocolate paste, without access to it, just before offering the palatable food. In this model, a "binge-eating episode" was considered the significantly higher palatable food consumption within 2 h in restricted and stressed rats (R + S) than in the other three experimental groups: rats with no food restriction and no stress (NR + NS), only stressed rats (NR + S) or only restricted rats (R + NS). Serum samples from these four different rat groups were collected. The statistical analysis of the 1 H NMR spectral profiles of the four sets of samples pointed to O- and N-acetyl glycoproteins as the main biomarkers for the discrimination of restriction effects. Other metabolites, such as threonine, glycine, glutamine, acetate, pyruvate and lactate, showed trends that may be useful to understand metabolic pathways involved in eating disorders. This study suggested that NMR-based metabolomics is a suitable approach to detect biomarkers related to binge-eating behavior.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Adele Mucci
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Valeria Righi
- Department for the Quality of Life Studies, University of Bologna, Rimini, Italy
| |
Collapse
|
12
|
The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021; 14:ph14040293. [PMID: 33810221 PMCID: PMC8065993 DOI: 10.3390/ph14040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.
Collapse
|
13
|
Butler MJ, Perrini AA, Eckel LA. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients 2021; 13:nu13020500. [PMID: 33546416 PMCID: PMC7913528 DOI: 10.3390/nu13020500] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
There is a growing recognition that both the gut microbiome and the immune system are involved in a number of psychiatric illnesses, including eating disorders. This should come as no surprise, given the important roles of diet composition, eating patterns, and daily caloric intake in modulating both biological systems. Here, we review the evidence that alterations in the gut microbiome and immune system may serve not only to maintain and exacerbate dysregulated eating behavior, characterized by caloric restriction in anorexia nervosa and binge eating in bulimia nervosa and binge eating disorder, but may also serve as biomarkers of increased risk for developing an eating disorder. We focus on studies examining gut dysbiosis, peripheral inflammation, and neuroinflammation in each of these eating disorders, and explore the available data from preclinical rodent models of anorexia and binge-like eating that may be useful in providing a better understanding of the biological mechanisms underlying eating disorders. Such knowledge is critical to developing novel, highly effective treatments for these often intractable and unremitting eating disorders.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Alexis A. Perrini
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| | - Lisa A. Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: ; Tel.: +1-850-644-3480
| |
Collapse
|
14
|
Franceschini A, Fattore L. Gender-specific approach in psychiatric diseases: Because sex matters. Eur J Pharmacol 2021; 896:173895. [PMID: 33508283 DOI: 10.1016/j.ejphar.2021.173895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
In both animals and human beings, males and females differ in their genetic background and hormonally driven behaviour and show sex-related differences in brain activity and response to internal and external stimuli. Gender-specific medicine has been a neglected dimension of medicine for long time, and only in the last three decades it is receiving the due scientific and clinical attention. Research has recently begun to identify factors that could provide a neurobiological basis for gender-based differences in health and disease and to point to gonadal hormones as important determinants of male-female differences. Animal studies have been of great help in understanding factors contributing to sex-dependent differences and sex hormones action. Here we review and discuss evidence provided by clinical and animal studies in the last two decades showing gender (in humans) and sex (in animals) differences in selected psychiatric disorders, namely eating disorders (anorexia nervosa, bulimia nervosa, binge eating disorder), schizophrenia, mood disorders (anxiety, depression, obsessive-compulsive disorder) and neurodevelopmental disorders (autism spectrum disorders, attention-deficit/hyperactivity disorder).
Collapse
Affiliation(s)
- Anna Franceschini
- Addictive Behaviors Department, Local Health Authority, Trento, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council, Italy.
| |
Collapse
|
15
|
Hildebrandt BA, Ahmari SE. Breaking It Down: Investigation of Binge Eating Components in Animal Models to Enhance Translation. Front Psychiatry 2021; 12:728535. [PMID: 34484010 PMCID: PMC8414642 DOI: 10.3389/fpsyt.2021.728535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Binge eating (BE) is a core eating disorder behavior that is present across nearly all eating disorder diagnoses (e. g., bulimia nervosa, binge eating disorder, anorexia nervosa binge/purge subtype), and is also widely present in the general population. Despite the prevalence of BE, limited treatment options exist and there are often high rates of relapse after treatment. There is evidence showing that genetic factors contribute to the heritability of BE and support for biological contributions to BE. However, more work is needed to fully understand neurobiological mechanisms underlying BE. One approach to target this problem is to separate BE into its distinct clinical components that can be more easily modeled using pre-clinical approaches. To date, a variety of animal models for BE have been used in pre-clinical studies; but there have been challenges translating this work to human BE. Here, we review these pre-clinical approaches by breaking them down into three clinically-significant component parts (1) consumption of a large amount of food; (2) food consumption within a short period of time; and (3) loss of control over eating. We propose that this rubric identifies the most frequently used and effective ways to model components of BE behavior using pre-clinical approaches with the strongest clinical relevance. Finally, we discuss how current pre-clinical models have been integrated with techniques using targeted neurobiological approaches and propose ways to improve translation of pre-clinical work to human investigations of BE that could enhance our understanding of BE behavior.
Collapse
Affiliation(s)
- Britny A Hildebrandt
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Susanne E Ahmari
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Micioni Di Bonaventura E, Botticelli L, Tomassoni D, Tayebati SK, Micioni Di Bonaventura MV, Cifani C. The Melanocortin System behind the Dysfunctional Eating Behaviors. Nutrients 2020; 12:E3502. [PMID: 33202557 PMCID: PMC7696960 DOI: 10.3390/nu12113502] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| | - Daniele Tomassoni
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| |
Collapse
|
17
|
Cifani C, Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Pavletić P, Piergentili A, Quaglia W, Bonifazi A, Schepmann D, Wünsch B, Vistoli G, Micioni Di Bonaventura MV. Novel Highly Potent and Selective Sigma1 Receptor Antagonists Effectively Block the Binge Eating Episode in Female Rats. ACS Chem Neurosci 2020; 11:3107-3116. [PMID: 32886484 PMCID: PMC8011929 DOI: 10.1021/acschemneuro.0c00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
In
this paper, the benzo-cracking approach was applied to the potent
sigma1 (σ1) receptor antagonist 1 to
afford the less conformationally constrained 1,3-dioxane derivatives 2 and 3. To evaluate the effect of the increase
in the distance between the two hydrophobic structural elements that
flank the basic function, the cis and trans diastereomers of 4 and 5 were also prepared
and studied. Compounds 2 and 3 showed affinity
values at the σ1 receptor significantly higher than
that of the lead compound 1. In particular, 3 displayed unprecedented selectivity over the σ2 receptor, the phencyclidine site of the NMDA receptor, and opioid
receptor subtypes, as well as over the dopamine transporter. Docking
results supported the structure–activity relationship studies.
Due to its interesting biological profile, derivative 3, selected for an in vivo study in a validated preclinical
model of binge eating, was able to counteract the overeating of palatable
food only in binging rats, without affecting palatable food intake
in the control group and anxiety-like and depression-related behaviors
in female rats. This result strengthened the involvement of the σ1 receptor in the compulsive-like eating behavior and supported
the σ1 receptor as a promising target for the management
of eating disorders.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | | | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Bonifazi
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
| | | |
Collapse
|
18
|
Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: a novel potential treatment for binge eating disorder. Neuropsychopharmacology 2020; 45:1931-1941. [PMID: 32353860 PMCID: PMC7609309 DOI: 10.1038/s41386-020-0686-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell ("frustration stress"). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg-1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.
Collapse
|
19
|
Lamontagne SJ, Wilkin MM, Menard JL, Olmstead MC. Mid-adolescent stress differentially affects binge-like intake of sucrose across estrous cycles in female rats ✰. Physiol Behav 2020; 228:113194. [PMID: 33011230 DOI: 10.1016/j.physbeh.2020.113194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Binge eating disorder (BED), characterized by excessive food consumption within a discrete period of time, is the most prevalent of all eating disorders, with higher rates in women than men. Chronic stress, particularly during adolescence, is a significant risk factor for BED in women, but the mechanism underlying this relationship remains elusive. We investigated the phenomenon by testing the impact of mid-adolescent intermittent physical stress (IPS) on binge-like intake of sucrose in adult female rats, assessing how the behavior changed across reproductive cycles. One hundred and nineteen Long-Evans rats were exposed to IPS (n = 59) or no stress (NS; n = 60) for 12 days during mid-adolescence (PD35-46). Binge-like eating was induced in adult animals using an intermittent access protocol: animals were provided with 12 h or 24 h access to sucrose, 12 h access to saccharin, or 12 h access to food over 28 days. After 1- or 28-day abstinence, compulsive responding for sucrose was measured using a conditioned suppression paradigm. Rats given 12 h access to sucrose developed binge-like intake, measured as increased consumption during the first hour; the effect was magnified in IPS animals and most pronounced during proestrous. Solution intake in IPS rats was predicted by open arm entries in the elevated plus maze, suggesting that increased risk-taking behavior is associated with greater binge-like eating. IPS blocked conditioned suppression after 28 days of abstinence, pointing to a role of mid-adolescent stress in compulsivity. Collectively, these findings emphasize the impact of stress on the emergence of binge eating in females and suggest that intervention programs for women with a history of adolescent adversity should be investigated as a means to reduce risk for BED.
Collapse
Affiliation(s)
- Steven J Lamontagne
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Meaghan M Wilkin
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Janet L Menard
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Mary C Olmstead
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
20
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
21
|
Kania A, Szlaga A, Sambak P, Gugula A, Blasiak E, Micioni Di Bonaventura MV, Hossain MA, Cifani C, Hess G, Gundlach AL, Blasiak A. RLN3/RXFP3 Signaling in the PVN Inhibits Magnocellular Neurons via M-like Current Activation and Contributes to Binge Eating Behavior. J Neurosci 2020; 40:5362-5375. [PMID: 32532885 PMCID: PMC7343322 DOI: 10.1523/jneurosci.2895-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/17/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Binge-eating disorder is the most common eating disorder. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3 (RLN3), which stimulates food intake in rats through the activation of the relaxin-family peptide-3 receptor (RXFP3). Here we demonstrate that a likely mechanism underlying the orexigenic action of RLN3 is RXFP3-mediated inhibition of oxytocin- and arginine-vasopressin-synthesizing paraventricular nucleus (PVN) magnocellular neurosecretory cells. Moreover, we reveal that, in male and female rats, this action depends on M-like potassium conductance. Notably, higher intra- and peri-PVN RLN3 fiber densities were observed in females, which may constitute an anatomic substrate for observed sex differences in binge-eating disorder. Finally, in a model of binge-eating in female rats, RXFP3 blockade within the PVN prevented binge-eating behavior. These data demonstrate a direct RLN3/RXFP3 action in the PVN of male and female rats, identify the associated ionic mechanisms, and reveal that hypothalamic RLN3/RXFP3 signaling regulates binge-eating behavior.SIGNIFICANCE STATEMENT Binge-eating disorder is the most common eating disorder worldwide, affecting women twice as frequently as men. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3, which acts via the relaxin-family peptide-3 receptor (RXFP3). Using a model of binge-eating, we demonstrated that relaxin-3/RXFP3 signaling in the hypothalamic paraventricular nucleus (PVN) is necessary for the expression of binge-eating behavior in female rats. Moreover, we elucidated the neuronal mechanism of RLN3/RXFP3 signaling in PVN in male and female rats and characterized sex differences in the RLN3 innervation of the PVN. These findings increase our understanding of the brain circuits and neurotransmitters involved in binge-eating disorder pathology and identify RXFP3 as a therapeutic target for binge-like eating disorders.
Collapse
Affiliation(s)
- Alan Kania
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Agata Szlaga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Patryk Sambak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ewa Blasiak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | | | - Mohammad Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Andrew L Gundlach
- Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| |
Collapse
|
22
|
Micioni Di Bonaventura MV, Micioni Di Bonaventura E, Polidori C, Cifani C. Preclinical Models of Stress and Environmental Influences on Binge Eating. BINGE EATING 2020:85-101. [DOI: 10.1007/978-3-030-43562-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Micioni Di Bonaventura MV, Pucci M, Giusepponi ME, Romano A, Lambertucci C, Volpini R, Micioni Di Bonaventura E, Gaetani S, Maccarrone M, D'Addario C, Cifani C. Regulation of adenosine A 2A receptor gene expression in a model of binge eating in the amygdaloid complex of female rats. J Psychopharmacol 2019; 33:1550-1561. [PMID: 31161847 DOI: 10.1177/0269881119845798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited. METHODS AND AIMS Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2A Adenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes. RESULTS Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94. CONCLUSION We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.
Collapse
Affiliation(s)
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Adele Romano
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
| | - Mauro Maccarrone
- Campus Bio-Medico, University of Rome, Rome, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
24
|
Dalton B, Whitmore V, Patsalos O, Ibrahim MAA, Schmidt U, Himmerich H. A systematic review of in vitro cytokine production in eating disorders. Mol Cell Endocrinol 2019; 497:110308. [PMID: 30296466 DOI: 10.1016/j.mce.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Eating disorders (EDs) have been associated with alterations in cytokine concentrations and production. This review examines whether in vitro cytokine production (i) is altered in people with EDs compared to healthy participants; and (ii) changes in response to treatment? METHODS Using PRISMA guidelines, we systematically reviewed articles reporting group comparisons or longitudinal assessments of spontaneous and/or stimulated cytokine production in vitro in people with EDs. RESULTS Twelve studies were included. Cross-sectional results were mixed in anorexia nervosa. Only one study measured cytokine production in bulimia nervosa. Two longitudinal studies showed that daily yoghurt consumption increases phytohemagglutinin-stimulated interferon-γ production in anorexia nervosa. CONCLUSION The mixed results could be accounted for by variations in experimental design. Our findings suggest that cytokine production could possibly be modulated through dietary interventions. However, due to the methodological heterogeneity and shortcomings of the included studies, it seems unreasonable to draw further conclusions.
Collapse
Affiliation(s)
- Bethan Dalton
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Victoria Whitmore
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Faculty of Life Sciences and Medicine, King's College London, UK
| | - Olivia Patsalos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mohammad A A Ibrahim
- Department of Clinical Immunological Medicine and Allergy, King's Health Partners, King's College Hospital, London, UK
| | - Ulrike Schmidt
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Hubertus Himmerich
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Rantala MJ, Luoto S, Krama T, Krams I. Eating Disorders: An Evolutionary Psychoneuroimmunological Approach. Front Psychol 2019; 10:2200. [PMID: 31749720 PMCID: PMC6842941 DOI: 10.3389/fpsyg.2019.02200] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Eating disorders are evolutionarily novel conditions. They lead to some of the highest mortality rates of all psychiatric disorders. Several evolutionary hypotheses have been proposed for eating disorders, but only the intrasexual competition hypothesis is extensively supported by evidence. We present the mismatch hypothesis as a necessary extension to the current theoretical framework of eating disorders. This hypothesis explains the evolutionarily novel adaptive metaproblem that has arisen when mating motives conflict with the large-scale and easy availability of hyper-rewarding but obesogenic foods. This situation is exacerbated particularly in those contemporary environments that are characterized by sedentary lifestyles, ever-present junk foods, caloric surplus and the ubiquity of social comparisons that take place via social media. Our psychoneuroimmunological model connects ultimate-level causation with proximate mechanisms by showing how the adaptive metaproblem between mating motives and food rewards leads to chronic stress and, further, to disordered eating. Chronic stress causes neuroinflammation, which increases susceptibility to OCD-like behaviors that typically co-occur with eating disorders. Chronic stress upregulates the serotonergic system and causes dysphoric mood in anorexia nervosa patients. Dieting, however, reduces serotonin levels and dysphoric mood, leading to a vicious serotonergic-homeostatic stress/starvation cycle whereby cortisol and neuroinflammation increase through stringent dieting. Our psychoneuroimmunological model indicates that between-individual and within-individual variation in eating disorders partially arises from (co)variation in gut microbiota and stress responsivity, which influence neuroinflammation and the serotonergic system. We review the advances that have been made in recent years in understanding how to best treat eating disorders, outlining directions for future clinical research. Current evidence indicates that eating disorder treatments should aim to reduce the chronic stress, neuroinflammation, stress responsivity and gut dysbiosis that fuel the disorders. Connecting ultimate causes with proximate mechanisms and treating biopsychosocial causes rather than manifest symptoms is expected to bring more effective and sophisticated long-term interventions for the millions of people who suffer from eating disorders.
Collapse
Affiliation(s)
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Tatjana Krama
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
26
|
Anversa RG, Campbell EJ, Ch'ng SS, Gogos A, Lawrence AJ, Brown RM. A model of emotional stress‐induced binge eating in female mice with no history of food restriction. GENES BRAIN AND BEHAVIOR 2019; 19:e12613. [DOI: 10.1111/gbb.12613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Roberta G. Anversa
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
- The Florey Department of Neuroscience and Mental HealthUniversity of Melbourne Parkville Melbourne Australia
| | - Erin J. Campbell
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
| | - Sarah S. Ch'ng
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
| | - Andrea Gogos
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
- The Florey Department of Neuroscience and Mental HealthUniversity of Melbourne Parkville Melbourne Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
- The Florey Department of Neuroscience and Mental HealthUniversity of Melbourne Parkville Melbourne Australia
| | - Robyn M. Brown
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division Parkville Melbourne Australia
- The Florey Department of Neuroscience and Mental HealthUniversity of Melbourne Parkville Melbourne Australia
| |
Collapse
|
27
|
Caroleo M, Carbone EA, Greco M, Corigliano DM, Arcidiacono B, Fazia G, Rania M, Aloi M, Gallelli L, Segura-Garcia C, Foti DP, Brunetti A. Brain-Behavior-Immune Interaction: Serum Cytokines and Growth Factors in Patients with Eating Disorders at Extremes of the Body Mass Index (BMI) Spectrum. Nutrients 2019; 11:E1995. [PMID: 31450770 PMCID: PMC6770139 DOI: 10.3390/nu11091995] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Alterations of the immune system are known in eating disorders (EDs), however the importance of cytokine balance in this context has not been clarified. We compared cytokines and growth factors at opposite ends of BMI ranges, in 90 patients classified in relation to BMI, depressive and EDs comorbidities. Serum concentrations of interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF) were determined by a biochip analyzer (Randox Labs). Differences were calculated through ANOVA. Possible predictors of higher cytokine levels were evaluated through regression analysis. IL-1α, IL-10, EGF, and IFN-γ were altered individuals with anorexia nervosa (AN) and binge eating disorder (BED). Night-eating was associated with IL-8 and EGF levels, IL-10 concentrations with post-dinner eating and negatively with sweet-eating, long fasting with higher IFN-γ levels. IL-2 increase was not linked to EDs, but to the interaction of depression and BMI. Altogether, for the first time, IL-1α, IL-10, EGF, and IFN-γ were shown to differ between AN and HCs, and between AN and individuals with obesity with or without BED. Only IL-2 was influenced by depression. Dysfunctional eating behaviors predicted abnormal concentrations of IL-10, EGF, IL-8 and IFN-γ.
Collapse
Affiliation(s)
- Mariarita Caroleo
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Elvira Anna Carbone
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Biagio Arcidiacono
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Gilda Fazia
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marianna Rania
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Matteo Aloi
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.
| | - Daniela Patrizia Foti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
28
|
Del Bello F, Micioni Di Bonaventura MV, Bonifazi A, Wünsch B, Schepmann D, Giancola JB, Micioni Di Bonaventura E, Vistoli G, Giorgioni G, Quaglia W, Piergentili A, Cifani C. Investigation of the Role of Chirality in the Interaction with σ Receptors and Effect on Binge Eating Episode of a Potent σ 1 Antagonist Analogue of Spipethiane. ACS Chem Neurosci 2019; 10:3391-3397. [PMID: 31298830 DOI: 10.1021/acschemneuro.9b00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The enantiomers of the potent σ1 receptor antagonist (±)-1 were synthesized and evaluated for their affinity at σ1, σ2 receptors and dopamine transporter (DAT). Analogously to (±)-1, both of the enantiomers showed very high affinity for the σ1 receptor and unprecedented selectivity over both the σ2 receptor and DAT. The lack of enantioselectivity between (+)-1 and (-)-1 indicated that the center of chirality in the 2-position of the benzothiochromane nucleus does not play a crucial role in the interaction with any of the studied targets. Docking studies confirmed that the configuration of the enantiomers has only marginal effects on the molecular interactions with the σ1 receptor. In in vivo studies in a female rat model of binge eating, (±)-1 dose-dependently decreased the binge eating episode elicited by a history of intermittent food restriction and stress, confirming and strengthening the important role played by the σ1 receptor in bingeing-related eating disorders.
Collapse
Affiliation(s)
- Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Via S. Agostino 1 , 62032 Camerino , Italy
| | | | - Alessandro Bonifazi
- School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Via S. Agostino 1 , 62032 Camerino , Italy
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch , National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie , Universität Münster , Corrensstraße 48 , 48149 Münster , Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie , Universität Münster , Corrensstraße 48 , 48149 Münster , Germany
| | - JoLynn B Giancola
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch , National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health , 333 Cassell Drive , Baltimore , Maryland 21224 , United States
| | | | - Giulio Vistoli
- Department of Pharmaceutical Sciences , University of Milan , Via Mangiagalli 25 , 20133 Milano , Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Via S. Agostino 1 , 62032 Camerino , Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Via S. Agostino 1 , 62032 Camerino , Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Via S. Agostino 1 , 62032 Camerino , Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit , University of Camerino , Via Madonna delle Carceri 9 , 62032 Camerino , Italy
| |
Collapse
|
29
|
Pucci M, Micioni Di Bonaventura MV, Zaplatic E, Bellia F, Maccarrone M, Cifani C, D'Addario C. Transcriptional regulation of the endocannabinoid system in a rat model of binge-eating behavior reveals a selective modulation of the hypothalamic fatty acid amide hydrolase gene. Int J Eat Disord 2019; 52:51-60. [PMID: 30578649 DOI: 10.1002/eat.22989] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/24/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Binge-eating episodes are recurrent and are defining features of several eating disorders. Thus binge-eating episodes might influence eating disorder development of which exact underlying mechanisms are still largely unknown. METHODS Here we focused on the transcriptional regulation of the endocannabinoid system, a potent regulator of feeding behavior, in relevant rat brain regions, using a rat model in which a history of intermittent food restriction and a frustration stress induce binge-like palatable food consumption. RESULTS We observed a selective down-regulation of fatty acid amide hydrolase (faah) gene expression in the hypothalamus of rats showing the binge-eating behavior with a consistent reduction in histone 3 acetylation at lysine 4 of the gene promoter. No relevant changes were detected for any other endocannabinoid system components in any brain regions under study, as well as for the other epigenetic mechanisms investigated (DNA methylation and histone 3 lysine 27 methylation) at the faah gene promoter. DISCUSSION Our findings suggest that faah transcriptional regulation is a potential biomarker of binge-eating episodes, with a relevant role in the homeostatic regulation of food intake.
Collapse
Affiliation(s)
- Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Elizabeta Zaplatic
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Fabio Bellia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Rigillo G, Vilella A, Benatti C, Schaeffer L, Brunello N, Blom JMC, Zoli M, Tascedda F. LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response. Brain Behav Immun 2018; 74:277-290. [PMID: 30244035 DOI: 10.1016/j.bbi.2018.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 01/23/2023] Open
Abstract
Epigenetic modifications of DNA and histone proteins are emerging as fundamental mechanisms by which neural cells adapt their transcriptional response to environmental cues, such as, immune stimuli or stress. In particular, histone H3 phospho(Ser10)-acetylation(Lys14) (H3S10phK14ac) has been linked to activation of specific gene expression. The purpose of this study was to investigate the role of H3S10phK14ac in a neuroinflammatory condition. Adult male rats received a intraperitoneal injection of lipopolysaccharide (LPS) (830 μg/Kg/i.p., n = 6) or vehicle (saline 1 mL/kg/i.p., n = 6) and were sacrificed 2 or 6 h later. We showed marked region- and time-specific increases in H3S10phK14ac in the hypothalamus and hippocampus, two principal target regions of LPS. These changes were accompanied by a marked transcriptional activation of interleukin (IL) 1β, IL-6, Tumour Necrosis Factor (TNF) α, the inducible nitric oxide synthase (iNOS) and the immediate early gene c-Fos. By means of chromatin immunoprecipitation, we demonstrated an increased region- and time-specific association of H3S10phK14ac with the promoters of IL-6, c-Fos and iNOS genes, suggesting that part of the LPS-induced transcriptional activation of these genes is regulated by H3S10phK14ac. Finally, by means of multiple immunofluorescence approach, we showed that increased H3S10phK14ac is cell type-specific, being neurons and reactive microglia, the principal histological types involved in this response. Present data point to H3S10phK14ac as a principal epigenetic regulator of neural cell response to systemic LPS and underline the importance of distinct time-, region- and cell-specific epigenetic mechanisms that regulate gene transcription to understand the mechanistic complexity of neuroinflammatory response to immune challenges.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Laurent Schaeffer
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Lyon1, 46 Allée d'Italie, 69007 Lyon, France
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, viale Antonio Allegri 9, 42121 Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
31
|
Novelle MG, Diéguez C. Unravelling the role and mechanism of adipokine and gastrointestinal signals in animal models in the nonhomeostatic control of energy homeostasis: Implications for binge eating disorder. EUROPEAN EATING DISORDERS REVIEW 2018; 26:551-568. [PMID: 30280451 DOI: 10.1002/erv.2641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Marta G. Novelle
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS); University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Santiago de Compostela Spain
| | - Carlos Diéguez
- Department of Physiology, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS); University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Santiago de Compostela Spain
| |
Collapse
|
32
|
Iacopetta K, Collins-Praino LE, Buisman-Pijlman FTA, Hutchinson MR. Can neuroimmune mechanisms explain the link between ultraviolet light (UV) exposure and addictive behavior? Brain Behav Immun 2018; 73:125-132. [PMID: 30009997 DOI: 10.1016/j.bbi.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
High ultraviolet (UV) light exposure on the skin acts as a reinforcing stimulus, increasing sun-seeking behavior and even addiction-like sun seeking behavior. However, the physiological mechanisms that underlie this process remain to be defined. Here, we propose a novel hypothesis that neuroimmune signaling, arising from inflammatory responses in UV-damaged skin cells, causes potentiated signaling within the cortico-mesolimbic pathway, leading to increased sun-seeking behaviors. This hypothesized UV-induced, skin-to-brain signaling depends upon cell stress signals, termed alarmins, reaching the circulation, thereby triggering the activation of innate immune receptors, such as toll-like receptors (TLRs). This innate immune response is hypothesized to occur both peripherally and centrally, with the downstream signaling from TLR activation affecting both the endogenous opioid system and the mesolimbic dopamine pathway. As both neurotransmitter systems play a key role in the development of addiction behaviors through their actions at key brain regions, such as the nucleus accumbens (NAc), we hypothesize a novel connection between UV-induced inflammation and the activation of pathways that contribute to the development of addiction. This paper is a review of the existing literature to examine the evidence which suggests that chronic sun tanning resembles a behavioral addiction and proposes a novel pathway by which persistent sun-seeking behavior could affect brain neurochemistry in a manner similar to that of repeated drug use.
Collapse
Affiliation(s)
- Krystal Iacopetta
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Lyndsey E Collins-Praino
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Femke T A Buisman-Pijlman
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Mark R Hutchinson
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
33
|
Spierling SR, Kreisler AD, Williams CA, Fang SY, Pucci SN, Kines KT, Zorrilla EP. Intermittent, extended access to preferred food leads to escalated food reinforcement and cyclic whole-body metabolism in rats: Sex differences and individual vulnerability. Physiol Behav 2018; 192:3-16. [PMID: 29654812 PMCID: PMC6019212 DOI: 10.1016/j.physbeh.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
Abstract
Compulsive binge eating is a hallmark of binge eating disorder and bulimia nervosa and is implicated in some obesity cases. Eating disorders are sexually dimorphic, with females more often affected than males. Animal models of binge-like eating based on intermittent access to palatable food exist; but, little is known regarding sex differences or individual vulnerability in these models with respect to the reinforcing efficacy of food, the development of compulsive- and binge-like eating, or associated changes in whole-body metabolism or body composition. Adolescent male (n = 24) and female (n = 32) Wistar rats were maintained on chow or a preferred, high-sucrose, chocolate-flavored diet in continuous or intermittent, extended access conditions. Body weight and composition, intake, fixed- and progressive-ratio operant self-administration, and whole body energy expenditure and respiratory exchange ratios were measured across an 11-week study period. Subgroup analyses were conducted to differentiate compulsive-like "high responder" intermittent access rats that escalated to extreme progressive-ratio self-administration performance vs. more resistant "low responders." Female rats had greater reinforcing efficacy of food than males in all diet conditions and were more often classified as "high responders". In both sexes, rats with intermittent access showed cycling of fuel substrate utilization and whole-body energy expenditure. Further, "high-responding" intermittent access female rats had especially elevated respiratory exchange ratios, indicating a fat-sparing phenotype. Future studies are needed to better understand the molecular and neurobiological basis of the sex and individual differences we have observed in rats and their translational impact for humans with compulsive, binge eating disorders.
Collapse
Affiliation(s)
- Samantha R Spierling
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA.
| | - Alison D Kreisler
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA
| | - Casey A Williams
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA
| | - Savannah Y Fang
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA
| | - Sarah N Pucci
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA
| | - Kelsey T Kines
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA
| | - Eric P Zorrilla
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA.
| |
Collapse
|
34
|
Benatti C, Alboni S, Blom JMC, Mendlewicz J, Tascedda F, Brunello N. Molecular changes associated with escitalopram response in a stress-based model of depression. Psychoneuroendocrinology 2018; 87:74-82. [PMID: 29049934 DOI: 10.1016/j.psyneuen.2017.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 10/12/2017] [Indexed: 11/30/2022]
Abstract
Converging evidence points at hypothalamus-pituitary-adrenal (HPA) axis hyperactivity and neuroinflammation as important factors involved in the etiopathogenesis of major depressive disorder (MDD) and in therapeutic efficacy of antidepressants. In this study, we examined the molecular effects associated with a response to a week-long treatment with escitalopram in the chronic escape deficit (CED) model, a validated model of depression based on the induction of an escape deficit after exposure of rats to an unavoidable stress. We confirmed our previous result that a treatment with escitalopram (10mg/kg) was effective after 7days in reverting the stress-induced escape deficit in approximately 50% of the animals, separating responders from non-responders. Expression of markers of HPA axis functionality as well as several inflammatory mediators were evaluated in the hypothalamus, a key structure integrating signals from the neuro, immune, endocrine systems. In the hypothalamus of responder animals we observed a decrease in the expression of CRH and its receptors and an increase in GR protein in total and nuclear extracts; this effect was accompanied by a significant decrease in circulating corticosterone in the same cohort. Hypothalamic IL-1β and TNFα expression were increased in stressed animals, while CXCL2, IL-6, and ADAM17 mRNA levels were decreased in escitalopram treated rats regardless of the treatment response. These data suggest that efficacy of a one week treatment with escitalopram may be partially mediated by a decrease HPA axis activity, while in the hypothalamus the drug-induced effects on the expression of immune modulators did not correlate with the behavioural outcome.
Collapse
Affiliation(s)
- Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology University of Modena and Reggio Emilia, Modena, Italy.
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Joan M C Blom
- Center for Neuroscience and Neurotechnology University of Modena and Reggio Emilia, Modena, Italy; Department of Education and Human Sciences, University of Modena and Reggio Emilia, Viale Antonio Allegri 9, 42121, Reggio Emilia, Italy
| | - Julien Mendlewicz
- Department of Psychiatry, University Clinics of Brussels, Erasme Hospital, Free University of Brussels, 808 Route de Lennik, Brussels, Belgium
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology University of Modena and Reggio Emilia, Modena, Italy
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
35
|
Di Bonaventura MVM, Ubaldi M, Giusepponi ME, Rice KC, Massi M, Ciccocioppo R, Cifani C. Hypothalamic CRF1 receptor mechanisms are not sufficient to account for binge-like palatable food consumption in female rats. Int J Eat Disord 2017; 50:1194-1204. [PMID: 28833350 PMCID: PMC5772704 DOI: 10.1002/eat.22767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The present study evaluated the effect of systemic injection of the CRF1 receptor antagonist R121919, the corticosterone synthesis inhibitor metyrapone and central amygdala (CeA) injections of the nonselective CRF antagonist D-Phe-CRF(12-41) in rats in which binge eating was evoked by stress and cycles of food restriction. METHOD Female rats were subjected or not to repeated cycles of regular chow food restriction/ad libitum feeding during which they were also given limited access (2 h) to palatable food. On the test day, rats were either exposed or not to the sight of the palatable food for 15 min without allowing access, before assessing food consumption. RESULTS Systemic injections of R121919, but not of the metyrapone, blocked binge-like eating behavior. Restricted and stressed rats showed up-regulation of crh1 receptor mRNA signal in the bed nucleus of the stria terminalis and CeA but not in basolateral amygdala (BLA) or in the paraventricular nucleus. Injection D-Phe-CRF(12-41) in CeA but not in the BLA-blocked binge-like eating behavior. DISCUSSION These findings demonstrate that extra-hypothalamic CRF1 receptors, rather than those involved in endocrine functions, are involved in binge eating and the crucial role of CRF receptors in CeA. CRF1 receptor antagonism may represent a novel pharmacological treatment for binge-related eating disorders.
Collapse
Affiliation(s)
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | | | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse (NIDA) and National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Department of Health and Human Services, 9800 Medical Center Drive, Bethesda, MD 20892-3373, United States
| | - Maurizio Massi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy,NIDA/NIH, Intramural Research Program, 21224 Baltimore (MD), USA
| |
Collapse
|