1
|
Cui XS, Li HZ, Li L, Xie CZ, Gao JM, Chen YY, Zhang HY, Hao W, Fu JH, Guo H. Rodent model of metabolic dysfunction-associated fatty liver disease: a systematic review. J Gastroenterol Hepatol 2024. [PMID: 39322221 DOI: 10.1111/jgh.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Although significant progress has been made in developing preclinical models for metabolic dysfunction-associated steatotic liver disease (MASLD), few have encapsulated the essential biological and clinical outcome elements reflective of the human condition. We conducted a comprehensive literature review of English-language original research articles published from 1990 to 2023, sourced from PubMed, Embase, and Web of Science, aiming to collate studies that provided a comparative analysis of physiological, metabolic, and hepatic histological characteristics between MASLD models and control groups. The establishment of a robust metabolic dysfunction-associated steatotic liver rodent model hinges on various factors, including animal species and strains, sex, induction agents and methodologies, and the duration of induction. Through this review, we aim to guide researchers in selecting suitable induction methods and animal species for constructing preclinical models aligned with their specific research objectives and laboratory conditions. Future studies should strive to develop simple, reliable, and reproducible models, considering the model's sensitivity to factors such as light-dark cycles, housing conditions, and environmental temperature. Additionally, the potential of diverse in vitro models, including 3D models and liver organ technology, warrants further exploration as valuable tools for unraveling the cellular mechanisms underlying fatty liver disease.
Collapse
Affiliation(s)
- Xiao-Shan Cui
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Zheng Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng-Zhi Xie
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Ming Gao
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan-Yuan Chen
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Yu Zhang
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Hao
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Hua Fu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Guo
- Safety Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Xu M, Zhang P, Lv W, Chen Y, Chen M, Leng Y, Hu T, Wang K, Zhao Y, Shen J, You X, Gu D, Zhao W, Tan S. A bifunctional anti-PCSK9 scFv/Exendin-4 fusion protein exhibits enhanced lipid-lowering effects via targeting multiple signaling pathways in HFD-fed mice. Int J Biol Macromol 2023; 253:127003. [PMID: 37739280 DOI: 10.1016/j.ijbiomac.2023.127003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Fusion protein which encompasses more than one functional component, has become one of the most important representatives of macromolecular drugs for disease treatment since that monotherapy itself might not be effective enough to eradicate the disease. In this study, we sought to construct a bifunctional antibody fusion protein by fusing anti-PCSK9 scFv with Exendin-4 for simultaneously lowering both LDL-C and TG. Firstly, three Ex4-anti-PCSK9 scFv fusion proteins were constructed by genetically connecting the C-terminal of Exendin-4 to the N-terminal of anti-PCSK9 scFv through various flexible linker peptides (G4S)n (n = 2, 3, 4). After soluble expression in E. coli, the most potent Ex4-(G4S)4-anti-PCSK9 scFv fusion protein was selected based on in vitro activity assays. Then, we investigated the in vivo therapeutic effects of Ex4-(G4S)4-anti-PCSK9 scFv on the serum lipid profile and bodyweight changes as well as underlying molecular mechanism in HFD-fed C57BL/6 mice. The data showed that Ex4-(G4S)4-anti-PCSK9 scFv exhibits enhanced effects of lowering both LDL-C and TG in serum, reducing food intake and body weight via blocking PCSK9/LDLR, activating AMPK/SREBP-1 pathways, and up-regulating sirt6. Conclusively, Ex4-(G4S)4-anti-PCSK9 has the potential to serve as a promising therapeutic agent for effectively treating dyslipidemia with high levels of both LDL-C and TG.
Collapse
Affiliation(s)
- Menglong Xu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Panpan Zhang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenxiu Lv
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuting Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Manman Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yeqing Leng
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tuo Hu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ke Wang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yaqiang Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiaqi Shen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiangyan You
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dian Gu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
3
|
Dietary fatty acid metabolism: New insights into the similarities of lipid metabolism in humans and hamsters. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100060. [PMID: 35415688 PMCID: PMC8991696 DOI: 10.1016/j.fochms.2021.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022]
|
4
|
Effects of "Bacuri" Seed Butter ( Platonia insignis Mart.) on Metabolic Parameters in Hamsters with Diet-Induced Hypercholesterolemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5584965. [PMID: 34912463 PMCID: PMC8668334 DOI: 10.1155/2021/5584965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023]
Abstract
This study aimed to evaluate the effects of the treatment with bacuri seed butter (BB) on body weight, growth, body mass index, lipid profile, atherosclerotic indices, and liver function in dyslipidemic hamsters. Freshly weaned, male hamsters were divided into four groups: (1) normal group (NG)—maintained with standard chow (AIN-93G); (2) dyslipidemia group (DG)—maintained with hyperlipidemic chow (AIN-93G modified) throughout the follow-up period; (3) bacuri seed butter 25 mg/kg/day (BB-25); and (4) bacuri seed butter 50 mg/kg/day (BB-50). BB groups (25 and 50 mg/kg/day) were also maintained with hyperlipidemic chow throughout the follow-up period, and the treatment started after 21 days receiving a hyperlipidemic diet to induce hypercholesterolemia and maintained for 28 days. No significant differences in triglycerides and total cholesterol were observed for BB-25 and BB-50 groups when compared with NG and DG groups. On the contrary, BB-25 and BB-50 induced both increase of HDL-c (51.40 ± 1.69 and 51.00 ± 2.34, respectively) and decrease of LDL-c (103.80 ± 6.87 and 100.50 ± 3.95, respectively) when compared with DG (41.00 ± 2.94 and 132.70 ± 9.41, respectively). In addition, BB promoted a reduction in the risk of atherosclerotic disease by decreasing (p < 0.05) the atherogenic index, coronary artery risk index, and LDL/CT ratio (p < 0.05) and increasing HDL/CT ratio. On the contrary, no changes were observed in total cholesterol and triglyceride levels or in body weight, growth, body mass index, or liver function parameters. Thus, bacuri seed butter at doses of 25 and 50 mg/kg/day has positive repercussions on the lipid profile, more precisely on plasma HDL-c and LDL-c, and additionally promotes reduction in the risk of atherosclerosis in hamsters.
Collapse
|
5
|
Yin F, Lin P, Yu WQ, Shen N, Li Y, Guo SD. The Cordyceps militaris-Derived Polysaccharide CM1 Alleviates Atherosclerosis in LDLR (-/-) Mice by Improving Hyperlipidemia. Front Mol Biosci 2021; 8:783807. [PMID: 34966782 PMCID: PMC8710727 DOI: 10.3389/fmolb.2021.783807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerotic cardiovascular disease has a high mortality worldwide. Our lab previously purified a polysaccharide designated as CM1 with (1→4)-β-D-Glcp and (1→2)-α-D-Manp glycosyls as the backbone. In this study, we investigated the anti-atherosclerosis effect of CM1 and the underlying mechanisms of action in a low-density lipoprotein receptor knockout (LDLR(-/-) mouse model. It was found that CM1 significantly decreased the formation of atherosclerotic plaques. Mechanistically, CM1 enhanced plasma level of apolipoprotein A-I and decreased the plasma levels of triglyceride, apolipoprotein B, and total cholesterol. In the absence of LDLR, CM1 elevated the expression of very low-density lipoprotein receptor for liver uptake of plasma apolipoprotein B-containing particles and reduced hepatic triglyceride synthesis by inhibiting sterol regulatory element binding protein 1c. CM1 improved lipids excretion by increasing the liver X receptor α/ATP-binding cassette G5 pathway in small intestine. CM1 reduced lipogenesis and lipolysis by inhibiting peroxisome proliferator-activated receptor γ and adipose triglyceride lipase in epididymal fat. Furthermore, CM1 improved lipid profile in C57BL/6J mice. Collectively, CM1 can modulate lipid metabolism by multiple pathways, contributing to reduced plasma lipid level and formation of atherosclerotic plaques in LDLR(-/-) mice. This molecule could be explored as a potential compound for prevention and treatment of hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Yu WQ, Yin F, Shen N, Lin P, Xia B, Li YJ, Guo SD. Polysaccharide CM1 from Cordyceps militaris hinders adipocyte differentiation and alleviates hyperlipidemia in LDLR (+/-) hamsters. Lipids Health Dis 2021; 20:178. [PMID: 34895241 PMCID: PMC8667404 DOI: 10.1186/s12944-021-01606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cordyceps militaris is cultured widely as an edible mushroom and accumulating evidence in mice have demonstrated that the polysaccharides of Cordyceps species have lipid-lowering effects. However, lipid metabolism in mice is significantly different from that in humans, making a full understanding of the mechanisms at play critical. Methods After 5 months, the hamsters were weighed and sampled under anesthesia after overnight fasting. The lipid-lowering effect and mechanisms of the polysaccharide CM1 was investigated by cellular and molecular technologies. Furthermore, the effect of the polysaccharide CM1 (100 μg/mL) on inhibiting adipocyte differentiation was investigated in vitro. Results CM1, a polysaccharide from C. militaris, significantly decreased plasma total cholesterol, triglyceride and epididymal fat index in LDLR(+/−) hamsters, which have a human-like lipid profile. After 5 months’ administration, CM1 decreased the plasma level of apolipoprotein B48, modulated the expression of key genes and proteins in liver, small intestine, and epididymal fat. CM1 also inhibited preadipocyte differentiation in 3T3-L1 cells by downregulating the key genes involved in lipid droplet formation. Conclusions The polysaccharide CM1 lowers lipid and adipocyte differentiation by several pathways, and it has potential applications for hyperlipidemia prevention. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01606-6.
Collapse
Affiliation(s)
- Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Fan Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Nuo Shen
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Bin Xia
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China.
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Baotongxi street 7166#, Weifang, Shandong province, China.
| |
Collapse
|
7
|
Rodríguez-Rodríguez AE, Donate-Correa J, Luis-Lima S, Díaz-Martín L, Rodríguez-González C, Pérez-Pérez JA, Acosta-González NG, Fumero C, Navarro-Díaz M, López-Álvarez D, Villacampa-Jiménez J, Navarro-González JA, Ortiz A, Porrini E. Obesity and metabolic syndrome induce hyperfiltration, glomerulomegaly, and albuminuria in obese ovariectomized female mice and obese male mice. Menopause 2021; 28:1296-1306. [PMID: 34581293 DOI: 10.1097/gme.0000000000001842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Obese patients with metabolic syndrome have a high risk of chronic kidney disease. The prevalence of obesity, metabolic syndrome, and insulin resistance increase in women after menopause, as does the risk of chronic kidney disease. This may indicate an interaction between obesity, metabolic syndrome, and menopause in the induction of renal damage. However, the pathogenesis of kidney disease in postmenopausal obese women is poorly understood. METHODS We investigated the interaction of an obesogenic diet and menopause on renal dysfunction in ovariectomized and non-ovariectomized lean (n = 8 and 17) and obese (n = 12 and 20) female mice. Obese (n = 12) and lean (n = 10) male mice were also studied. Glucose metabolism, insulin resistance, and kidney function were evaluated with gold standards procedures. Changes in kidney histology and lipid deposition were analyzed. Females had a lower number of glomeruli than males at baseline. RESULTS Only female ovariectomized obese animals developed insulin resistance, hyperglycemia, and kidney damage, evidenced as glomerulomegaly, glomerular hyperfiltration, and increased urinary albumin excretion, despite a similar increase in weight than obese non-ovariectomized female mice. Male obese mice developed hyperglycemia, insulin resistance, and hyperfiltration without major renal histological changes. Males on high fat diet showed higher renal lipid content and females on high fat diet (ovariectomized or non-ovariectomized) showed higher total cholesterol content than males. CONCLUSIONS In mice, there is a clear interplay between obesity, metabolic syndrome, and menopause in the induction of kidney damage.
Collapse
Affiliation(s)
- Ana Elena Rodríguez-Rodríguez
- Research Unit, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
- Fundacion General de la Universidad, University of La Laguna, Tenerife, Spain
| | - Javier Donate-Correa
- Research Unit, Hospital Universitario de Nuestra Señora de La Candelaria, La Laguna, Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Sergio Luis-Lima
- Department of Nephology and Hypertension, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Laura Díaz-Martín
- Research Unit, Hospital Universitario de Canarias, FIISC (Fundación Canaria Investigación Sanitaria de Canarias), La Laguna, Tenerife, Spain
| | | | | | | | - Cecilia Fumero
- Research Unit, Hospital Universitario de Canarias, FIISC (Fundación Canaria Investigación Sanitaria de Canarias), La Laguna, Tenerife, Spain
| | | | | | | | | | - Alberto Ortiz
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Department of Nephology and Hypertension, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Esteban Porrini
- Research Unit, Hospital Universitario de Canarias, University of La Laguna, Faculty of Medicine, Tenerife, Spain
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, Tenerife, Spain
| |
Collapse
|
8
|
Effects and Mechanisms of Chitosan and ChitosanOligosaccharide on Hepatic Lipogenesis and Lipid Peroxidation, Adipose Lipolysis, and Intestinal Lipid Absorption in Rats with High-Fat Diet-Induced Obesity. Int J Mol Sci 2021; 22:ijms22031139. [PMID: 33498889 PMCID: PMC7869010 DOI: 10.3390/ijms22031139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Chitosan and its derivative, chitosan oligosaccharide (CO), possess hypolipidemic and anti-obesity effects. However, it is still unclear if the mechanisms are different or similar between chitosan and CO. This study was designed to investigate and compare the effects of CO and high-molecular-weight chitosan (HC) on liver lipogenesis and lipid peroxidation, adipose lipolysis, and intestinal lipid absorption in high-fat (HF) diet-fed rats for 12 weeks. Rats were divided into four groups: normal control diet (NC), HF diet, HF diet+5% HC, and HF diet+5% CO. Both HC and CO supplementation could reduce liver lipid biosynthesis, but HC had a better effect than CO on improving liver lipid accumulation in HF diet-fed rats. The increased levels of triglyceride decreased lipolysis rate, and increased lipoprotein lipase activity in the perirenal adipose tissue of HF diet-fed rats could be significantly reversed by both HC and CO supplementation. HC, but not CO, supplementation promoted liver antioxidant enzymes glutathione peroxidase and superoxide dismutase activities and reduced liver lipid peroxidation. In the intestines, CO, but not HC, supplementation reduced lipid absorption by reducing the expression of fabp2 and fatp4 mRNA. These results suggest that HC and CO have different mechanisms for improving lipid metabolism in HF diet-fed rats.
Collapse
|
9
|
Sarkar S, Bhattacharya S, Alam MJ, Yadav R, Banerjee SK. Hypoxia aggravates non-alcoholic fatty liver disease in presence of high fat choline deficient diet: A pilot study. Life Sci 2020; 260:118404. [PMID: 32920003 DOI: 10.1016/j.lfs.2020.118404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022]
Abstract
AIM NAFLD is a chronic and progressive disease for which there are no FDA-approved drugs available in the market. Drug discovery is a time-consuming procedure and requires screening of hundreds of small molecules to find new chemical entities (NECs) for a particular disease. Current preclinical NAFLD animal models take a longer time, which enhances the duration and expenses of the screening procedure. Hence to shorten the duration, we have proposed a preclinical animal model for rapid induction of non-alcoholic steatohepatitis (NASH), an advanced stage of NAFLD in rats. METHODOLOGY The animals were divided into three groups; control, high fat choline deficient (HFCD) and high fat choline deficient diet with sodium nitrite (40 mg/kg b.w. i.p. per day) (HFCD + NaNO2) respectively. Four weeks later physical and serum biochemical parameters were assessed, intraperitoneal glucose tolerance test was performed, and histopathology and gene expression were analysed. KEY FINDINGS Hypoxic stress aggravates the lipid accumulation, ballooning, lobular inflammation and fibrosis in hepatic tissue in presence of HFCD diet. SIGNIFICANCE This novel rodent model could be a useful NAFLD model to screen small molecules rapidly for treatment of NASH.
Collapse
Affiliation(s)
- Soumalya Sarkar
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India
| | - Sankarsan Bhattacharya
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India
| | - Md Jahangir Alam
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sanjay K Banerjee
- Non-communicable Disease Group, Translational Health Science and Technology Institute (THSTI), Faridabad 121001, Haryana, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India.
| |
Collapse
|
10
|
Zhang J, Ma J, Zhou X, Hu S, Ge L, Sun J, Li P, Long K, Jin L, Tang Q, Liu L, Li X, Shuai S, Li M. Comprehensive Analysis of mRNA and lncRNA Transcriptomes Reveals the Differentially Hypoxic Response of Preadipocytes During Adipogenesis. Front Genet 2020; 11:845. [PMID: 32849828 PMCID: PMC7425071 DOI: 10.3389/fgene.2020.00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022] Open
Abstract
Local hypoxia has recently been reported to occur in the white adipose tissue (WAT) microenvironment during obesity. Adipocytes have a unique life cycle that reflects the different stages of adipogenesis in the WAT niche. Long non-coding RNAs (lncRNAs) play an important role in the cellular response to hypoxia. However, the differentially hypoxic responses of preadipocytes during adipogenesis and the potential role of lncRNAs in this process remain to be elucidated. Here, we evaluated the differentially hypoxic responses of primary hamster preadipocytes during adipogenesis and analyzed mRNA and lncRNA expression in same Ribo-Zero RNA-seq libraries. Hypoxia induced HIF-1α protein during adipogenesis and caused divergent changes of cell phenotypes. A total of 10,318 mRNAs were identified to be expressed in twenty libraries (five timepoints), and 3,198 differentially expressed mRNAs (DE mRNAs) were detected at five timepoints (hypoxia vs. normoxia). Functional enrichment analysis revealed the shared and specific hypoxia response pathways in the different stages of adipogenesis. Hypoxia differentially modulated the expression profile of adipose-associated genes, including adipokines, lipogenesis, lipolysis, hyperplasia, hypertrophy, inflammatory, and extracellular matrix. We also identified 4,296 lncRNAs that were expressed substantially and detected 1,431 DE lncRNAs at five timepoints. Two, 3, 5, 13, and 50 DE mRNAs at D0, D1, D3, D7, and D11, respectively, were highly correlated and locus-nearby DE lncRNAs and mainly involved in the cell cycle, vesicle-mediated transport, and mitochondrion organization. We identified 28 one-to-one lncRNA-mRNA pairs that might be closely related to adipocyte functions, such as ENSCGRT00015041780-Hilpda, TU2105-Cdsn, and TU17588-Ltbp3. These lncRNAs may represent the crucial regulation axis in the cellular response to hypoxia during adipogenesis. This study dissected the effects of hypoxia in the cell during adipogenesis, uncovered novel regulators potentially associated with WAT function, and may provide a new viewpoint for interpretation and treatment of obesity.
Collapse
Affiliation(s)
- Jinwei Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jideng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiankun Zhou
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Silu Hu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi Nan Gynecological Hospital, Chengdu, China
| | - Keren Long
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qianzi Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lingyan Liu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Surong Shuai
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Farr S, Stankovic B, Hoffman S, Masoudpoor H, Baker C, Taher J, Dean AE, Anakk S, Adeli K. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G682-G693. [PMID: 32003602 DOI: 10.1152/ajpgi.00386.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Postprandial dyslipidemia is a common feature of insulin-resistant states and contributes to increased cardiovascular disease risk. Recently, bile acids have been recognized beyond their emulsification properties as important signaling molecules that promote energy expenditure, improve insulin sensitivity, and lower fasting lipemia. Although bile acid receptors have become novel pharmaceutical targets, their effects on postprandial lipid metabolism remain unclear. Here, we investigated the potential role of bile acids in regulation of postprandial chylomicron production and triglyceride excursion. Healthy C57BL/6 mice were given an intraduodenal infusion of taurocholic acid (TA) under fat-loaded conditions, and circulating lipids were measured. Targeting of bile acid receptors was achieved with GW4064, a synthetic agonist to the farnesoid X receptor (FXR), and deoxycholic acid (DCA), an activator of the Takeda G-protein-coupled receptor 5. TA, GW4064, and DCA treatments all lowered postprandial lipemia. FXR agonism also reduced intestinal triglyceride content and activity of microsomal triglyceride transfer protein, involved in chylomicron assembly. Importantly, TA (but not DCA) effects were largely lost in FXR knockout mice. These bile acid effects are reminiscent of the antidiabetic hormone glucagon-like peptide-1 (GLP-1). Although the GLP-1 receptor agonist exendin-4 retained its ability to acutely lower postprandial lipemia during bile acid sequestration and FXR deficiency, it did raise hepatic expression of the rate-limiting enzyme for bile acid synthesis. Bile acid signaling may be an important mechanism of controlling dietary lipid absorption, and bile acid receptors may constitute novel targets for the treatment of postprandial dyslipidemia.NEW & NOTEWORTHY We present new data suggesting potentially important roles for bile acids in regulation of postprandial lipid metabolism. Specific bile acid species, particularly secondary bile acids, were found to markedly inhibit absorption of dietary lipid and reduce postprandial triglyceride excursion. These effects appear to be mediated via bile acid receptors, farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Importantly, bile acid signaling may trigger glucagon-like peptide-1 (GLP-1) secretion, which may in turn mediate the marked inhibitory effects on dietary fat absorption.
Collapse
Affiliation(s)
- Sarah Farr
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bogdan Stankovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon Hoffman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hassan Masoudpoor
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris Baker
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Taher
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angela E Dean
- Molecular and Cellular Biology, University of Illinois-Urbana-Champaign, Urbana, Illinois
| | | | - Khosrow Adeli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Ning Q, Wang Y, Zhang Y, Shen G, Xie Z, Pang J. Nuciferine Prevents Hepatic Steatosis by Regulating Lipid Metabolismin Diabetic Rat Model. Open Life Sci 2019; 14:699-706. [PMID: 33817209 PMCID: PMC7874802 DOI: 10.1515/biol-2019-0079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Objective This study investigatesthe nuciferine capacity to regulate the liver’s lipid metabolism regarding steatosis and injury in STZ-induced diabetic rats. Materials and Methods The rats were randomly divided into groups control, diabetic and nuciferine 200 mg/kg/ day treatment. After 4 days of STZ injection, the nuciferine group was treated and administered via oral gavages for 4 weeks. At the end of experiment, blood, liver, myocardial and muscular samples were collected. Results Nuciferine-treated significantly increased the body weight from 339.4g to 367.8g, but significantly decreased the food and water intake compared with diabetic rats. Also, the nuciferine-treated rats had significantly decreased TC, TG, and FFAs in the liver compared with the diabetic group, especially the serum markers of blood glucose. These were associated with the gene expression related to lipogenesis which was significantly down-regulated; the gene expression involved in lipolysis and fatty acid β-oxidation was significantly up-regulated. Discussion and Conclusion The data provide evidence that nuciferine supplementation could protect the liver by regulating lipid metabolism gene expression resulting in decreasing the steatosis and injury in diabetic rat. Thus, nuciferine could be developed as a diabetic adjuvant food additive in future.
Collapse
Affiliation(s)
- Qian Ning
- Jinshan College of Fujian Agriculture and Forestry University, Fujian Province, 350001, P. R. China
| | - Yang Wang
- Jinshan College of Fujian Agriculture and Forestry University, Fujian Province, 350001, P. R. China
| | - Yi Zhang
- Jinshan College of Fujian Agriculture and Forestry University, Fujian Province, 350001, P. R. China
| | - Guozhi Shen
- Jinshan College of Fujian Agriculture and Forestry University, Fujian Province, 350001, P. R. China
| | - Zhenglu Xie
- Jinshan College of Fujian Agriculture and Forestry University, Fujian Province, 350001, P. R. China.,Collaborative Innovation Center of Animal Health and Food Safety Application Technology in Fujian, Fujian Vocational College of Agriculture, Fuzhou City, Fujian Province, 350002, P.R. China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fujian Province, 350001, P. R. China
| |
Collapse
|
13
|
Sun L, Pang Y, Wang X, Wu Q, Liu H, Liu B, Liu G, Ye M, Kong W, Jiang C. Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters. Acta Pharm Sin B 2019; 9:702-710. [PMID: 31384531 PMCID: PMC6664038 DOI: 10.1016/j.apsb.2019.02.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/30/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Since metabolic process differs between humans and mice, studies were performed in hamsters, which are generally considered to be a more appropriate animal model for studies of obesity-related metabolic disorders. The modulation of gut microbiota, bile acids and the farnesoid X receptor (FXR) axis is correlated with obesity-induced insulin resistance and hepatic steatosis in mice. However, the interactions among the gut microbiota, bile acids and FXR in metabolic disorders remained largely unexplored in hamsters. In the current study, hamsters fed a 60% high-fat diet (HFD) were administered vehicle or an antibiotic cocktail by gavage twice a week for four weeks. Antibiotic treatment alleviated HFD-induced glucose intolerance, hepatic steatosis and inflammation accompanied with decreased hepatic lipogenesis and elevated thermogenesis in subcutaneous white adipose tissue (sWAT). In the livers of antibiotic-treated hamsters, cytochrome P450 family 7 subfamily B member 1 (CYP7B1) in the alternative bile acid synthesis pathway was upregulated, contributing to a more hydrophilic bile acid profile with increased tauro-β-muricholic acid (TβMCA). The intestinal FXR signaling was suppressed but remained unchanged in the liver. This study is of potential translational significance in determining the role of gut microbiota-mediated bile acid metabolism in modulating diet-induced glucose intolerance and hepatic steatosis in the hamster.
Collapse
Key Words
- ALT, alanine amino-transferase
- AST, aspartate transaminase
- AUC, area under curve
- ApoB, apolipoprotein B
- BAs, bile acids
- BSH, bile acid hydrolase
- CA, cholic acid
- CAPE, caffeic acid phenethyl ester
- CDCA, chenodeoxycholic acid
- CETP, cholesterol ester transfer protein
- CYP27A1, cytochrome P450 family 27 subfamily A member 1
- CYP7A1, cytochrome P450 family 7 subfamily A member 1
- CYP7B1
- CYP7B1, cytochrome P450 family 7 subfamily B member 1
- CYP8B1, cytochrome P450 family 8 subfamily B member 1
- DCA, deoxycholic acid
- FGF15/19, fibroblast growth factor 15/19
- FXR
- FXR, farnesoid X receptor
- GCA, glycocholic acid
- GCDCA, glycochenodeoxycholic acid
- GTT, glucose tolerance test
- Gut microbiota
- H&E, hematoxylin and eosin
- HFD, high fat diet
- ITT, insulin tolerance test
- LCA, lithocholic acid
- Metabolic disorders
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- PBA/SBA, primary bile acids to secondary bile acids
- T2D, type 2 diabetes
- TC, total cholesterol
- TCA, taurocholic acid
- TG, triglycerides
- TβMCA
- TβMCA, tauro-β-muricholic acid
- UDCA, ursodeoxycholic acid
- UPLC–MS/MS, ultra performance liquid chromatography–tandem mass spectrometry
- VLDL, very low-density lipoprotein
- eWAT, epididymal white adipose tissue
- sWAT, subcutaneous white adipose tissue
Collapse
Affiliation(s)
- Lulu Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Yuanyuan Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Qing Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Corresponding author.
| |
Collapse
|
14
|
Martinez-Huenchullan SF, Ban LA, Olaya-Agudo LF, Maharjan BR, Williams PF, Tam CS, Mclennan SV, Twigg SM. Constant-Moderate and High-Intensity Interval Training Have Differential Benefits on Insulin Sensitive Tissues in High-Fat Fed Mice. Front Physiol 2019; 10:459. [PMID: 31105582 PMCID: PMC6494961 DOI: 10.3389/fphys.2019.00459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of diet-induced obesity, this study determined if two exercise prescriptions with equivalent time and distance covered, [constant-moderate endurance (END) and high intensity interval training (HIIT)], exert differential metabolic benefits on insulin sensitive tissues. Male 10 week old C57BL/6 mice were fed a high fat diet (HFD; 45% kcal fat) ad libitum for 10 weeks and for a further 10 weeks they underwent END or HIIT training (3 × 40 min sessions/wk). Untrained HFD and chow-fed mice acted as controls. At 30 weeks of age, mice were sacrificed and quadriceps muscle, subcutaneous adipose tissue (SAT) and liver were excised. Neither END nor HIIT altered body weight or composition in HFD mice. In quadriceps, HFD decreased high-molecular weight adiponectin protein, which was normalized by END and HIIT. In contrast, HIIT but not END reversed the HFD-driven decrease in the adiponectin receptor 1 (AdipoR1). In SAT, both programs tended to decrease collagen VI protein (p = 0.07–0.08) in HFD, whereas only HIIT induced an increase in the mRNA (3-fold vs. HFD untrained) and protein (2-fold vs. HFD untrained) of UCP1. In liver, only END reversed collagen I accumulation seen in HFD untrained mice. Our results suggest that HIIT may promote better systemic metabolic changes, compared to END, which may be the result of the normalization of muscle AdipoR1 and increased UCP1 seen in SAT. However, END was more effective in normalizing liver changes, suggesting differential metabolic effects of END and HIIT in different tissues during obesity.
Collapse
Affiliation(s)
- Sergio F Martinez-Huenchullan
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Linda A Ban
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Luisa F Olaya-Agudo
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Babu Raja Maharjan
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Department of Biochemistry, School of Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Paul F Williams
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Charmaine S Tam
- Northern Clinical School and Centre for Translational Data Science, University of Sydney, Sydney, NSW, Australia
| | - Susan V Mclennan
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,NSW Health Pathology, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
15
|
Di Filippo M, Varret M, Boehm V, Rabès JP, Ferkdadji L, Abramowitz L, Dumont S, Lenaerts C, Boileau C, Joly F, Schmitz J, Samson-Bouma ME, Bonnefont-Rousselot D. Postprandial lipid absorption in seven heterozygous carriers of deleterious variants of MTTP in two abetalipoproteinemic families. J Clin Lipidol 2018; 13:201-212. [PMID: 30522860 DOI: 10.1016/j.jacl.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/25/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Abetalipoproteinemia, a recessive disease resulting from deleterious variants in MTTP (microsomal triglyceride transfer protein), is characterized by undetectable concentrations of apolipoprotein B, extremely low levels of low-density lipoprotein cholesterol in the plasma, and a total inability to export apolipoprotein B-containing lipoproteins from both the intestine and the liver. OBJECTIVE To study lipid absorption after a fat load and liver function in 7 heterozygous relatives from 2 abetalipoproteinemic families, 1 previously unreported. RESULTS Both patients are compound heterozygotes for p.(Arg540His) and either c.708_709del p.(His236Glnfs*11) or c.1344+3_1344+6del on the MTTP gene. The previously undescribed patient has been followed for 22 years with ultrastructure analyses of both the intestine and the liver. In these 2 families, 5 relatives were heterozygous for p.(Arg540His), 1 for p.(His236Glnfs*11) and 1 for c.1344+3_1344+6del. In 4 heterozygous relatives, the lipid absorption was normal independent of the MTTP variant. In contrast, in 3 of them, the increase in triglyceride levels after fat load was abnormal. These subjects were additionally heterozygous carriers of Asp2213 APOB in-frame deletion, near the cytidine mRNA editing site, which is essential for intestinal apoB48 production. Liver function appeared to be normal in all the heterozygotes except for one who exhibited liver steatosis for unexplained reasons. CONCLUSION Our study suggests that a single copy of the MTTP gene may be sufficient for human normal lipid absorption, except when associated with an additional APOB gene alteration. The hepatic steatosis reported in 1 patient emphasizes the need for liver function tests in all heterozygotes until the level of risk is established.
Collapse
Affiliation(s)
- Mathilde Di Filippo
- UF Dyslipidemies, Service de Biochimie et Biologie moléculaire Grand Est, GHE, Hospices Civils de Lyon, Bron Cedex, France; Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.
| | - Mathilde Varret
- INSERM U1148, Université Paris Diderot, Hôpital Bichat-Claude Bernard, Paris Cedex 18, France
| | - Vanessa Boehm
- Service de gastroentérologie, MICI et Assistance Nutritive, Hopital Beaujon, Hopital Beaujon (AP-HP), Université Paris VII, Paris, France. INSERM UMR1149, Centre de Recherche sur l'Inflammation Paris Montmartre (CRI), Paris, France
| | - Jean-Pierre Rabès
- INSERM U1148, Université Paris Diderot, Hôpital Bichat-Claude Bernard, Paris Cedex 18, France; AP-HP, HUPIFO, Hôpital Ambroise Paré, Laboratoire de Biochimie et Génétique Moléculaire & UVSQ, UFR des Sciences de la Santé Simone Veil, Montigny-Le-Bretonneux, France
| | - Latifa Ferkdadji
- Service d'anatomie et de cytologie pathologiques, Hôpital Robert Debré, Université Paris 7, Paris, France
| | - Laurent Abramowitz
- Service d'Hépato-Gastroentérologie, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris Cedex 18, France
| | - Sabrina Dumont
- UF Dyslipidemies, Service de Biochimie et Biologie moléculaire Grand Est, GHE, Hospices Civils de Lyon, Bron Cedex, France
| | | | - Catherine Boileau
- INSERM U1148, Université Paris Diderot, Hôpital Bichat-Claude Bernard, Paris Cedex 18, France
| | - Francisca Joly
- Service de gastroentérologie, MICI et Assistance Nutritive, Hopital Beaujon, Hopital Beaujon (AP-HP), Université Paris VII, Paris, France. INSERM UMR1149, Centre de Recherche sur l'Inflammation Paris Montmartre (CRI), Paris, France
| | - Jacques Schmitz
- Département de Gastroentérologie pédiatrique, Hopital Necker-Enfants Malades, Paris, France
| | | | - Dominique Bonnefont-Rousselot
- Service de Biochimie métabolique, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix (AP-HP), Paris, France; Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, U 1022 INSERM, UMR 8258 CNRS, Paris, France
| |
Collapse
|
16
|
Taher J, Baker C, Alvares D, Ijaz L, Hussain M, Adeli K. GLP-2 Dysregulates Hepatic Lipoprotein Metabolism, Inducing Fatty Liver and VLDL Overproduction in Male Hamsters and Mice. Endocrinology 2018; 159:3340-3350. [PMID: 30052880 DOI: 10.1210/en.2018-00416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Fundamental complications of insulin resistance and type 2 diabetes include the development of nonalcoholic fatty liver disease and an atherogenic fasting dyslipidemic profile, primarily due to increases in hepatic very-low-density lipoprotein (VLDL) production. Recently, central glucagon-like peptide-2 receptor (GLP2R) signaling has been implicated in regulating hepatic insulin sensitivity; however, its role in hepatic lipid and lipoprotein metabolism is unknown. We investigated the role of glucagon-like peptide-2 (GLP-2) in regulating hepatic lipid and lipoprotein metabolism in Syrian golden hamsters, C57BL/6J mice, and Glp2r-/- mice consuming either a normal chow or high-fat diet (HFD). In the chow-fed hamsters, IP GLP-2 administration significantly increased fasting dyslipidemia, hepatic VLDL production, and the expression of key genes involved in hepatic de novo lipogenesis. In HFD-fed hamsters and chow-fed mice, GLP-2 administration exacerbated or induced hepatic lipid accumulation. HFD-fed Glp2r-/- mice displayed reduced glucose tolerance, VLDL secretion, and microsomal transfer protein lipid transfer activity, as well as exacerbated fatty liver. Thus, we conclude that GLP-2 plays a lipogenic role in the liver by increasing lipogenic gene expression and inducing hepatic steatosis, fasting dyslipidemia, and VLDL overproduction. In contrast, the lack of Glp2r appears to interfere with VLDL secretion, resulting in enhanced hepatic lipid accumulation. These studies have uncovered a role for GLP-2 in maintaining hepatic lipid and lipoprotein homeostasis.
Collapse
Affiliation(s)
- Jennifer Taher
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Christopher Baker
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danielle Alvares
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Laraib Ijaz
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York
- Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
17
|
P-407-induced Mouse Model of Dose-controlled Hyperlipidemia and Atherosclerosis: 25 Years Later. J Cardiovasc Pharmacol 2017; 70:339-352. [DOI: 10.1097/fjc.0000000000000522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Ramachandran D, Clara R, Fedele S, Hu J, Lackzo E, Huang JY, Verdin E, Langhans W, Mansouri A. Intestinal SIRT3 overexpression in mice improves whole body glucose homeostasis independent of body weight. Mol Metab 2017; 6:1264-1273. [PMID: 29031725 PMCID: PMC5641632 DOI: 10.1016/j.molmet.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Intestinal metabolism might play a greater role in regulating whole body metabolism than previously believed. We aimed to enhance enterocyte metabolism in mice and investigate if it plays a role in diet-induced obesity (DIO) and its comorbidities. METHODS Using the cre-loxP system, we overexpressed the mitochondrial NAD+ dependent protein deacetylase SIRT3 in enterocytes of mice (iSIRT3 mice). We chronically fed iSIRT3 mice and floxed-SIRT3 control (S3fl) mice a low-fat, control diet (CD) or a high-fat diet (HFD) and then phenotyped the mice. RESULTS There were no genotype differences in any of the parameters tested when the mice were fed CD. Also, iSIRT3 mice were equally susceptible to the development of DIO as S3fl mice when fed HFD. They were, however, better able than S3fl mice to regulate their blood glucose levels in response to exogenous insulin and glucose, indicating that they were protected from developing insulin resistance. This improved glucose homeostasis was accompanied by an increase in enterocyte metabolic activity and an upregulation of ketogenic gene expression in the small intestine. CONCLUSION Enhancing enterocyte oxidative metabolism can improve whole body glucose homeostasis.
Collapse
Affiliation(s)
| | - Rosmarie Clara
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Shahana Fedele
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Junmin Hu
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Endre Lackzo
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jing-Yi Huang
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
19
|
Ailanen L, Ruohonen ST, Vähätalo LH, Tuomainen K, Eerola K, Salomäki-Myftari H, Röyttä M, Laiho A, Ahotupa M, Gylling H, Savontaus E. The metabolic syndrome in mice overexpressing neuropeptide Y in noradrenergic neurons. J Endocrinol 2017; 234:57-72. [PMID: 28468933 DOI: 10.1530/joe-16-0223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
Abstract
A gain-of-function polymorphism in human neuropeptide Y (NPY) gene (rs16139) associates with metabolic disorders and earlier onset of type 2 diabetes (T2D). Similarly, mice overexpressing NPY in noradrenergic neurons (OE-NPYDBH) display obesity and impaired glucose metabolism. In this study, the metabolic syndrome-like phenotype was characterized and mechanisms of impaired hepatic fatty acid, cholesterol and glucose metabolism in pre-obese (2-month-old) and obese (4-7-month-old) OE-NPYDBH mice were elucidated. Susceptibility to T2D was assessed by subjecting mice to high caloric diet combined with low-dose streptozotocin. Contribution of hepatic Y1-receptor to the phenotype was studied using chronic treatment with an Y1-receptor antagonist, BIBO3304. Obese OE-NPYDBH mice displayed hepatosteatosis and hypercholesterolemia preceded by decreased fatty acid oxidation and accelerated cholesterol synthesis. Hyperinsulinemia in early obese state inhibited pyruvate- and glucose-induced hyperglycemia, and deterioration of glucose metabolism of OE-NPYDBH mice developed with aging. Furthermore, streptozotocin induced T2D only in OE-NPYDBH mice. Hepatic inflammation was not morphologically visible, but upregulated hepatic anti-inflammatory pathways and increased 8-isoprostane combined with increased serum resistin and decreased interleukin 10 pointed to increased NPY-induced oxidative stress that may predispose OE-NPYDBH mice to insulin resistance. Chronic treatment with BIBO3304 did not improve the metabolic status of OE-NPYDBH mice. Instead, downregulation of beta-1-adrenoceptors suggests indirect actions of NPY via inhibition of sympathetic nervous system. In conclusion, changes in hepatic fatty acid, cholesterol and glucose metabolism favoring energy storage contribute to the development of NPY-induced metabolic syndrome, and the effect is likely mediated by changes in sympathetic nervous system activity.
Collapse
Affiliation(s)
- Liisa Ailanen
- Institute of Biomedicine and Turku Center for Disease Modelling; Drug Research Doctoral ProgramUniversity of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Institute of Biomedicine and Turku Center for Disease ModellingUniversity of Turku, Turku, Finland
| | - Laura H Vähätalo
- Institute of Biomedicine and Turku Center for Disease ModellingUniversity of Turku, Turku, Finland
| | - Katja Tuomainen
- Institute of Biomedicine and Turku Center for Disease ModellingUniversity of Turku, Turku, Finland
| | - Kim Eerola
- Institute of Biomedicine and Turku Center for Disease ModellingUniversity of Turku, Turku, Finland
| | - Henriikka Salomäki-Myftari
- Institute of Biomedicine and Turku Center for Disease Modelling; Drug Research Doctoral ProgramUniversity of Turku, Turku, Finland
| | - Matias Röyttä
- Department of PathologyUniversity of Turku and Turku University Hospital, Turku, Finland
| | - Asta Laiho
- Turku Centre for BiotechnologyUniversity of Turku and Åbo Akademi University, Turku, Finland
| | - Markku Ahotupa
- Research Centre of Applied and Preventive Cardiovascular MedicineUniversity of Turku, Turku, Finland
| | - Helena Gylling
- Department of Internal MedicineUniversity of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Eriika Savontaus
- Institute of Biomedicine and Turku Center for Disease ModellingUniversity of Turku; Turku University Hospital, Unit of Clinical Pharmacology, Turku, Finland
| |
Collapse
|
20
|
Age-dependent regulation of obesity and Alzheimer-related outcomes by hormone therapy in female 3xTg-AD mice. PLoS One 2017; 12:e0178490. [PMID: 28575011 PMCID: PMC5456100 DOI: 10.1371/journal.pone.0178490] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/14/2017] [Indexed: 12/31/2022] Open
Abstract
Depletion of ovarian hormones at menopause is associated with increased Alzheimer's disease (AD) risk. Hormone loss also increases central adiposity, which promotes AD development. One strategy to improve health outcomes in postmenopausal women is estrogen-based hormone therapy (HT), though its efficacy is controversial. The window of opportunity hypothesis posits that HT is beneficial only if initiated near the onset of menopause. Here, we tested this hypothesis by assessing the efficacy of HT against diet-induced obesity and AD-related pathology in female 3xTg-AD mice at early versus late middle-age. HT protected against obesity and reduced β-amyloid burden only at early middle-age. One mechanism that contributes to AD pathogenesis is microglial activation, which is increased by obesity and reduced by estrogens. In parallel to its effects on β-amyloid accumulation, we observed that HT reduced morphological evidence of microglial activation in early but not late middle-age. These findings suggest that HT may be effective during human perimenopause in reducing indices of obesity and AD-related pathology, a conclusion consistent with the window of opportunity hypothesis.
Collapse
|
21
|
Lee S, Bao H, Ishikawa Z, Wang W, Lim HY. Cardiomyocyte Regulation of Systemic Lipid Metabolism by the Apolipoprotein B-Containing Lipoproteins in Drosophila. PLoS Genet 2017; 13:e1006555. [PMID: 28095410 PMCID: PMC5283750 DOI: 10.1371/journal.pgen.1006555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/31/2017] [Accepted: 12/28/2016] [Indexed: 11/21/2022] Open
Abstract
The heart has emerged as an important organ in the regulation of systemic lipid homeostasis; however, the underlying mechanism remains poorly understood. Here, we show that Drosophila cardiomyocytes regulate systemic lipid metabolism by producing apolipoprotein B-containing lipoproteins (apoB-lipoproteins), essential lipid carriers that are so far known to be generated only in the fat body. In a Drosophila genetic screen, we discovered that when haplo-insufficient, microsomal triglyceride transfer protein (mtp), required for the biosynthesis of apoB-lipoproteins, suppressed the development of diet-induced obesity. Tissue-specific inhibition of Mtp revealed that whereas knockdown of mtp only in the fat body decreases systemic triglyceride (TG) content on normal food diet (NFD) as expected, knockdown of mtp only in the cardiomyocytes also equally decreases systemic TG content on NFD, suggesting that the cardiomyocyte- and fat body-derived apoB-lipoproteins serve similarly important roles in regulating whole-body lipid metabolism. Unexpectedly, on high fat diet (HFD), knockdown of mtp in the cardiomyocytes, but not in fat body, protects against the gain in systemic TG levels. We further showed that inhibition of the Drosophila apoB homologue, apolipophorin or apoLpp, another gene essential for apoB-lipoprotein biosynthesis, affects systemic TG levels similarly to that of Mtp inhibition in the cardiomyocytes on NFD or HFD. Finally, we determined that HFD differentially alters Mtp and apoLpp expression in the cardiomyocytes versus the fat body, culminating in higher Mtp and apoLpp levels in the cardiomyocytes than in fat body and possibly underlying the predominant role of cardiomyocyte-derived apoB-lipoproteins in lipid metabolic regulation. Our findings reveal a novel and significant function of heart-mediated apoB-lipoproteins in controlling lipid homeostasis. The heart is increasingly recognized to serve an important role in the regulation of whole-body lipid homeostasis; however, the underlying mechanisms remained poorly understood. Here, our study in Drosophila reveals that cardiomyocytes regulate systemic lipid metabolism by producing apolipoprotein B-containing lipoproteins (apoB-lipoproteins), essential lipid carriers that are so far known to be generated only in the fat body (insect liver and adipose tissue). We found that apoB-lipoproteins generated by the Drosophila cardiomyocytes serve an equally significant role as their fat body-derived counterparts in maintaining systemic lipid homeostasis on normal food diet. Importantly, on high fat diet (HFD), the cardiomyocyte-derived apoB-lipoproteins are the major determinants of whole-body lipid metabolism, a role which could be attributed to the HFD-induced up-regulation of apoB-lipoprotein biosynthesis genes in the cardiomyocytes and their down-regulation in the fat body. Taken together, our results reveal that apoB-lipoproteins are new players in mediating the heart control of lipid metabolism, and provide first evidence supporting the notion that HFD-induced differential regulation of apoB-lipoprotein biosynthesis genes could alter the input of different tissue-derived apoB-lipoproteins in systemic lipid metabolic control.
Collapse
Affiliation(s)
- Sunji Lee
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Hong Bao
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
| | - Zachary Ishikawa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Weidong Wang
- Department of Medicine, Section of Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (WW); (HYL)
| | - Hui-Ying Lim
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (WW); (HYL)
| |
Collapse
|
22
|
Guo F, Zi T, Liu L, Feng R, Sun C. A 1H-NMR based metabolomics study of the intervention effect of mangiferin on hyperlipidemia hamsters induced by a high-fat diet. Food Funct 2017; 8:2455-2464. [DOI: 10.1039/c7fo00081b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mangiferin ameliorated hyperlipidemia by intervening in some major metabolic pathways.
Collapse
Affiliation(s)
- Fuchuan Guo
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou
- China
| | - Tianqi Zi
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| |
Collapse
|
23
|
Apple Peel Supplemented Diet Reduces Parameters of Metabolic Syndrome and Atherogenic Progression in ApoE-/- Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:918384. [PMID: 26075004 PMCID: PMC4449944 DOI: 10.1155/2015/918384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/03/2014] [Accepted: 10/04/2014] [Indexed: 11/18/2022]
Abstract
Cardiovascular Diseases (CVD) represent about 30% of all causes of death worldwide. The development of CVD is related in many cases with the previous existence of metabolic syndrome (MS). It is known that apple consumption has a cardiovascular protecting effect, containing phenolic compounds with antioxidant effect, which are concentrated in the fruit peel. The objective of this study was to test the effect of apple peel consumption in a murine model of MS and apoE−/− mice. Apple supplemented diets reduced the biochemical parameters (glycaemia, total cholesterol, HDL-cholesterol, LDL-cholesterol, ureic nitrogen, triglycerides, insulin, and asymmetric dimethylarginine (ADMA)) of MS model in CF1 mice significantly. The model apoE−/− mouse was used to evaluate the capacity of the apple peel to revert the progression of the atherogenesis. FD with HAP reverts cholesterol significantly and slows down the progression of the plate diminishing the cholesterol accumulation area. With these results, it can be concluded that the consumption of apple peel reduces several MS parameters and the atherogenic progression in mice.
Collapse
|
24
|
He L, Hao L, Fu X, Huang M, Li R. Severe hypertriglyceridemia and hypercholesterolemia accelerating renal injury: a novel model of type 1 diabetic hamsters induced by short-term high-fat / high-cholesterol diet and low-dose streptozotocin. BMC Nephrol 2015; 16:51. [PMID: 25884847 PMCID: PMC4429331 DOI: 10.1186/s12882-015-0041-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/25/2015] [Indexed: 11/15/2022] Open
Abstract
Background Hyperlipidemia is thought to be a major risk factor for the progression of renal diseases in diabetes. Recent studies have shown that lipid profiles are commonly abnormal early on type 2 diabetes mellitus (T2DM) with diabetic nephropathy. However, the early effects of triglyceride and cholesterol abnormalities on renal injury in type 1 diabetes mellitus (T1DM) are not fully understood and require reliable animal models for exploration of the underlying mechanisms. Hamster models are important tools for studying lipid metabolism because of their similarity to humans in terms of lipid utilization and high susceptibility to dietary cholesterol and fat. Methods Twenty-four male Golden Syrian hamsters (100–110 g) were rendered diabetes by intraperitoneal injections of streptozotocin (STZ) on consecutive 3 days at dose of 30 mg/kg, Ten days after STZ injections, hamsters with a plasma Glu concentration more than 12 mmol/L were selected as insulin deficient ones and divided into four groups (D-C, D-HF, D-HC, and D-HFHC), and fed with commercially available standard rodent chow, high-fat diet, high-cholesterol diet, high-fat and cholesterol diet respectively, for a period of four weeks. Results After an induction phase, a stable model of renal injury was established with the aspects of early T1DM kidney disease, These aspects were severe hypertriglyceridemia, hypercholesterolemia, proteinuria with mesangial matrix accumulation, upgraded creatinine clearance, significant cholesterol and triglyceride deposition, and increasing glomerular surface area, thickness of basement membrane and mesangial expansion. The mRNA levels of sterol regulatory element binding protein-1c, transforming growth factors-β, plasminogen activator inhibitor-1, tumor necrosis factor-α and interleukin-6 in the D-HFHC group were significantly up-regulated compared with control groups. Conclusions This study presents a novel, non-transgenic, non-surgical method for induction of renal injury in hamsters, which is an important complement to existing diabetic models for pathophysiological studies in early acute and chronic kidney disease, especially hyperlipidemia. These data suggest that both severe hypertriglyceridemia and hypercholesterolemia can accelerate renal injury in the early development of T1DM. Electronic supplementary material The online version of this article (doi:10.1186/s12882-015-0041-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang He
- National Shanghai Center for New Drug Safety Evaluation and Research, 201203, Shanghai, China.
| | - Lili Hao
- College of Life Science and Technology, Southwest University for Nationalities, 610041, Chengdu, Sichuan, China.
| | - Xin Fu
- National Shanghai Center for New Drug Safety Evaluation and Research, 201203, Shanghai, China.
| | - Mingshu Huang
- National Shanghai Center for New Drug Safety Evaluation and Research, 201203, Shanghai, China.
| | - Rui Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Agricultural Ministry Key Laboratory for Pesticide Residue Detection, 310021, Hangzhou, Zhejiang, China. .,Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, 310021, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Green CJ, Pramfalk C, Morten KJ, Hodson L. From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. Am J Physiol Endocrinol Metab 2015; 308:E1-20. [PMID: 25352434 PMCID: PMC4281685 DOI: 10.1152/ajpendo.00192.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver is a main metabolic organ in the human body and carries out a vital role in lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, encompassing a spectrum of conditions from simple fatty liver (hepatic steatosis) through to cirrhosis. Although obesity is a known risk factor for hepatic steatosis, it remains unclear what factor(s) is/are responsible for the primary event leading to retention of intrahepatocellular fat. Studying hepatic processes and the etiology and progression of disease in vivo in humans is challenging, not least as NAFLD may take years to develop. We present here a review of experimental models and approaches that have been used to assess liver triglyceride metabolism and discuss their usefulness in helping to understand the aetiology and development of NAFLD.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Camilla Pramfalk
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Karl J Morten
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| |
Collapse
|
26
|
Arya N, Kharjul MD, Shishoo CJ, Thakare VN, Jain KS. Some molecular targets for antihyperlipidemic drug research. Eur J Med Chem 2014; 85:535-68. [DOI: 10.1016/j.ejmech.2014.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
|
27
|
França LM, Freitas LNC, Chagas VT, Coêlho CFF, Barroso WA, Costa GC, Silva LA, Debbas V, Laurindo FRM, Paes AMDA. Mechanisms underlying hypertriglyceridemia in rats with monosodium L-glutamate-induced obesity: evidence of XBP-1/PDI/MTP axis activation. Biochem Biophys Res Commun 2014; 443:725-30. [PMID: 24333444 DOI: 10.1016/j.bbrc.2013.12.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/06/2013] [Indexed: 12/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is intimately associated with insulin resistance and hypertriglyceridemia, whereas many of the mechanisms underlying this association are still poorly understood. In the present study, we investigated the relationship between microsomal triglyceride transfer protein (MTP) and markers of endoplasmic reticulum (ER) stress in the liver of rats subjected to neonatal monosodium L-glutamate (MSG)-induced obesity. At age 120 days old, the MSG-obese animals exhibited hyperglycemia, hypertriglyceridemia, insulin resistance, and liver steatosis, while the control (CTR) group did not. Analysis using fast protein liquid chromatography of the serum lipoproteins revealed that the triacylglycerol content of the very low-density lipoprotein (VLDL) particles was twice as high in the MSG animals compared with the CTR animals. The expression of ER stress markers, GRP76 and GRP94, was increased in the MSG rats, promoting a higher expression of X-box binding protein 1 (XBP-1), protein disulfide isomerase (PDI), and MTP. As the XBP-1/PDI/MTP axis has been suggested to represent a significant lipogenic mechanism in the liver response to ER stress, our data indicate that hypertriglyceridemia and liver steatosis occurring in the MSG rats are associated with increased MTP expression.
Collapse
Affiliation(s)
- Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Avenida dos Portugueses, 1966, 65.080-805 São Luís, MA, Brazil
| | - Larissa Nara Costa Freitas
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Avenida dos Portugueses, 1966, 65.080-805 São Luís, MA, Brazil
| | - Vinicyus Teles Chagas
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Avenida dos Portugueses, 1966, 65.080-805 São Luís, MA, Brazil
| | - Caio Fernando Ferreira Coêlho
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Avenida dos Portugueses, 1966, 65.080-805 São Luís, MA, Brazil
| | - Wermerson Assunção Barroso
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Avenida dos Portugueses, 1966, 65.080-805 São Luís, MA, Brazil
| | - Graciomar Conceição Costa
- Laboratory of Molecular and Cellular Pathology, Department of Pathology, Federal University of Maranhão, Avenida dos Portugueses, 1966, 65.080-805 São Luís, MA, Brazil
| | - Lucilene Amorim Silva
- Laboratory of Molecular and Cellular Pathology, Department of Pathology, Federal University of Maranhão, Avenida dos Portugueses, 1966, 65.080-805 São Luís, MA, Brazil
| | - Victor Debbas
- Laboratory of Vascular Biology, Heart Institute, University of São Paulo, Avenida Enéas de Carvalho Aguiar, 44, 05.403-900 São Paulo, SP, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratory of Vascular Biology, Heart Institute, University of São Paulo, Avenida Enéas de Carvalho Aguiar, 44, 05.403-900 São Paulo, SP, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Avenida dos Portugueses, 1966, 65.080-805 São Luís, MA, Brazil.
| |
Collapse
|
28
|
Lim CY, Mat Junit S, Abdulla MA, Abdul Aziz A. In vivo biochemical and gene expression analyses of the antioxidant activities and hypocholesterolaemic properties of Tamarindus indica fruit pulp extract. PLoS One 2013; 8:e70058. [PMID: 23894592 PMCID: PMC3720937 DOI: 10.1371/journal.pone.0070058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 06/14/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tamarindus indica (T. indica) is a medicinal plant with many biological activities including anti-diabetic, hypolipidaemic and anti-bacterial activities. A recent study demonstrated the hypolipidaemic effect of T. indica fruit pulp in hamsters. However, the biochemical and molecular mechanisms responsible for these effects have not been fully elucidated. Hence, the aims of this study were to evaluate the antioxidant activities and potential hypocholesterolaemic properties of T. indica, using in vitro and in vivo approaches. METHODOLOGY/PRINCIPAL FINDINGS The in vitro study demonstrated that T. indica fruit pulp had significant amount of phenolic (244.9 ± 10.1 mg GAE/extract) and flavonoid (93.9 ± 2.6 mg RE/g extract) content and possessed antioxidant activities. In the in vivo study, hamsters fed with high-cholesterol diet for ten weeks showed elevated serum triglyceride, total cholesterol, HDL-C and LDL-C levels. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters significantly lowered serum triglyceride, total cholesterol and LDL-C levels but had no effect on the HDL-C level. The lipid-lowering effect was accompanied with significant increase in the expression of Apo A1, Abcg5 and LDL receptor genes and significant decrease in the expression of HMG-CoA reductase and Mtp genes. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters also protected against oxidative damage by increasing hepatic antioxidant enzymes, antioxidant activities and preventing hepatic lipid peroxidation. CONCLUSION/SIGNIFICANCE It is postulated that tamarind fruit pulp exerts its hypocholesterolaemic effect by increasing cholesterol efflux, enhancing LDL-C uptake and clearance, suppressing triglyceride accumulation and inhibiting cholesterol biosynthesis. T. indica fruit pulp has potential antioxidative effects and is potentially protective against diet-induced hypercholesterolaemia.
Collapse
Affiliation(s)
- Chor Yin Lim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Abdul Aziz
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Toll-like receptor 4 knockout mice are protected against endoplasmic reticulum stress induced by a high-fat diet. PLoS One 2013; 8:e65061. [PMID: 23741455 PMCID: PMC3669084 DOI: 10.1371/journal.pone.0065061] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/21/2013] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to investigate whether toll-like receptor 4 (TLR4) is implicated in the development of endoplasmic reticulum stress (ER stress) observed after a high-fat diet (HFD) in liver, skeletal muscle and adipose tissue. TLR4−/− and C57BL/6J wild-type mice (WT) were fed with chow or HFD (45% calories from fat) during 18 weeks. An oral glucose tolerance-test was performed. The animals were sacrificed in a fasted state and the tissues were removed. TLR4 deletion protected from body weight gain and glucose intolerance induced by HFD whereas energy intake was higher in transgenic mice suggesting larger energy expenditure. HFD induced an ER stress in skeletal muscle, liver and adipose tissue of WT mice as assessed by BiP, CHOP, spliced and unspliced XBP1 and phospho-eIF2α. TLR4−/− mice were protected against HFD-induced ER stress. Then, we investigated the main signaling downstream of TLR4 namely the NF-κB pathway, expecting to identify the mechanism by which TLR4 is able to activate ER stress. The mRNA levels of cytokines regulated by NF-κB namely TNFα, IL-1β and IL-6, were not changed after HFD and phospho-IκB-α (ser 32) was not changed. Our results indicate that TLR4 is essential for the development of ER stress related to HFD. Nevertheless, the NFκ-B pathway does not seem to be directly implicated. The reduced fat storage in TLR4−/− mice could explain the absence of an ER stress after HFD.
Collapse
|
30
|
Gao H, Long Y, Jiang X, Liu Z, Wang D, Zhao Y, Li D, Sun BL. Beneficial effects of Yerba Mate tea (Ilex paraguariensis) on hyperlipidemia in high-fat-fed hamsters. Exp Gerontol 2013; 48:572-8. [PMID: 23562841 DOI: 10.1016/j.exger.2013.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/08/2013] [Accepted: 03/25/2013] [Indexed: 11/29/2022]
Abstract
Yerba Mate tea (Mate), an infusion made from the leaves of the tree Ilex paraguariensis, is a widely consumed beverage in South America. Mate has previously been shown to have hypolipidemic effects. However, its mechanism of action is not well understood. This study was conducted to determine the effect of Mate on hyperlipidemia induced in hamsters by a high-fat diet, as well as its mechanism of action. Fifty male hamsters were randomly assigned to normal control, high-fat control, and high-fat with Mate tea aqueous extract (1%, 2% or 4% w/v) groups. We evaluated the effects of Mate aqueous extract on body weight, serum lipids, antioxidant enzyme activity, lipoprotein metabolism enzyme activity, and gene expression involved in lipid metabolism in hyperlipidemic hamsters. Mate aqueous extract significantly decreased body-weight gain and lowered serum lipid levels in the hyperlipidemic hamster model. Meanwhile, Mate treatment increased antioxidant enzyme activity, improved lipoprotein lipase (LPL) and hepatic lipase (HL) activities in serum and liver, upregulated mRNA expression of peroxisome proliferator-activated receptor α and low density lipoprotein receptor, and downregulated mRNA expression of sterol regulatory element-binding protein 1c and acetyl CoA carboxylase in the liver. The results indicate that Mate tea ameliorates hyperlipidemia partly by reducing lipid peroxidation, improving endothelial function and LPL and HL activities, and modulating the expression levels of genes involved in lipid oxidation and lipogenesis.
Collapse
Affiliation(s)
- Hongli Gao
- College of Pharmacy, Taishan Medical University, Taian, Shandong 271016, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gao D, Pararasa C, Dunston CR, Bailey CJ, Griffiths HR. Palmitate promotes monocyte atherogenicity via de novo ceramide synthesis. Free Radic Biol Med 2012; 53:796-806. [PMID: 22640955 DOI: 10.1016/j.freeradbiomed.2012.05.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 04/30/2012] [Accepted: 05/15/2012] [Indexed: 11/21/2022]
Abstract
Elevated plasma free fatty acids (FAs) are associated with increased risk of cardiovascular disease. This study investigates the effects of the saturated FA palmitate and unsaturated FA oleate on monocyte phenotype and function. Incubation of human U937 and THP-1 monocytes with palmitate for 24h increased cell surface expression of integrin CD11b and scavenger receptor CD36 in a concentration-dependent manner with some decrease in mitochondrial reducing capacity at high concentration (300 μM). Monocytes incubated with palmitate, but not oleate, showed increased uptake of oxidized LDL and increased adhesion to rat aortic endothelium, particularly at bifurcations. The palmitate-induced increase in CD11b and CD36 expression was associated with increased cellular C16 ceramide and sphingomyelin, loss of reduced glutathione, and increased reactive oxygen species (ROS). Increased monocyte surface CD11b and CD36 was inhibited by fumonisin B1, an inhibitor of de novo ceramide synthesis, but not by the superoxide dismutase mimetic MnTBap. In contrast, MnTBap prevented the mitochondrial ROS increase and metabolic inhibition due to 300μM palmitate. This study demonstrates that in viable monocytes, palmitate but not oleate increases expression of surface CD11b and CD36. Palmitate increases monocyte adhesion to the aortic wall and promotes uptake of oxidized LDL and this involves de novo ceramide synthesis.
Collapse
Affiliation(s)
- Dan Gao
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | | | | | | |
Collapse
|
32
|
Development of a novel model of hypertriglyceridemic acute pancreatitis in hamsters: protective effects of probucol. Pancreas 2012; 41:845-8. [PMID: 22781908 DOI: 10.1097/mpa.0b013e318247d784] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aim of the present study was to develop a model of hypertriglyceridemic (HTG) acute pancreatitis and to investigate the effects of probucol in this model. METHODS Hamsters were fed a high-fat diet (HFD) or a normal diet for 3 weeks. Probucol was added at 1% to the HFD in the treated group. Pancreatitis was induced by 7 peritoneal injections of cerulein to the normal and HFD hamster groups. The severity of the pancreatitis and whole body oxidative stress were assessed. RESULTS The HFD induced severe HTG (>1000 mg/dL) in the hamsters. A more severe pancreatitis was observed in the HFD group. The HFD did not influence plasma-reduced glutathione level, but there was a significant increase after 1% probucol was provided in the diet. Plasma malonaldehyde levels in the HFD group were significantly higher than the normal chow group, whereas probucol administration significantly decreased plasma hydrogen peroxide and malonaldehyde levels. We also found that probucol significantly reduced levels of amylase and lipase in the plasma and pathological scores in pancreatic tissue. CONCLUSIONS This study presents a novel model of severe HTG acute pancreatitis, and our results support the potential therapeutic application of probucol in HTG acute pancreatitis.
Collapse
|
33
|
Guo F, Huang C, Liao X, Wang Y, He Y, Feng R, Li Y, Sun C. Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Mol Nutr Food Res 2011; 55:1809-18. [DOI: 10.1002/mnfr.201100392] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/11/2022]
|
34
|
Nambu H, Fukushima M, Hikichi H, Inoue T, Nagano N, Tahara Y, Nambu T, Ito J, Ogawa Y, Ozaki S, Ohta H. Characterization of metabolic phenotypes of mice lacking GPR61, an orphan G-protein coupled receptor. Life Sci 2011; 89:765-72. [PMID: 21971119 DOI: 10.1016/j.lfs.2011.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 11/25/2022]
Abstract
AIMS GPR61 is an orphan G protein-coupled receptor whose function remains unknown. The purpose of the present study is to elucidate the importance of GPR61 in metabolism by characterization of GPR61-deficient mice. MAIN METHODS Male GPR61-deficient mice were characterized regarding various metabolic parameters, including food intake, body weight, oxygen consumption, body temperature, locomotor activity, and in a pair feeding study. Hypothalamic gene expression was analyzed using real-time quantitative RT-PCR. KEY FINDINGS GPR61-deficient mice exhibited marked hyperphagia and heavier body weight than wild-type mice. Hyperphagia of GPR61-deficient mice was observed before the differences in body weight became apparent between the genotypes. When body weight difference did become apparent between genotypes, increases in visceral fat pad weight, liver weight, liver triglyceride (TG) content, plasma leptin, and plasma insulin were observed in GPR61-deficient mice, suggesting that GPR61 deficiency caused obesity associated with hyperphagia. Oxygen consumption, body temperature, and locomotor activity were not significantly different between GPR61-deficient and wild-type mice. Pair-fed GPR61-deficient mice had a greater fat mass than wild-type mice despite comparable body weight in both genotypes. The mRNA levels of proopiomelanocortin (POMC) and brain-derived neurotropic factor (BDNF) in the hypothalamus of GPR61-deficient mice were significantly lower than those of wild-type mice. SIGNIFICANCE GPR61-deficient mice exhibited obesity associated with hyperphagia. These findings suggest that GPR61 is involved in the regulation of food intake and body weight, and may be of importance when considering GPR61 as a therapeutic target for obesity or eating disorders.
Collapse
Affiliation(s)
- Hirohide Nambu
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Do GM, Oh HY, Kwon EY, Cho YY, Shin SK, Park HJ, Jeon SM, Kim E, Hur CG, Park TS, Sung MK, McGregor RA, Choi MS. Long-term adaptation of global transcription and metabolism in the liver of high-fat diet-fed C57BL/6J mice. Mol Nutr Food Res 2011; 55 Suppl 2:S173-85. [PMID: 21618427 DOI: 10.1002/mnfr.201100064] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 12/20/2022]
Abstract
SCOPE This study investigated the global transcriptional and metabolic changes occurring at multiple time points over 24 wk in response to a high-fat diet (HFD). METHODS AND RESULTS C57BL/6J mice were fed a HFD or normal diet (ND) over 24 wk. HFD-fed mice developed early clinical indicators of obesity-related co-morbidities including fatty liver, insulin resistance, hyperglycemia and hypercholesterolemia. Time-course microarray analysis at eight time points over 24 wk identified 332 HFD responsive genes as potential targets to counteract diet-induced obesity (DIO) and related co-morbidities. Glucose regulating enzyme activity and gene expression were altered early in the HFD-fed mice. Fatty acid (FA) and triglyceride (TG) accumulation in combination with inflammatory changes appear to be likely candidates contributing to hepatic insulin resistance. Cidea seemed to be one of representative genes related to these changes. CONCLUSION Global transcriptional and metabolic profiling across multiple time points in liver revealed potential targets for nutritional interventions to reverse DIO. In future, new approaches targeting HFD responsive genes and hepatic metabolism could help ameliorate the deleterious effects of an HFD and DIO-related complication.
Collapse
Affiliation(s)
- Gyeong-Min Do
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2011; 18:231-3. [PMID: 21522003 DOI: 10.1097/med.0b013e3283457c7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Paraskevas KI, Pantopoulou A, Vlachos IS, Agrogiannis G, Iliopoulos DG, Karatzas G, Tzivras D, Mikhailidis DP, Perrea DN. Comparison of fibrate, ezetimibe, low- and high-dose statin therapy for the dyslipidemia of the metabolic syndrome in a mouse model. Angiology 2011; 62:144-54. [PMID: 21220373 DOI: 10.1177/0003319710387919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM The treatment-of-choice for the optimal management of the dyslipidemia of the metabolic syndrome (MetS) is not clearly defined. We compared the efficacy of 4 drug regimes for the management of this dyslipidemia in a mouse model. MATERIALS AND METHODS A total of 60 C57Bl6 mice comprised the study group. The first 10 received standard mouse food for the whole experiment (control group). The remaining 50 mice received atherogenic diet for 14 weeks until the development of the MetS. The mice were then divided into 5 groups: the 1st group continued receiving atherogenic diet, while the other 4 groups received atherogenic diet plus ezetimibe (10 mg/kg per day), fenofibrate (100 mg/kg per day), low-dose atorvastatin (10 mg/kg per day), or high-dose (40 mg/kg per day) atorvastatin, respectively, for another 8 weeks. RESULTS High-dose atorvastatin treatment achieved the best lipid profile compared with low-dose atorvastatin, ezetimibe, and fibrate therapy. The lipid profile of mice receiving atherogenic diet plus high-dose atorvastatin treatment was similar with mice on regular chow. CONCLUSIONS High-dose atorvastatin treatment resulted in optimization of the lipid profile in the presence of a high-fat atherogenic diet in a mouse model. Our results suggest that high-dose atorvastatin treatment may be the optimal treatment option for the dyslipidemia associated with MetS. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.
Collapse
Affiliation(s)
- Kosmas I Paraskevas
- Laboratory of Experimental Surgery and Surgical Research, N S Christeas, Athens University Medical School, Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bhathena J, Kulamarva A, Martoni C, Urbanska AM, Malhotra M, Paul A, Prakash S. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease. Diabetes Metab Syndr Obes 2011; 4:195-203. [PMID: 21760736 PMCID: PMC3131800 DOI: 10.2147/dmso.s18435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-induced obesity, increase body mass and adiposity on group housing, and increase food intake due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar to that of humans, and can thus be a useful model for human pathophysiology. METHODS Experiments were planned to develop a diet-induced Bio F(1)B Golden Syrian hamster model of dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hamsters were fed a normal control diet, a high-fat/high-cholesterol diet, a high-fat/high-cholesterol/methionine-deficient/choline-devoid diet, and a high-fat/high-cholesterol/choline-deficient diet. Serum total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, atherogenic index, and body weight were quantified biweekly. Fat deposition in the liver was observed and assessed following lipid staining with hematoxylin and eosin and with oil red O. RESULTS In this study, we established a diet-induced Bio F(1)B Golden Syrian hamster model for studying dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hyperlipidemia and elevated serum glucose concentrations were induced using this diet. Atherogenic index was elevated, increasing the risk for a cardiovascular event. Histological analysis of liver specimens at the end of four weeks showed increased fat deposition in the liver of animals fed with a high-fat/high cholesterol diet, as compared to animals fed with the control diet. CONCLUSION Our study established that hamsters fed with a high-fat/high-cholesterol diet developed fatty liver and mild diabetes. Bio F(1)B hamsters fed with a high-fat/high-cholesterol diet may thus be a good animal model for research on the treatment of diet-induced metabolic syndrome complicated by nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Satya Prakash
- Correspondence: Satya Prakash, 3775 University Street, Montreal, Québec H3A 2B4, Canada, Tel +1 514 398 3676, Fax +1 514 398 7461, Email
| |
Collapse
|