1
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
Pranclova V, Nedvedova L, Kotounova E, Vaclav H, Dvorakova M, Davidkova M, Bily T, Vancova M, Ruzek D, Palus M. Unraveling the role of human microglia in tick-borne encephalitis virus infection: insights into neuroinflammation and viral pathogenesis. Microbes Infect 2024:105383. [PMID: 38942136 DOI: 10.1016/j.micinf.2024.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is a neurotropic orthoflavivirus responsible for severe infections of the central nervous system. Although neurons are predominantly targeted, specific involvement of microglia in pathogenesis of TBE is not yet fully understood. In this study, the susceptibility of human microglia to TBEV is investigated, focusing on productive infection and different immune responses of different viral strains. We investigated primary human microglia and two immortalized microglial cell lines exposed to three TBEV strains (Hypr, Neudörfl and 280), each differing in virulence. Our results show that all microglia cultures tested support long-term productive infections, regardless of the viral strain. In particular, immune response varied significantly with the viral strain, as shown by the differential secretion of cytokines and chemokines such as IP-10, MCP-1, IL-8 and IL-6, quantified using a Luminex 48-plex assay. The most virulent strain triggered the highest cytokine induction. Electron tomography revealed substantial ultrastructural changes in the infected microglia, despite the absence of cytopathic effects. These findings underscore the susceptibility of human microglia to TBEV and reveal strain-dependent variations in viral replication and immune responses, highlighting the complex role of microglia in TBEV-induced neuropathology and contribute to a deeper understanding of TBE pathogenesis and neuroinflammation.
Collapse
Affiliation(s)
- Veronika Pranclova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Lenka Nedvedova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Eliska Kotounova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Hönig Vaclav
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Marketa Dvorakova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | - Marika Davidkova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | - Tomas Bily
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-37005 Ceske Budejovice, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic.
| |
Collapse
|
3
|
Marinowic DR, Zanirati GG, Azevedo PN, Zanatta Â, Plentz I, Alcará AM, Morrone FB, Scheffel TB, Cappellari AR, Roehe PM, Muterle Varela AP, Machado DC, Spillari Viola F, Da Costa JC. Influence of Zika virus on the cytotoxicity, cell adhesion, apoptosis and inflammatory markers of glioblastoma cells. Oncol Lett 2024; 27:176. [PMID: 38464338 PMCID: PMC10921266 DOI: 10.3892/ol.2024.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2023] [Indexed: 03/12/2024] Open
Abstract
Glioblastoma (GBM) is one of the most common types of brain tumor in adults. Despite the availability of treatments for this disease, GBM remains one of the most lethal and difficult types of tumors to treat, and thus, a majority of patients die within 2 years of diagnosis. Infection with Zika virus (ZIKV) inhibits cell proliferation and induces apoptosis, particularly in developing neuronal cells, and thus could potentially be considered an alternative for GBM treatment. In the present study, two GBM cell lines (U-138 and U-251) were infected with ZIKV at different multiplicities of infection (0.1, 0.01 and 0.001), and cell viability, migration, adhesion, induction of apoptosis, interleukin levels and CD14/CD73 cell surface marker expression were analyzed. The present study demonstrated that ZIKV infection promoted loss of cell viability and increased apoptosis in U-138 cells, as measured by MTT and triplex assay, respectively. Changes in cell migration, as determined by wound healing assay, were not observed; however, the GBM cell lines exhibited an increase in cell adhesion when compared with non-tumoral cells (Vero). The Luminex immunoassay showed a significant increase in the expression levels of IL-4 specifically in U-251 cells (MOI 0.001) following exposure to ZIKV. There was no significant change in the expression levels of IFN-γ upon ZIKV infection in the cell lines tested. Furthermore, a marked increase in the percentage of cells expressing the CD14 surface marker was observed in both GBM cell lines compared with in Vero cells; and significantly increased CD73 expression was observed particularly in U-251 cells, when compared with uninfected cells. These findings indicate that ZIKV infection could lead to reduced cell viability, elevated CD73 expression, improved cellular adherence, and higher rates of apoptosis in glioblastoma cells. Further studies are required to explore the potential use of ZIKV in the treatment of GBM.
Collapse
Affiliation(s)
- Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Gabriele Goulart Zanirati
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Pamella Nunes Azevedo
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Ângela Zanatta
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Ismael Plentz
- Graduate Program in Medicine, Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Fernanda Bueno Morrone
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Applied Pharmacology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate Program in Molecular and Cellular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Thamiris Becker Scheffel
- Applied Pharmacology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate Program in Molecular and Cellular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Angélica Regina Cappellari
- Applied Pharmacology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate Program in Molecular and Cellular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Paulo Michel Roehe
- Laboratory of Virology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Ana Paula Muterle Varela
- Laboratory of Virology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Denise Cantarelli Machado
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Fabiana Spillari Viola
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Jaderson Costa Da Costa
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| |
Collapse
|
4
|
Barrios-González DA, Philibert-Rosas S, Martínez-Juárez IE, Sotelo-Díaz F, Rivas-Alonso V, Sotelo J, Sebastián-Díaz MA. Frequency and Focus of in Vitro Studies of Microglia-Expressed Cytokines in Response to Viral Infection: A Systematic Review. Cell Mol Neurobiol 2024; 44:21. [PMID: 38349562 PMCID: PMC10864563 DOI: 10.1007/s10571-024-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
It is well known that as part of their response to infectious agents such as viruses, microglia transition from a quiescent state to an activated state that includes proinflammatory and anti-inflammatory phases; this behavior has been described through in vitro studies. However, recent in vivo studies on the function of microglia have questioned the two-phase paradigm; therefore, a change in the frequency of in vitro studies is expected. A systematic review was carried out to identify the microglial cytokine profile against viral infection that has been further evaluated through in vitro studies (pro-inflammatory or anti-inflammatory), along with analysis of its publication frequency over the years. For this review, 531 articles published in the English language were collected from PubMed, Web of Science, EBSCO and ResearchGate. Only 27 papers met the inclusion criteria for this systematic review. In total, 19 cytokines were evaluated in these studies, most of which are proinflammatory; the most common are IL-6, followed by TNF-α and IL-1β. It should be pointed out that half of the studies were published between 2015 and 2022 (raw data available in https://github.com/dadriba05/SystematicReview.git ). In this review, we identified that evaluation of pro-inflammatory cytokines released by microglia against viral infections has been performed more frequently than that of anti-inflammatory cytokines; additionally, a higher frequency of evaluation of the response of microglia cells to viral infection through in vitro studies from 2015 and beyond was noted.
Collapse
Affiliation(s)
| | | | | | - Fernando Sotelo-Díaz
- Epilepsy Clinic. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Verónica Rivas-Alonso
- Multiple Sclerosis Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Julio Sotelo
- Department of Neuroimmunology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Mario A Sebastián-Díaz
- Nephrology Department, South Central High Specialty Hospital PEMEX, Anillo Periférico 4019 Fuentes del Pedregal, Tlalpan, 1440, Mexico City, Mexico.
| |
Collapse
|
5
|
Ferreira JCCG, Christoff RR, Rabello T, Ferreira RO, Batista C, Mourão PJP, Rossi ÁD, Higa LM, Bellio M, Tanuri A, Garcez PP. Postnatal Zika virus infection leads to morphological and cellular alterations within the neurogenic niche. Dis Model Mech 2024; 17:dmm050375. [PMID: 38415826 PMCID: PMC10924234 DOI: 10.1242/dmm.050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
The Zika virus received significant attention in 2016, following a declaration by the World Health Organization of an epidemic in the Americas, in which infections were associated with microcephaly. Indeed, prenatal Zika virus infection is detrimental to fetal neural stem cells and can cause premature cell loss and neurodevelopmental abnormalities in newborn infants, collectively described as congenital Zika syndrome. Contrastingly, much less is known about how neonatal infection affects the development of the newborn nervous system. Here, we investigated the development of the dentate gyrus of wild-type mice following intracranial injection of the virus at birth (postnatal day 0). Through this approach, we found that Zika virus infection affected the development of neurogenic regions within the dentate gyrus and caused reactive gliosis, cell death and a decrease in cell proliferation. Such infection also altered volumetric features of the postnatal dentate gyrus. Thus, we found that Zika virus exposure to newborn mice is detrimental to the subgranular zone of the dentate gyrus. These observations offer insight into the cellular mechanisms that underlie the neurological features of congenital Zika syndrome in children.
Collapse
Affiliation(s)
- Jéssica C. C. G. Ferreira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Raissa R. Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Tailene Rabello
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Raiane O. Ferreira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Carolina Batista
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Pedro Junior Pinheiro Mourão
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Átila D. Rossi
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luiza M. Higa
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Maria Bellio
- Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Amilcar Tanuri
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Patricia P. Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| |
Collapse
|
6
|
Xu P, Yu Y, Wu P. Role of microglia in brain development after viral infection. Front Cell Dev Biol 2024; 12:1340308. [PMID: 38298216 PMCID: PMC10825034 DOI: 10.3389/fcell.2024.1340308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Microglia are immune cells in the brain that originate from the yolk sac and enter the developing brain before birth. They play critical roles in brain development by supporting neural precursor proliferation, synaptic pruning, and circuit formation. However, microglia are also vulnerable to environmental factors, such as infection and stress that may alter their phenotype and function. Viral infection activates microglia to produce inflammatory cytokines and anti-viral responses that protect the brain from damage. However, excessive or prolonged microglial activation impairs brain development and leads to long-term consequences such as autism spectrum disorder and schizophrenia spectrum disorder. Moreover, certain viruses may attack microglia and deploy them as "Trojan horses" to infiltrate the brain. In this brief review, we describe the function of microglia during brain development and examine their roles after infection through microglia-neural crosstalk. We also identify limitations for current studies and highlight future investigated questions.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ping Wu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Mohebalizadeh M, Babapour G, Maleki Aghdam M, Mohammadi T, Jafari R, Shafiei-Irannejad V. Role of Maternal Immune Factors in Neuroimmunology of Brain Development. Mol Neurobiol 2023:10.1007/s12035-023-03749-2. [PMID: 38057641 DOI: 10.1007/s12035-023-03749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Inflammation during pregnancy may occur due to various factors. This condition, in which maternal immune system activation occurs, can affect fetal brain development and be related to neurodevelopmental diseases. MIA interacts with the fetus's brain development through maternal antibodies, cytokines, chemokines, and microglial cells. Antibodies are associated with the development of the nervous system by two mechanisms: direct binding to brain inflammatory factors and binding to brain antigens. Cytokines and chemokines have an active presence in inflammatory processes. Additionally, glial cells, defenders of the nervous system, play an essential role in synaptic modulation and neurogenesis. Maternal infections during pregnancy are the most critical factors related to MIA; however, several studies show the relation between these infections and neurodevelopmental diseases. Infection with specific viruses, such as Zika, cytomegalovirus, influenza A, and SARS-CoV-2, has revealed effects on neurodevelopment and the onset of diseases such as schizophrenia and autism. We review the relationship between maternal infections during pregnancy and their impact on neurodevelopmental processes.
Collapse
Affiliation(s)
- Mehdi Mohebalizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Golsa Babapour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Maleki Aghdam
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Tooba Mohammadi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Chien YW, Shih HI, Wang YP, Chi CY. Re-examination of the risk of dementia after dengue virus infection: A population-based cohort study. PLoS Negl Trop Dis 2023; 17:e0011788. [PMID: 38055695 DOI: 10.1371/journal.pntd.0011788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Dengue infection can affect the central nervous system and cause various neurological complications. Previous studies also suggest dengue was associated with a significantly increased long-term risk of dementia. A population-based cohort study was conducted using national health databases in Taiwan and included 37,928 laboratory-confirmed dengue patients aged ≥ 45 years between 2002 and 2015, along with 151,712 matched nondengue individuals. Subdistribution hazard regression models showed a slightly increased risk of Alzheimer's disease, and unspecified dementia, non-vascular dementia, and overall dementia in dengue patients than the nondengue group, adjusted for age, sex, area of residence, urbanization level, income, comorbidities, and all-cause clinical visits within one year before the index date. After considering multiple comparisons using Bonferroni correction, only overall dementia and non-vascular dementia remained statistically significant (adjusted SHR 1.13, 95% CI 1.05-1.21, p = 0.0009; E-value 1.51, 95% CI 1.28-NA). Sensitivity analyses in which dementia cases occurring in the first three or five years after the index dates were excluded revealed no association between dengue and dementia. In conclusion, this study found dengue patients had a slightly increased risk of non-vascular dementia and total dementia than those without dengue. However, the small corresponding E-values and sensitivity analyses suggest the association between dengue and dementia may not be causal.
Collapse
Affiliation(s)
- Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-I Shih
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ping Wang
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
| | - Chia-Yu Chi
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Dobrzyńska M, Moniuszko-Malinowska A, Skrzydlewska E. Metabolic response to CNS infection with flaviviruses. J Neuroinflammation 2023; 20:218. [PMID: 37775774 PMCID: PMC10542253 DOI: 10.1186/s12974-023-02898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses found worldwide that, when introduced into the human body, cause diseases, including neuroinfections, that can lead to serious metabolic consequences and even death. Some of the diseases caused by flaviviruses occur continuously in certain regions, while others occur intermittently or sporadically, causing epidemics. Some of the most common flaviviruses are West Nile virus, dengue virus, tick-borne encephalitis virus, Zika virus and Japanese encephalitis virus. Since all the above-mentioned viruses are capable of penetrating the blood-brain barrier through different mechanisms, their actions also affect the central nervous system (CNS). Like other viruses, flaviviruses, after entering the human body, contribute to redox imbalance and, consequently, to oxidative stress, which promotes inflammation in skin cells, in the blood and in CNS. This review focuses on discussing the effects of oxidative stress and inflammation resulting from pathogen invasion on the metabolic antiviral response of the host, and the ability of viruses to evade the consequences of metabolic changes or exploit them for increased replication and further progression of infection, which affects the development of sequelae and difficulties in therapy.
Collapse
Affiliation(s)
- Marta Dobrzyńska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
10
|
Yu X, Wang S, Wu W, Chang H, Shan P, Yang L, Zhang W, Wang X. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells. Cells 2023; 12:1767. [PMID: 37443801 PMCID: PMC10340315 DOI: 10.3390/cells12131767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Depression is a common neuropsychiatric disorder with long-term recurrent depressed mood, pain and despair, pessimism and anxiety, and even suicidal tendencies as the main symptoms. Depression usually induces or aggravates the development of other related diseases, such as sleep disorders and endocrine disorders. In today's society, the incidence of depression is increasing worldwide, and its pathogenesis is complex and generally believed to be related to genetic, psychological, environmental, and biological factors. Current studies have shown the key role of glial cells in the development of depression, and it is noteworthy that some recent evidence suggests that the development of depression may be closely related to viral infections, such as SARS-CoV-2, BoDV-1, ZIKV, HIV, and HHV6, which infect the organism and cause some degree of glial cells, such as astrocytes, oligodendrocytes, and microglia. This can affect the transmission of related proteins, neurotransmitters, and cytokines, which in turn leads to neuroinflammation and depression. Based on the close relationship between viruses and depression, this paper provides an in-depth analysis of the new mechanism of virus-induced depression, which is expected to provide a new perspective on the mechanism of depression and a new idea for the diagnosis of depression in the future.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Hongyuan Chang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Pufan Shan
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Lin Yang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Wenjie Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| |
Collapse
|
11
|
Quincozes-Santos A, Bobermin LD, Costa NLF, Thomaz NK, Almeida RRDS, Beys-da-Silva WO, Santi L, Rosa RL, Capra D, Coelho-Aguiar JM, DosSantos MF, Heringer M, Cirne-Lima EO, Guimarães JA, Schuler-Faccini L, Gonçalves CA, Moura-Neto V, Souza DO. The role of glial cells in Zika virus-induced neurodegeneration. Glia 2023. [PMID: 36866453 DOI: 10.1002/glia.24353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Lucélia Santi
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael L Rosa
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daniela Capra
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana M Coelho-Aguiar
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Fabio DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manoela Heringer
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Jiao L, Xu T, Du X, Chen X, Jiao Q, Jiang H. The Inhibition Effects of Sodium Nitroprusside on the Survival of Differentiated Neural Stem Cells through the p38 Pathway. Brain Sci 2023; 13:brainsci13030438. [PMID: 36979248 PMCID: PMC10046126 DOI: 10.3390/brainsci13030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Nitric oxide (NO) is a crucial factor in regulating neuronal development. However, certain effects of NO are complex under different physiological conditions. In this study, we used differentiated neural stem cells (NSCs), which contained neural progenitor cells, neurons, astrocytes, and oligodendrocytes, to observe the physiological effects of sodium nitroprusside (SNP) on the early developmental stage of the nervous system. After SNP treatment for 24 h, the results showed that SNP at 100 μM, 200 μM, 300 μM, and 400 μM concentrations resulted in reduced cell viability and increased cleaved caspase 3 levels, while no significant changes were found at 50 μM. There were no effects on neuronal differentiation in the SNP-treated groups. The phosphorylation of p38 was also significantly upregulated with SNP concentrations of 100 μM, 200 μM, 300 μM, and 400 μM, with no changes for 50 μM concentration in comparison with the control. We also observed that the levels of phosphorylation increased with the increasing concentration of SNP. To further explore the possible role of p38 in SNP-regulated survival of differentiated NSCs, SB202190, the antagonist of p38 mitogen-activated protein kinase, at a concentration of 10 mM, was pretreated for 30 min, and the ratio of phosphorylated p38 was found to be decreased after treatment with SNP. Survival and cell viability increased in the SB202190 and SNP co-treated group. Taken together, our results suggested that p38 is involved in the cell survival of NSCs, regulated by NO.
Collapse
Affiliation(s)
- Lingling Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Tongying Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Correspondence:
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- College of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
13
|
How viral infections cause neuronal dysfunction: a focus on the role of microglia and astrocytes. Biochem Soc Trans 2023; 51:259-274. [PMID: 36606670 DOI: 10.1042/bst20220771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In recent decades, a number of infectious viruses have emerged from wildlife or reemerged that pose a serious threat to global health and economies worldwide. Although many of these viruses have a specific target tissue, neurotropic viruses have evolved mechanisms to exploit weaknesses in immune defenses that eventually allow them to reach and infect cells of the central nervous system (CNS). Once in the CNS, these viruses can cause severe neuronal damage, sometimes with long-lasting, life-threatening consequences. Remarkably, the ability to enter the CNS and cause neuronal infection does not appear to determine whether a viral strain causes neurological complications. The cellular mechanisms underlying the neurological consequences of viral infection are not fully understood, but they involve neuroimmune interactions that have so far focused mainly on microglia. As the major immune cells in the brain, reactive microglia play a central role in neuroinflammation by responding directly or indirectly to viruses. Chronic reactivity of microglia leads to functions that are distinct from their beneficial roles under physiological conditions and may result in neuronal damage that contributes to the pathogenesis of various neurological diseases. However, there is increasing evidence that reactive astrocytes also play an important role in the response to viruses. In this review article, we summarize the recent contributions of microglia and astrocytes to the neurological impairments caused by viral infections. By expanding knowledge in this area, therapeutic approaches targeting immunological pathways may reduce the incidence of neurological and neurodegenerative disorders and increase the therapeutic window for neural protection.
Collapse
|
14
|
Bulstrode H, Girdler GC, Gracia T, Aivazidis A, Moutsopoulos I, Young AMH, Hancock J, He X, Ridley K, Xu Z, Stockley JH, Finlay J, Hallou C, Fajardo T, Fountain DM, van Dongen S, Joannides A, Morris R, Mair R, Watts C, Santarius T, Price SJ, Hutchinson PJA, Hodson EJ, Pollard SM, Mohorianu I, Barker RA, Sweeney TR, Bayraktar O, Gergely F, Rowitch DH. Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells. Neuron 2022; 110:3936-3951.e10. [PMID: 36174572 PMCID: PMC7615581 DOI: 10.1016/j.neuron.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 02/02/2023]
Abstract
Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNβ) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNβ treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.
Collapse
Affiliation(s)
- Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Gemma C Girdler
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tannia Gracia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Ilias Moutsopoulos
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Adam M H Young
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Hancock
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Xiaoling He
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Katherine Ridley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Zhaoyang Xu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John H Stockley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Finlay
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Clement Hallou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Teodoro Fajardo
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Virology, Royal London Hospital, Barts Health NHS Trust, London E1 2ES, UK
| | | | | | - Alexis Joannides
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robert Morris
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard Mair
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Thomas Santarius
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stephen J Price
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J A Hutchinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Emma J Hodson
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Roger A Barker
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Trevor R Sweeney
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; The Pirbright Institute, Guildford, Surrey GU24 0NF, UK
| | | | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - David H Rowitch
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
15
|
Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022. [PMID: 36222134 PMCID: PMC9425815 DOI: 10.1007/s12038-022-00288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
|
16
|
Nitric Oxide Attenuates Human Cytomegalovirus Infection yet Disrupts Neural Cell Differentiation and Tissue Organization. J Virol 2022; 96:e0012622. [PMID: 35862705 PMCID: PMC9327702 DOI: 10.1128/jvi.00126-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prevalent betaherpesvirus that is asymptomatic in healthy individuals but can cause serious disease in immunocompromised patients. HCMV is also the leading cause of virus-mediated birth defects. Many of these defects manifest within the central nervous system and include microcephaly, sensorineural hearing loss, and cognitive developmental delays. Nitric oxide is a critical effector molecule produced as a component of the innate immune response during infection. Congenitally infected fetal brains show regions of brain damage, including necrotic foci with infiltrating macrophages and microglia, cell types that produce nitric oxide during infection. Using a 3-dimensional cortical organoid model, we demonstrate that nitric oxide inhibits HCMV spread and simultaneously disrupts neural rosette structures, resulting in tissue disorganization. Nitric oxide also attenuates HCMV replication in 2-dimensional cultures of neural progenitor cells (NPCs), a prominent cell type in cortical organoids that differentiate into neurons and glial cells. The multipotency factor SOX2 was decreased during nitric oxide exposure, suggesting that early neural differentiation is affected. Nitric oxide also reduced maximal mitochondrial respiration in both uninfected and infected NPCs. We determined that this reduction likely influences neural differentiation, as neurons (Tuj1+ GFAP- Nestin-) and glial populations (Tuj1- GFAP+ Nestin-) were reduced following differentiation. Our studies indicate a prominent, immunopathogenic role of nitric oxide in promoting developmental defects within the brain despite its antiviral activity during congenital HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of virus-mediated congenital birth defects. Congenitally infected infants can have a variety of symptoms manifesting within the central nervous system. The use of 3-dimensional (3-D) cortical organoids to model infection of the fetal brain has advanced the current understanding of development and allowed broader investigation of the mechanisms behind disease. However, the impact of the innate immune molecule nitric oxide during HCMV infection has not been explored in neural cells or cortical 3-D models. Here, we investigated the effect of nitric oxide on cortical development during HCMV infection. We demonstrate that nitric oxide plays an antiviral role during infection yet results in disorganized cortical tissue. Nitric oxide contributes to differentiation defects of neuron and glial cells from neural progenitor cells despite inhibiting viral replication. Our results indicate that immunopathogenic consequences of nitric oxide during congenital infection promote developmental defects that undermine its antiviral activity.
Collapse
|
17
|
Lebov JF, Hooper SR, Pugh N, Becker-Dreps S, Bowman NM, Brown LM, MacDonald PD, Lakshmanane P, Jadi R, Bucardo F, Chevez T, Rodriguez AH, Aleman Rivera TDJ. Neurological and neuropsychological sequelae of Zika virus infection in children in León, Nicaragua. Rev Panam Salud Publica 2022; 46:e90. [PMID: 35875321 PMCID: PMC9299389 DOI: 10.26633/rpsp.2022.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives. To describe the presence and persistence of neurological and neuropsychological sequelae among children with acquired Zika virus infection and assess whether those sequelae were more common in children infected with Zika virus compared to uninfected children. Methods. We conducted a prospective cohort study of children with and without Zika virus infection in León, Nicaragua, using a standard clinical assessment tool and questionnaire to collect data on symptoms at three visits, about 6 months apart, and a battery of standardized instruments to evaluate neurocognitive function, behavior, depression, and anxiety at the last two visits. Results. Sixty-two children were enrolled, with no significant differences in demographics by infection group. Children infected with Zika virus had a range of neurological symptoms, some of which persisted for 6 to 12 months; however, no consistent pattern of symptoms was observed. At baseline a small percentage of children infected with Zika virus had an abnormal finger-to-nose test (13%), cold touch response (13%), and vibration response (15%) versus 0% in the uninfected group. Neurocognitive deficits and behavioral problems were common in both groups, with no significant differences between the groups. Children infected with Zika virus had lower cognitive efficiency scores at the 6-month visit. Anxiety and depression were infrequent in both groups. Conclusions. Larger studies are needed to definitively investigate the relationship between Zika virus infection and neurological symptoms and neurocognitive problems, with adjustment for factors affecting cognition and behavior, including mood and sleep disorders, home learning environment, history of neuroinvasive infections, and detailed family history of neuropsychological problems.
Collapse
Affiliation(s)
- Jill F. Lebov
- RTI International, Research Triangle Park, NC, United States of America
| | | | - Norma Pugh
- RTI International, Research Triangle Park, NC, United States of America
| | | | | | - Linda M. Brown
- RTI International, Research Triangle Park, NC, United States of America
| | | | | | - Ramesh Jadi
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Filemon Bucardo
- National Autonomous University of Nicaragua-León, León, Nicaragua
| | - Tatiana Chevez
- National Autonomous University of Nicaragua-León, León, Nicaragua
| | | | | |
Collapse
|
18
|
Zika Virus Replication in a Mast Cell Model is Augmented by Dengue Virus Antibody-Dependent Enhancement and Features a Selective Immune Mediator Secretory Profile. Microbiol Spectr 2022; 10:e0177222. [PMID: 35862953 PMCID: PMC9431662 DOI: 10.1128/spectrum.01772-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies generated against one dengue serotype can enhance infection of another by a phenomenon called antibody-dependent enhancement (ADE). Additionally, antigenic similarities between Zika and dengue viruses can promote Zika virus infection by way of ADE
in vitro
using these very same anti-dengue antibodies.
Collapse
|
19
|
Elgueta D, Murgas P, Riquelme E, Yang G, Cancino GI. Consequences of Viral Infection and Cytokine Production During Pregnancy on Brain Development in Offspring. Front Immunol 2022; 13:816619. [PMID: 35464419 PMCID: PMC9021386 DOI: 10.3389/fimmu.2022.816619] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Infections during pregnancy can seriously damage fetal neurodevelopment by aberrantly activating the maternal immune system, directly impacting fetal neural cells. Increasing evidence suggests that these adverse impacts involve alterations in neural stem cell biology with long-term consequences for offspring, including neurodevelopmental disorders such as autism spectrum disorder, schizophrenia, and cognitive impairment. Here we review how maternal infection with viruses such as Influenza A, Cytomegalovirus, and Zika during pregnancy can affect the brain development of offspring by promoting the release of maternal pro-inflammatory cytokines, triggering neuroinflammation of the fetal brain, and/or directly infecting fetal neural cells. In addition, we review insights into how these infections impact human brain development from studies with animal models and brain organoids. Finally, we discuss how maternal infection with SARS-CoV-2 may have consequences for neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Daniela Elgueta
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Murgas
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Erick Riquelme
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Guang Yang
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
20
|
Winkler CW, Clancy CS, Rosenke R, Peterson KE. Zika virus vertical transmission in interferon receptor1-antagonized Rag1 -/- mice results in postnatal brain abnormalities and clinical disease. Acta Neuropathol Commun 2022; 10:46. [PMID: 35379362 PMCID: PMC8981715 DOI: 10.1186/s40478-022-01351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
The mechanisms by which vertically transmitted Zika virus (ZIKV) causes postnatal brain development abnormalities and congenital disease remain poorly understood. Here, we optimized the established anti-IFNAR1 treated, Rag1-/- (AIR) mouse model of ZIKV infection to examine the consequence of vertical transmission on neonate survival and postnatal brain development. We found that modulating the infectious dose and the frequency of anti-IFNAR1 treatment of pregnant mice (termed AIRlow mice) prolonged neonatal survival allowing for pathogenesis studies of brain tissues at critical postnatal time points. Postnatal AIRlow mice all had chronic ZIKV infection in the brain that was associated with decreased cortical thickness and cerebellar volume, increased gliosis, and higher levels of cell death in many brain areas including cortex, hippocampus and cerebellum when compared to controls. Interestingly, despite active infection and brain abnormalities, the neurodevelopmental program remained active in AIRlow mice as indicated by elevated mRNA expression of critical neurodevelopmental genes in the brain and enlargement of neural-progenitor rich regions of the cerebellum at a developmental time point analogous to birth in humans. Nevertheless, around the developmental time point when the brain is fully populated by neurons, AIRlow mice developed neurologic disease associated with persistent ZIKV infection in the brain, gliosis, and increased cell death. Together, these data show that vertically transmitted ZIKV infection in the brain of postnatal AIRlow mice strongly influences brain development resulting in structural abnormalities and cell death in multiple regions of the brain.
Collapse
|
21
|
Lesage S, Chazal M, Beauclair G, Batalie D, Cerboni S, Couderc E, Lescure A, Del Nery E, Tangy F, Martin A, Manel N, Jouvenet N. Discovery of Genes that Modulate Flavivirus Replication in an Interferon-Dependent Manner. J Mol Biol 2022; 434:167277. [PMID: 34599939 PMCID: PMC8480147 DOI: 10.1016/j.jmb.2021.167277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022]
Abstract
Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions induced by IFN. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent manner, opening new perspectives to target weakness points in the life cycle of these viruses.
Collapse
Affiliation(s)
- Sarah Lesage
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France
| | - Guillaume Beauclair
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Damien Batalie
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, F-75015 Paris, France
| | - Silvia Cerboni
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Elodie Couderc
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France; Institut Pasteur, Université de Paris, CNRS UMR 2000, Insect-Virus Interactions Unit, F-75015 Paris, France
| | - Aurianne Lescure
- Institut Curie, PSL Research University, Department of Translational Research-Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research-Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Viral Genomics and Vaccination Unit, F-75015 Paris, France
| | - Annette Martin
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, F-75015 Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France. https://twitter.com/NicolasManellab
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus Sensing and Signaling Unit, F-75015 Paris, France.
| |
Collapse
|
22
|
Kagoya R, Toma-Hirano M, Yamagishi J, Matsumoto N, Kondo K, Ito K. Immunological status of the olfactory bulb in a murine model of Toll-like receptor 3-mediated upper respiratory tract inflammation. J Neuroinflammation 2022; 19:13. [PMID: 35012562 PMCID: PMC8744287 DOI: 10.1186/s12974-022-02378-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Postviral olfactory dysfunction (PVOD) following a viral upper respiratory tract infection (URI) is one of the most common causes of olfactory disorders, often lasting for over a year. To date, the molecular pathology of PVOD has not been elucidated. METHODS A murine model of Toll-like receptor 3 (TLR3)-mediated upper respiratory tract inflammation was used to investigate the impact of URIs on the olfactory system. Inflammation was induced via the intranasal administration of polyinosinic-polycytidylic acid (poly(I:C), a TLR3 ligand) to the right nostril for 3 days. Peripheral olfactory sensory neurons (OSNs), immune cells in the olfactory mucosa, and glial cells in the olfactory bulb (OB) were analyzed histologically. Proinflammatory cytokines in the nasal tissue and OB were evaluated using the quantitative real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). RESULTS In the treated mice, OSNs were markedly reduced in the olfactory mucosa, and T cell and neutrophil infiltration therein was observed 1 day after the end of poly(I:C) administration. Moreover, there was a considerable increase in microglial cells and slight increase in activated astrocytes in the OB. In addition, qPCR and ELISA revealed the elevated expression of interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and interferon-gamma both in the OB and nasal tissue. CONCLUSIONS Taken together, the decreased peripheral OSNs, OB microgliosis, and elevated proinflammatory cytokines suggest that immunological changes in the OB may be involved in the pathogenesis of PVOD.
Collapse
Affiliation(s)
- Ryoji Kagoya
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Junya Yamagishi
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Naoyuki Matsumoto
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Otolaryngology and Head and Neck Surgery, Kameda Medical Center, 929, Higashi-cho, Kamogawa, Chiba, 296-8602, Japan
| | - Kenji Kondo
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Ito
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
23
|
Majumdar A, Basu A. Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022; 47:54. [PMID: 36222134 PMCID: PMC9425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/17/2022] [Indexed: 09/07/2024]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| |
Collapse
|
24
|
Bohmwald K, Andrade CA, Gálvez NMS, Mora VP, Muñoz JT, Kalergis AM. The Causes and Long-Term Consequences of Viral Encephalitis. Front Cell Neurosci 2021; 15:755875. [PMID: 34916908 PMCID: PMC8668867 DOI: 10.3389/fncel.2021.755875] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Reports regarding brain inflammation, known as encephalitis, have shown an increasing frequency during the past years. Encephalitis is a relevant concern to public health due to its high morbidity and mortality. Infectious or autoimmune diseases are the most common cause of encephalitis. The clinical symptoms of this pathology can vary depending on the brain zone affected, with mild ones such as fever, headache, confusion, and stiff neck, or severe ones, such as seizures, weakness, hallucinations, and coma, among others. Encephalitis can affect individuals of all ages, but it is frequently observed in pediatric and elderly populations, and the most common causes are viral infections. Several viral agents have been described to induce encephalitis, such as arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumovirus, and coronaviruses, among others. Once a neurotropic virus reaches the brain parenchyma, the resident cells such as neurons, astrocytes, and microglia, can be infected, promoting the secretion of pro-inflammatory molecules and the subsequent immune cell infiltration that leads to brain damage. After resolving the viral infection, the local immune response can remain active, contributing to long-term neuropsychiatric disorders, neurocognitive impairment, and degenerative diseases. In this article, we will discuss how viruses can reach the brain, the impact of viral encephalitis on brain function, and we will focus especially on the neurocognitive sequelae reported even after viral clearance.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Mora
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñoz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Enlow W, Bordeleau M, Piret J, Ibáñez FG, Uyar O, Venable MC, Goyette N, Carbonneau J, Tremblay ME, Boivin G. Microglia are involved in phagocytosis and extracellular digestion during Zika virus encephalitis in young adult immunodeficient mice. J Neuroinflammation 2021; 18:178. [PMID: 34399779 PMCID: PMC8369691 DOI: 10.1186/s12974-021-02221-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) has been associated with several neurological complications in adult patients. METHODS We used a mouse model deficient in TRIF and IPS-1 adaptor proteins, which are involved in type I interferon production, to study the role of microglia during brain infection by ZIKV. Young adult mice were infected intravenously with the contemporary ZIKV strain PRVABC59 (1 × 105 PFUs/100 µL). RESULTS Infected mice did not present overt clinical signs of the disease nor body weight loss compared with noninfected animals. However, mice exhibited a viremia and a brain viral load that were maximal (1.3 × 105 genome copies/mL and 9.8 × 107 genome copies/g of brain) on days 3 and 7 post-infection (p.i.), respectively. Immunohistochemistry analysis showed that ZIKV antigens were distributed in several regions of the brain, especially the dorsal hippocampus. The number of Iba1+/TMEM119+ microglia remained similar in infected versus noninfected mice, but their cell body and arborization areas significantly increased in the stratum radiatum and stratum lacunosum-moleculare layers of the dorsal hippocampus cornu ammoni (CA)1, indicating a reactive state. Ultrastructural analyses also revealed that microglia displayed increased phagocytic activities and extracellular digestion of degraded elements during infection. Mice pharmacologically depleted in microglia with PLX5622 presented a higher brain viral load compared to untreated group (2.8 × 1010 versus 8.5 × 108 genome copies/g of brain on day 10 p.i.) as well as an increased number of ZIKV antigens labeled with immunogold in the cytoplasm and endoplasmic reticulum of neurons and astrocytes indicating an enhanced viral replication. Furthermore, endosomes of astrocytes contained nanogold particles together with digested materials, suggesting a compensatory phagocytic activity upon microglial depletion. CONCLUSIONS These results indicate that microglia are involved in the control of ZIKV replication and/or its elimination in the brain. After depletion of microglia, the removal of ZIKV-infected cells by phagocytosis could be partly compensated by astrocytes.
Collapse
Affiliation(s)
- William Enlow
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Neurosciences Axis, Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Jocelyne Piret
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Fernando González Ibáñez
- Neurosciences Axis, Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Olus Uyar
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Marie-Christine Venable
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Nathalie Goyette
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Julie Carbonneau
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Marie-Eve Tremblay
- Neurosciences Axis, Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada. .,Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| | - Guy Boivin
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
26
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
27
|
Bhagat R, Kaur G, Seth P. Molecular mechanisms of zika virus pathogenesis: An update. Indian J Med Res 2021; 154:433-445. [PMID: 35345069 PMCID: PMC9131805 DOI: 10.4103/ijmr.ijmr_169_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 01/04/2023] Open
Abstract
Zika virus (ZIKV), member of the family Flaviviridae belonging to genus Flavivirus, is an arthropod-borne virus. The ZIKV is known to cause severe congenital birth defects in neonates. Due to a large number of worldwide outbreaks and associated neurological complications with ZIKV, a public health emergency was declared by the World Health Organization on February 1, 2016. The virus exhibits neurotropism and has a specific propensity towards neural precursor cells of the developing brain. In utero ZIKV infection causes massive cell death in the developing brain resulting in various motor and cognitive disabilities in newborns. The virus modulates cell machinery at several levels to replicate itself and inhibits toll like receptors-3 signalling, deregulates microRNA circuitry and induces a chronic inflammatory response in affected cells. Several significant advances have been made to understand the mechanisms of neuropathogenesis, its prevention and treatment. The current review provides an update on cellular and molecular mechanisms of ZIKV-induced alterations in the function of various brain cells.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, India
- Department of Genetics, Washington University in Saint Louis, Missouri, United States of America
| | - Guneet Kaur
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, India
| | - Pankaj Seth
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, India
| |
Collapse
|
28
|
Arsenault EJ, McGill CM, Barth BM. Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2. Neuromolecular Med 2021; 23:25-46. [PMID: 33547562 PMCID: PMC9020407 DOI: 10.1007/s12017-021-08646-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Neuro-inflammation accompanies numerous neurological disorders and conditions where it can be associated with a progressive neurodegenerative pathology. In a similar manner, alterations in sphingolipid metabolism often accompany or are causative features in degenerative neurological conditions. These include dementias, motor disorders, autoimmune conditions, inherited metabolic disorders, viral infection, traumatic brain and spinal cord injury, psychiatric conditions, and more. Sphingolipids are major regulators of cellular fate and function in addition to being important structural components of membranes. Their metabolism and signaling pathways can also be regulated by inflammatory mediators. Therefore, as certain sphingolipids exert distinct and opposing cellular roles, alterations in their metabolism can have major consequences. Recently, regulation of bioactive sphingolipids by neuro-inflammatory mediators has been shown to activate a neuronal NADPH oxidase 2 (NOX2) that can provoke damaging oxidation. Therefore, the sphingolipid-regulated neuronal NOX2 serves as a mechanistic link between neuro-inflammation and neurodegeneration. Moreover, therapeutics directed at sphingolipid metabolism or the sphingolipid-regulated NOX2 have the potential to alleviate neurodegeneration arising out of neuro-inflammation.
Collapse
Affiliation(s)
- Emma J Arsenault
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Colin M McGill
- Department of Chemistry, University of Alaska Anchorage, Anchorage, AK, 99508, USA
| | - Brian M Barth
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
29
|
Bonaterra GA, Mierau O, Hofmann J, Schwarzbach H, Aziz-Kalbhenn H, Kolb C, Kinscherf R. In Vitro Effects of St. John's Wort Extract Against Inflammatory and Oxidative Stress and in the Phagocytic and Migratory Activity of Mouse SIM-A9 Microglia. Front Pharmacol 2021; 11:603575. [PMID: 33628177 PMCID: PMC7898673 DOI: 10.3389/fphar.2020.603575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction: Herbal medicinal plants as Hypericum perforatum L., known as St. John’s wort (SJW) have been in use for a long time. SJW that is specifically used for the treatment of depressive disorders. Inflammatory cytokines derived from microglia play an important role in the regulation of the synthesis and reuptake of glutamate and influence synaptic function, morphology and neuronal plasticity. The present study was performed to investigate, whether STW3-VI, a special SJW extract has protective effects on mouse SIM-A9 microglia against cytotoxic and proinflammatory effects of ROS, glutamate, NMDA or cortisol. Additionally, we investigated the effects of SJW on migratory and phagocytic properties of microglia. Results: Pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml)—in contrast to desipramine—inhibited the H2O2-induced TNF-α release by 20–40%. Pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml) delayed the 3 or 4 mM H2O2-induced intracellular ROS level by 26.9 and 44.4%, respectively. Furthermore, pre-treatment (48 h) of microglia with STW3-VI (5 μg/ml) - in contrast to desipramine - lowered the glutamate-induced cytotoxicity by 13.2%. Besides, pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml) or desipramine (5 µM) inhibited the NMDA-induced decrease of the viability by 16.5–28.8% or 12%, respectively. Finally, pre-treatment (48 h) of microglia with STW3-VI (5 or 10 μg/ml)—in contrast to desipramine - reduced the cortisol-induced cytotoxicity by 15.5 and 12.9%. Treatment of microglia with STW3-VI (10 or 100 μg/ml) increased the migratory and the phagocytic capacities by 100 and 40%. Conclusion: Our data provide evidence that STW3-VI—in contrast to desipramine - protects microglia from oxidative stress, NMDA- or glutamate-induced cytotoxicity, and has anti-inflammatory properties that are accompanied by improvement of their migratory and phagocytic capacity. These protective (particularly the anti-inflammatory) properties may be beneficial in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Gabriel A Bonaterra
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Olga Mierau
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Johanna Hofmann
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Heba Aziz-Kalbhenn
- Bayer Consumer Health Division, Phytomedicines Supply and Development Center, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Christiane Kolb
- Bayer Consumer Health Division, Phytomedicines Supply and Development Center, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
30
|
Association between Genetic Variants in NOS2 and TNF Genes with Congenital Zika Syndrome and Severe Microcephaly. Viruses 2021; 13:v13020325. [PMID: 33672623 PMCID: PMC7924177 DOI: 10.3390/v13020325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) causes Congenital Zika Syndrome (CZS) in individuals exposed prenatally. Here, we investigated polymorphisms in VEGFA, PTGS2, NOS3, TNF, and NOS2 genes as risk factors to CZS. Forty children with CZS and forty-eight children who were in utero exposed to ZIKV infection, but born without congenital anomalies, were evaluated. Children with CZS were predominantly infected by ZIKV in the first trimester (p < 0.001) and had mothers with lower educational level (p < 0.001) and family income (p < 0.001). We found higher risk of CZS due the allele rs2297518[A] of NOS2 (OR = 2.28, CI 95% 1.17–4.50, p = 0.015). T allele and TT/CT genotypes of the TNF rs1799724 and haplotypes associated with higher expression of TNF were more prevalent in children with CZS and severe microcephaly (p = 0.029, p = 0.041 and p = 0.030, respectively). Our findings showed higher risk of CZS due ZIKV infection in the first trimester and suggested that polymorphisms in NOS2 and TNF genes affect the risk of CZS and severe microcephaly.
Collapse
|
31
|
Raper J, Chahroudi A. Clinical and Preclinical Evidence for Adverse Neurodevelopment after Postnatal Zika Virus Infection. Trop Med Infect Dis 2021; 6:tropicalmed6010010. [PMID: 33445671 PMCID: PMC7838975 DOI: 10.3390/tropicalmed6010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Although the Zika virus (ZIKV) typically causes mild or no symptoms in adults, during the 2015−2016 outbreak, ZIKV infection in pregnancy resulted in a spectrum of diseases in infants, including birth defects and neurodevelopmental disorders identified in childhood. While intense clinical and basic science research has focused on the neurodevelopmental outcomes of prenatal ZIKV infection, less is known about the consequences of infection during early life. Considering the neurotropism of ZIKV and the rapidly-developing postnatal brain, it is important to understand how infection during infancy may disrupt neurodevelopment. This paper reviews the current knowledge regarding early postnatal ZIKV infection. Emerging clinical evidence supports the hypothesis that ZIKV infection during infancy can result in negative neurologic consequences. However, clinical data regarding postnatal ZIKV infection in children are limited; as such, animal models play an important role in understanding the potential complications of ZIKV infection related to the vulnerable developing brain. Preclinical data provide insight into the potential behavioral, cognitive, and motor domains that clinical studies should examine in pediatric populations exposed to ZIKV during infancy.
Collapse
Affiliation(s)
- Jessica Raper
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
32
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Zika virus induces oxidative stress and decreases antioxidant enzyme activities in vitro and in vivo. Virus Res 2020; 286:198084. [DOI: 10.1016/j.virusres.2020.198084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023]
|
34
|
Xu P, Shan C, Dunn TJ, Xie X, Xia H, Gao J, Allende Labastida J, Zou J, Villarreal PP, Schlagal CR, Yu Y, Vargas G, Rossi SL, Vasilakis N, Shi PY, Weaver SC, Wu P. Role of microglia in the dissemination of Zika virus from mother to fetal brain. PLoS Negl Trop Dis 2020; 14:e0008413. [PMID: 32628667 PMCID: PMC7365479 DOI: 10.1371/journal.pntd.0008413] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/16/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
Global Zika virus (ZIKV) outbreaks and their link to microcephaly have raised major public health concerns. However, the mechanism of maternal-fetal transmission remains largely unknown. In this study, we determined the role of yolk sac (YS) microglial progenitors in a mouse model of ZIKV vertical transmission. We found that embryonic (E) days 6.5-E8.5 were a critical window for ZIKV infection that resulted in fetal demise and microcephaly, and YS microglial progenitors were susceptible to ZIKV infection. Ablation of YS microglial progenitors significantly reduced the viral load in both the YS and the embryonic brain. Taken together, these results support the hypothesis that YS microglial progenitors serve as “Trojan horses,” contributing to ZIKV fetal brain dissemination and congenital brain defects. ZIKV is more likely to cause fetal demise and brain malformations when the mother is infected at an early stage of pregnancy, which is the critical time window when a special type of immune cells called microglia appear in the YS and migrate to the fetal brain. YS-derived microglia are susceptible to ZIKV infection and can act as “Trojan horses” to bring ZIKV from the mother to the fetal brain.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany J. Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Javier Allende Labastida
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Paula P. Villarreal
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Caitlin R. Schlagal
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yongjia Yu
- Department of Radiology and Oncology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gracie Vargas
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shannan L. Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nikolaos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (SCW); (PW)
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (SCW); (PW)
| |
Collapse
|
35
|
Del Sarto JL, Rocha RDPF, Bassit L, Olmo IG, Valiate B, Queiroz-Junior CM, Pedrosa CDSG, Ribeiro FM, Guimarães MZ, Rehen S, Amblard F, Zhou L, Cox BD, Gavegnano C, Costa VV, Schinazi RF, Teixeira MM. 7-Deaza-7-fluoro-2'-C-methyladenosine inhibits Zika virus infection and viral-induced neuroinflammation. Antiviral Res 2020; 180:104855. [PMID: 32574688 DOI: 10.1016/j.antiviral.2020.104855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) has gained a lot of attention in the past few years due to its rapid spread worldwide and its close association to severe neurological outcomes, such as microcephaly and Guillain-Barre syndrome. In this study, the in vitro and in vivo anti-ZIKV activity of 7-deaza-7-fluoro-2'-C-methyl-adenosine (DFMA) was evaluated. In vitro, using primary mouse neuronal cells and human neural stem cells infected by ZIKV, treatment with DFMA resulted in impaired viral replication and protection against virus-induced cell death. In vivo, when administrated prior to infection, DFMA prevented lethality and markedly reduced viral loads and neuroinflammation, including microgliosis and overall brain damage. Additionally, as an early therapeutic treatment, DFMA increased survival rates in mice. Collectively, these findings demonstrate that the nucleoside analog DFMA inhibits ZIKV infection and viral-induced neuroinflammation in vitro and in vivo without apparent untoward effects, suggesting it may be useful in individuals infected with ZIKV.
Collapse
Affiliation(s)
- Juliana Lemos Del Sarto
- Department of Biochemistry and Immunology, And(2)Research Center for Drug Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rebeca de Paiva Froes Rocha
- Department of Biochemistry and Immunology, And(2)Research Center for Drug Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leda Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Isabella Guimarães Olmo
- Neurobiochemistry Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Bruno Valiate
- Department of Biochemistry and Immunology, And(2)Research Center for Drug Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Cardiac Biology Laboratory, Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Fabíola Mara Ribeiro
- Neurobiochemistry Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Marilia Zaluar Guimarães
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Longhu Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bryan D Cox
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Christina Gavegnano
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, And(2)Research Center for Drug Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Research Group in Arboviral Diseases. Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, And(2)Research Center for Drug Development, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
36
|
Harsh S, Fu Y, Kenney E, Han Z, Eleftherianos I. Zika virus non-structural protein NS4A restricts eye growth in Drosophila through regulation of JAK/STAT signaling. Dis Model Mech 2020; 13:dmm040816. [PMID: 32152180 PMCID: PMC7197722 DOI: 10.1242/dmm.040816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
To gain a comprehensive view of the changes in host gene expression underlying Zika virus (ZIKV) pathogenesis, we performed whole-genome RNA sequencing (RNA-seq) of ZIKV-infected Drosophila adult flies. RNA-seq analysis revealed that ZIKV infection alters several and diverse biological processes, including stress, locomotion, lipid metabolism, imaginal disc morphogenesis and regulation of JAK/STAT signaling. To explore the interaction between ZIKV infection and JAK/STAT signaling regulation, we generated genetic constructs overexpressing ZIKV-specific non-structural proteins NS2A, NS2B, NS4A and NS4B. We found that ectopic expression of non-structural proteins in the developing Drosophila eye significantly restricts growth of the larval and adult eye and correlates with considerable repression of the in vivo JAK/STAT reporter, 10XStat92E-GFP At the cellular level, eye growth defects are associated with reduced rate of proliferation without affecting the overall rate of apoptosis. In addition, ZIKV NS4A genetically interacts with the JAK/STAT signaling components; co-expression of NS4A along with the dominant-negative form of domeless or StatRNAi results in aggravated reduction in eye size, while co-expression of NS4A in HopTuml (also known as hopTum ) mutant background partially rescues the hop-induced eye overgrowth phenotype. The function of ZIKV NS4A in regulating growth is maintained in the wing, where ZIKV NS4A overexpression in the pouch domain results in reduced growth linked with diminished expression of Notch targets, Wingless (Wg) and Cut, and the Notch reporter, NRE-GFP Thus, our study provides evidence that ZIKV infection in Drosophila results in restricted growth of the developing eye and wing, wherein eye phenotype is induced through regulation of JAK/STAT signaling, whereas restricted wing growth is induced through regulation of Notch signaling. The interaction of ZIKV non-structural proteins with the conserved host signaling pathways further advance our understanding of ZIKV-induced pathogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- NYU Langone Health, Alexandria Center for Life Science, New York, NY 10016, USA
| | - Yulong Fu
- Center for Genetic Medicine Research, Children's National Health System. Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Eric Kenney
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Zhe Han
- Center for Genetic Medicine Research, Children's National Health System. Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
37
|
Ledur PF, Karmirian K, Pedrosa CDSG, Souza LRQ, Assis-de-Lemos G, Martins TM, Ferreira JDCCG, de Azevedo Reis GF, Silva ES, Silva D, Salerno JA, Ornelas IM, Devalle S, Madeiro da Costa RF, Goto-Silva L, Higa LM, Melo A, Tanuri A, Chimelli L, Murata MM, Garcez PP, Filippi-Chiela EC, Galina A, Borges HL, Rehen SK. Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSC-derived astrocytes. Sci Rep 2020; 10:1218. [PMID: 31988337 PMCID: PMC6985105 DOI: 10.1038/s41598-020-57914-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) has been extensively studied since it was linked to congenital malformations, and recent research has revealed that astrocytes are targets of ZIKV. However, the consequences of ZIKV infection, especially to this cell type, remain largely unknown, particularly considering integrative studies aiming to understand the crosstalk among key cellular mechanisms and fates involved in the neurotoxicity of the virus. Here, the consequences of ZIKV infection in iPSC-derived astrocytes are presented. Our results show ROS imbalance, mitochondrial defects and DNA breakage, which have been previously linked to neurological disorders. We have also detected glial reactivity, also present in mice and in post-mortem brains from infected neonates from the Northeast of Brazil. Given the role of glia in the developing brain, these findings may help to explain the observed effects in congenital Zika syndrome related to neuronal loss and motor deficit.
Collapse
Affiliation(s)
| | - Karina Karmirian
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Gabriela Assis-de-Lemos
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago Martino Martins
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Gabriel Ferreira de Azevedo Reis
- Insitute of Biology, Department of Biophysics and Biometrics, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Eduardo Santos Silva
- Insitute of Biology, Department of Biophysics and Biometrics, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Débora Silva
- Laboratory of Neuropathology, State Institute of Brain Paulo Niemeyer, Rio de Janeiro, RJ, Brazil
| | - José Alexandre Salerno
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Sylvie Devalle
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | | | - Livia Goto-Silva
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Luiza Mendonça Higa
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Adriana Melo
- Research Institute Prof. Joaquim Amorim Neto (IPESQ), Campina Grande, PB, Brazil
| | - Amilcar Tanuri
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Leila Chimelli
- Laboratory of Neuropathology, State Institute of Brain Paulo Niemeyer, Rio de Janeiro, RJ, Brazil
| | - Marcos Massao Murata
- Insitute of Biology, Department of Biophysics and Biometrics, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Patrícia Pestana Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Antonio Galina
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Helena Lobo Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Stevens Kastrup Rehen
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
38
|
Gilbert‐Jaramillo J, Garcez P, James W, Molnár Z, Clarke K. The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. J Anat 2019; 235:468-480. [PMID: 30793304 PMCID: PMC6704275 DOI: 10.1111/joa.12959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
The Zika virus (ZIKV) became a major worldwide public concern in 2015 due to the congenital syndrome which presents the highest risk during the first trimester of pregnancy and includes microcephaly and eye malformations. Several cellular, genetic and molecular studies have shown alterations in metabolic pathways, endoplasmic reticulum (ER) stress, immunity and dysregulation of RNA and energy metabolism both in vivo and in vitro. Here we summarise the main metabolic complications, with a particular focus on the possibility that brain energy metabolism is altered following ZIKV infection, contributing to developmental abnormalities. Brain energetic failure has been implicated in neurological conditions such as autism disorder and epilepsy, as well as in metabolic diseases with severe neurodevelopmental complications such as Glut-1 deficiency syndrome. Therefore, these energetic alterations are of wide-ranging interest as they might be directly implicated in congenital ZIKV syndrome. Data showing increased glycolysis during ZIKV infection, presumably required for viral replication, might support the idea that the virus can cause energetic stress in the developing brain cells. Consequences may include neuroinflammation, cell cycle dysregulation and cell death. Ketone bodies are non-glycolytic brain fuels that are produced during neonatal life, starvation or fasting, ingestion of high-fat low-carbohydrate diets, and following supplementation with ketone esters. We propose that dietary ketones might alter the course of the disease and could even provide some degree of prevention of ZIKV-associated abnormalities and potentially related neurological conditions characterised by brain glucose impairment.
Collapse
Affiliation(s)
| | - Patricia Garcez
- Institute of Biomedical SciencesFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - William James
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
39
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
40
|
Abstract
In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
41
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
42
|
Kandilya D, Maskomani S, Shyamasundar S, Tambyah PA, Shiao Yng C, Lee RCH, Hande MP, Mallilankaraman K, Chu JJH, Dheen ST. Zika virus alters DNA methylation status of genes involved in Hippo signaling pathway in human neural progenitor cells. Epigenomics 2019; 11:1143-1161. [PMID: 31234652 DOI: 10.2217/epi-2018-0180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: This study was aimed to understand if Zika virus (ZIKV) alters the DNA methylome of human neural progenitor cells (hNPCs). Materials & methods: Whole genome DNA methylation profiling was performed using human methylationEPIC array in control and ZIKV infected hNPCs. Results & conclusion: ZIKV infection altered the DNA methylation of several genes such as WWTR1 (TAZ) and RASSF1 of Hippo signaling pathway which regulates organ size during brain development, and decreased the expression of several centrosomal-related microcephaly genes, and genes involved in stemness and differentiation in human neural progenitor cells. Overall, ZIKV downregulated the Hippo signaling pathway genes which perturb the stemness and differentiation process in hNPCs, which could form the basis for ZIKV-induced microcephaly.
Collapse
Affiliation(s)
- Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Silambarasan Maskomani
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Sukanya Shyamasundar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Paul Anantharajah Tambyah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Chan Shiao Yng
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Regina Ching Hua Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Justin Jang Hann Chu
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
43
|
Sherer ML, Khanal P, Talham G, Brannick EM, Parcells MS, Schwarz JM. Zika virus infection of pregnant rats and associated neurological consequences in the offspring. PLoS One 2019; 14:e0218539. [PMID: 31220154 PMCID: PMC6586346 DOI: 10.1371/journal.pone.0218539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus associated with microcephaly and other neurological disorders in infants born to infected mothers. Despite being declared an international emergency by the World Health Organization, very little is known about the mechanisms of ZIKV pathogenesis or the long-term consequences of maternal ZIKV infection in the affected offspring, largely due to the lack of appropriate rodent models. To address this issue, our lab has developed a working model of prenatal ZIKV infection in rats. In this study, we infected immune competent pregnant female rats with 105-107 PFU of ZIKV (PRVABC59, Puerto Rico/Human/Dec 2015) in order to examine its pathogenesis in the dams and pups. We examined the febrile response and sickness behavior in the dams, in addition to neonatal mortality, microglia morphology, cortical organization, apoptosis, and brain region-specific volumes in the offspring. Here, we demonstrate that pregnant and non-pregnant female rats have a distinct febrile response to ZIKV infection. Moreover, prenatal ZIKV infection increased cell death and reduced tissue volume in the hippocampus and cortex in the neonatal offspring. For the first time, we demonstrate the efficacy and validity of an immunocompetent rat model for maternal ZIKV infection that results in significant brain malformations in the neonatal offspring.
Collapse
Affiliation(s)
- Morgan L. Sherer
- University of Delaware, Department of Psychological and Brain Sciences, Newark, Delaware, United States of America
| | - Pragyan Khanal
- University of Delaware, Department of Psychological and Brain Sciences, Newark, Delaware, United States of America
| | - Gwen Talham
- University of Delaware, Office of Laboratory Animal Medicine, Newark, Delaware, United States of America
| | - Erin M. Brannick
- University of Delaware, Department of Animal and Food Sciences, Newark, Delaware, United States of America
| | - Mark S. Parcells
- University of Delaware, Department of Animal and Food Sciences, Newark, Delaware, United States of America
| | - Jaclyn M. Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, Newark, Delaware, United States of America
| |
Collapse
|
44
|
Alfano C, Gladwyn-Ng I, Couderc T, Lecuit M, Nguyen L. The Unfolded Protein Response: A Key Player in Zika Virus-Associated Congenital Microcephaly. Front Cell Neurosci 2019; 13:94. [PMID: 30971894 PMCID: PMC6445045 DOI: 10.3389/fncel.2019.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus that belongs to the Flaviviridae family, together with dengue, yellow fever, and West Nile viruses. In the wake of its emergence in the French Polynesia and in the Americas, ZIKV has been shown to cause congenital microcephaly. It is the first arbovirus which has been proven to be teratogenic and sexually transmissible. Confronted with this major public health challenge, the scientific and medical communities teamed up to precisely characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. This review focuses on the critical impact of the unfolded protein response (UPR) on ZIKV-associated congenital microcephaly. ZIKV infection of cortical neuron progenitors leads to high endoplasmic reticulum (ER) stress. This results in both the stalling of indirect neurogenesis, and UPR-dependent neuronal apoptotic death, and leads to cortical microcephaly. In line with these results, the administration of molecules inhibiting UPR prevents ZIKV-induced cortical microcephaly. The discovery of the link between ZIKV infection and UPR activation has a broader relevance, since this pathway plays a crucial role in many distinct cellular processes and its induction by ZIKV may account for several reported ZIKV-associated defects.
Collapse
Affiliation(s)
- Christian Alfano
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - Ivan Gladwyn-Ng
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France.,INSERM U1117, Biologie des Infections, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France.,INSERM U1117, Biologie des Infections, Paris, France.,Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, Institut Imagine, Sorbonne Paris Cité, Paris, France
| | - Laurent Nguyen
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| |
Collapse
|
45
|
Lei J, Vermillion MS, Jia B, Xie H, Xie L, McLane MW, Sheffield JS, Pekosz A, Brown A, Klein SL, Burd I. IL-1 receptor antagonist therapy mitigates placental dysfunction and perinatal injury following Zika virus infection. JCI Insight 2019; 4:122678. [PMID: 30944243 DOI: 10.1172/jci.insight.122678] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/14/2019] [Indexed: 12/25/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy causes significant adverse sequelae in the developing fetus, and results in long-term structural and neurologic defects. Most preventive and therapeutic efforts have focused on the development of vaccines, antivirals, and antibodies. The placental immunologic response to ZIKV, however, has been largely overlooked as a target for therapeutic intervention. The placental inflammatory response, specifically IL-1β secretion and signaling, is induced by ZIKV infection and represents an environmental factor that is known to increase the risk of perinatal developmental abnormalities. We show in a mouse model that maternally administrated IL-1 receptor antagonist (IRA; Kineret, or anakinra), following ZIKV exposure, can preserve placental function (by improving trophoblast invasion and placental vasculature), increase fetal viability, and reduce neurobehavioral deficits in the offspring. We further demonstrate that while ZIKV RNA is highly detectable in placentas, it is not correlated with fetal viability. Beyond its effects in the placenta, we show that IL-1 blockade may also directly decrease fetal neuroinflammation by mitigating fetal microglial activation in a dose-dependent manner. Our studies distinguish the role of placental inflammation during ZIKV-infected pregnancies, and demonstrate that maternal IRA may attenuate fetal neuroinflammation and improve perinatal outcomes.
Collapse
Affiliation(s)
- Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meghan S Vermillion
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Molecular and Comparative Pathobiology
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Li Xie
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeanne S Sheffield
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Brown
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Human T cell leukemia virus type 1 and Zika virus: tale of two reemerging viruses with neuropathological sequelae of public health concern. J Neurovirol 2019; 25:289-300. [PMID: 30693421 DOI: 10.1007/s13365-019-00720-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/16/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) and Zika virus (ZIKV) have been considered neglected viruses of low public health concern until recently when incidences of HTLV-1 and ZIKV were observed to be linked to serious immune-related disease and neurological complications. This review will discuss the epidemiology, genomic evolution, virus-host interactions, virulence factors, neuropathological sequelae, and current perspectives of these reemerging viruses. There are no FDA-approved therapeutics or vaccines against these viruses, and as such, it is important for clinical trials to focus on developing vaccines that can induce cell-mediated immune response to confer long-term protective immunity. Furthermore, attention should be paid to reducing the transmission of these viruses through unprotected sex, infected blood during sharing of contaminated needles, donated blood and organs, and vertical transmission from mother to baby via breastfeeding. There is an urgent need to re-evaluate repurposing current antiviral therapies as well as developing novel antiviral agents with enhanced efficacy due to the high morbidity rate associated with these two reemerging chronic viral diseases.
Collapse
|
47
|
Zhang L, Zhang J, You Z. Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder. Front Cell Neurosci 2018; 12:306. [PMID: 30459555 PMCID: PMC6232769 DOI: 10.3389/fncel.2018.00306] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is a common emotional cognitive disorder that seriously affects people’s physical and mental health and their quality of life. Due to its clinical and etiological heterogeneity, the molecular mechanisms underpinning MDD are complex and they are not fully understood. In addition, the effects of traditional drug therapy are not ideal. However, postmortem and animal studies have shown that overactivated microglia can inhibit neurogenesis in the hippocampus and induce depressive-like behaviors. Nonetheless, the molecular mechanisms by which microglia regulate nerve regeneration and determine depressive-like behaviors remain unclear. As the immune cells of the central nervous system (CNS), microglia could influence neurogenesis through the M1 and M2 subtypes, and these may promote depressive-like behaviors. Microglia may be divided into four main states or phenotypes. Under stress, microglial cells are induced into the M1 type, releasing inflammatory factors and causing neuroinflammatory responses. After the inflammation fades away, microglia shift into the alternative activated M2 phenotypes that play a role in neuroprotection. These activated M2 subtypes consist of M2a, M2b and M2c and their functions are different in the CNS. In this article, we mainly introduce the relationship between microglia and MDD. Importantly, this article elucidates a plausible mechanism by which microglia regulate inflammation and neurogenesis in ameliorating MDD. This could provide a reliable basis for the treatment of MDD in the future.
Collapse
Affiliation(s)
- Lijuan Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinqiang Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zili You
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
48
|
Chandwani MN, Creisher PS, O'Donnell LA. Understanding the Role of Antiviral Cytokines and Chemokines on Neural Stem/Progenitor Cell Activity and Survival. Viral Immunol 2018; 32:15-24. [PMID: 30307795 DOI: 10.1089/vim.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system are accompanied by the expression of cytokines and chemokines that can be critical for the control of viral replication in the brain. The outcomes of cytokine/chemokine signaling in neural cells vary widely, with cell-specific effects on cellular activity, proliferation, and survival. Neural stem/progenitor cells (NSPCs) are often altered during viral infections, through direct infection by the virus or by the influence of immune cell activity or cytokine/chemokine signaling. However, it has been challenging to dissect the contribution of the virus and specific inflammatory mediators during an infection. In addition to initiating an antiviral program in infected NSPCs, cytokines/chemokines can induce multiple changes in NSPC behavior that can perturb NSPC numbers, differentiation into other neural cells, and migration to sites of injury, and ultimately brain development and repair. The focus of this review was to dissect the effects of common antiviral cytokines and chemokines on NSPC activity, and to consider the subsequent pathological consequences for the host from changes in NSPC function.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Patrick S Creisher
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Lauren A O'Donnell
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| |
Collapse
|