1
|
Bjørndal B, Tungland SL, Bohov P, Sydnes MO, Dankel SN, Madsen L, Berge RK. Meldonium-induced steatosis is associated with increased delta 6 desaturation and reduced elongation of n-6 polyunsaturated fatty acids. LIVER RESEARCH 2024; 8:152-164. [PMID: 39957749 PMCID: PMC11771272 DOI: 10.1016/j.livres.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 02/18/2025]
Abstract
Background and objective Metabolic associated fatty liver disease (MAFLD) is associated with abnormal lipid metabolism. Mitochondrial dysfunction is considered an important factor in the onset of MAFLD, whereas altered fatty acid composition has been linked to the severity of the disease. Tetradecylthioacetic acid (TTA), shown to induce mitochondrial proliferation and alter the fatty acid composition, was used to delay the accumulation of hepatic triacylglycerol. This study aimed to evaluate how impaired mitochondrial fatty acid beta-oxidation affects fatty acid composition by incorporating meldonium into a high-carbohydrate diet. Methods C57BL/6 mice (n = 40) were fed high-carbohydrate diets supplemented with meldonium, TTA, or a combination of meldonium and TTA for 21 days. Lipid levels were determined in liver samples, and fatty acid composition was measured in both liver and plasma samples. Additionally, desaturase and elongase activities were estimated. The hepatic activities and gene expression levels of enzymes involved in fatty acid metabolism were measured in liver samples, whereas carnitines, their precursors, and acylcarnitines were measured in plasma samples. Results The meldonium-induced depletion of L-carnitine and mitochondrial fatty acid oxidation was confirmed by reduced plasma levels of L-carnitine and acylcarnitines. Principal component analyses of the hepatic fatty acid composition revealed clustering dependent on meldonium and TTA. The meldonium-induced increase in hepatic triacylglycerol levels correlated negatively with estimated activities of elongases and was associated with higher estimated activities of delta-6 desaturase (D6D; C18:4n-3/C18:3n-3 and C18:3n-6/C18:2n-6), and increased circulating levels of C18:4n-3 and C18:3n-6 (gamma-linolenic acid). TTA mitigated meldonium-induced triacylglycerol levels by 80% and attenuated the estimated D6D activities, and elongation of n-6 polyunsaturated fatty acids (PUFAs). TTA also attenuated the meldonium-mediated reduction of C24:1n-9 (nervonic acid), possibly by stimulating Elovl 5 and increased elongation of erucic acid (C22:1n-9) to nervonic acid. The hepatic levels of nervonic acid and the estimated activity of n-6 PUFA elongation correlated negatively with the hepatic triacylglycerol levels, while the estimated activities of D6D correlated positively. Conclusion Circulating levels of gamma-linolenic acid, along with reduced estimated elongation of n-6 PUFAs and D6D desaturation activities, were associated with hepatic triacylglycerol levels.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Sports, Physical Activity and Food, Western Norway University of Applied Sciences, Bergen, Norway
| | - Siri Lunde Tungland
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Magne O. Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Simon N. Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lise Madsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Benalaya I, Alves G, Lopes J, Silva LR. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications. Int J Mol Sci 2024; 25:1322. [PMID: 38279323 PMCID: PMC10816883 DOI: 10.3390/ijms25021322] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
Natural polysaccharides, which are described in this study, are some of the most extensively used biopolymers in food, pharmaceutical, and medical applications, because they are renewable and have a high level of biocompatibility and biodegradability. The fundamental understanding required to properly exploit polysaccharides potential in the biocomposite, nanoconjugate, and pharmaceutical industries depends on detailed research of these molecules. Polysaccharides are preferred over other polymers because of their biocompatibility, bioactivity, homogeneity, and bioadhesive properties. Natural polysaccharides have also been discovered to have excellent rheological and biomucoadhesive properties, which may be used to design and create a variety of useful and cost-effective drug delivery systems. Polysaccharide-based composites derived from natural sources have been widely exploited due to their multifunctional properties, particularly in drug delivery systems and biomedical applications. These materials have achieved global attention and are in great demand because to their biochemical properties, which mimic both human and animal cells. Although synthetic polymers account for a substantial amount of organic chemistry, natural polymers play a vital role in a range of industries, including biomedical, pharmaceutical, and construction. As a consequence, the current study will provide information on natural polymers, their biological uses, and food and pharmaceutical applications.
Collapse
Affiliation(s)
- Ikbel Benalaya
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
3
|
Actis Dato V, Lange S, Cho Y. Metabolic Flexibility of the Heart: The Role of Fatty Acid Metabolism in Health, Heart Failure, and Cardiometabolic Diseases. Int J Mol Sci 2024; 25:1211. [PMID: 38279217 PMCID: PMC10816475 DOI: 10.3390/ijms25021211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
This comprehensive review explores the critical role of fatty acid (FA) metabolism in cardiac diseases, particularly heart failure (HF), and the implications for therapeutic strategies. The heart's reliance on ATP, primarily sourced from mitochondrial oxidative metabolism, underscores the significance of metabolic flexibility, with fatty acid oxidation (FAO) being a dominant source. In HF, metabolic shifts occur with an altered FA uptake and FAO, impacting mitochondrial function and contributing to disease progression. Conditions like obesity and diabetes also lead to metabolic disturbances, resulting in cardiomyopathy marked by an over-reliance on FAO, mitochondrial dysfunction, and lipotoxicity. Therapeutic approaches targeting FA metabolism in cardiac diseases have evolved, focusing on inhibiting or stimulating FAO to optimize cardiac energetics. Strategies include using CPT1A inhibitors, using PPARα agonists, and enhancing mitochondrial biogenesis and function. However, the effectiveness varies, reflecting the complexity of metabolic remodeling in HF. Hence, treatment strategies should be individualized, considering that cardiac energy metabolism is intricate and tightly regulated. The therapeutic aim is to optimize overall metabolic function, recognizing the pivotal role of FAs and the need for further research to develop effective therapies, with promising new approaches targeting mitochondrial oxidative metabolism and FAO that improve cardiac function.
Collapse
Affiliation(s)
- Virginia Actis Dato
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (V.A.D.); (S.L.)
| | - Stephan Lange
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (V.A.D.); (S.L.)
- Department of Biomedicine, Aarhus University, DK 8000 Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, DK 8200 Aarhus, Denmark
| | - Yoshitake Cho
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (V.A.D.); (S.L.)
| |
Collapse
|
4
|
Li H, Chen W, Lin X, Chen W, Xie T, Chen K, Hou S, Li H. Influence of renal function on the ability of TyG Index to predict all-cause mortality. Lipids Health Dis 2023; 22:193. [PMID: 37951945 PMCID: PMC10638822 DOI: 10.1186/s12944-023-01958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The association between triglyceride-glucose (TyG) index and poor prognosis remains controversial. Whether renal function status affects the ability of the TyG index to predict poor prognosis has not yet been elucidated and merits further studies. METHODS This retrospective cohort study included 22,031 participants from communities in the U.S. By juxtaposing the TyG categories with the estimated glomerular filtration rate (eGFR, either < 60 mL/min/1.73m2 or ≥ 60 mL/min/1.73m2), participants were categorized into four distinct groups: (1) TyG_L/eGFR_H; (2) TyG_H/eGFR_H; (3) TyG_L/eGFR_L; and (4) TyG_H/eGFR_L. The endpoint was the all-cause mortality rate. Standard Kaplan-Meier plots were constructed and multifactor Cox regression analyses were carried out and restricted cubic spline regression analysis was utilized to assess the association between death and the TyG index for different renal function statuses. RESULTS No statistical differences were found in the TyG groups in participants with normal renal function after adjustment for all covariates (P = 0.070). However, in the high TyG index group with renal insufficiency, the risk of all-cause mortality rates was reduced by 18%. (HR, 0.82; CI, 0.69-0.98). The TyG index (high vs. low) and renal function (eGFR < 60 vs. eGFR ≥ 60) had statistically significant interactions with death (P < 0.001). When all covariates were adjusted, the risk of mortality for the TyG_L combined with eGFR_L group was 56% higher than that for the TyG_L combined with eGFR_H group (HR, 1.56; CI, 1.33-1.82). In the renal insufficiency population, a nonlinear relationship was observed between mortality and the TyG index, albeit with a differing pattern (P for nonlinearity < 0.001). CONCLUSIONS While it has been known that TyG index was a prognosis marker of CVD, this research highlights that higher TyG index was associated with higher all-cause mortality rates for all participants. Furthermore, renal function status significantly moderates the effect of the TyG index on all-cause mortality in community-dwelling adults.
Collapse
Affiliation(s)
- Huilan Li
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Weihua Chen
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Xueqin Lin
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Weiqin Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Tingzheng Xie
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350000, China
| | - Kaihong Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Shuhong Hou
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.
| | - Huaqing Li
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.
| |
Collapse
|
5
|
Dankel SN, Kalleklev TL, Tungland SL, Stafsnes MH, Bruheim P, Aloysius TA, Lindquist C, Skorve J, Nygård OK, Madsen L, Bjørndal B, Sydnes MO, Berge RK. Changes in Plasma Pyruvate and TCA Cycle Metabolites upon Increased Hepatic Fatty Acid Oxidation and Ketogenesis in Male Wistar Rats. Int J Mol Sci 2023; 24:15536. [PMID: 37958519 PMCID: PMC10648824 DOI: 10.3390/ijms242115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Altered hepatic mitochondrial fatty acid β-oxidation and associated tricarboxylic acid (TCA) cycle activity contributes to lifestyle-related diseases, and circulating biomarkers reflecting these changes could have disease prognostic value. This study aimed to determine hepatic and systemic changes in TCA-cycle-related metabolites upon the selective pharmacologic enhancement of mitochondrial fatty acid β-oxidation in the liver, and to elucidate the mechanisms and potential markers of hepatic mitochondrial activity. Male Wistar rats were treated with 3-thia fatty acids (e.g., tetradecylthioacetic acid (TTA)), which target mitochondrial biogenesis, mitochondrial fatty acid β-oxidation, and ketogenesis predominantly in the liver. Hepatic and plasma concentrations of TCA cycle intermediates and anaplerotic substrates (LC-MS/MS), plasma ketones (colorimetric assay), and acylcarnitines (HPLC-MS/MS), along with associated TCA-cycle-related gene expression (qPCR) and enzyme activities, were determined. TTA-induced hepatic fatty acid β-oxidation resulted in an increased ratio of plasma ketone bodies/nonesterified fatty acid (NEFA), lower plasma malonyl-CoA levels, and a higher ratio of plasma acetylcarnitine/palmitoylcarnitine (C2/C16). These changes were associated with decreased hepatic and increased plasma pyruvate concentrations, and increased plasma concentrations of succinate, malate, and 2-hydroxyglutarate. Expression of several genes encoding TCA cycle enzymes and the malate-oxoglutarate carrier (Slc25a11), glutamate dehydrogenase (Gdh), and malic enzyme (Mdh1 and Mdh2) were significantly increased. In conclusion, the induction of hepatic mitochondrial fatty acid β-oxidation by 3-thia fatty acids lowered hepatic pyruvate while increasing plasma pyruvate, as well as succinate, malate, and 2-hydroxyglutarate.
Collapse
Affiliation(s)
- Simon Nitter Dankel
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway (T.A.A.); (J.S.); (O.K.N.); (B.B.)
| | - Tine-Lise Kalleklev
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway (T.A.A.); (J.S.); (O.K.N.); (B.B.)
| | - Siri Lunde Tungland
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4021 Stavanger, Norway (M.O.S.)
| | - Marit Hallvardsdotter Stafsnes
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway (P.B.)
| | - Per Bruheim
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway (P.B.)
| | - Thomas Aquinas Aloysius
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway (T.A.A.); (J.S.); (O.K.N.); (B.B.)
| | - Carine Lindquist
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway (T.A.A.); (J.S.); (O.K.N.); (B.B.)
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway (T.A.A.); (J.S.); (O.K.N.); (B.B.)
| | - Ottar Kjell Nygård
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway (T.A.A.); (J.S.); (O.K.N.); (B.B.)
- Department of Heart Disease, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Lise Madsen
- Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway;
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway (T.A.A.); (J.S.); (O.K.N.); (B.B.)
- Department of Sports, Food and Natural Sciences, Western Norway University of Applied Sciences, N-5020 Bergen, Norway
| | - Magne Olav Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4021 Stavanger, Norway (M.O.S.)
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway (T.A.A.); (J.S.); (O.K.N.); (B.B.)
- Department of Heart Disease, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
6
|
Strunz PP, Vuille-Dit-Bille RN, R Fox M, Geier A, Maggiorini M, Gassmann M, Fruehauf H, Lutz TA, Goetze O. Effect of high altitude on human postprandial 13 C-octanoate metabolism, intermediary metabolites, gastrointestinal peptides, and visceral perception. Neurogastroenterol Motil 2022; 34:e14225. [PMID: 34342373 DOI: 10.1111/nmo.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE At high altitude (HA), acute mountain sickness (AMS) is accompanied by neurologic and upper gastrointestinal symptoms (UGS). The primary aim of this study was to test the hypothesis that delayed gastric emptying (GE), assessed by 13 C-octanoate breath testing (OBT), causes UGS in AMS. The secondary aim was to assess post-gastric mechanisms of OBT, which could confound results under these conditions, by determination of intermediary metabolites, gastrointestinal peptides, and basal metabolic rate. METHODS A prospective trial was performed in 25 healthy participants (15 male) at 4559 m (HA) and at 490 m (Zurich). GE was assessed by OBT (428 kcal solid meal) and UGS by visual analogue scales (VAS). Blood sampling of metabolites (glucose, free fatty acids (FFA), triglycerides (TG), beta-hydroxyl butyrate (BHB), L-lactate) and gastrointestinal peptides (insulin, amylin, PYY, etc.) was performed as well as blood gas analysis and spirometry. STATISTICAL ANALYSIS variance analyses, bivariate correlation, and multilinear regression analysis. RESULTS After 24 h under hypoxic conditions at HA, participants developed AMS (p < 0.001). 13 CO2 exhalation kinetics increased (p < 0.05) resulting in reduced estimates of gastric half-emptying times (p < 0.01). However, median resting respiratory quotients and plasma profiles of TG indicated that augmented beta-oxidation was the main predictor of accelerated 13 CO2 -generation under these conditions. CONCLUSION Quantification of 13 C-octanoate oxidation by a breath test is sensitive to variation in metabolic (liver) function under hypoxic conditions. 13 C-breath testing using short-chain fatty acids is not reliable for measurement of gastric function at HA and should be considered critically in other severe hypoxic conditions, like sepsis or chronic lung disease.
Collapse
Affiliation(s)
- Patrick-Pascal Strunz
- Division of Rheumatology and Immunology, Department of Medicine II, University Hospital Wurzburg, Germany
| | | | - Mark R Fox
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Digestive Function: Basel, Laboratory and Clinic for Motility Disorders and Functional Digestive Diseases, Klinik Arlesheim, Arlesheim, Switzerland
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Wurzburg, Germany
| | - Marco Maggiorini
- Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Heiko Fruehauf
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zentrum für Gastroenterologie und Hepatologie, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Oliver Goetze
- Division of Hepatology, Department of Medicine II, University Hospital Wurzburg, Germany
| |
Collapse
|
7
|
Empagliflozin therapy and insulin resistance-associated disorders: effects and promises beyond a diabetic state. ACTA ACUST UNITED AC 2021; 6:e57-e78. [PMID: 34027215 PMCID: PMC8117073 DOI: 10.5114/amsad.2021.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Empagliflozin is a SGLT2 inhibitor that has shown remarkable cardiovascular and renal activities in patients with type 2 diabetes (T2D). Preclinical and clinical studies of empagliflozin in T2D population have demonstrated significant improvements in body weight, waist circumference, insulin sensitivity, and blood pressure – effects beyond its antihyperglycaemic control. Moreover, several studies suggested that this drug possesses significant anti-inflammatory and antioxidative stress properties. This paper explores extensively the main preclinical and clinical evidence of empagliflozin administration in insulin resistance-related disorders beyond a diabetic state. It also discusses its future perspectives, as a therapeutic approach, in this high cardiovascular-risk population.
Collapse
|
8
|
Increased fatty acid oxidation and mitochondrial proliferation in liver are associated with increased plasma kynurenine metabolites and nicotinamide levels in normolipidemic and carnitine-depleted rats. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158543. [PMID: 31676443 DOI: 10.1016/j.bbalip.2019.158543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 11/20/2022]
Abstract
Dysregulation of the tryptophan (Trp)-NAD+ pathway has been related to several pathological conditions, and the metabolites in this pathway are known to influence mitochondrial respiration and redox status. The aim of this project was to investigate if stimulation of beta-oxidation and mitochondrial proliferation by the mitochondrial-targeted compound 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA) would influence metabolites of the Trp-Kyn-NAD+ pathway. We wished to investigate how carnitine depletion by meldonium-treatment influenced these metabolites. After dietary treatment of male Wistar rats with 1-triple TTA for three weeks, increased hepatic mitochondrial- and peroxisomal fatty acid oxidation resulted. The plasma content of total carnitines decreased compared to control animals, whereas hepatic genes involved in CoA biosynthesis were upregulated by 1-triple TTA treatment. The plasma Trp level and individual metabolites in the kynurenine pathway were increased by 1-triple TTA, associated with decreased hepatic gene expression of indoleamine2,3-dioxygenase. 1-triple TTA treatment increased conversion of Trp to nicotinamide (Nam) as the plasma content of quinolinic acid, Nam and N1-methylnicotinamide (mNam) increased, accompanied with suppression of hepatic gene expression of α-amino-α-carboxymuconate-ε-semialdehyde decarboxylase. A positive correlation between mitochondrial fatty acid oxidation and Trp-derivatives was found. Almost identical results were obtained by 1-triple TTA in the presence of meldonium, which alone exerted minor effects. Moreover, the plasma Kyn:Trp ratio (KTR) correlated negatively to mitochondrial function. Whether increased flux through the Trp-NAD+ pathway increased redox status and lowered inflammation locally and systemically should be considered.
Collapse
|
9
|
Lindquist C, Bjørndal B, Bakke HG, Slettom G, Karoliussen M, Rustan AC, Thoresen GH, Skorve J, Nygård OK, Berge RK. A mitochondria-targeted fatty acid analogue influences hepatic glucose metabolism and reduces the plasma insulin/glucose ratio in male Wistar rats. PLoS One 2019; 14:e0222558. [PMID: 31550253 PMCID: PMC6759202 DOI: 10.1371/journal.pone.0222558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
A fatty acid analogue, 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), was previously shown to have hypolipidemic effects in rats by targeting mitochondrial activity predominantly in liver. This study aimed to determine if 1-triple TTA could influence carbohydrate metabolism. Male Wistar rats were treated for three weeks with oral supplementation of 100 mg/kg body weight 1-triple TTA. Blood glucose and insulin levels, and liver carbohydrate metabolism gene expression and enzyme activities were determined. In addition, human myotubes and Huh7 liver cells were treated with 1-triple TTA, and glucose and fatty acid oxidation were determined. The level of plasma insulin was significantly reduced in 1-triple TTA-treated rats, resulting in a 32% reduction in the insulin/glucose ratio. The hepatic glucose and glycogen levels were lowered by 22% and 49%, respectively, compared to control. This was accompanied by lower hepatic gene expression of phosphenolpyruvate carboxykinase, the rate-limiting enzyme in gluconeogenesis, and Hnf4A, a regulator of gluconeogenesis. Gene expression of pyruvate kinase, catalysing the final step of glycolysis, was also reduced by 1-triple TTA. In addition, pyruvate dehydrogenase activity was reduced, accompanied by 10-15-fold increased gene expression of its regulator pyruvate dehydrogenase kinase 4 compared to control, suggesting reduced entry of pyruvate into the TCA cycle. Indeed, the NADPH-generating enzyme malic enzyme 1 (ME1) catalysing production of pyruvate from malate, was increased 13-fold at the gene expression level. Despite the decreased glycogen level, genes involved in glycogen synthesis were not affected in livers of 1-triple TTA treated rats. In contrast, the pentose phosphate pathway seemed to be increased as the hepatic gene expression of glucose-6-phosphate dehydrogenase (G6PD) was higher in 1-triple TTA treated rats compared to controls. In human Huh7 liver cells, but not in myotubes, 1-triple-TTA reduced glucose oxidation and induced fatty acid oxidation, in line with previous observations of increased hepatic mitochondrial palmitoyl-CoA oxidation in rats. Importantly, this work recognizes the liver as an important organ in glucose homeostasis. The mitochondrially targeted fatty acid analogue 1-triple TTA seemed to lower hepatic glucose and glycogen levels by inhibition of gluconeogenesis. This was also linked to a reduction in glucose oxidation accompanied by reduced PHD activity and stimulation of ME1 and G6PD, favouring a shift from glucose- to fatty acid oxidation. The reduced plasma insulin/glucose ratio indicate that 1-triple TTA may improve glucose tolerance in rats.
Collapse
Affiliation(s)
- Carine Lindquist
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Grete Slettom
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Marie Karoliussen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K. Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
10
|
Pettersen IKN, Tusubira D, Ashrafi H, Dyrstad SE, Hansen L, Liu XZ, Nilsson LIH, Løvsletten NG, Berge K, Wergedahl H, Bjørndal B, Fluge Ø, Bruland O, Rustan AC, Halberg N, Røsland GV, Berge RK, Tronstad KJ. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion 2019; 49:97-110. [PMID: 31351920 DOI: 10.1016/j.mito.2019.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Fatty acid oxidation is a central fueling pathway for mitochondrial ATP production. Regulation occurs through multiple nutrient- and energy-sensitive molecular mechanisms. We explored if upregulated mRNA expression of the mitochondrial enzyme pyruvate dehydrogenase kinase 4 (PDK4) may be used as a surrogate marker of increased mitochondrial fatty acid oxidation, by indicating an overall shift from glucose to fatty acids as the preferred oxidation fuel. The association between fatty acid oxidation and PDK4 expression was studied in different contexts of metabolic adaption. In rats treated with the modified fatty acid tetradecylthioacetic acid (TTA), Pdk4 was upregulated simultaneously with fatty acid oxidation genes in liver and heart, whereas muscle and white adipose tissue remained unaffected. In MDA-MB-231 cells, fatty acid oxidation increased nearly three-fold upon peroxisome proliferator-activated receptor α (PPARα, PPARA) overexpression, and four-fold upon TTA-treatment. PDK4 expression was highly increased under these conditions. Further, overexpression of PDK4 caused increased fatty acid oxidation in these cells. Pharmacological activators of PPARα and AMPK had minor effects, while the mTOR inhibitor rapamycin potentiated the effect of TTA. There were minor changes in mitochondrial respiration, glycolytic function, and mitochondrial biogenesis under conditions of increased fatty acid oxidation. TTA was found to act as a mild uncoupler, which is likely to contribute to the metabolic effects. Repeated experiments with HeLa cells supported these findings. In summary, PDK4 upregulation implies an overarching metabolic shift towards increased utilization of fatty acids as energy fuel, and thus constitutes a sensitive marker of enhanced fatty acid oxidation.
Collapse
Affiliation(s)
| | | | - Hanan Ashrafi
- Department of Biomedicine, University of Bergen, Norway
| | | | - Lena Hansen
- Department of Biomedicine, University of Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | - Hege Wergedahl
- Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Nils Halberg
- Department of Biomedicine, University of Bergen, Norway
| | - Gro Vatne Røsland
- Department of Biomedicine, University of Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
11
|
Li XW, Huang M, Lo K, Chen WL, He YY, Xu Y, Zheng H, Hu H, Wang J. Anti-Diabetic Effect of a Shihunine-Rich Extract of Dendrobium loddigesii on 3T3-L1 Cells and db/db Mice by Up-Regulating AMPK-GLUT4-PPARα. Molecules 2019; 24:molecules24142673. [PMID: 31340585 PMCID: PMC6680686 DOI: 10.3390/molecules24142673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The stems of Dendrobium loddigesii, a Chinese herb, are often used to treat diabetes and its polar extract is rich in shihunine, a water-soluble Orchidaceae alkaloid, but little is known about the anti-diabetes effects and mechanism of shihunine. This study investigated the anti-diabetic effect of a shihunine-rich extract of D. loddigesii (DLS) based on 3T3-L1 cells and db/db mice. The underlying mechanisms were primarily explored using Western blot analysis and immunohistochemical staining. The 3T3-L1 cell experiments showed that DLS can reduce the intracellular accumulation of oil droplets as well as triglycerides (p < 0.001) and promote the 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2deoxyglucose (2-NBDG) uptake of 3T3-L1 cells (p < 0.001). The animal experiments confirmed that after 8 weeks of DLS treatment, the body weight, fasting blood sugar, and serum lipid levels of mice were significantly lowered, and the oral glucose tolerance test and serum insulin level were significantly improved compared to the no-treatment diabetes mellitus group. Further histomorphology observation led to the conclusion that the quantities of islet cells were significantly increased and the increase in adipose cell size was significantly suppressed. The immunohistochemical test of pancreatic tissue revealed that DLS inhibited the expression of cleaved cysteine aspartic acid-specific protease 3 (cleaved caspase-3). Western blot experiments showed that DLS had agonistic effects on adenosine monophosphate (AMP)-activated protein kinase phosphorylation (p-AMPK) and increased the expression levels of peroxisome proliferator-activated receptor α (PPARα) and glucose transporter 4 (GLUT4) in liver or adipose tissues. These data suggest that the shihunine-rich extract of D. loddigesii is an anti-diabetic fraction of D. loddigesii. Under our experimental condition, DLS at a dose of 50 mg/kg has good anti-diabetic efficacy.
Collapse
Affiliation(s)
- Xue-Wen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Meixiang Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kakei Lo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei-Li Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying-Yan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongli Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huizhen Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jun Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Sodium glucose co-transporter 2 inhibitors mediated ketogenesis in patients with metabolic syndrome: clear benefit or anticipated fear? ACTA ACUST UNITED AC 2019; 4:e13-e15. [PMID: 30963130 PMCID: PMC6451140 DOI: 10.5114/amsad.2019.83302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
13
|
Hong F, Xu P, Zhai Y. The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development. Int J Mol Sci 2018; 19:ijms19082189. [PMID: 30060458 PMCID: PMC6121873 DOI: 10.3390/ijms19082189] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer's disease and ulcerative colitis. The three PPAR isoforms (α, β/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development.
Collapse
Affiliation(s)
- Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
14
|
Bjørndal B, Alterås EK, Lindquist C, Svardal A, Skorve J, Berge RK. Associations between fatty acid oxidation, hepatic mitochondrial function, and plasma acylcarnitine levels in mice. Nutr Metab (Lond) 2018; 15:10. [PMID: 29422939 PMCID: PMC5789604 DOI: 10.1186/s12986-018-0241-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background The 4-thia fatty acid tetradecylthiopropionic acid (TTP) is known to inhibit mitochondrial β-oxidation, and can be used as chemically induced hepatic steatosis-model in rodents, while 3-thia fatty acid tetradecylthioacetic acid (TTA) stimulates fatty acid oxidation through activation of peroxisome proliferator activated receptor alpha (PPARα). We wished to determine how these two compounds affected in vivo respiration and mitochondrial efficiency, with an additional goal to elucidate whether mitochondrial function is reflected in plasma acylcarnitine levels. Methods C57BL/6 mice were divided in 4 groups of 10 mice and fed a control low-fat diet, low-fat diets with 0.4% (w/w) TTP, 0.4% TTA or a combination of these two fatty acids for three weeks (n = 10). At sacrifice, β-oxidation and oxidative phosphorylation (OXPHOS) capacity was analysed in fresh liver samples. Hepatic mitochondria were studied using transmission electron microscopy. Lipid classes were measured in plasma, heart and liver, acylcarnitines were measured in plasma, and gene expression was measured in liver. Results The TTP diet resulted in hepatic lipid accumulation, plasma L-carnitine and acetylcarnitine depletion and elevated palmitoylcarnitine and non-esterified fatty acid levels. No significant lipid accumulation was observed in heart. The TTA supplement resulted in enhanced hepatic β-oxidation, accompanied by an increased level of acetylcarnitine and palmitoylcarnitine in plasma. Analysis of mitochondrial respiration showed that TTP reduced oxidative phosphorylation, while TTA increased the maximum respiratory capacity of the electron transport system. Combined treatment with TTP and TTA resulted in a profound stimulation of genes involved in the PPAR-response and L-carnitine metabolism, and partly prevented triacylglycerol accumulation in the liver concomitant with increased peroxisomal β-oxidation and depletion of plasma acetylcarnitines. Despite an increased number of mitochondria in the liver of TTA + TTP fed mice, the OXPHOS capacity was significantly reduced. Conclusion This study indicates that fatty acid β-oxidation directly affects mitochondrial respiratory capacity in liver. As plasma acylcarnitines reflected the reduced mitochondrial β-oxidation in TTP-fed mice, they could be useful tools to monitor mitochondrial function. As mitochondrial dysfunction is a major determinant of metabolic disease, this supports their use as plasma markers of cardiovascular risk in humans. Results however indicate that high PPAR activation obscures the interpretation of plasma acylcarnitine levels. Electronic supplementary material The online version of this article (10.1186/s12986-018-0241-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bodil Bjørndal
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Eva Katrine Alterås
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Carine Lindquist
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,2Department of Heart Disease, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Asbjørn Svardal
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Jon Skorve
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Rolf K Berge
- 1Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,2Department of Heart Disease, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
15
|
Lindquist C, Bjørndal B, Rossmann CR, Tusubira D, Svardal A, Røsland GV, Tronstad KJ, Hallström S, Berge RK. Increased hepatic mitochondrial FA oxidation reduces plasma and liver TG levels and is associated with regulation of UCPs and APOC-III in rats. J Lipid Res 2017; 58:1362-1373. [PMID: 28473603 PMCID: PMC5496034 DOI: 10.1194/jlr.m074849] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatic mitochondrial function, APOC-III, and LPL are potential targets for triglyceride (TG)-lowering drugs. After 3 weeks of dietary treatment with the compound 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), the hepatic mitochondrial FA oxidation increased more than 5-fold in male Wistar rats. Gene expression analysis in liver showed significant downregulation of APOC-III and upregulation of LPL and the VLDL receptor. This led to lower hepatic (53%) and plasma (73%) TG levels. Concomitantly, liver-specific biomarkers related to mitochondrial biogenesis and function (mitochondrial DNA, citrate synthase activity, and cytochrome c and TFAM gene expression) were elevated. Interestingly, 1-triple TTA lowered plasma acetylcarnitine levels, whereas the concentration of β-hydroxybutyrate was increased. The hepatic energy state was reduced in 1-triple TTA-treated rats, as reflected by increased AMP/ATP and decreased ATP/ADP ratios, whereas the energy state remained unchanged in muscle and heart. The 1-triple TTA administration induced gene expression of uncoupling protein (UCP)2 and UCP3 in liver. In conclusion, the 1-triple TTA-mediated clearance of blood TG may result from lowered APOC-III production, increased hepatic LPL gene expression, mitochondrial FA oxidation, and (re)uptake of VLDL facilitating drainage of FAs to the liver for β-oxidation and production of ketone bodies as extrahepatic fuel. The possibility that UCP2 and UCP3 mediate a moderate degree of mitochondrial uncoupling should be considered.
Collapse
Affiliation(s)
- Carine Lindquist
- Departments of Clinical Science University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| | - Bodil Bjørndal
- Departments of Clinical Science University of Bergen, Bergen, Norway
| | | | | | - Asbjørn Svardal
- Departments of Clinical Science University of Bergen, Bergen, Norway
| | | | | | - Seth Hallström
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Rolf Kristian Berge
- Departments of Clinical Science University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
16
|
Randy A, Kim M, Nho CW. Ligularia fischeri and its constituent 3,4-dicaffeoylquinic acid improve obesity-induced nonalcoholic fatty liver disease by regulating lipid metabolism and activating AMPK. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
Pardina E, Ferrer R, Rossell J, Baena-Fustegueras JA, Lecube A, Fort JM, Caubet E, González Ó, Vilallonga R, Vargas V, Balibrea JM, Peinado-Onsurbe J. Diabetic and dyslipidaemic morbidly obese exhibit more liver alterations compared with healthy morbidly obese. BBA CLINICAL 2016; 5:54-65. [PMID: 27051590 PMCID: PMC4802404 DOI: 10.1016/j.bbacli.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Background & aims To study the origin of fat excess in the livers of morbidly obese (MO) individuals, we analysed lipids and lipases in both plasma and liver and genes involved in lipid transport, or related with, in that organ. Methods Thirty-two MO patients were grouped according to the absence (healthy: DM − DL −) or presence of comorbidities (dyslipidemic: DM − DL +; or dyslipidemic with type 2 diabetes: DM + DL +) before and one year after gastric bypass. Results The livers of healthy, DL and DM patients contained more lipids (9.8, 9.5 and 13.7 times, respectively) than those of control subjects. The genes implicated in liver lipid uptake, including HL, LPL, VLDLr, and FAT/CD36, showed increased expression compared with the controls. The expression of genes involved in lipid-related processes outside of the liver, such as apoB, PPARα and PGC1α, CYP7a1 and HMGCR, was reduced in these patients compared with the controls. PAI1 and TNFα gene expression in the diabetic livers was increased compared with the other obese groups and control group. Increased steatosis and fibrosis were also noted in the MO individuals. Conclusions Hepatic lipid parameters in MO patients change based on their comorbidities. The gene expression and lipid levels after bariatric surgery were less prominent in the diabetic patients. Lipid receptor overexpression could enable the liver to capture circulating lipids, thus favouring the steatosis typically observed in diabetic and dyslipidaemic MO individuals. The criteria used to define the “metabolically healthy” obese is not applicable to morbidly obese patients. Virtually no studies of how bariatric surgery affects depending on comorbidities and less how affect to the liver. Anthropometrics, fat, lipid profile and inflammation parameters are different depending of comorbidities, not only in plasma but also in liver. The extent of lipases and lipids in the liver biopsies could help not only the diagnosis but also to follow the course of recovery after surgery. The morbidly obese individuals with diabetes and dyslipidemia have more altered metabolic profiles than the other two groups.
Collapse
Key Words
- ALT, Alanine transaminase
- AST, Aspartate transaminase
- ATGL, Adipose Tissue Glycerol Lipase
- ApoA1, Apolipoprotein A1
- BMI, Body Mass Index
- CPT1a, Carnitine Palmitoyltransferase 1a
- CRP, C-reactive protein
- CYP7a1, Cholesterol 7 Alpha-Hydroxylase
- DL, Dyslipidaemia
- DM, Type 2 diabetes mellitus
- DM + DL +, Obese patients with type 2 diabetes and dyslipidaemia
- DM − DL +, Dyslipidemic obese patients
- DM − DL −, “Healthy” obese patients, or patients without type 2 diabetes or dyslipidaemia
- Diabetes
- FAT/CD36, Fatty Acid Translocase or Cluster of Differentiation 36
- GGT, gamma-glutaryl transferase
- HL, Hepatic lipase
- HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase
- HOMA-IR, Homeostasis Model Assessment of Insulin Resistance
- HSL, Hormone-sensitive lipase
- HTA, Hypertension
- IL6, Interleukin-6
- IR, Insulin resistance
- KBs, Ketone bodies
- LDLr, Low-Density Lipoprotein receptor
- Lipases
- Lipids
- Liver
- MO, Morbidly obese
- NAFLD
- NAFLD, Non-alcoholic fatty liver disease
- NASH, Non-alcoholic liver steatohepatitis
- NEFA, Non-esterified fatty acid
- PAI1, Plasminogen Activator Inhibitor of Type 1
- PLs, Phospholipids
- PPARα, Peroxisome Proliferator-Activated Receptor alpha
- PPARα, Peroxisome Proliferator-Activated Receptor gamma Coactivator 1-alpha
- QMs, Chylomicrons
- RYGBP, Roux-en-Y gastric bypass
- SAT, Subcutaneous adipose tissue
- SCARB1, Scavenger Receptor Class B, Member 1
- Steatosis
- TAGs, Triacylglycerides
- TC, Total cholesterol
- TNFα, Tumour Necrosis Factor-alpha
- UCP2, Uncoupling Protein 2
- VAT, Visceral adipose tissue
- VLDLr, Very-Low-Density Lipoprotein receptor
- apoB, Apolipoprotein B
- cHDL, High-Density Lipoprotein Cholesterol
- cLDL, Low-Density Lipoprotein Cholesterol
- eNOS3, Endothelial Nitric Oxide Synthase 3
- iNOS2, Inducible Nitric Oxide Synthase 2
Collapse
Affiliation(s)
- Eva Pardina
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| | - Roser Ferrer
- Biochemistry Department, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Joana Rossell
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| | | | - Albert Lecube
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital (UdL), Diabetes and Metabolism Research Unit (VHIR, UAB), CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM) del Instituto de Salud Carlos III, Spain
| | - Jose Manuel Fort
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Enric Caubet
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Óscar González
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Ramón Vilallonga
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Víctor Vargas
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD) del Instituto de Salud Carlos III (ISCIII), Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - José María Balibrea
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Julia Peinado-Onsurbe
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| |
Collapse
|
18
|
PPARα Is Required for PPARδ Action in Regulation of Body Weight and Hepatic Steatosis in Mice. PPAR Res 2015; 2015:927057. [PMID: 26604919 PMCID: PMC4641930 DOI: 10.1155/2015/927057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator activated receptors alpha (PPARα) and delta (PPARδ) belong to the nuclear receptor superfamily. PPARα is a target of well established lipid-lowering drugs. PPARδ (also known as PPARβ/δ) has been investigated as a promising antidiabetic drug target; however, the evidence in the literature on PPARδ effect on hepatic lipid metabolism is inconsistent. Mice conditionally expressing human PPARδ demonstrated pronounced weight loss and promoted hepatic steatosis when treated with GW501516 (PPARδ-agonist) when compared to wild type mice. This effect was completely absent in mice with either a dominant negative form of PPARδ or deletion of the DNA binding domain of PPARδ. This confirmed the absolute requirement for PPARδ in the physiological actions of GW501516 and confirmed the potential utility against the human form of this receptor. Surprisingly the genetic deletion of PPARα also abrogated the effect of GW501516 in terms of both weight loss and hepatic lipid accumulation. Also the levels of the PPARα endogenous agonist 16:0/18:1-GPC were shown to be modulated by PPARδ in wild type mice. Our results show that both PPARδ and PPARα receptors are essential for GW501516-driven adipose tissue reduction and subsequently hepatic steatosis, with PPARα working downstream of PPARδ.
Collapse
|
19
|
Huang K, Liang XC, Zhong YL, He WY, Wang Z. 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1903-1910. [PMID: 25186103 DOI: 10.1002/jsfa.6896] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Chlorogenic acids (CGAs) are widely distributed in plant material, including foods and beverages. 5-Caffeoylquinic acid (5-CQA) is the most studied CGA, but the mechanism of its hypolipidaemic effect remains unclear. This study aimed to determine the effect of 5-CQA on lipid metabolism in the liver of Sprague-Dawley rats fed a high-fat diet (HFD). RESULTS 5-CQA suppressed HFD-induced increases in body weight and visceral fat-pad weight, serum lipid levels, and serum and hepatic free fatty acids in a dose-dependent manner. Real-time polymerase chain reaction revealed that 5-CQA altered the mRNA expression of the transcription factors peroxisome proliferator-activated receptor α (PPARα) and liver X receptor α (LXRα) and target genes involved in hepatic fatty acid uptake, β-oxidation, fatty acid synthesis, and cholesterol synthesis. Moreover, hepatic tissue sections from HFD-fed rats showed many empty vacuoles, suggesting that liver cells were filled with more fat droplets. However, 5-CQA significantly ameliorated this effect. CONCLUSION 5-CQA may improve lipid metabolism disorders by altering the expression of PPARα and LXRα, which are involved in multiple intracellular signalling pathways.
Collapse
Affiliation(s)
- Kang Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xiu-ci Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ying-li Zhong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Wan-yan He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zheng Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
20
|
Vik R, Busnelli M, Parolini C, Bjørndal B, Holm S, Bohov P, Halvorsen B, Brattelid T, Manzini S, Ganzetti GS, Dellera F, Nygård OK, Aukrust P, Sirtori CR, Chiesa G, Berge RK. An immunomodulating fatty acid analogue targeting mitochondria exerts anti-atherosclerotic effect beyond plasma cholesterol-lowering activity in apoe(-/-) mice. PLoS One 2013; 8:e81963. [PMID: 24324736 PMCID: PMC3852987 DOI: 10.1371/journal.pone.0081963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/18/2013] [Indexed: 11/18/2022] Open
Abstract
Tetradecylthioacetic acid (TTA) is a hypolipidemic antioxidant with immunomodulating properties involving activation of peroxisome proliferator-activated receptors (PPARs) and proliferation of mitochondria. This study aimed to penetrate the effect of TTA on the development of atherosclerotic lesions in apolipoprotein (apo)-E-/- mice fed a high-fat diet containing 0.3% TTA for 12 weeks. These mice displayed a significantly less atherosclerotic development vs control. Plasma cholesterol was increased by TTA administration and triacylglycerol (TAG) levels in plasma and liver were decreased by TTA supplementation, the latter, probably due to increased mitochondrial fatty acid oxidation and reduced lipogenesis. TTA administration also changed the fatty acid composition in the heart, and the amount of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) was reduced and increased, respectively. The heart mRNA expression of inducible nitric oxidase (NOS)-2 was decreased in TTA-treated mice, whereas the mRNA level of catalase was increased. Finally, reduced plasma levels of inflammatory mediators as IL-1α, IL-6, IL-17, TNF-α and IFN-γ were detected in TTA-treated mice. These data show that TTA reduces atherosclerosis in apoE-/- mice and modulates risk factors related to atherosclerotic disorders. TTA probably acts at both systemic and vascular levels in a manner independent of changes in plasma cholesterol, and triggers TAG catabolism through improved mitochondrial function.
Collapse
Affiliation(s)
- Rita Vik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond Brattelid
- National Institute of Nutrition and Seafood Research, NIFES, Bergen, Norway
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giulia S. Ganzetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Dellera
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ottar K. Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Cesare R. Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
Martin-Montalvo A, de Cabo R. Mitochondrial metabolic reprogramming induced by calorie restriction. Antioxid Redox Signal 2013; 19:310-20. [PMID: 22901095 PMCID: PMC3691909 DOI: 10.1089/ars.2012.4866] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Calorie restriction (CR) is a known intervention that delays most aging processes. Most of the beneficial effects of CR are mediated by improved maintenance of mitochondrial performance in aged individuals. The control of mitochondrial biogenesis, apoptosis, and protein turnover is required for healthy aging. CR is able to induce molecular mechanisms that preserve oxidative capacity and decrease oxidative damage. RECENT ADVANCES AND CRITICAL ISSUES Published data indicate that peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is activated in old animals under CR conditions compared to ad libitum counterparts, enhancing mitochondrial biogenesis. Molecular regulation of PGC-1α has recently attracted significant research interest. We discuss the master regulators of energy metabolism such as AMP-activated protein kinase and sirtuin 1 among others that have been demonstrated to activate mitochondrial biogenesis through increased PGC-1α activity at transcriptional and post-translational levels. Additionally, we describe the latest findings that explain how CR promotes mitochondrial efficiency and decreases mitochondrial-derived oxidative damage. FUTURE DIRECTIONS Understanding the beneficial mitochondrial changes conferred by CR will aid design of therapies for age-related diseases and help slow the aging process. Given the difficulty for humans to adhere to CR, we also explore new molecules that have been proposed during the last years to mimic the CR phenotype and their potential as future therapeutics.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
22
|
Bjørndal B, Brattelid T, Strand E, Vigerust NF, Svingen GFT, Svardal A, Nygård O, Berge RK. Fish oil and the pan-PPAR agonist tetradecylthioacetic acid affect the amino acid and carnitine metabolism in rats. PLoS One 2013; 8:e66926. [PMID: 23826175 PMCID: PMC3691320 DOI: 10.1371/journal.pone.0066926] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/10/2013] [Indexed: 01/05/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Proteomics identifies molecular networks affected by tetradecylthioacetic acid and fish oil supplemented diets. J Proteomics 2013; 84:61-77. [PMID: 23568020 DOI: 10.1016/j.jprot.2013.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Fish oil (FO) and tetradecylthioacetic acid (TTA) - a synthetic modified fatty acid have beneficial effects in regulating lipid metabolism. In order to dissect the mechanisms underlying the molecular action of those two fatty acids we have investigated the changes in mitochondrial protein expression in a long-term study (50weeks) in male Wistar rats fed 5 different diets. The diets were as follows: low fat diet; high fat diet; and three diets that combined high fat diet with fish oil, TTA or combination of those two as food supplements. We used two different proteomics techniques: a protein centric based on 2D gel electrophoresis and mass spectrometry, and LC-MS(E) based peptide centric approach. As a result we provide evidence that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate that fatty acid metabolism; lipid oxidation, amino acid metabolism and oxidative phosphorylation pathways are involved in fish oil and TTA action. Evidence for the involvement of PPAR mediated signalling is provided. Additionally we postulate that down regulation of components of complexes I and II contributes to the strong antioxidant properties of TTA. BIOLOGICAL SIGNIFICANCE This study for the first time explores the effect of fish oil and TTA - tetradecyl-thioacetic acid and the combination of those two as diet supplements on mitochondria metabolism in a comprehensive and systematic manner. We show that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate in a large scale that fatty acid metabolism and lipid oxidation are affected by fish oil and TTA, a phenomenon already known from more directed molecular biology studies. Our approach, however, shows additionally that amino acid metabolism and oxidative phosphorylation pathways are also strongly affected by TTA and also to some extent by fish oil administration. Strong evidence for the involvement of PPAR mediated signalling is provided linking the different metabolic effects. The global and systematic viewpoint of this study compiles many of the known phenomena related to the effects of fish oil and fatty acids giving a solid foundation for further exploratory and more directed studies of the mechanisms behind the beneficial and detrimental effects of fish oil and TTA diet supplementation. This work is already a second article in a series of studies conducted using this model of dietary intervention. In the previous study (Vigerust et al., [21]) the effects of fish oil and TTA on the plasma lipids and cholesterol levels as well as key metabolic enzymes in the liver have been studied. In an ongoing study more work is being done to explore in detail for example the link between the down regulation of the components of the respiratory chain (observed in this study) and the strong antioxidant effects of TTA. The reference diet in this study has been designed to mimic an unhealthy - high fat diet that is thought to contribute to the development of metabolic syndrome - a condition that is strongly associated with diabetes, obesity and heart failure. Fish oil and TTA are known to have beneficial effects for the fatty acid metabolism and have been shown to alleviate some of the symptoms of the metabolic syndrome. To date very little is known about the molecular mechanisms behind these beneficial effects and the potential pitfalls of the consumption of those two compounds. Only studies of each compound separately and using only small scale molecular biology approaches have been carried out. The results of this work provide an excellent starting point for further studies that will help to understand the metabolic effects of fish oil and TTA and will hopefully help to design dietary programs directed towards reduction of the prevalence of metabolic syndrome and associated diseases.
Collapse
|
24
|
Induction of mitochondrial biogenesis and respiration is associated with mTOR regulation in hepatocytes of rats treated with the pan-PPAR activator tetradecylthioacetic acid (TTA). Biochem Biophys Res Commun 2013; 430:573-8. [DOI: 10.1016/j.bbrc.2012.11.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 11/20/2022]
|
25
|
Øie E, Berge RK, Ueland T, Dahl CP, Edvardsen T, Beitnes JO, Bohov P, Aukrust P, Yndestad A. Tetradecylthioacetic acid increases fat metabolism and improves cardiac function in experimental heart failure. Lipids 2012; 48:139-54. [PMID: 23266898 DOI: 10.1007/s11745-012-3749-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
Abstract
Changes in myocardial metabolism, including a shift from fatty acid to glucose utilization and changes in fatty acid availability and composition are characteristics of heart failure development. Tetradecylthioacetic acid (TTA) is a fatty acid analogue lacking the ability to undergo mitochondrial β-oxidation. TTA promotes hepatic proliferation of mitochondria and peroxisomes and also decreases serum triglycerides and cholesterol in animals. We investigated the effect of TTA, in combination with a high-fat or regular diet, in a rat model of post-myocardial infarction heart failure. TTA had a beneficial effect on cardiac function in post-myocardial infarction heart failure without affecting myocardial remodeling. These effects of TTA on myocardial function were accompanied by decreased free fatty acids in plasma, increased myocardial proportion of n-3 polyunsaturated fatty acids (PUFA) and a decreased proportion of n-6 PUFA. Myocardial enzyme gene expression during TTA treatment suggested that the increase in n-3 PUFA could reflect increased n-3 PUFA synthesis and inadequately increased n-3 PUFA β-oxidation. Based on our data, it is unlikely that the changes are secondary to alterations in other tissues as plasma and liver showed an opposite pattern with decreased n-3 PUFA during TTA treatment. The present study suggests that TTA may improve myocardial function in heart failure, potentially involving its ability to decrease the availability of FFA and increase the myocardial proportion of n-3 PUFA.
Collapse
Affiliation(s)
- Erik Øie
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vigerust NF, Cacabelos D, Burri L, Berge K, Wergedahl H, Christensen B, Portero-Otin M, Viste A, Pamplona R, Berge RK, Bjørndal B. Fish oil and 3-thia fatty acid have additive effects on lipid metabolism but antagonistic effects on oxidative damage when fed to rats for 50 weeks. J Nutr Biochem 2012; 23:1384-93. [PMID: 22221672 DOI: 10.1016/j.jnutbio.2011.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 08/05/2011] [Accepted: 08/18/2011] [Indexed: 12/13/2022]
|
27
|
Barrios-Ramos JP, Garduño-Siciliano L, Loredo M, Chamorro-Cevallos G, Jaramillo-Flores ME. The effect of cocoa, soy, oats and fish oil on metabolic syndrome in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2349-2357. [PMID: 22430394 DOI: 10.1002/jsfa.5637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/09/2011] [Accepted: 01/27/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND The effect of functional foods alone or in combination (cocoa + soy + oats + fish oil) on hepatic damage in rats affected with metabolic syndrome was investigated. RESULTS Rats that were given cocoa showed a decrease in the levels of triglycerides (TGs) and glucose (63 and 32% respectively) as well as a decrease in blood pressure (15%). Animals fed with soy showed a reduction of 21% in total cholesterol, 15% in blood pressure and 44% in TGs, while feeding oats reduced the concentration of TGs by 53% (P < 0.5). Fish oil caused a reduction in TGs (56%) and glucose (26%). The effect on blood pressure was statistically significant for the groups supplemented with cocoa, soy, cocoa + oats and the total mix. The main finding was a reduction in liver steatosis in animals supplemented with cocoa + oats (from 30 to 4.7% steatosis). Cocoa or fish oil alone did not protect the liver from damage, while cocoa + fish oil did. CONCLUSION The most relevant effects were that the cocoa + oats mix decreased steatosis by a very large percentage, as did the cocoa + fish oil mix and the mix of all four functional foods.
Collapse
Affiliation(s)
- Juan P Barrios-Ramos
- Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, México, DF, Mexico
| | | | | | | | | |
Collapse
|
28
|
Williams VL, Martin RE, Franklin JL, Hardy RW, Messina JL. Injury-induced insulin resistance in adipose tissue. Biochem Biophys Res Commun 2012; 421:442-8. [PMID: 22521887 DOI: 10.1016/j.bbrc.2012.03.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 01/04/2023]
Abstract
Hyperglycemia and insulin resistance are common findings in critical illness. Patients in the surgical ICU are frequently treated for this 'critical illness diabetes' with intensive insulin therapy, resulting in a substantial reduction in morbidity and mortality. Adipose tissue is an important insulin target tissue, but it is not known whether adipose tissue is affected by critical illness diabetes. In the present study, a rodent model of critical illness diabetes was used to determine whether adipose tissue becomes acutely insulin resistant and how insulin signaling pathways are being affected. There was a reduction in insulin-induced phosphorylation of IR, IRS-1, Akt and GSK-3β. Since insulin resistance occurs rapidly in adipose tissue, but before the insulin resistance in skeletal muscle, it may play a role in the initial development of critical illness diabetes.
Collapse
Affiliation(s)
- Vanessa L Williams
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
29
|
Skeletal effects of the saturated 3-thia Fatty Acid tetradecylthioacetic Acid in rats. PPAR Res 2011; 2011:436358. [PMID: 22190907 PMCID: PMC3236357 DOI: 10.1155/2011/436358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 01/23/2023] Open
Abstract
This study explores the skeletal effects of the peroxisome proliferator activated receptor (PPAR)pan agonist tetradecylthioacetic acid (TTA). Rats, without (Study I) and with ovariectomy (OVX) or sham operation (Study II), were given TTA or vehicle daily for 4 months. Bone markers in plasma, whole body and femoral bone mineral density and content (BMD and BMC), and body composition were examined. Histomorphometric and biomechanical analyses (Study I) and biomechanical and μCT analyses (Study II) of the femur were performed. Normal rats fed TTA had higher femoral BMD and increased total and cortical area in femur compared to controls. The ovariectomized groups had decreased BMD and impaired microarchitecture parameters compared to SHAM. However, the TTA OVX group maintained femoral BMC, trabecular thickness in the femoral head, and cortical volume in the femoral metaphysis as SHAM. TTA might increase BMD and exert a light preventive effect on estrogen-related bone loss in rats.
Collapse
|
30
|
Thoresen GH, Hessvik NP, Bakke SS, Aas V, Rustan AC. Metabolic switching of human skeletal muscle cells in vitro. Prostaglandins Leukot Essent Fatty Acids 2011; 85:227-34. [PMID: 21549583 DOI: 10.1016/j.plefa.2011.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review we will focus on external factors that may modify energy metabolism in human skeletal muscle cells (myotubes) and the ability of the myotubes to switch between lipid and glucose oxidation. We describe the metabolic parameters suppressibility, adaptability and substrate-regulated flexibility, and show the influence of nutrients such as fatty acids and glucose (chronic hyperglycemia), and some pharmacological agents modifying nuclear receptors (PPAR and LXR), on these parameters in human myotubes. Possible cellular mechanisms for changes in these parameters will also be highlighted.
Collapse
Affiliation(s)
- G H Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
31
|
Hollie NI, Hui DY. Group 1B phospholipase A₂ deficiency protects against diet-induced hyperlipidemia in mice. J Lipid Res 2011; 52:2005-11. [PMID: 21908646 DOI: 10.1194/jlr.m019463] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Excessive absorption of products of dietary fat digestion leads to type 2 diabetes and other obesity-related disorders. Mice deficient in the group 1B phospholipase A₂ (Pla2g1b), a gut digestive enzyme, are protected against diet-induced obesity and type 2 diabetes without displaying dietary lipid malabsorption. This study tested the hypothesis that inhibition of Pla2g1b protects against diet-induced hyperlipidemia. Results showed that the Pla2g1b(-/-) mice had decreased plasma triglyceride and cholesterol levels compared with Pla2g1b(+/+) mice subsequent to feeding a high-fat, high-carbohydrate (hypercaloric) diet. These differences were evident before differences in body weight gains were observed. Injection of Poloxamer 407 to inhibit lipolysis revealed decreased VLDL production in Pla2g1b(-/-) mice. Supplementation with lysophosphatidylcholine, the product of Pla2g1b hydrolysis, restored VLDL production rates in Pla2g1b(-/-) mice and further elevated VLDL production in Pla2g1b(+/+) mice. The Pla2g1b(-/-) mice also displayed decreased postprandial lipidemia compared with Pla2g1b(+/+) mice. These results show that, in addition to dietary fatty acids, gut-derived lysophospholipids derived from Pla2g1b hydrolysis of dietary and biliary phospholipids also promote hepatic VLDL production. Thus, the inhibition of lysophospholipid absorption via Pla2g1b inactivation may prove beneficial against diet-induced hyperlipidemia in addition to the protection against obesity and diabetes.
Collapse
Affiliation(s)
- Norris I Hollie
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | |
Collapse
|
32
|
Khalid AM, Hafstad AD, Larsen TS, Severson DL, Boardman N, Hagve M, Berge RK, Aasum E. Cardioprotective effect of the PPAR ligand tetradecylthioacetic acid in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 2011; 300:H2116-22. [DOI: 10.1152/ajpheart.00357.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tetradecylthioacetic acid (TTA) is a novel peroxisome proliferator-activated receptor (PPAR) ligand with marked hypolipidemic and insulin-sensitizing effects in obese models. TTA has recently been shown to attenuate dyslipidemia in patients with type 2 diabetes, corroborating the potential for TTA in antidiabetic therapy. In a recent study on normal mice, we showed that TTA increased myocardial fatty acid (FA) oxidation, which was associated with decreased cardiac efficiency and impaired postischemic functional recovery. The aim of the present study was, therefore, to elucidate the effects of TTA treatment (0.5%, 8 days) on cardiac metabolism and function in a hyperlipidemic type 2 diabetic model. We found that TTA treatment increased myocardial FA oxidation, not only in nondiabetic ( db/+) mice but also in diabetic ( db/db) mice, despite a clear lipid-lowering effect. Although TTA had deleterious effects in hearts from nondiabetic mice (decreased efficiency and impaired mitochondrial respiratory capacity), these effects were not observed in db/db hearts. In db/db hearts, TTA improved ischemic tolerance, an effect that is most likely related to the antioxidant property of TTA. The present study strongly advocates the need for investigation of the cardiac effects of PPAR ligands used in antidiabetic/hypolipidemic therapy, because of their pleiotropic properties.
Collapse
Affiliation(s)
- Ahmed M. Khalid
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - Anne Dragøy Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - Terje S. Larsen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - David L. Severson
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - Martin Hagve
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - Rolf K. Berge
- The Lipid Research Group, Institute of Medicine, University of Bergen, Norway; and
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| |
Collapse
|
33
|
Burri L, Bjørndal B, Wergedahl H, Berge K, Bohov P, Svardal A, Berge RK. Tetradecylthioacetic acid increases hepatic mitochondrial β-oxidation and alters fatty acid composition in a mouse model of chronic inflammation. Lipids 2011; 46:679-89. [PMID: 21479675 PMCID: PMC3131506 DOI: 10.1007/s11745-011-3536-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/10/2011] [Indexed: 12/23/2022]
Abstract
The administration of tetradecylthioacetic acid (TTA), a hypolipidemic and anti-inflammatory modified bioactive fatty acid, has in several experiments based on high fat diets been shown to improve lipid transport and utilization. It was suggested that increased mitochondrial and peroxisomal fatty acid oxidation in the liver of Wistar rats results in reduced plasma triacylglycerol (TAG) levels. Here we assessed the potential of TTA to prevent tumor necrosis factor (TNF) α-induced lipid modifications in human TNFα (hTNFα) transgenic mice. These mice are characterized by reduced β-oxidation and changed fatty acid composition in the liver. The effect of dietary treatment with TTA on persistent, low-grade hTNFα overexpression in mice showed a beneficial effect through decreasing TAG plasma concentrations and positively affecting saturated and monounsaturated fatty acid proportions in the liver, leading to an increased anti-inflammatory fatty acid index in this group. We also observed an increase of mitochondrial β-oxidation in the livers of TTA treated mice. Concomitantly, there were enhanced plasma levels of carnitine, acetyl carnitine, propionyl carnitine, and octanoyl carnitine, no changed levels in trimethyllysine and palmitoyl carnitine, and a decreased level of the precursor for carnitine, called γ-butyrobetaine. Nevertheless, TTA administration led to increased hepatic TAG levels that warrant further investigations to ascertain that TTA may be a promising candidate for use in the amelioration of inflammatory disorders characterized by changed lipid metabolism due to raised TNFα levels.
Collapse
Affiliation(s)
- Lena Burri
- Section of Medical Biochemistry, Institute of Medicine, Haukeland University Hospital, University of Bergen, N-5021, Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
34
|
Bjørndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes 2011; 2011:490650. [PMID: 21403826 PMCID: PMC3042633 DOI: 10.1155/2011/490650] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/27/2010] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue metabolism is closely linked to insulin resistance, and differential fat distributions are associated with disorders like hypertension, diabetes, and cardiovascular disease. Adipose tissues vary in their impact on metabolic risk due to diverse gene expression profiles, leading to differences in lipolysis and in the production and release of adipokines and cytokines, thereby affecting the function of other tissues. In this paper, the roles of the various adipose tissues in obesity are summarized, with particular focus on mitochondrial function. In addition, we discuss how a functionally mitochondrial-targeted compound, the modified fatty acid tetradecylthioacetic acid (TTA), can influence mitochondrial function and decrease the size of specific fat depots.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
- *Bodil Bjørndal:
| | - Lena Burri
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
| | - Vidar Staalesen
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
| | - Jon Skorve
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
| | - Rolf K. Berge
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, N 5021 Bergen, Norway
| |
Collapse
|
35
|
Abstract
PPARα is one of three members of the soluble nuclear receptor family called peroxisome proliferator-activated receptor (PPAR). It is a sensor for changes in levels of fatty acids and their derivatives that responds to ligand binding with PPAR target gene transcription, inasmuch as it can influence physiological homeostasis, including lipid and carbohydrate metabolism in various tissues. In this paper we summarize the involvement of PPARα in the metabolically active tissues liver and skeletal muscle and provide an overview of the risks and benefits of ligand activation of PPARα, with particular consideration to interspecies differences.
Collapse
|
36
|
Røst TH, Haugan Moi LL, Berge K, Staels B, Mellgren G, Berge RK. A pan-PPAR ligand induces hepatic fatty acid oxidation in PPARα−/− mice possibly through PGC-1 mediated PPARδ coactivation. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1076-83. [DOI: 10.1016/j.bbalip.2009.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 06/19/2009] [Accepted: 06/23/2009] [Indexed: 10/20/2022]
|
37
|
Wensaas AJ, Rustan AC, Rokling-Andersen MH, Caesar R, Jensen J, Kaalhus O, Graff BA, Gudbrandsen OA, Berge RK, Drevon CA. Dietary supplementation of tetradecylthioacetic acid increases feed intake but reduces body weight gain and adipose depot sizes in rats fed on high-fat diets. Diabetes Obes Metab 2009; 11:1034-49. [PMID: 19740081 DOI: 10.1111/j.1463-1326.2009.01092.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM The pan-peroxisome proliferator-activated receptor (PPAR) ligand and fatty acid analogue tetradecylthioacetic acid (TTA) may reduce plasma lipids and enhance hepatic lipid metabolism, as well as reduce adipose tissue sizes in rats fed on high-fat diets. This study further explores the effects of TTA on weight gain, feed intake and adipose tissue functions in rats that are fed a high-fat diet for 7 weeks. METHODS The effects on feed intake and body weight during 7 weeks' dietary supplement with TTA ( approximately 200 mg/kg bw) were studied in male Wistar rats fed on a lard-based diet containing approximately 40% energy from fat. Adipose tissue mass, body composition and expression of relevant genes in fat depots and liver were measured at the end of the feeding. RESULTS Despite higher feed intake during the final 2 weeks of the study, rats fed on TTA gained less body weight than lard-fed rats and had markedly decreased subcutaneous, epididymal, perirenal and mesenteric adipose depots. The effects of TTA feeding with reduced body weight gain and energy efficiency (weight gain/feed intake) started between day 10 and 13. Body contents of fat, protein and water were reduced after feeding lard plus TTA, with a stronger decrease in fat relative to protein. Plasma lipids, including Non-Esterified Fatty Acids (NEFA), were significantly reduced, whereas fatty acid beta-oxidation in liver and heart was enhanced in lard plus TTA-fed rats. Hepatic UCP3 was expressed ectopically both at protein and mRNA level (>1900-fold), whereas Ucp1 mRNA was increased approximately 30-fold in epididymal and approximately 90-fold in mesenteric fat after lard plus TTA feeding. CONCLUSION Our data support the hypothesis that TTA feeding may increase hepatic fatty acid beta-oxidation, and thereby reduce the size of adipose tissues. The functional importance of ectopic hepatic UCP3 is unknown, but might be associated with enhanced energy expenditure and thus the reduced feed efficiency.
Collapse
Affiliation(s)
- A J Wensaas
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Konstantinidou V, Khymenets O, Covas MI, de la Torre R, Muñoz-Aguayo D, Anglada R, Farré M, Fito M. Time Course of Changes in the Expression of Insulin Sensitivity-Related Genes after an Acute Load of Virgin Olive Oil. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:431-8. [DOI: 10.1089/omi.2008.0085] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Valentini Konstantinidou
- Cardiovascular Risk and Nutrition Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Olha Khymenets
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Maria-Isabel Covas
- Cardiovascular Risk and Nutrition Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Rafael de la Torre
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Daniel Muñoz-Aguayo
- Cardiovascular Risk and Nutrition Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - Roger Anglada
- Departament de Ciències Experimentals i de la Salut, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Magi Farré
- Human Pharmacology and Clinical Neurosciences Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
- Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Montserrat Fito
- Cardiovascular Risk and Nutrition Research Group, Institut Municipal d'Investigació Mèdica (IMIM-Hospital del Mar), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| |
Collapse
|
39
|
Erikstein BS, McCormack E, Tronstad KJ, Schwede F, Berge R, Gjertsen BT. Protein kinase A activators and the pan-PPAR agonist tetradecylthioacetic acid elicit synergistic anti-leukaemic effects in AML through CREB. Leuk Res 2009; 34:77-84. [PMID: 19786302 DOI: 10.1016/j.leukres.2009.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 09/05/2009] [Accepted: 09/05/2009] [Indexed: 12/22/2022]
Abstract
Targeting of signal transduction pathways and transcriptional regulation represents an attractive approach for less toxic anti-leukaemic therapy. We combined protein kinase A (PKA) activation with a pan-peroxisome proliferator-activated receptor (PPAR) activator tetradecylthioacetic acid, resulting in synergistic decrease in viability of AML cell lines. PKA isoform II activation appeared to be involved in inhibition of proliferation but not induction of apoptosis in HL-60 cells. Inhibition of CREB function protected against this anti-leukaemic effect with higher efficiency than enforced Bcl-2 expression. Preclinical studies employing the rat AML model Brown Norwegian Myeloid Leukaemia also indicated anti-leukaemic activity of the combination therapy in vivo. In conclusion, combined PKA and pan-PPAR activation should be explored further to determine its therapeutic potential.
Collapse
|
40
|
Bloomer RJ, Canale RE, Blankenship MM, Hammond KG, Fisher-Wellman KH, Schilling BK. Effect of the dietary supplement Meltdown on catecholamine secretion, markers of lipolysis, and metabolic rate in men and women: a randomized, placebo controlled, cross-over study. Lipids Health Dis 2009; 8:32. [PMID: 19656409 PMCID: PMC2728713 DOI: 10.1186/1476-511x-8-32] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/05/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We have recently reported that the dietary supplement Meltdown increases plasma norepinephrine (NE), epinephrine (EPI), glycerol, free fatty acids (FFA), and metabolic rate in men. However, in that investigation measurements ceased at 90 minutes post ingestion, with values for blood borne variables peaking at this time. It was the purpose of the present investigation to extend the time course of measurement to 6 hours, and to include women within the design to determine if sex differences to treatment exist. METHODS Ten men (24 +/- 4 yrs) and 10 women (22 +/- 2 yrs) ingested Meltdown or a placebo, using a randomized, cross-over design with one week separating conditions. Blood samples were collected immediately before supplementation and at one hour intervals through 6 hours post ingestion. A standard meal was provided after the hour 3 collection. Samples were assayed for EPI, NE, glycerol, and FFA. Five minute breath samples were collected at each time for measurement of metabolic rate and substrate utilization. Area under the curve (AUC) was calculated. Heart rate and blood pressure were recorded at all times. Data were also analyzed using a 2 (sex) x 2 (condition) x 7 (time) repeated measures analysis of variance, with Tukey post hoc testing. RESULTS No sex x condition interactions were noted for AUC for any variable (p > 0.05). Hence, AUC data are collapsed across men and women. AUC was greater for Meltdown compared to placebo for EPI (367 +/- 58 pg x mL(-1) x 6 hr(-1) vs. 183 +/- 27 pg x mL(-1) x 6 hr(-1); p = 0.01), NE (2345 +/- 205 pg x mL(-1) x 6 hr(-1) vs. 1659 +/- 184 pg x mL(-1) x 6 hr(-1); p = 0.02), glycerol (79 +/- 8 microg x mL)-1) x 6 hr(-1) vs. 59 +/- 6 microg x mL(-1) x 6 hr(-1); p = 0.03), FFA (2.46 +/- 0.64 mmol x L(-1) x 6 hr(-1) vs. 1.57 +/- 0.42 mmol x L(-1) x 6 hr(-1); p = 0.05), and kilocalorie expenditure (439 +/- 26 kcal x 6 hrs(-1) vs. 380 +/- 14 kcal x 6 hrs(-1); p = 0.02). No effect was noted for substrate utilization (p = 0.39). Both systolic and diastolic blood pressure (p < 0.0001; 1-16 mmHg), as well as heart rate (p = 0.01; 1-9 bpm) were higher for Meltdown. No sex x condition x time interactions were noted for any variable (p > 0.05). CONCLUSION Ingestion of Meltdown results in an increase in catecholamine secretion, lipolysis, and metabolic rate in young men and women, with a similar response for both sexes. Meltdown may prove to be an effective intervention strategy for fat loss, assuming individuals are normotensive and their treatment is monitored by a qualified health care professional.
Collapse
Affiliation(s)
- Richard J Bloomer
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| | - Robert E Canale
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| | - Megan M Blankenship
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| | - Kelley G Hammond
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| | - Kelsey H Fisher-Wellman
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| | - Brian K Schilling
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
41
|
Gudbrandsen OA, Wergedahl H, Bohov P, Berge RK. The absorption, distribution and biological effects of a modified fatty acid in its free form and as an ethyl ester in rats. Chem Biol Interact 2009; 179:227-32. [DOI: 10.1016/j.cbi.2008.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 11/15/2022]
|
42
|
Mao XQ, Yu F, Wang N, Wu Y, Zou F, Wu K, Liu M, Ouyang JP. Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:416-425. [PMID: 19201177 DOI: 10.1016/j.phymed.2008.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 10/29/2008] [Accepted: 12/11/2008] [Indexed: 05/27/2023]
Abstract
Our previous studies found that Astragalus polysaccharide (APS) exerts insulin-sensitizing and hypoglycemic activities in type 2 diabetic (T2DM) rats. The present study was designed to further confirm the hypoglycemic effect of APS and to investigate its possible mechanism underlying the improvement of insulin resistance in vivo and in vitro. Diet-induced insulin resistant C57BL/6J mice treated with or without APS (orally, 700 mg/kg/d) for 8 weeks were analyzed and compared. Simultaneously, an insulin resistant C(2)C(12) cell model and an ER stressed HepG2 cell model were established and incubated with or without APS (200 microg/ml) for 24h respectively. Systematic insulin sensitivity was measured with an insulin-tolerance test (ITT) and an homeostasis model assessment (HOMA IR) index. Metabolic stress variation was analyzed for biochemical parameters and pathological variations. The expression and activity of protein tyrosine phosphatase 1B (PTP1B), which plays a very important role in insulin signaling and in the ER stress response, was measured by immunoprecipitation and Western blot. The ER stress response was analyzed through XBP1 transcription and splicing by real-time PCR. APS could alleviate insulin resistance and ER stress induced by high glucose in vivo and in vitro, respectively. The hyperglycemia, hypolipemia, and hyperinsulinemia status were controlled with APS therapy. Insulin action in the liver of insulin resistant mice was restored significantly with APS administration. APS enhanced adaptive capacity of the ER and promoted insulin signaling by the inhibition of the expression and activity of PTP1B. Furthermore, the anti-obesity effect and hypolipidemia effects of APS were probably due partly to decreasing the leptin resistance of mice, which would positively couple with the normalization of plasma insulin levels. We have shown that APS has beneficial effects on insulin resistance and hyperglycemia. The mechanism is related to the alleviation of ER stress and insulin resistance under hyperglycemia conditions.
Collapse
Affiliation(s)
- Xian-qing Mao
- Department of Pathophysiology, Medical College of Wuhan University, Hubei Provincial Key Laboratory of Allergy and Immune-Related Diseases, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hafstad AD, Khalid AM, Hagve M, Lund T, Larsen TS, Severson DL, Clarke K, Berge RK, Aasum E. Cardiac peroxisome proliferator-activated receptor-alpha activation causes increased fatty acid oxidation, reducing efficiency and post-ischaemic functional loss. Cardiovasc Res 2009; 83:519-26. [PMID: 19398469 DOI: 10.1093/cvr/cvp132] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Myocardial fatty acid (FA) oxidation is regulated acutely by the FA supply and chronically at the transcriptional level owing to FA activation of peroxisome proliferator-activated receptor-alpha (PPARalpha). However, in vivo administration of PPARalpha ligands has not been shown to increase cardiac FA oxidation. In this study we have examined the cardiac response to in vivo administration of tetradecylthioacetic acid (TTA, 0.5% w/w added to the diet for 8 days), a PPAR agonist with primarily PPARalpha activity. METHODS AND RESULTS Despite the fact that TTA treatment decreased plasma concentrations of lipids [FA and triacylglycerols (TG)], hearts from TTA-treated mice showed increased mRNA expression of PPARalpha target genes. Cardiac substrate utilization, ventricular function, cardiac efficiency, and susceptibility to ischaemia-reperfusion were examined in isolated perfused hearts. In accordance with the mRNA changes, myocardial FA oxidation was increased 2.5-fold with a concomitant reduction in glucose oxidation. This increase in FA oxidation was abolished in PPARalpha-null mice. Thus, it appears that the metabolic effects of TTA on the heart must be owing to a direct stimulatory effect on cardiac PPARalpha. Hearts from TTA-treated mice also showed a marked reduction in cardiac efficiency (because of a two-fold increase in unloaded myocardial oxygen consumption) and decreased recovery of ventricular contractile function following low-flow ischaemia. CONCLUSION This study for the first time observed that in vivo administration of a synthetic PPARalpha ligand elevated FA oxidation, an effect that was also associated with decreased cardiac efficiency and reduced post-ischaemic functional recovery.
Collapse
Affiliation(s)
- Anne D Hafstad
- Department of Medical Physiology, Institute of Medical Biology, University of Tromsø, Tromsø N-9037, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Løvås K, Røst TH, Skorve J, Ulvik RJ, Gudbrandsen OA, Bohov P, Wensaas AJ, Rustan AC, Berge RK, Husebye ES. Tetradecylthioacetic acid attenuates dyslipidaemia in male patients with type 2 diabetes mellitus, possibly by dual PPAR-alpha/delta activation and increased mitochondrial fatty acid oxidation. Diabetes Obes Metab 2009; 11:304-14. [PMID: 19267708 DOI: 10.1111/j.1463-1326.2008.00958.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM We previously demonstrated that a modified fatty acid, tetradecylthioacetic acid (TTA), improves transport and utilization of lipids and increases mitochondrial fatty acid oxidation in animal and cell studies. We conducted an exploratory study of safety and effects of this novel drug in patients with type 2 diabetes mellitus and investigated the mechanism of action in human cell lines. METHODS Sixteen male patients with type 2 diabetes mellitus received 1 g TTA daily for 28 days in an open-labelled study, with measurement of parameters of lipid metabolism, glucose metabolism and safety (ClinicalTrials.gov NCT00605787). The mechanism of action was further investigated in a human liver cell line (HepG2) and in cultured human skeletal muscle cells (myotubes). RESULTS Mean LDL cholesterol level declined from 4.2 to 3.7 mmol/l (p < 0.001), accompanied by increased levels of the HDL apolipoproteins A1 and A2, and a decline in LDL/HDL ratio from 4.00 to 3.66 (p = 0.008). Total fatty acid levels declined, especially the fraction of the polyunsaturated n-3 fatty acids docosahexaenoic acid (-13%, p = 0.002) and eicosapentaenoic acid (-10%, p = 0.07). Glucose metabolism was not altered and the drug was well tolerated. In cultured liver cells, TTA acted as a pan-PPAR agonist with predominant PPAR-alpha and PPAR-delta activation at low TTA concentrations. In myotubes, TTA and a PPAR-delta agonist, but not the PPAR-alpha or PPAR-gamma agonists, increased the fatty acid oxidation. CONCLUSIONS We demonstrate for the first time that TTA attenuates dyslipidaemia in patients with type 2 diabetes mellitus. These effects may occur through mechanisms involving PPAR-alpha and PPAR-delta activation, resulting in increased mitochondrial fatty acid oxidation.
Collapse
Affiliation(s)
- K Løvås
- Institute of Medicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li SY, Chang CQ, Ma FY, Yu CL. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-alpha in golden hamsters fed on high fat diet. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:122-129. [PMID: 19618689 DOI: 10.1016/s0895-3988(09)60034-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To examine the effects of chlorogenic acid (CGA) on lipid and glucose metabolism under a high dietary fat burden and to explore the possible role of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in these effects. METHODS Twenty male golden hamsters were randomly divided into CGA treatment group (n=10, given peritoneal injection of CGA solution prepared with PBS, 80 mg CGA/kg body weight daily), and control group (n=10, given PBS i.p. at the average volume of the treatment group). Animals in both groups were given 15% high fat diet. Eight weeks after treatment with CGA, the level of biochemical parameters in fasting serum and tissues and the expression of hepatic mRNA and protein PPAR-alpha were determined. RESULTS Eight weeks after treatment with CGA, the levels of fasting serum triglyceride (TG), free fatty acid (FFA), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), glucose (FSG), and insulin (FSI) were significantly lower in the GGA treatment group than in the control group. CGA also led to higher activity of hepatic lipase (HL), lower contents of TG and FFA in liver, and lower activity of lipoprotein lipase (LPL) in skeletal muscle. Furthermore, CGA significantly elevated significantly elevated the expression level of mRNA and protein expression in hepatic PPAR-alpha. CONCLUSION CGA can modify lipids and glucose metabolism, which may be attributed to PPAR-alpha facilitated lipid clearance in liver and improved insulin sensitivity.
Collapse
Affiliation(s)
- Shu-Yuan Li
- Division of Nutrition and Biochemistry, Institute of Sports Medicine, Third Hospital, Peking University, Beijing 100191, China
| | | | | | | |
Collapse
|
46
|
Smith JJ, Kenney RD, Gagne DJ, Frushour BP, Ladd W, Galonek HL, Israelian K, Song J, Razvadauskaite G, Lynch AV, Carney DP, Johnson RJ, Lavu S, Iffland A, Elliott PJ, Lambert PD, Elliston KO, Jirousek MR, Milne JC, Boss O. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC SYSTEMS BIOLOGY 2009; 3:31. [PMID: 19284563 PMCID: PMC2660283 DOI: 10.1186/1752-0509-3-31] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 03/10/2009] [Indexed: 12/13/2022]
Abstract
Background Calorie restriction (CR) produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD+-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol) and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM) on gene expression data to elucidate downstream effects of SIRT1 activation. Results Here we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR in vivo, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet. Conclusion CNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting in vitro and in vivo data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation in vivo. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials.
Collapse
Affiliation(s)
- Jesse J Smith
- Sirtris, a GSK company, 200 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wensaas AJ, Rustan AC, Just M, Berge RK, Drevon CA, Gaster M. Fatty acid incubation of myotubes from humans with type 2 diabetes leads to enhanced release of beta-oxidation products because of impaired fatty acid oxidation: effects of tetradecylthioacetic acid and eicosapentaenoic acid. Diabetes 2009; 58:527-35. [PMID: 19066312 PMCID: PMC2646050 DOI: 10.2337/db08-1043] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence these processes. RESEARCH DESIGN AND METHODS We examined fatty acid and glucose metabolism and gene expression in cultured human skeletal muscle cells from control and type 2 diabetic individuals after 4 days of preincubation with EPA or TTA. RESULTS Type 2 diabetes myotubes exhibited reduced formation of CO(2) from palmitic acid (PA), whereas release of beta-oxidation products was unchanged at baseline but significantly increased with respect to control myotubes after preincubation with TTA and EPA. Preincubation with TTA enhanced both complete (CO2) and beta-oxidation of palmitic acid, whereas EPA increased only beta-oxidation significantly. EPA markedly enhanced triacylglycerol (TAG) accumulation in myotubes, more pronounced in type 2 diabetes cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO2 formation) was enhanced and lactate production decreased after chronic exposure to EPA and TTA, whereas glucose uptake and storage were unchanged. EPA and especially TTA increased the expression of genes involved in fatty acid uptake, activation, accumulation, and oxidation. CONCLUSIONS Our results suggest that 1) mitochondrial dysfunction in diabetic myotubes is caused by disturbances downstream of fatty acid beta-oxidation; 2) EPA promoted accumulation of TAG, enhanced beta-oxidation, and increased glucose oxidation; and 3) TTA improved complete palmitic acid oxidation in diabetic myotubes, opposed increased lipid accumulation, and increased glucose oxidation.
Collapse
Affiliation(s)
- Andreas J Wensaas
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
48
|
Jorgensen MR, Bhurruth-Alcor Y, Røst T, Bohov P, Müller M, Guisado C, Kostarelos K, Dyrøy E, Berge RK, Miller AD, Skorve J. Synthesis and Analysis of Novel Glycerolipids for the Treatment of Metabolic Syndrome. J Med Chem 2009; 52:1172-9. [DOI: 10.1021/jm801019s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Michael R. Jorgensen
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Yushma Bhurruth-Alcor
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Therese Røst
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Pavol Bohov
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Melanie Müller
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Cristina Guisado
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Kostas Kostarelos
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Endre Dyrøy
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Rolf K. Berge
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Andrew D. Miller
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Jon Skorve
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom, Institute of Medicine, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
49
|
Bloomer RJ, Fisher-Wellman KH, Hammond KG, Schilling BK, Weber AA, Cole BJ. Dietary supplement increases plasma norepinephrine, lipolysis, and metabolic rate in resistance trained men. J Int Soc Sports Nutr 2009; 6:4. [PMID: 19175919 PMCID: PMC2645359 DOI: 10.1186/1550-2783-6-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/28/2009] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Dietary supplements targeting fat loss and increased thermogenesis are prevalent within the sport nutrition/weight loss market. While some isolated ingredients have been reported to be efficacious when used at high dosages, in particular in animal models and/or via intravenous delivery, little objective evidence is available pertaining to the efficacy of a finished product taken by human subjects in oral form. Moreover, many ingredients function as stimulants, leading to increased hemodynamic responses. The purpose of this investigation was to determine the effects of a finished dietary supplement on plasma catecholamine concentration, markers of lipolysis, metabolic rate, and hemodynamics. METHODS Ten resistance trained men (age = 27 +/- 4 yrs; BMI = 25 +/- 3 kg. m-2; body fat = 9 +/- 3%; mean +/- SD) ingested a dietary supplement (Meltdown(R), Vital Pharmaceuticals) or a placebo, in a random order, double blind cross-over design, with one week separating conditions. Fasting blood samples were collected before, and at 30, 60, and 90 minutes post ingestion and were assayed for epinephrine (EPI), norepinephrine (NE), glycerol, and free fatty acids (FFA). Area under the curve (AUC) was calculated for all variables. Gas samples were collected from 30-60 minutes post ingestion for measurement of metabolic rate. Heart rate and blood pressure were recorded at all blood collection times. RESULTS AUC was greater for the dietary supplement compared to the placebo for NE (1332 +/- 128 pg.mL-1.90 min-1 vs. 1003 +/- 133 pg.mL-1.90 min-1; p = 0.03), glycerol (44 +/- 3 mug.mL-1.90 min-1 vs. 26 +/- 2 mug.mL-1.90 min-1; p < 0.0001), and FFA (1.24 +/- 0.17 mmol.L-1.90 min-1 vs. 0.88 +/- 0.12 mmol.L-1.90 min-1; p = 0.0003). No difference between conditions was noted for EPI AUC (p > 0.05). For all variables, values were highest at 90 minutes post ingestion. Total kilocalorie expenditure during the 30 minute collection period was 29.6% greater (p = 0.02) for the dietary supplement (35 +/- 3 kcal) compared to placebo (27 +/- 2 kcal). A condition main effect was noted for systolic blood pressure (p = 0.04), with values increasing from 117 +/- 2 mmHg to 123 +/- 2 mmHg with the dietary supplement, while remaining unchanged for placebo. No other hemodynamic changes were noted (p > 0.05). CONCLUSION The dietary supplement results in an acute increase in plasma NE and markers of lipolysis, as well as metabolic rate. This occurs without altering hemodynamic variables in a clinically significant manner. Intervention studies to determine the impact of this dietary supplement on weight/fat loss are warranted.
Collapse
Affiliation(s)
- Richard J Bloomer
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| | | | - Kelley G Hammond
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| | - Brian K Schilling
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| | - Adrianna A Weber
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| | - Bradford J Cole
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
50
|
Larsen TS, Aasum E. Metabolic (In)Flexibility of the Diabetic Heart. Cardiovasc Drugs Ther 2008; 22:91-5. [DOI: 10.1007/s10557-008-6083-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
|