1
|
Sharma M, Devi P, Kaushal S, Ul-Ahsan A, Mehra S, Budhwar M, Chopra M. Cyto and Genoprotective Potential of Tannic Acid Against Cadmium and Nickel Co-exposure Induced Hepato-Renal Toxicity in BALB/c Mice. Biol Trace Elem Res 2024; 202:5624-5636. [PMID: 38393487 DOI: 10.1007/s12011-024-04117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Tannic acid (TA) is a metal chelating polyphenol that plays a crucial role in metal detoxification, but its modulatory role in co-exposure of these heavy metals' exposure needs to be explored. Cadmium (Cd) and nickel (Ni) are inorganic hazardous chemicals in the environment. Humans are prone to be exposed to the co-exposure of Cd and Ni, but the toxicological interactions of these metals are poorly defined. Present study was undertaken to study the preventive role of TA in Cd-Ni co-exposure-evoked hepato-renal toxicity in BALB/c mice. In the current investigation, increased oxidative stress in metal intoxicated groups was confirmed by elevated peroxidation of the lipids and significant lowering of endogenous antioxidant enzymes. Altered hepato-renal serum markers, DNA fragmentation, and histological alterations were also detected in the metal-treated groups. Present study revealed that Cd is a stronger toxicant than Ni and when co-exposure was administered, additive, sub-additive, and detrimental effects were observed. Prophylactic treatment with TA significantly reinstated the levels of lipid peroxidation (LPO), non-enzymatic, and enzymatic antioxidants. Moreover, it also restored the serum biomarker levels, DNA damage, and histoarchitecture of the given tissues. TA due to its metal chelating and anti-oxidative properties exhibited cyto- and genoprotective potential against Cd-Ni co-exposure-induced hepatic and renal injury.
Collapse
Affiliation(s)
- Madhu Sharma
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Pooja Devi
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Surbhi Kaushal
- School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, India, 174103
| | - Aitizaz Ul-Ahsan
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Sweety Mehra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Muskan Budhwar
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Mani Chopra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014.
| |
Collapse
|
2
|
Sengul E, Yildirim S, Cinar İ, Tekin S, Dag Y, Bolat M, Gok M, Warda M. Mitigation of Acute Hepatotoxicity Induced by Cadmium Through Morin: Modulation of Oxidative and Pro-apoptotic Endoplasmic Reticulum Stress and Inflammatory Responses in Rats. Biol Trace Elem Res 2024; 202:5106-5117. [PMID: 38238535 PMCID: PMC11442647 DOI: 10.1007/s12011-024-04064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/06/2024] [Indexed: 10/01/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal with significant environmental health hazards. It enters the body through various routes with tissue accumulation. The relatively longer half-life with slow body clearance significantly results in hepatotoxicity during its liver detoxification. Therefore, researchers are exploring the potential use of herbal-derived phytocomponents to mitigate their toxicity. Here, we investigated, for the first time, the possible ameliorative effect of the phytochemical Morin (3,5,7,29,49-pentahydroxyflavone) against acute Cd-induced hepatotoxicity while resolving its underlying cellular mechanisms in a rat animal model. The study involved 50 adult male Sprague-Dawley rats weighing 200-250 g. The animals were divided into five equal groups: control, Cd, Morin100 + Cd, Morin200 + Cd, and Morin200. The 2nd, 3rd, and 4th groups were intraperitoneally treated with Cd (6.5 mg/kg), while the 3rd, 4th, and 5th groups were orally treated with Morin (100 and 200 mg/kg) for 5 consecutive days. On the 6th day, hepatic function (serum ALT, AST, ALP, LDH enzyme activities, and total bilirubin level) testing, transcriptome analysis, and immunohistochemistry were performed to elucidate the ameliorative effect of Morin on hepatotoxicity. In addition to restoring liver function and tissue injury, Morin alleviated Cd-induced hepatic oxidative/endoplasmic reticulum stress in a dose-dependent manner, as revealed by upregulating the expression of antioxidants (SOD, GSH, Gpx, CAT, and Nrf2) and decreasing the expression of ER stress markers. The expression of the proinflammatory mediators (TNF-α, IL-1-β, and IL-6) was also downregulated while improving the anti-inflammatory (IL-10 and IL-4) expression levels. Morin further slowed the apoptotic cascades by deregulating the expression of pro-apoptotic Bax and Caspase 12 markers concomitant with an increase in anti-apoptotic Blc2 mRNA expression. Furthermore, Morin restored Cd-induced tissue damage and markedly suppressed the cytoplasmic expression of JNK and p-PERK immunostained proteins. This study demonstrated the dose-dependent antioxidant hepatoprotective effect of Morin against acute hepatic Cd intoxication. This effect is likely linked with the modulation of upstream p-GRP78/PERK/ATF6 pro-apoptotic oxidative/ER stress and the downstream JNK/BAX/caspase 12 apoptotic signaling pathways.
Collapse
Affiliation(s)
- Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İrfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yusuf Dag
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Melahat Gok
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Singh D, Bist P, Choudhary S. Effect of co-exposure to multiple metals (Pb, Cd, Cr, Hg, Fe, Mn and Ni) and metalloid (As) on liver function in Swiss albino mice. Biometals 2024:10.1007/s10534-024-00643-9. [PMID: 39414706 DOI: 10.1007/s10534-024-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
The study examined the cumulative toxic effect of multiple elements, As, Pb, Cd, Cr, Hg, Fe, Mn and Ni on the liver function and their association with inflammation and apoptosis. To explore the health consequence of simultaneous exposure to multiple metals and metalloid, male and female Swiss Albino mice were randomly divided into 14 groups and subjected to different doses [MPL (maximum permissible limit), 1×, 5×, 10×, 50× or 100×] of metal(loid)s mixture via drinking water for 8 weeks. Data showed that combined effect of multiple elements impaired the liver function. This was associated with significant decrease in the antioxidant enzymes and the elevation in lipid peroxidation for high exposure dose of 50× and 100× (p < 0.05). The metal(loid)s mixture exposure led to significant increase (p < 0.05) in cytokines, TNF-α, IL-6 and effector caspases (3 and 6) in exposure groups above 10× dose. Histopathological observation also revealed significant damage in the hepatic tissue on exposure to high dose. Dose dependent accumulation of respective elements (As, Cd, Cr, and Pb) in the liver was observed in each of the exposure groups. However, similar dose related increment was not observed for essential metals such as Ni, Fe and Mn. Differential accumulation of metals in the liver may be attributed to the effect of co-contaminant exposure, which could affect the divalent cation absorption due to antagonism and competitive transport process. Overall findings in this study manifest the complexity of possible joint effect of co-exposure to multiple metals and metalloid on the liver function.
Collapse
Affiliation(s)
- Damini Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Priyanka Bist
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India.
| |
Collapse
|
4
|
Li D, Liao C, Zhou Z, Li Q, Wang L, Yang Y, Cheng J, Zhang Q. Interplay between fluorine and cadmium on intestinal accumulation, oxidative stress, permeability and inflammatory response in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117030. [PMID: 39260216 DOI: 10.1016/j.ecoenv.2024.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Fluorine (F) and Cadmium (Cd) have given rise to public concern regarding their adverse impacts on the environment and human beings. Yet, the toxic interplay between F and Cd on the intestine is still vague. Aiming to investigate the role of F on Cd-damaged intestine, a total of five groups of 30 SD rats were picked at random to be gavaged for 90 days: Control group (Ultra-pure water), Cd (Cd 1 mg/kg), Cd+LF (Cd 1 mg/kg+F 15 mg/kg), Cd+MF (Cd 1 mg/kg+F 45 mg/kg), and Cd+HF (Cd 1 mg/kg+F 75 mg/kg). It demonstrated that Cd enriched in the intestine and disordered intestinal barrier of rats. Interestingly, two side effects of F were observed resisting to the Cd toxicity. The Cd levels in colon contents were attenuated by 45.45 %, 28.11 %, and 19.54 % by F supplement, respectively. In the Cd+LF group, SOD, GSH-Px, and CAT activities elevated by 0.93, 1.76, and 1.78 times, respectively, and the MDA content reduced 0.67 times; the expressions of NQO1, SOD2, and GSH-Px mRNA markedly enhanced, as well as the Keap1 mRNA significantly decreased. Nevertheless, all indexes above in the Cd+HF group showed the opposite trends. Furthermore, LPS levels decreased by 45.93 % for the Cd+LF group and increased by 12.70 % in that the Cd+HF group. The ZO-1 expression in the Cd+LF group increased, whereas the Cd+HF group's expressions of Claudin-1, Occludin, and ZO-1 were all diminished by 35.46 %, 27.23 %, and 16.32 %, respectively. Moreover, the levels of TNF-α, IL-1β and TLR-4 decreased and IL-10 level promoted, while all showed opposite trends in the Cd+HF group. Collectively, it indicated there is a twofold interplay between F and Cd on intestinal damage and mainly depends on F dosages.
Collapse
Affiliation(s)
- Dashuan Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| | | | - Zihao Zhou
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| | - Qinju Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| | - Linchun Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| | - Yuhua Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| | - Jianzhong Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Qinghai Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
5
|
Ahlawat S, Mohan H, Sharma KK. Proteome profiling, biochemical and histological analysis of diclofenac-induced liver toxicity in Yersinia enterocolitica and Lactobacillus fermentum fed rat model: a comparative analysis. Biotechnol Lett 2024; 46:807-826. [PMID: 38985258 DOI: 10.1007/s10529-024-03510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Diclofenac is a hepatotoxic non-steroidal anti-inflammatory drug (NSAID) that affects liver histology and its protein expression levels. Here, we studied the effect of diclofenac on rat liver when co-administrated with either Yersinia enterocolitica strain 8081 serotype O:8 biovar 1B (D*Y) or Lactobacillus fermentum strain 9338 (D*L). Spectroscopic analysis of stool samples showed biotransformation of diclofenac. When compared with each other, D*Y rats lack peaks at 1709 and 1198 cm-1, while D*L rats lack peaks at 1411 cm-1. However, when compared to control, both groups lack peaks at 1379 and 1170 cm-1. Assessment of serum biomarkers of hepatotoxicity indicated significantly altered activities of AST (D*Y: 185.65 ± 8.575 vs Control: 61.9 ± 2.607, D*L: 247.5 ± 5.717 vs Control: 61.9 ± 2.607), ALT (D*Y: 229.8 ± 6.920 vs Control: 70.7 ± 3.109, D*L: 123.75 ± 6.068 vs Control: 70.7 ± 3.109), and ALP (D*Y: 276.4 ± 18.154 vs Control: 320.6 ± 9.829, D*L: 298.5 ± 12.336 vs Control: 320.6 ± 9.829) in IU/L. The analysis of histological alterations showed hepatic sinusoidal dilation with vein congestion and cell infiltration exclusively in D*Y rats along with other histological changes that are common to both test groups, thereby suggesting more pronounced alterations in D*Y rats. Further, LC-MS/MS based label-free quantitation of proteins from liver tissues revealed 74.75% up-regulated, 25.25% down-regulated in D*Y rats and 51.16% up-regulated, 48.84% down-regulated in D*L experiments. The proteomics-identified proteins majorly belonged to metabolism, apoptosis, stress response and redox homeostasis, and detoxification and antioxidant defence that demonstrated the potential damage of rat liver, more pronounced in D*Y rats. Altogether the results are in favor that the administration of lactobacilli somewhat protected the rat hepatic cells against the diclofenac-induced toxicity.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana, 122505, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
6
|
Singh LK, Kumar A, Siddiqi NJ, Sharma B. Heavy metals altered the xenobiotic metabolism of rats by targeting the GST enzyme: An in vitro and in silico study. Toxicology 2024; 509:153946. [PMID: 39270966 DOI: 10.1016/j.tox.2024.153946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Among all the heavy metals, Pb, Cd, and As are the most harmful pollutants in the environment. They reach into the organisms via various levels of food chains i.e. air and water. Glutathione-s-transferase (GST, E.C. 2.5.1.18), a key enzyme of xenobiotics metabolism, plays an important role in the removal of several toxicants. The present study aimed to evaluate any inhibitory action of these heavy metals on the GST enzyme isolated from the hepatic tissues of rats. A 10 % (w/v) homogenate of rat liver was prepared in cold and centrifuged at 4 °C at 9000xg for 30 min. The supernatant was collected and kept frozen at -20 °C or used fresh for carrying out different experiments. The activity of GST was monitored spectrophotometrically at 340 nm using 220 μg of soluble protein with varying equal substrate concentrations (0.125-2 mM) in phosphate buffer (50 mM, pH 6.5). To assess the impact of heavy metals on the enzyme activity, different concentrations of Cd (0-0.6 mM) and Pb (0-2 mM) were added to the reaction mixture followed by monitoring the residual activity. The optimum temperature and pH of rat liver GST were found to be 37 °C and 6.5, respectively. The Km value for GST was 0.69 mM and the Vmax was found to be 78.67 U/mg. The Cd and Pb significantly altered the kinetic behaviour of the enzyme. The Vmax and Kcat/Km parameters of GST were recorded to be decreased after interaction with Cd and Pb individually and showed a mixed type of inhibition pattern suggesting that these inhibitors may have a greater binding affinity either for the free enzyme or the substrate-enzyme complex. These metals showed a time-dependent enzyme inhibition profile. Cd was found to be the most potent inhibitor when compared to other treated metals; the order of inhibitory effect of metal ions was Cd>Pb>As. The in silico ion docking analysis for determining the probable interactions of Cd and Pb with fragmented GST validated that Cd exhibited higher inhibition potential for the enzyme as compared to Pb. The results of the present study indicated that exposure of both the Cd and Pb may cause significant inhibition of hepatic GST; the former with higher inhibitory potential than the later. However, As proved to be least effective against the enzyme under the aforesaid experimental conditions.
Collapse
Affiliation(s)
- Lalit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Nikhat Jamal Siddiqi
- Department of Internal Surgical Nursing, College of Nursing, King Saud University, Riyadh 11421 Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
7
|
Peng Z, Edwards H, Mustfa W, El Safadi M, Tehreem S, Gaafar ARZ, Bourhia M, Shah TA, Hira H. Ameliorative role of catechin to combat against lindane instigated liver toxicity via modulating PI3K/PIP3/Akt, Nrf-2/Keap-1, NF-κB pathway and histological profile. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106063. [PMID: 39277379 DOI: 10.1016/j.pestbp.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
Lindane (LDN) is a well-known herbicidal drug that exerts deleterious impacts on vital body organs including the liver. Catechin (CTN) is a plant-based flavonoid that demonstrates various pharmacological abilities. This trial was executed to evaluate the ameliorative efficacy of CTN to combat LDN instigated hepatotoxicity in male albino rats (Rattus norvegicus). Thirty-two rats were categorized into four groups including control, LDN (30 mg/kg), LDN (30 mg/kg) + CTN (40 mg/kg) and CTN (40 mg/kg) alone treated group. It was observed that LDN dysregulated the expressions of PI3K/PIP3/Akt and Nrf-2/Keap-1 pathway. Moreover, the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), heme‑oxygenase-1 (HO-1) and glutathione reductase (GSR) were subsided after LDN intoxication. Besides, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), ALT (Alanine aminotransferase), AST (Aspartate transaminase), Gamma-glutamyl transferase (GGT) and ALP (Alkaline phosphatase) were increased whereas reduced the levels of albumin and total proteins in response to LDN exposure. Additionally, LDN administration escalated the levels of Interleukin-6 (IL-6), Nuclear factor kappa-B (NF-κB), Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the activity of cyclooxygenase-2 (COX-2). Furthermore, the gene expressions of Bcl-2-associated X protein (Bax) and Cysteinyl aspartate-acid proteases-3 (Caspase-3) were enhanced whereas the expression of B-cell lymphoma-2 (Bcl-2) was lowered following the LDN treatment. LDN instigated various histological impairments in hepatic tissues. Nonetheless, concurrent administration of CTN remarkably ameliorated liver impairments via regulating aforementioned disruptions owing to its antioxidant, anti-apoptotic and histo-protective potentials.
Collapse
Affiliation(s)
- Zhongtian Peng
- Department of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 420000, China
| | - Henry Edwards
- Department of Biology, The University of Melbourne, Australia.
| | - Warda Mustfa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Shahaba Tehreem
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hasooba Hira
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
Hayat MF, Zohaib M, Ijaz MU, Batool M, Ashraf A, Almutairi BO, Atique U. Ameliorative potential of eriocitrin against cadmium instigated hepatotoxicity in rats via regulating Nrf2/keap1 pathway. J Trace Elem Med Biol 2024; 84:127445. [PMID: 38613902 DOI: 10.1016/j.jtemb.2024.127445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Cadmium (Cd) is a hazardous heavy metal that adversely affects the vital body organs particularly liver. Eriocitrin (ERCN) is a plant-based flavonoid that is well-known for its wide range of pharmacological potential. This research trial was aimed to determine the ameliorative potential of ERCN against Cd provoked hepatotoxicity in rats. METHODOLOGY Twenty-four rats (Rattus norvegicus) were apportioned into control, Cd treated (5 mg/kg), Cd (5 mg/kg) + ERCN (25 mg/kg) and only ERCN (25 mg/kg) administrated group. Expressions of Nrf2/Keap1 pathway and apoptotic markers were assessed through qRT-PCR. The levels of inflammatory and liver function markers were evaluated by using standard ELISA kits. KEY FINDINGS Cd exposure reduced the expression of Nrf2 and anti-oxidant genes as well as the activity of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione (GSH) contents while escalating the expression of Keap1. Furthermore, Cd intoxication augmented malondialdehyde (MDA) and reactive oxygen species (ROS) levels in hepatic tissues. Exposure to Cd resulted in a notable elevation in the levels of alanine transaminase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST). Cd administration upregulated nuclear factor-kappa B (NF-κB), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels as well as cyclooxygenase-2 (COX-2) activity. Furthermore, Cd administration upsurged Bax and Caspase-3 expression while reducing the expression of Bcl-2. Moreover, Cd intoxication disrupted the normal architecture of hepatic tissues. However, supplementation of ERCN significantly (p < 0.05) ameliorated the aforementioned disruptions induced by Cd intoxication. CONCLUSION ERCN treatment remarkably ameliorated the hepatic tissues owing to its antioxidant, anti-inflammatory, and anti-apoptotic potentials. These findings underscore the therapeutic potential of ERCN to counteract the adverse effects of environmental pollutants on hepatic tissues.
Collapse
Affiliation(s)
- Muhammad Faisal Hayat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Moazama Batool
- Department of Zoology, Govt. College Women University, Sialkot, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Usman Atique
- College of Biological Systems, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
9
|
Alfwuaires MA, Famurewa AC, Algefare AI, Sedky A. Naringenin blocks hepatic cadmium accumulation and suppresses cadmium-induced hepatotoxicity via amelioration of oxidative inflammatory signaling and apoptosis in rats. Drug Chem Toxicol 2024; 47:436-444. [PMID: 37073537 DOI: 10.1080/01480545.2023.2196377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
Liver is one of the targets of cadmium (Cd) bioaccumulation for hepatic damage and pathologies via oxidative inflammation and apoptosis. The current study explored whether the citrus flavonoid naringenin (NAR) could prevent hepatic accumulation of Cd and Cd hepatotoxicity in a rat model. Rats in group 1 received normal saline; group 2 received NAR (50 mg/kg body weight); group 3 received CdCl2 (5 mg/kg body weight); group 4 received NAR + CdCl2, for four consecutive weeks. Assays related to markers of oxidative stress, inflammation, and apoptosis were carried out using liver homogenate. Blood and liver sample analyses revealed significant elevation of blood and hepatic Cd levels coupled with prominent increases in alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities, whereas the albumin and total protein levels were decreased considerably. Hepatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPx) activities diminished significantly compared to control followed by marked increases in malondialdehyde (MDA) levels, and dysregulation in caspase and cytokine (TNF-α, IL-6, IL-4, IL-10) levels. However, it was found that in the rats administered NAR + Cd, the levels of Cd, hepatic enzymes, MDA, TNF-α, IL-6, and caspases-3/-9 were prominently reduced compared to the Cd group. The hepatic SOD, CAT, GPx, IL-4, IL-10, albumin, and total protein were markedly elevated along with alleviated hepatic histopathological abrasions. Taken together therefore, NAR is a potential flavonoid for blocking hepatic Cd bioaccumulation and consequent inhibition of Cd-induced oxidative inflammation and apoptotic effects on the liver of rats.
Collapse
Affiliation(s)
- Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical, Sciences, College of Medical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Abdulmohsen I Algefare
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Laib I, Ali BD, Alsalme A, Croun D, Bechelany M, Barhoum A. Therapeutic potential of silver nanoparticles from Helianthemum lippii extract for mitigating cadmium-induced hepatotoxicity: liver function parameters, oxidative stress, and histopathology in wistar rats. Front Bioeng Biotechnol 2024; 12:1400542. [PMID: 39007052 PMCID: PMC11240457 DOI: 10.3389/fbioe.2024.1400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: This study explores the therapeutic potential of silver nanoparticles (Ag NPs) synthesized using a Helianthemum lippii extract in mitigating cadmium-induced hepatotoxicity in Wistar rats. Given the increasing environmental and health concerns associated with cadmium exposure, novel and eco-friendly therapeutic strategies are essential. Methods: Ag NPs were characterized using X-ray diffraction, UV-Vis spectrometry, and energy-dispersive X-ray spectroscopy with scanning electron microscopy, confirming their formation with a cubic crystal structure and particle sizes ranging from 4.81 to 12.84 nm. A sub-acute toxicity study of Ag NPs (2 mg/kg and 10 mg/kg) was conducted, showing no significant difference compared to untreated control rats (n = 3 animals/group). Subsequently, adult Wistar rats (n = 5/group) were divided into a control group and three experimental groups: Ag NPs alone, exposure to 50 mg/kg CdCl2 in drinking water for 35 days, and CdCl2 exposure followed by 0.1 mg/kg/day Ag NPs intraperitoneally for 15 days. Results: In the CdCl2-exposed group, there was a significant decrease in body weight and increases in alanine and aspartate transaminase levels (p < 0.05 vs. control), indicating hepatotoxicity. Additionally, antioxidant defenses were decreased, and malondialdehyde levels were elevated. Liver histology revealed portal fibrosis, inflammation, necrosis, sinusoid and hepatic vein dilation, and cytoplasmic vacuolations. Treatment with Ag NPs post-CdCl2 exposure mitigated several adverse effects on liver function and architecture and improved body weight. Discussion: This study demonstrates the efficacy of Ag NPs synthesized via a green method in reducing cadmium-induced liver damage. These findings support the potential of Ag NPs in therapeutic applications and highlight the importance of sustainable and eco-friendly nanoparticle synthesis methods. By addressing both toxicity concerns and therapeutic efficacy, this research aligns with the growing emphasis on environmentally conscious practices in scientific research and healthcare.
Collapse
Affiliation(s)
- Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued, Algeria
- Higher School of Saharan Agriculture, El Oued, Algeria
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, El Oued University, El-Oued, Algeria
| | - Boutlilis Djahra Ali
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued, Algeria
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, El Oued University, El-Oued, Algeria
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - David Croun
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
- Gulf University for Science and Technology, GUST, Helwan, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
11
|
Kumar A, Sharma B. Cardioprotective Effect of Eugenol Against Cd-Induced Inflammation, Oxidative Stress, and Dyslipidemia in Male Rats: An In Vivo and Molecular Docking Study. Biol Trace Elem Res 2024:10.1007/s12011-024-04162-z. [PMID: 38592566 DOI: 10.1007/s12011-024-04162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Cadmium, a highly toxic heavy metal, can cause severe damage to several vital organs including the kidney, liver, and brain. Many of the natural compounds found in aromatic plants have beneficial pharmacological properties. Eugenol is one such compound reported to have anti-inflammatory and antioxidant properties. The aim of this study is to investigate whether eugenol, a natural compound found in aromatic plants known for its anti-inflammatory and antioxidant properties, can mitigate the detrimental effects of cadmium exposure on cardiac inflammation, oxidative stress, and dyslipidemia. Male albino rats were subjected to randomization into four groups, each comprising six animals, to investigate the potential of eugenol in mitigating cadmium-induced toxicity. All groups received oral gavage treatment for 21 days. Following the treatment regimen, cardiac tissue specimens were collected for analysis. The assessment of cardiac antioxidant status entailed the determination of enzymatic activities including catalase, SOD, GST, and GPx. Additionally, levels of lipid peroxidation, reduced glutathione, protein carbonyl oxidation, and thiol levels were quantified in the cardiac tissue samples. To evaluate cardiac damage, marker enzymes such as LDH and CK-MB were measured. Furthermore, the inflammatory response in the cardiac tissue induced by cadmium exposure was assessed through the quantification of NO, TNF-α, and IL-6 levels. Additionally, molecular docking and dynamics studies were conducted utilizing autodock and GLIDE methodologies. Cadmium administration markedly enhanced the activities of LDH and CK-MB, prominent cardiac markers. Furthermore, cadmium treatment also demonstrated a significant decrease in the reduced glutathione levels and antioxidant enzyme activities. Significant elevation of the inflammatory markers was also observed in the cadmium-treated group. Eugenol treatment effectively ameliorates cadmium-induced biochemical changes. This study underscores the potent anti-inflammatory and antioxidant attributes of eugenol. Co-administration of eugenol alongside cadmium exhibited remarkable protective efficacy against cadmium-induced cardio-toxicity. Eugenol demonstrated the capability to reinstate the cellular redox equilibrium of rats subjected to cadmium treatment to levels akin to those of the normal control group.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, India, 211002
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj, India, 211002.
| |
Collapse
|
12
|
Huang JJ, Feng YM, Zheng SM, Yu CL, Zhou RG, Liu MJ, Bo RN, Yu J, Li JG. Eugenol Possesses Colitis Protective Effects: Impacts on the TLR4/MyD88/NF-[Formula: see text]B Pathway, Intestinal Epithelial Barrier, and Macrophage Polarization. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:493-512. [PMID: 38480500 DOI: 10.1142/s0192415x24500216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Eugenol (EU) has been shown to ameliorate experimental colitis due to its anti-oxidant and anti-inflammatory bioactivities. In this study, DSS-induced acute colitis was established and applied to clarify the regulation efficacy of EU on intestinal barrier impairment and macrophage polarization imbalance along with the inflammatory response. Besides, the adjusting effect of EU on macrophages was further investigated in vitro. The results confirmed that EU intervention alleviated DSS-induced colitis through methods such as restraining weight loss and colonic shortening and decreasing DAI scores. Microscopic observation manifested that EU maintained the intestinal barrier integrity in line with the mucus barrier and tight junction protection. Furthermore, EU intervention significantly suppressed the activation of TLR4/MyD88/NF-[Formula: see text]B signaling pathways and pro-inflammatory cytokines gene expressions, while enhancing the expressions of anti-inflammatory cytokines. Simultaneously, WB and FCM analyses of the CD86 and CD206 showed that EU could regulate the DSS-induced macrophage polarization imbalance. Overall, our data further elucidated the mechanism of EU's defensive effect on experimental colitis, which is relevant to the protective efficacy of intestinal barriers, inhibition of oxidative stress and excessive inflammatory response, and reprogramming of macrophage polarization. Hence, this study may facilitate a better understanding of the protective action of the EU against UC.
Collapse
Affiliation(s)
- Jun-Jie Huang
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Yue-Min Feng
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Shu-Mei Zheng
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Cheng-Long Yu
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Rui-Gang Zhou
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
| | - Ming-Jiang Liu
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| | - Ruo-Nan Bo
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| | - Jie Yu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suzhi Road 120, Suqian 223800, P. R. China
| | - Jin-Gui Li
- College of Veterinary Medicine, Yangzhou University, Wenhui East Road 48, Yangzhou 225009, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China
| |
Collapse
|
13
|
Hashim M, Arif H, Tabassum B, Rehman S, Bajaj P, Sirohi R, Khan MFA. An overview of the ameliorative efficacy of Catharanthus roseus extract against Cd 2+ toxicity: implications for human health and remediation strategies. Front Public Health 2024; 12:1327611. [PMID: 38525339 PMCID: PMC10957771 DOI: 10.3389/fpubh.2024.1327611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Rapid industrialization has led to an increase in cadmium pollution, a dangerously toxic heavy metal. Cadmium (Cd) is released into the environment through industrial processes and can contaminate air, water, and soil. This pollution poses a significant risk to human health and has become a pressing concern in many industrialized areas. Due to its extended half-life, it leads to a range of health problems, including hepato-nephritic toxicity, brain damage, and degenerative bone disorders. Intoxication alters various intracellular parameters, leading to inflammation, tissue injury, and oxidative stress within cells, which disrupts normal cellular functions and can eventually result in cell death. It has also been linked to the development of bone diseases such as osteoporosis. These adverse effects highlight the urgent need to address cadmium pollution and find effective solutions to mitigate its impact on human health. This article highlights the Cd-induced risks and the role of Catharanthus roseus (C. roseus) extract as a source of alternative medicine in alleviating the symptoms. Numerous herbal remedies often contain certain bioactive substances, such as polyphenols and alkaloids, which have the power to mitigate these adverse effects by acting as antioxidants and lowering oxidative cell damage. Research conducted in the field of alternative medicine has revealed its enormous potential to meet demands that may be effectively used in safeguarding humans and their environment. The point of this review is to investigate whether C. roseus extract, known for its bioactive substances, is being investigated for its potential to mitigate the harmful effects of cadmium on health. Further investigation is needed to fully understand its effectiveness. Moreover, it is important to explore the potential environmental benefits of using C. roseus extract to reduce the negative effects of Cd. This review conducted in the field of alternative medicine has revealed its enormous potential to meet demands that could have significant implications for both human health and environmental sustainability.
Collapse
Affiliation(s)
- Mohammad Hashim
- Department of Biochemistry, S. S. Faculty of Science, Mohammad Ali Jauhar University, Rampur, UP, India
- Toxicology Laboratory, Department of Zoology, Govt. Raza P. G. College, Rampur, UP, India
| | - Hussain Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Baby Tabassum
- Toxicology Laboratory, Department of Zoology, Govt. Raza P. G. College, Rampur, UP, India
| | - Shahnawaz Rehman
- IIRC-1, Department of Biosciences, Integral University, Lucknow, UP, India
| | - Priya Bajaj
- Department of Zoology, Govt. P. G. College Noida, Noida, India
| | - Rekha Sirohi
- Department of Biochemistry, S. S. Faculty of Science, Mohammad Ali Jauhar University, Rampur, UP, India
| | - Mohd Faizan Ali Khan
- Environmental Engineering Laboratory, Department of Civil Engineering, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Tavvabi-Kashani N, Hasanpour M, Baradaran Rahimi V, Vahdati-Mashhadian N, Askari VR. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol's potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024; 238:107607. [PMID: 38191032 DOI: 10.1016/j.toxicon.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The active biological phytochemicals, crucial compounds employed in creating hundreds of medications, are derived from valuable and medicinally significant plants. These phytochemicals offer excellent protection from various illnesses, including inflammatory disorders and chronic conditions caused by oxidative stress. A phenolic monoterpenoid known as eugenol (EUG), it is typically found in the essential oils of many plant species from the Myristicaceae, Myrtaceae, Lamiaceae, and Lauraceae families. One of the main ingredients of clove oil (Syzygium aromaticum (L.), Myrtaceae), it has several applications in industry, including flavoring food, pharmaceutics, dentistry, agriculture, and cosmeceuticals. Due to its excellent potential for avoiding many chronic illnesses, it has lately attracted attention. EUG has been classified as a nonmutant, generally acknowledged as a safe (GRAS) chemical by the World Health Organization (WHO). According to the existing research, EUG possesses notable anti-inflammatory, antioxidant, analgesic, antibacterial, antispasmodic, and apoptosis-promoting properties, which have lately gained attention for its ability to control chronic inflammation, oxidative stress, and mitochondrial malfunction and dramatically impact human wellness. The purpose of this review is to evaluate the scientific evidence from the most significant research studies that have been published regarding the protective role and detoxifying effects of EUG against a wide range of toxins, including biological and chemical toxins, as well as different drugs and pesticides that produce a variety of toxicities, throughout view of the possible advantages of EUG.
Collapse
Affiliation(s)
- Negin Tavvabi-Kashani
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Hooda P, Malik R, Bhatia S, Al-Harrasi A, Najmi A, Zoghebi K, Halawi MA, Makeen HA, Mohan S. Phytoimmunomodulators: A review of natural modulators for complex immune system. Heliyon 2024; 10:e23790. [PMID: 38205318 PMCID: PMC10777011 DOI: 10.1016/j.heliyon.2023.e23790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
In the past few decades, the medicinal properties of plants and their effects on the human immune system are being studied extensively. Plants are an incredible source of traditional medicines that help cure various diseases, including altered immune mechanisms and are economical and benign compared to allopathic medicines. Reported data in written documents such as Traditional Chinese medicine, Indian Ayurvedic medicine support the supplementation of botanicals for immune defense reactions in the body and can lead to safe and effective immunity responses. Additionally, some botanicals are well-identified as magical herbal remedies because they act upon the pathogen directly and help boost the immunity of the host. Chemical compounds, also known as phytochemicals, obtained from these botanicals looked promising due to their effects on the human immune system by modulating the lymphocytes which subsequently reduce the chances of getting infected. This paper summarises most documented phytochemicals and how they act on the immune system, their properties and possible mechanisms, screening conventions, formulation guidelines, comparison with synthetic immunity-enhancers, marketed immunity-boosting products, and immune-booster role in the ongoing ghastly corona virus wave. However, it focuses mainly on plant metabolites as immunomodulators. In addition, it also sheds light on the current advancements and future possibilities in this field. From this thorough study, it can be stated that the plant-based secondary metabolites contribute significantly to immunity building and could prove to be valuable medicaments for the design and development of novel immunomodulators even for a pandemic like COVID-19.
Collapse
Affiliation(s)
- Partibha Hooda
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Gurugram, India
- SRM Modi Nagar College of Pharmacy, SRMIST, Delhi-NCR Campus, Ghaziabad, India
| | - Saurabh Bhatia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Maryam A. Halawi
- Department of Clinical pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| |
Collapse
|
16
|
Basal WT, Issa AM, Abdelalem O, Omar AR. Salvia officinalis restores semen quality and testicular functionality in cadmium-intoxicated male rats. Sci Rep 2023; 13:20808. [PMID: 38012170 PMCID: PMC10682483 DOI: 10.1038/s41598-023-45193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
The present study investigated the potential ability of Salvia officinalis, one of the oldest medicinal plants, to protect male rats against cadmium reproductive toxicity. Twenty-eight healthy male rats were randomly allocated into four groups (n = 7); control, Salvia-extract treated group, cadmium treated group and a group treated with both Cd and Salvia. Administration of cadmium reduced the relative testis to body weight and significantly affected sperm parameters by decreasing motility, viability, count and increasing morphological aberrations. Comet assay was used to detect DNA fragmentation in sperms of the rats exposed to Cd. Serum levels of testosterone T, follicle stimulating hormone FSH, and luteinizing hormone LH were significantly decreased. The biochemical analysis of testicular tissue showed a significant rise in Malondialdehyde MDA level coupled with a decrease in the activity of antioxidant enzymes (superoxide dismutase SOD, glutathione peroxidase GPx and catalase CAT). The histological examination of testis sections after Cd administration revealed severe degeneration of spermatogenic cells. Seminiferous tubules were filled with homogenous eosinophilic fluid associated with atrophy of other seminiferous tubules. Co-treatment with the Salvia officinalis extract restored the oxidative enzymes activities and decreased the formation of lipid peroxidation byproduct, which in turn ameliorated the effect of Cd on sperm parameters, DNA damage and testis histopathology. Taken together, it can be concluded that the synergistic antioxidant and radical savaging activities of Salvia officinalis prevented the effect of Cd on semen quality, sperm DNA damage, along with the oxidative stress and histological abnormalities in the testis tissues.
Collapse
Affiliation(s)
- Wesam T Basal
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Aliaa M Issa
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Omnia Abdelalem
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amel R Omar
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
17
|
Priya PS, Murugan R, Almutairi BO, Arokiyaraj S, Shanjeev P, Arockiaraj J. Delineating the protective action of cordycepin against cadmium induced oxidative stress and gut inflammation through downregulation of NF-κB pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104246. [PMID: 37595934 DOI: 10.1016/j.etap.2023.104246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Cadmium (Cd) exposure is known to cause gut inflammation. In this study, we investigated the protective effects of cordycepin, a natural compound with pharmacological properties, against gut inflammation induced by Cd exposure. Using zebrafish larvae and colon cell line models, we examined the impact of cordycepin on Cd-induced toxicity and inflammation. Zebrafish larvae were exposed to Cd (2 µg/mL) and treated with different concentrations of cordycepin (12.5, 25 and 50 µg/mL). Cordycepin treatment significantly reduced Cd-induced embryotoxicity in zebrafish larvae. It also alleviated Cd-induced oxidative stress by reducing reactive oxygen species (ROS), lipid peroxidation and apoptosis. Furthermore, cordycepin treatment normalized the levels of liver-related biomarkers affected due to Cd exposure. Additionally, cordycepin (50 µg/mL) demonstrated a significant reduction in Cd bioaccumulation and downregulated the expression of inflammatory genes in both zebrafish larval gut and colon cell lines. These findings suggest that cordycepin could be an effective agent against Cd-induced gut inflammation.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur 603203, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur 603203, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - P Shanjeev
- SG's Supreme Organics, Plot 148, Sri Valli Nagar, Nandhivaram Village, Guduvancherry, Chennai 603202, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur 603203, Tamil Nadu, India.
| |
Collapse
|
18
|
Godoy R, Macedo AB, Gervazio KY, Ribeiro LR, Lima JLF, Salvadori MGSS. Effects of ortho-eugenol on anxiety, working memory and oxidative stress in mice. BRAZ J BIOL 2023; 83:e271785. [PMID: 37610945 DOI: 10.1590/1519-6984.271785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/21/2023] [Indexed: 08/25/2023] Open
Abstract
Ortho-eugenol is a synthetic derivative from eugenol, the major compound of clove essential oil, which has demonstrated antidepressant and antinociceptive effects in pioneering studies. Additionally, its effects appear to be dependent on the noradrenergic and dopaminergic systems. Depression and anxiety disorders are known to share a great overlap in their pathophysiology, and many drugs are effective in the treatment of both diseases. Furthermore, high levels of anxiety are related to working memory deficits and increased oxidative stress. Thus, in this study we investigated the effects of acute treatment of ortho-eugenol, at 50, 75 and 100 mg/kg, on anxiety, working memory and oxidative stress in male Swiss mice. Our results show that the 100 mg/kg dose increased the number of head-dips and reduced the latency in the hole-board test. The 50 mg/kg dose reduced malondialdehyde levels in the prefrontal cortex and the number of Y-maze entries compared to the MK-801-induced hyperlocomotion group. All doses reduced nitrite levels in the hippocampus. It was also possible to assess a statistical correlation between the reduction of oxidative stress and hyperlocomotion after the administration of ortho-eugenol. However, acute treatment was not able to prevent working memory deficits. Therefore, the present study shows that ortho-eugenol has an anxiolytic and antioxidant effect, and was able to prevent substance-induced hyperlocomotion. Our results contribute to the elucidation of the pharmacological profile of ortho-eugenol, as well as to direct further studies that seek to investigate its possible clinical applications.
Collapse
Affiliation(s)
- R Godoy
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - A B Macedo
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - K Y Gervazio
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Bioativos Naturais e Sintéticos - PgPNSB, João Pessoa, PB, Brasil
| | - L R Ribeiro
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - J L F Lima
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Bioativos Naturais e Sintéticos - PgPNSB, João Pessoa, PB, Brasil
| | - M G S S Salvadori
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Bioativos Naturais e Sintéticos - PgPNSB, João Pessoa, PB, Brasil
| |
Collapse
|
19
|
Liao J, Bi S, Fang Z, Deng Q, Chen Y, Sun L, Jiang Y, Huang L, Gooneratne R. Docosahexaenoic Acid Promotes Cd Excretion by Restoring the Abundance of Parabacteroides in Cd-Exposed Mice. Molecules 2023; 28:4217. [PMID: 37241957 PMCID: PMC10222105 DOI: 10.3390/molecules28104217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
As a common harmful pollutant, cadmium (Cd) can easily enter the human body through the food chain, posing a major threat to human health. Gut microbiota play a key role in Cd absorption. Docosahexaenoic acid (DHA) is thought to have a potential role in the treatment of Cd poisoning. This study investigated the therapeutic effect and mechanism of DHA in Cd-exposed mice from the perspective of the gut microbiota. The results showed that DHA significantly increased the Cd content in feces and decreased the Cd accumulation in the organs of mice. The gut microbiota results showed that DHA significantly restored the abundance of Parabacteroides in the gut microbiota of Cd-exposed mice. Parabacteroides distasonis (P. distasonis), a representative strain of the Parabacteroides, also showed Cd- and toxicity-reduction capabilities. P. distasonis significantly restored the gut damage caused by Cd exposure. At the same time, P. distasonis reduced the Cd content in the liver, spleen, lung, kidneys, gut, and blood to varying degrees and significantly increased the Cd content in feces. The succinic acid produced by P. distasonis plays an important role in promoting Cd excretion in Cd-exposed mice. Therefore, these results suggest that P. distasonis may have a potential role in DHA-mediated Cd excretion in Cd-exposed mice.
Collapse
Affiliation(s)
- Jianzhen Liao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Siyuan Bi
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Yongqing Jiang
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
- Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen 510100, China
| | - Linru Huang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
20
|
Gholamhosseini A, Banaee M, Sureda A, Timar N, Zeidi A, Faggio C. Physiological response of freshwater crayfish, Astacus leptodactylus exposed to polyethylene microplastics at different temperature. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109581. [PMID: 36813019 DOI: 10.1016/j.cbpc.2023.109581] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Not long after plastic-made material became an inseparable part of our lives, microplastics (MPs) found their way into ecosystems. Aquatic organisms are one of the groups impacted by man-made materials and plastics; however, the varied effects of MPs on these organisms have yet to be fully understood. Therefore, to clarify this issue, 288 freshwater crayfish (Astacus leptodactylus) were assigned to eight experimental groups (2 × 4 factorial design) and exposed to 0, 25, 50, and 100 mg polyethylene microplastics (PE-MPs) per kg of food at 17 and 22 °C for 30 days. Then samples were taken from hemolymph and hepatopancreas to measure biochemical parameters, hematology, and oxidative stress. The aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and catalase activities increased significantly in crayfish exposed to PE-MPs, while the phenoxy-peroxidase, gamma-glutamyl peptidase, and lysozyme activities decreased. Glucose and malondialdehyde levels in crayfish exposed to PE-MPs were significantly higher than in the control groups. However, triglyceride, cholesterol, and total protein levels decreased significantly. The results showed that the increase in temperature significantly affected the activity of hemolymph enzymes, glucose, triglyceride, and cholesterol contents. The semi-granular cells, hyaline cells, granular cell percentages, and total hemocytes increased significantly with the PE-MPs exposure. Temperature also had a significant effect on the hematological indicators. Overall, the results showed that temperature variations could synergistically affect the changes induced by PE-MPs in biochemical parameters, immunity, oxidative stress, and the number of hemocytes.
Collapse
Affiliation(s)
- Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Nooh Timar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
21
|
Gad AF, Abdelgalil GM, Radwan MA. Bio-molluscicidal potential and biochemical mechanisms of clove oil and its main component eugenol against the land snail, Theba pisana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105407. [PMID: 37105634 DOI: 10.1016/j.pestbp.2023.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/12/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The land snail, Theba pisana is a serious pest that adversely affects various crops in sustainable agriculture. Essential oils and their constituents represent an environmentally sound alternative to synthetic pesticides. Our study aimed to investigate the lethal and sub-lethal toxicity of clove oil and its main component eugenol to understand the mechanisms underlying its toxic action against T. pisana. The GC-MS profile of the clove oil composition was characterized. In the laboratory experiment, LD50 of clove oil and eugenol via the contact testing were determined after 48 and 72 h. Moreover, sub-lethal effects of clove oil or eugenol on the survivors following the exposure of snails to the 25 and 50% of the LD50/48 and 72 h were evaluated through using snail tissues for biochemical measurments. The GC-MS analysis showed that eugenol (64.87%) was the major constituent present in the oil. The results also showed that LD50 values at 48 and 72 h were 2006.5 and 1493.5 μg/g b.w for oil and 239.6 and 195.3 μg/g b.w for eugenol, respectively. Compared to control, the sub-lethal effects of clove oil or eugenol at 48 and 72 h showed a significant increase in reduced glutathione (GSH) levels. Catalase (CAT) and glutathione-S-transferase (GST) activities significantly elevated in oil- or eugenol-treated snails, except at low dose after 48 h. After two exposure times, snails exposed to oil or eugenol at both sub-lethal effects had considerably higher γ-glutamyltransferase (γ-GT) and aspartate aminotransferase (AST) activities. Moreover, markedly augmentation in alkaline phosphatase (ALP) and alanine aminotransferase (ALT) activities at all exposure times, with the exception of snails treated with low dose of eugenol after 48 h was observed. Both clove oil and eugenol at the tested doses caused a significant inhibition in acetylcholinesterase (AChE) activity at two exposure times. Our findings highlight the potential of clove oil and eugenol, as an efficient natural molluscicide alternative to its synthetic counterparts for snail control.
Collapse
Affiliation(s)
- Amira F Gad
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Gaber M Abdelgalil
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Mohamed A Radwan
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, University of Alexandria, El-Shatby, 21545 Alexandria, Egypt.
| |
Collapse
|
22
|
Kong Z, Liu C, Olatunji OJ. Asperuloside attenuates cadmium-induced toxicity by inhibiting oxidative stress, inflammation, fibrosis and apoptosis in rats. Sci Rep 2023; 13:5698. [PMID: 37029128 PMCID: PMC10081990 DOI: 10.1038/s41598-023-29504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 04/09/2023] Open
Abstract
This present study investigated the protective effects of asperuloside (ASP) against cadmium-induced nephrocardiac toxicity. Rats were treated with 50 mg/kg of ASP for five weeks and CdCl2 (5 mg/kg, p.o., once daily) during the last 4 weeks of ASP treatment. The serum levels of blood urea nitrogen (BUN), creatinine (Scr), aspartate transaminase (AST), creatine kinase-MB (CK-MB), troponin T (TnT) and lactate dehydrogenase (LDH) were evealuted. Oxido-inflammatory parameters were detected via malondialdehyde (MDA), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β) and nuclear factor kappa B (NF-κB). Additionally, the cardiorenal levels of caspase 3, transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), collagen IV and Bcl2 were measured by ELISA or immunohistochemical assays. The results indicated that ASP significantly decreased Cd-instigated oxidative stress, serum BUN, Scr, AST, CK-MB, TnT and LDH as well as histopathological alterations. Furthermore, ASP notably attenuated Cd-induced cardiorenal and apoptosis and fibrosis by reducing caspase 3 and TGF-β levels, as well as reducing the stain intensity of a-SMA and collagen IV, while increasing Bcl2 intensity. These results revealed that ASP attenuated Cd induced cardiac and renal toxicity which may be attributed to reducing oxidative stress, inflammation, fibrosis and apoptosis.
Collapse
Affiliation(s)
- Zhiyang Kong
- Second Peoples Hospital, Wuhu City, 241001, Anhui, China
| | - Chunhong Liu
- Second Peoples Hospital, Wuhu City, 241001, Anhui, China.
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand.
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco.
| |
Collapse
|
23
|
The Effect of Combined Treatment of Psilocybin and Eugenol on Lipopolysaccharide-Induced Brain Inflammation in Mice. Molecules 2023; 28:molecules28062624. [PMID: 36985596 PMCID: PMC10056123 DOI: 10.3390/molecules28062624] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Inflammation is an organism’s biological defense mechanism. Acute and chronic inflammation of the body triggers the production of pro- and anti-inflammatory pathways that can affect the content of cytokines in the brain and thus cause brain inflammation. Disorders such as depression and posttraumatic stress disorder (PTSD) are often associated with elevated inflammation. Recently, positive and promising clinical results of psilocybin for the treatment of depression and PTSD were reported. Thus, we decided to test whether psilocybin alone or in combination with eugenol, an anti-inflammatory and antioxidant agent, would prevent the increase in or decrease the content of cytokines in the brain of C57BL/6J mice injected with lipopolysaccharides (LPS). Two experiments were performed, one with pre-treatment of mice through gavage with psilocybin (0.88 mg/kg), eugenol (17.6 mg/kg), or combinations of psilocybin and eugenol (1:10, 1:20, or 1:50), followed by intraperitoneal injection of LPS, and the second, post-treatment, with initial injection with LPS, followed by treatment with psilocybin, eugenol, or their combination. Brain tissues were collected, and cytokines were analyzed by qRT-PCR, Western blot, and ELISA. Data were analyzed with a one-way ANOVA followed by Tukey’s post hoc test or with multiple unpaired t-tests. LPS upregulated mRNA expression of COX-2, TNF-α, IL-1β, and IL-6. All pre-treatments decreased the expression of COX-2 and TNF-α, with psilocybin alone and in 1:50 combination, with eugenol being the most effective. In the post-treatment, all combinations of psilocybin and eugenol were effective in reducing inflammation, with the 1:50 ratio displaying the most prominent results in reducing the mRNA content of tested cytokines. Western blot analysis confirmed the effect on COX-2 and IL-1β proteins. Finally, the ELISA showed that post-treatment with psilocybin + eugenol (1:50) demonstrated the best results, decreasing the expression of multiple markers including IL-6 and IL-8. This demonstrates the anti-inflammatory effects of a combination of psilocybin and eugenol in the brain of animals with systemically induced inflammation.
Collapse
|
24
|
Gali S, Sharma S, Kundu A, Lee E, Han JH, Shin JK, Choi JS, Kyung SY, Kim JS, Kim HS. Protective effect of dendropanoxide against cadmium-induced hepatotoxicity via anti-inflammatory activities in Sprague-Dawley rats. Toxicol Mech Methods 2023:1-15. [PMID: 36718047 DOI: 10.1080/15376516.2023.2171824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cadmium (Cd) accumulates in the body through contaminated foods or water and causes pathological damage to the liver via oxidative stress and inflammatory reactions. This study was conducted to explore the effects of dendropanoxide (DPx) on Cd-induced hepatotoxicity in rats. Sprague-Dawley (SD) rats were injected with CdCl2 (7 mg/kg body weight) intraperitoneally for 14 days for the induction of liver dysfunction. The CdCl2-exposed rats were subjected to DPx (10 mg/kg) or silymarin (50 mg/kg). The animals were euthanized after 24 h of the last CdCl2 injection and the serum biochemical parameters, lipid content, pro-inflammatory cytokine levels, apoptotic cell death and histopathology of the tissues were analyzed. Additionally, the activity of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), was measured. Compared to controls, Cd-injected rats showed significantly elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol, and pro-inflammatory cytokines, and a remarkable decrease in SOD and CAT activities. Importantly, Cd-induced liver damage was drastically ameliorated by treatment with DPx or silymarin. Treatment with DPx protected the Cd-induced histopathological hepatic injury, as confirmed by the evaluation of TUNEL assay. DPx treatment significantly reduced Bax and caspase-3 expression in Cd-injected rats. Additionally, HO-1 and NRF2 expressions were significantly increased after DPx administration in the liver of Cd-injected rats. Our data indicate that DPx successfully prevents Cd-induced hepatotoxicity by emphasizing the antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Swati Sharma
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Eunah Lee
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Joo Hee Han
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Joo Kyung Shin
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Ji Soo Choi
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - So Young Kyung
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| | - Jae-Sung Kim
- Mary Culver Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Republic of Korea
| |
Collapse
|
25
|
Randhawa PK, Rajakumar A, Futuro de Lima IB, Gupta MK. Eugenol attenuates ischemia-mediated oxidative stress in cardiomyocytes via acetylation of histone at H3K27. Free Radic Biol Med 2023; 194:326-336. [PMID: 36526244 PMCID: PMC10074330 DOI: 10.1016/j.freeradbiomed.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Despite clinical advances, ischemia-induced cardiac diseases remain an underlying cause of death worldwide. Epigenetic modifications, especially alterations in the acetylation of histone proteins play a pivotal role in counteracting stressful conditions, including ischemia. In our study, we found that histone active mark H3K27ac was significantly reduced and histone repressive mark H3K27me3 was significantly upregulated in the cardiomyocytes exposed to the ischemic condition. Then, we performed a high throughput drug screening assay using rat ventricular cardiomyocytes during the ischemic condition and screened an antioxidant compound library comprising of 84 drugs for H3K27ac by fluorescence microscopy. Our data revealed that most of the phenolic compounds like eugenol, apigenin, resveratrol, bis-demethoxy curcumin, D-gamma-tocopherol, ambroxol, and non-phenolic compounds like l-Ergothioneine, ciclopirox ethanolamine, and Tanshinone IIA have a crucial role in maintaining the cellular H3K27ac histone marks during the ischemic condition. Further, we tested the role of eugenol on cellular protection during ischemia. Our study shows that ischemia significantly reduces cellular viability and increases total reactive oxygen species (ROS), and mitochondrial ROS in the cells. Interestingly, eugenol treatment significantly restores the cellular acetylation at H3K27, decreases cellular ROS, and improves cellular viability. To explore the mechanism of eugenol-medicated inhibition of deacetylation, we performed a RNAseq experiment. Analysis of transcriptome data using IPA indicated that eugenol regulates several cellular functions associated with cardiovascular diseases, and metabolic processes. Further, we found that eugenol regulates the expression of HMGN1, CD151 and Ppp2ca genes during ischemia. Furthermore, we found that eugenol might protect the cells from ischemia through modulation of HMGN1 protein expression, which plays an active role in regulation of histone acetylation and cellular protection during stress. Thus, our study indicated that eugenol can be exploited as an agent to protect the ischemic cells and also could be used to develop a novel drug for treating cardiac disease.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Aishwarya Rajakumar
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Isabela Beatriz Futuro de Lima
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Manish K Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
26
|
Azevedo-Barbosa H, Ferreira-Silva GÁ, do Vale BP, Hawkes JA, Ionta M, Carvalho DT. Synthesis and Structure-Activity Relationship Studies of Novel Aryl Sulfonamides and Their Activity against Human Breast Cancer Cell Lines. Chem Biodivers 2022; 19:e202200831. [PMID: 36305872 DOI: 10.1002/cbdv.202200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/27/2022] [Indexed: 12/27/2022]
Abstract
A series of structural analogs of aryl sulfonamide hybrid compounds were synthesised and their cytotoxic activity was evaluated against three human breast cancer cell lines (MCF-7, MDA-MB-231 and Hs 578T). The compounds were designed through electronic, hydrophobic and steric modifications using the chemical structure of N-{4-[(2-hydroxy-3-methoxy-5-propylphenyl)sulfamoyl]phenyl}acetamide (referred to as compound 7) as a starting point to then assess a structure-activity relationship (SAR) study. From the data generated, we observed that compounds 9, 10 and 11 (which have modifications in the substituents of the aryl sulfonamide), efficiently reduced the cell viability of MCF-7 and MDA-MB-231 cell cultures. Based on initial data, we selected compounds 10 and 11 for further investigations into their antiproliferative and/or cytotoxic profile against MDA-MB-231 cells, and we noted that compound 10 was the most promising compound in the series. Compound 10 promoted morphological changes and altered the dynamics of cell cycle progression in MDA-MB-231 cells, inducing arrest in G1/S transition. Taken together, these results show that the dihydroeugenol-aryl-sulfonamide hybrid compound 10 (which has an electron withdrawing nitro group) displays promising antiproliferative activity against MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Helloana Azevedo-Barbosa
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| | - Guilherme Álvaro Ferreira-Silva
- LABAInt - Laboratory of Integrative Animal Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Bianca Pereira do Vale
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| | - Jamie Anthony Hawkes
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| | - Marisa Ionta
- LABAInt - Laboratory of Integrative Animal Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Diogo Teixeira Carvalho
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| |
Collapse
|
27
|
Lu S, Liu SS, Huang P, Wang ZJ. Introduction of Flavor Chemical Eugenol Attenuating the Synergistic Toxicological Interactions of Flavor Mixtures. ACS OMEGA 2022; 7:32238-32249. [PMID: 36120007 PMCID: PMC9475627 DOI: 10.1021/acsomega.2c03577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The flavor chemicals benzyl alcohol (BEA), phenylethanol (PHA), and cinnamaldehyde (CID) and their binary mixtures have high toxicity sensitivity to the lethal endpoint of Caenorhabditis elegans. Some binary flavor mixtures even have synergistic toxicological interactions. Eugenol (EUG) is closely related to human life and has many special nonlethal effects on organisms. The effect of its introduction on the combined toxicities of flavor mixtures is worth studying. We introduced EUG into three binary (BEA-PHA, BEA-CID, and PHA-CID) and one ternary (BEA-PHA-CID) flavor mixture systems. Five representative mixture rays were selected from each of the four mixture systems using the uniform design ray (UD-Ray) method. The lethal toxicity of each mixture ray to C. elegans was measured at three different exposure volumes (100, 200, and 400 μL), and a dose-effect model was established. The new parameter iSPAN was used to quantitatively characterize the toxicity sensitivity of each chemical and mixture ray. The toxicological interaction of each mixture was evaluated by the toxicological interaction heatmap based on the combination index (CI). It can be seen that all flavor chemicals and their ternary and quaternary mixture rays have high iSPANs, and the highest value is 16.160 (BEA-PHA-CID-EUG-R1 at 400 μL). According to the heatmap and CI, the introduction of EUG attenuates the synergistic toxicological interactions of flavor mixtures, leading to the transformation ofsynergistic interactions in flavor mixtures into additive action and even antagonistic interaction, and the CI value of the antagonistic interaction is up to 1.8494 (BEA-CID-EUG-R4 at 400 μL).
Collapse
Affiliation(s)
- Sheng Lu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
- CSCEC
AECOM Consultants Co. Ltd., Lanzhou, Gansu 730000, P. R. China
| | - Shu-Shen Liu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Peng Huang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
| | - Ze-Jun Wang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
28
|
The Ameliorative Role of Eugenol against Silver Nanoparticles-Induced Hepatotoxicity in Male Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3820848. [PMID: 36124089 PMCID: PMC9482543 DOI: 10.1155/2022/3820848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Background Silver nanoparticles (AgNPs) utilization is becoming increasingly popular. The existing investigation evaluates the ameliorative impact of eugenol (Eug) against the toxic influences of AgNPs on rats' liver. Methods Sixty adult male rats were enrolled equally into control, Eug (100 mg kg−1 orally), AgNPs-low dose (1 mg kg−1 i.p), AgNPs-high dose (2 mg kg−1 i.p), Eug + AgNPs-low dose (100 mg kg−1 orally + 1 mg kg−1 i.p), and Eug + AgNPs high dose (100 mg kg−1 orally + 2 mg kg−1 i.p). All the groups were treated daily for 30 days, subsequently serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total protein, total albumin, lactate dehydrogenase (LDH), total oxidative capacity (TOC), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), total antioxidant capacity (TAC), and interleukin 6 (IL-6) levels were measured; hepatic tissues superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and glutathione peroxidase (GPx) levels were evaluated; histopathology and histomorphometry were documented in the liver of all groups; and Bcl-2, P53, Caspase-3, and TNF-α reactive proteins were also immunohistochemically detected. Results AgNPs significantly triggered oxidative stress in hepatic tissues, characterized by elevated levels of AST, ALT, ALP, LDH, TOC, MDA, TNF-α, and IL-6 correlating with considerable decline in total protein, total albumin, TAC, SOD, CAT, GSH, and GPx. These changes were paralleled with histopathological alterations remarkable by devastation of the ordinary hepatic structure, with decrease in the numbers of normal hepatocytes, elevation in the numbers of necrotic hepatocytes, periportal and centrilobular inflammatory cells, deteriorated Kupffer cells, and dilated/congested central and portal veins. Alongside, a marked diminution in Bcl-2 immunoreactivity and a significant elevation in P53, Caspase-3, and TNF-α immunoreactivities were recorded. Supplementation of AgNPs-treated animals with Eug reversed most of the biochemical, histopathological, and immunohistochemical changes. Conclusion This study proposed that Eug has an ameliorative effect against AgNPs-induced hepatotoxicity.
Collapse
|
29
|
Carvalho RPR, Lima GDDA, Ribeiro FCD, Ervilha LOG, Oliveira EL, Viana AGA, Machado-Neves M. Eugenol reduces serum testosterone levels and sperm viability in adult Wistar rats. Reprod Toxicol 2022; 113:110-119. [PMID: 36007673 DOI: 10.1016/j.reprotox.2022.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Eugenol is the main constituent of clove extract. It is a remarkably versatile molecule incorporated as a functional ingredient in several food products and widely applied in the pharmaceutical industry. Men consume natural products enriched with eugenol for treating sexual disorders and using as aphrodisiacs. Nevertheless, there is no information about the impact of eugenol intake on the reproductive parameters of healthy males. Therefore, we provided 10, 20, and 40 mg kg-1 pure eugenol to adult Wistar rats for 60 days. Testis, epididymis, and spermatozoa were analyzed under microscopic, biochemical, and functional approaches. This phenolic compound did not alter testicular and epididymal biometry and microscopy. However, 20 and 40 mg kg-1 eugenol reduced serum testosterone levels. The highest dose altered lactate and glucose concentrations in the epididymis. All the eugenol concentrations diminished CAT activity and MDA levels in the testis and increased FRAP and CAT activity in the epididymis. Epididymal sperm from rats receiving 10, 20, and 40 mg kg-1 eugenol presented high Ca2+ ATPase activity and low motility. In conclusion, eugenol at low and high doses negatively impacted the competence of epididymal sperm and modified oxidative parameters in male organs, with no influence on their microscopy.
Collapse
Affiliation(s)
| | - Graziela Domingues de Almeida Lima
- Instituto de Ciências Biomédicas, Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil.
| | - Fernanda Carolina Dias Ribeiro
- Departamento de Veterinária, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil; Departamento de Biologia Estrutural, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Elizabeth Lopes Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; Departmento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
30
|
Wang K, Chen D, Yu B, He J, Mao X, Huang Z, Yan H, Wu A, Luo Y, Zheng P, Yu J, Luo J. Eugenol alleviates transmissible gastroenteritis virus-induced intestinal epithelial injury by regulating NF-κB signaling pathway. Front Immunol 2022; 13:921613. [PMID: 36052062 PMCID: PMC9427193 DOI: 10.3389/fimmu.2022.921613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence supports the ability of eugenol to maintain intestinal barrier integrity and anti-inflammatory in vitro and in vivo; however, whether eugenol alleviates virus-mediated intestinal barrier damage and inflammation remains a mystery. Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Here, we found that eugenol could alleviate TGEV-induced intestinal functional impairment and inflammatory responses in piglets. Our results indicated that eugenol improved feed efficiency in TGEV-infected piglets. Eugenol not only increased serum immunoglobulin concentration (IgG) but also significantly decreased serum inflammatory cytokine concentration (TNF-α) in TGEV-infected piglets. In addition, eugenol also significantly decreased the expression of NF-κB mRNA and the phosphorylation level of NF-κB P65 protein in the jejunum mucosa of TGEV-infected piglets. Eugenol increased villus height and the ratio of villus height to crypt depth in the jejunum and ileum, and decreased serum D-lactic acid levels. Importantly, eugenol increased tight junction protein (ZO-1) and mRNA expression levels of nutrient transporter-related genes (GluT-2 and CaT-1) in the jejunum mucosa of TGEV-infected piglets. Meanwhile, compared with TGEV-infected IPEC-J2 cells, treatment with eugenol reduced the cell cytopathic effect, attenuated the inflammatory response. Interestingly, eugenol did not increase the expression of ZO-1 and Occludin in IPEC-J2 cells. However, western blot and immunofluorescence results showed that eugenol restored TGEV-induced down-regulation of ZO-1 and Occludin, while BAY11-7082 (The NF-κB specific inhibitor) enhanced the regulatory ability of eugenol. Our findings demonstrated that eugenol attenuated TGEV-induced intestinal injury by increasing the expression of ZO-1 and Occludin, which may be related to the inhibition of NF-κB signaling pathway. Eugenol may offer some therapeutic opportunities for coronavirus-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Li Y, Wang R, Li Y, Sun G, Mo H. Protective effects of tree peony seed protein hydrolysate on Cd-induced oxidative damage, inflammation and apoptosis in zebrafish embryos. FISH & SHELLFISH IMMUNOLOGY 2022; 126:292-302. [PMID: 35654387 DOI: 10.1016/j.fsi.2022.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study was to investigate protective effects of tree peony seed protein hydrolysate by Alcalase (AL-TPSPH) on oxidative damage, inflammation and apoptosis using Cd-induced zebrafish embryos. Zebrafish embryos were treated with either Cd (2 μg/L) or AL-TPSPH (25, 50 and 75 μg/mL) alone or in combination of both from 4 to 144 h post fertilization (hpf). The effects of these treatments on developments, antioxidant parameters and mRNA expression of genes related to oxidative damage, inflammation and apoptosis were examined. The results showed that co-treatment with Cd and AL-TPSPH significantly increased hatching and survival rates and decreased malformation rates of zebrafish embryos compared with Cd treatment alone group (P < 0.05). Cd-induced increase of MDA content, decreases of T-AOC content, GSH/GSSG ratio and activities of SOD, CAT and GPx in zebrafish embryos were modified upon treatment with AL-TPSPH. AL-TPSPH treatment significantly suppressed Cd-induced down-regulations of the antioxidant gene expressions (Mn-sod, Cat and GPx1a) in zebrafish embryos (P < 0.05). AL-TPSPH also prevented Cd-induced up-regulations of pro-inflammatory cytokine (TNF-α, IL-1β and IFN-γ) expressions. Moreover, AL-TPSPH inhibited Cd-induced up-regulations of pro-apoptotic genes (C-jun, Caspase-3 and Caspase-9) in zebrafish embryos. Collectively, these results indicated that AL-TPSPH could reduce Cd-induced oxidative damage, inflammation and apoptosis in zebrafish embryos, suggesting its future applications as functional food or pharmaceutical ingredient.
Collapse
Affiliation(s)
- Yan Li
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China
| | - Ruixue Wang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China
| | - Yingqiu Li
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China.
| | - Guijin Sun
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China.
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 453003, China
| |
Collapse
|
32
|
Chemical Characterization of Taif Rose (Rosa damascena) Methanolic Extract and Its Physiological Effect on Liver Functions, Blood Indices, Antioxidant Capacity, and Heart Vitality against Cadmium Chloride Toxicity. Antioxidants (Basel) 2022; 11:antiox11071229. [PMID: 35883718 PMCID: PMC9311532 DOI: 10.3390/antiox11071229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Exposure to cadmium chloride (CdCl2) causes an imbalance in the oxidant status of the body by triggering the release of reactive oxygen species (ROS). This study investigated the effect of Rosa damascena (R. damascena) extract on oxidative stress, hepatotoxicity, and the injured cardiac tissue of male rats exposed to CdCl2. Forty male Wistar albino rats were divided into four groups: the vehicle control (1 mg/kg normal saline), the CdCl2-treated group (5 mg/kg), the R. damascena extract group (100 mg Kg), and the combination of CdCl2 and R. damascena extract group. Male rats exposed to CdCl2 showed multiple significant histopathological changes in the liver and heart, including inflammatory cell infiltration and degenerative alterations. Successive exposure to CdCl2 elevated the levels of hepatic and cardiac reactive oxygen species (ROS), malondialdehyde (MDA), tumour necrosis factor-alpha) (TNF-α) and interleukin -6 (IL-6) and decreased antioxidant defences. The extracts significantly increased the levels of glutathione, superoxide dismutase (SOD), and catalase (CAT), whereas it dramatically decreased the levels of lipid peroxidation (LPO), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the mRNA of TNF-α and IL-6. R. damascena administration prevented liver and heart injury; suppressed excessive ROS generation, LPO, and inflammatory responses; and enhanced antioxidant defences. In addition, R. damascena upregulated the mRNA of TNF-α and IL-6 in CdCl2-administered male rats. In conclusion, R. damascena modulated the oxidative stress and inflammation induced by CdCl2. The hepatic and cardiac tissue damage and histopathological alterations resulting from the CdCl2-induced oxidative stress were counteracted by the administration of R. damascena extracts. R. damascena enhanced antioxidant defence enzymes in male rats.
Collapse
|
33
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
34
|
Zhang K, Lei N, Li M, Li J, Li C, Shen Y, Guo P, Xiong L, Xie Y. Cang-Ai Volatile Oil Ameliorates Depressive Behavior Induced by Chronic Stress Through IDO-Mediated Tryptophan Degradation Pathway. Front Psychiatry 2021; 12:791991. [PMID: 34975590 PMCID: PMC8714649 DOI: 10.3389/fpsyt.2021.791991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Cang-ai volatile oil (CAVO) is a Chinese herbal volatile oil. Previous studies report that CAVO exhibits of anti-depressant and anti-inflammatory effects, and modulates activity of monoamine neurotransmitter. The current study sought to explore whether CAVO exhibits anti-depressant effects of CAVO through inhibition of inflammatory response and regulation of indoleamine 2 and 3-dioxygenase (IDO) mediated tryptophan degradation pathway. Methods: The study established chronic unpredictable mild stress (CUMS) depression-like model using rats. Body weight and food intake of animals were determined, and open field test (OFT), forced swim test (FST), and sucrose preference test (SPT) were performed to explored the behavioral changes of animals. Expression levels of interleukin-6 (IL-6), interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10), kynurenine (KYN), quinolinic acid (QUIN), tryptophan (Trp), kynurenic acid (KYNA), serotonin (5-HT), and 5-hydroxyindole acetic acid (5-HIAA) in the prefrontal cortex of CUMS rats were determined by ELISA. Co-localization of the microglia markers, Iba1 and IL-6 was determined by immunofluorescence. Western blotting was performed to determine the protein expression level of IDO1. Results: The findings of the current study showed that CAVO increased the body weight and food intake of rats and alleviated depression-like behaviors as shown in OFT, FST, and SPT analysis. ELISA assay showed that CAVO decreased IL-6, IL-1β, TNF-α, and IFN-γ levels and increased levels of IL-4 and IL-10 in the prefrontal cortex of CUMS rats. Analysis showed that CAVO significantly reduced KYN and QUIN levels and the ratio of KYN/Trp, whereas it increased the levels of Trp, KYNA, 5-HT, and 5-HIAA. Immunofluorescence analysis showed that CAVO reduced the number of positive cells with co-localization of microglia markers, Iba1 and IL-6. Western blot analysis showed that CAVO decreased the protein expression level of IDO1 in rats. Conclusion: The findings show that the anti-depressant effects of CAVO are mainly attributed to inhibition of the activation of microglia and downregulation of IDO expression, thus inhibiting the kynurenine pathway and reversing the effects exerted on the 5-HT system.
Collapse
Affiliation(s)
- Kailing Zhang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Na Lei
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Meng Li
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Jijun Li
- Department of Integrative Medicine on Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caijun Li
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yue Shen
- School of International Education, Yunnan University of Chinese Medicine, Kunming, China
| | - Peixin Guo
- Ethnic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China.,Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Yuhuan Xie
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China.,Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China.,Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| |
Collapse
|