1
|
Choy O, Raine A. The neurobiology of antisocial personality disorder. Neuropharmacology 2024; 261:110150. [PMID: 39244014 DOI: 10.1016/j.neuropharm.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Despite increasing recognition that there is a neurobiological basis of antisocial behavior in addition to its psychosocial foundation, much less is known about the specificity of the neurobiological findings to the psychiatric condition of antisocial personality disorder (APD). This article provides a review of research on genetic, brain imaging, neurocognitive, and psychophysiological factors in relation to assessments of APD. Findings show that there are significant genetic effects on APD, particularly related to the serotonergic system, as well as abnormalities in brain regions such as the frontal lobe. Associations between psychophysiological measures of autonomic nervous system functioning and APD are more mixed. Results indicating that APD has a significant genetic basis and is characterized by abnormalities in brain structure/function and neurocognitive impairments provide additional evidence that supports the conceptualization of APD as a neurodevelopmental disorder. Findings may also help inform treatment approaches that target neurobiological risks for APD symptoms. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
- Olivia Choy
- Department of Psychology, Nanyang Technological University, Singapore.
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, USA.
| |
Collapse
|
2
|
Koning SM, Kessler CL, Canli T, Duman EA, Adam EK, Zinbarg R, Craske MG, Stephens JE, Vrshek-Schallhorn S. Early-life adversity severity, timing, and context type are associated with SLC6A4 methylation in emerging adults: Results from a prospective cohort study. Psychoneuroendocrinology 2024; 170:107181. [PMID: 39298801 DOI: 10.1016/j.psyneuen.2024.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Epigenetic modifications, including DNA methylation (DNAm), can play a role in the biological embedding of early-life adversity (ELA) through serotonergic mechanisms. The current study examines methylation of the CpG island in the promoter region of the stress-responsive serotonin transporter gene (SLC6A4) and is the first to jointly assess how it is influenced by ELA severity, timing, and type-specifically, deprivation and threat. METHODS We use data from 627 Youth Emotion Project study participants, recruited from two US high schools. Using adjusted linear regressions, we analyze DNA collected in early adulthood from 410 participants and ELA based on interviewer-rated responses from concurrent Childhood Trauma Interviews, adjusting for survey-measured covariates. RESULTS ELA robustly predicted mean CpG island SLC6A4 DNAm percent across 71 CpG sites. Each additional major-severity ELA event was associated with a 0.121-percentage-point increase (p<0.001), equating to a 0.177 standard deviation (sd) higher DNAm level (95 % CI: 0.080, 0.274) with each 1-sd higher adversity score. When modeled separately, both childhood and adolescent ELA predicted SLC6A4 DNAm. When modeled jointly, adolescent ELA was most strongly predictive, and child adversity remained significantly associated with DNAm through indirect associations via adolescent adversity. Additionally, the ELA-SLC6A4 DNAm association may vary by adversity type. Across separate models for childhood and adolescent exposures, deprivation coefficients are positive and statistically significant. Meanwhile, threat coefficients are positive and not significantly significant but do not statistically differ from deprivation coefficients. In models including all ELA dimensions, one major adolescent deprivation event is associated with a 0.222-percentage-point increased SLC6A4 DNAm (p<0.05), or a 1-sd higher deprivation score with a 0.157-sd increased DNAm. CONCLUSION Results further implicate epigenetic modification on serotonergic neurotransmission via DNAm in the downstream sequelae of ELA-particularly adolescent deprivation-and support preventive interventions in adolescence to mitigate biological embedding.
Collapse
Affiliation(s)
- Stephanie M Koning
- University of Nevada, Reno, School of Public Health, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | | | | | - Elif A Duman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, Istanbul, Turkey; Institute of Natural and Applied Sciences, Acibadem University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
3
|
Norden M, Kanarik M, Laugus K, O’Leary A, Liiver K, Tõnissaar M, Shimmo R, Harro J. Serotonin release by parachloroamphetamine in rats with high and low sociability: High prefrontal release capacity in sociable females. J Psychopharmacol 2024; 38:1016-1024. [PMID: 39318038 PMCID: PMC11528974 DOI: 10.1177/02698811241283710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND Social behaviour is the expression of one of the most generally accepted independent dimensions of personality. Serotonergic neurotransmission has been implicated in typical social response and drugs that promote serotonin (5-hydroxytryptamine (5-HT)) release have prosocial effects. By using the social interaction test, we have previously demonstrated sociability as a temperamental trait in male Wistar rats. AIMS To assess sociability in male rats of the Sprague-Dawley strain and in female rats of both Wistar and Sprague-Dawley strain, and extracellular levels of 5-HT in rats with high and low sociability (high sociability (HS)- and low sociability (LS)-rats). METHODS Social interaction test conducted with different weight-matched partners was used to assess sociability, and in vivo, microdialysis was performed before and after administration of a low dose (2 mg/kg) of parachloroamphetamine (PCA) in the prefrontal cortex, dorsamedial striatum and ventral tegmental area. RESULTS Similarly to male Wistar rats, female Wistars and Sprague-Dawley rats of both sexes displayed trait-wise sociability. Male Wistar HS-rats had lower extracellular levels of 5-HT in prefrontal cortex at baseline and after administration of PCA, and higher PCA-induced increase of extracellular 5-HT in ventral tegmental area. In dorsomedial striatum, PCA elicited a comparable increase in extracellular dopamine in HS- and LS-rats, but higher release of 5-HT in HS-rats. Comparison of PCA-induced 5-HT release in prefrontal cortex of male and female Sprague-Dawley rats revealed a larger 5-HT response in female HS-rats. CONCLUSIONS 5-HT release potential is higher in rats with high expression of sociability trait, whereas some regionally variable differences may be related to relative contributions of social motivation and anxiety in shaping social behaviour.
Collapse
Affiliation(s)
- Marianna Norden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Aet O’Leary
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Kristi Liiver
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Margus Tõnissaar
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Chien PY, Su CL, Liu PH, Chang CH, Gean PW. The dorsal raphe-to-ventral hippocampal projection modulates reactive aggression through 5-HT 1B receptors. Eur J Pharmacol 2024; 981:176918. [PMID: 39159717 DOI: 10.1016/j.ejphar.2024.176918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Maladaptive reactive aggression is a core symptom of neuropsychiatric disorders such as schizophrenia. While uncontrolled aggression dampens societal safety, there is a limited understanding of the neural regulation involved in reactive aggression and its treatment. High levels of aggression have been linked to low serotonin (5-HT) levels. Additionally, post-weaning socially isolated (SI) mice exhibit outbursts of aggression following encountering acute stress, and hyperactivated ventral hippocampus (vHip) involves this stress-provoked escalated aggression. Here, we investigated the potential role of the raphe nucleus projecting to the vHip in modulating aggressive behavior. Chemogenetically activating the dorsal raphe nucleus (DRN) soma projecting the vHip or DRN nerve terminals in the vHip reduced reactive aggression. The reduction of attack behavior was abolished by the pretreatment of 5-HT1B receptor antagonist SB-224289. However, activating the median raphe nucleus (MRN)-to-vHip pathway ameliorated depression-like behavior but did not affect reactive aggression. DRN→vHip activation suppressed the vHip downstream area, the ventromedial hypothalamus (VMH), which is a core aggression area. Intra-vHip infusion of 5-HT1B receptor agonists (anpirtoline, CP-93129) suppressed reactive aggression and decreased c-Fos levels in the vHip neurons projecting to the VMH, suggesting an inhibition mechanism. Our findings indicate that activating the DRN projecting to the vHip is sufficient to inhibit reactive aggression in a 5-HT1B receptor-dependent manner. Thus, targeting 5-HT1B receptor could serve as a promising therapeutic approach to ameliorate symptoms of reactive aggression.
Collapse
Affiliation(s)
- Po-Yu Chien
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan; Department of Pharmacy, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung, Taiwan
| | - Chun-Lin Su
- Division of Natural Sciences, Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Pei-Hua Liu
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan
| | - Chih-Hua Chang
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
| | - Po-Wu Gean
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Gröndal M, Näslund J, Englund C, Luke TJ, Ask K, Eriksson E, Winblad S. Intermittent escitalopram treatment and reactive aggression in women with premenstrual irritability and anger: A crossover study. J Affect Disord 2024; 369:599-607. [PMID: 39393461 DOI: 10.1016/j.jad.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRI) are the primary treatment for premenstrual mood symptoms and particularly effective in reducing reactive aggression in the forms of irritability and anger. The present study examined whether behavioral responses in laboratory measures of reactive aggression are influenced by medication with the SSRI escitalopram in women reporting high levels of premenstrual irritability/anger. METHODS Participants (N = 34) rated the cardinal mood symptoms of premenstrual dysphoric disorder over three menstrual cycles. During the second and third cycles, participants received escitalopram (20 mg) or placebo in a single-blind, cross-over design. In the luteal phase of the intervention cycles, participants completed two aggression tasks: The Anger-Infused Ultimatum Game (AI-UG) and the Point Subtraction Aggression Paradigm (PSAP). Additionally, they rated expression and control of anger using the State-Trait Anger Expression Inventory-2 (STAXI-2) once in the luteal phase and once in the follicular phase. RESULTS While irritability/anger was reduced in the treatment (vs. placebo) cycle, no effect of escitalopram was detected in the PSAP. Escitalopram decreased reactive aggressive behavior in the AI-UG but only for a subset of participants who experienced a sharp premenstrual rise in outwardly expressed anger and/or did not experience a premenstrual rise in inwardly expressed anger. LIMITATIONS The participants' symptoms were based on the severity of only premenstrual irritability/anger, limiting the generalizability to the broader group of PMDD patients. CONCLUSION The results suggest that the behavioral consequences of severe premenstrual irritability/anger are not easily captured by traditional measures of reactive aggression and underline the importance of considering individual differences in symptom expression.
Collapse
Affiliation(s)
- Maria Gröndal
- Department of Psychology, University of Gothenburg, Sweden.
| | - Jakob Näslund
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Christin Englund
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Timothy J Luke
- Department of Psychology, University of Gothenburg, Sweden
| | - Karl Ask
- Department of Psychology, University of Gothenburg, Sweden
| | - Elias Eriksson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Stefan Winblad
- Department of Psychology, University of Gothenburg, Sweden
| |
Collapse
|
6
|
Dong S, Chen T, Chen Y, Wang Y, Yan Y, Liu X, Liu Z, Yu N. Serotonin suppresses intraspecific aggression in an agrobiont spider, Pardosa pseudoannulata, without affecting predation on insects. INSECT SCIENCE 2024. [PMID: 39380412 DOI: 10.1111/1744-7917.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
Spiders are an abundant group of natural enemies preying on insect pests in agroecosystem. But their potential in biological control has not been fully realized due to difficult mass production. One hindrance is the intense intraspecific aggression in spiders. Neurotransmitters such as serotonin play important roles in modulating aggression. Here, we investigated the regulatory function of serotonin (5-hydroxytryptamine [5-HT]) signaling in the intraspecific aggression in a wandering spider Pardosa pseudoannulata (Araneae, Lycosidae). The aggression was quantified with 5 escalated aggression behaviors as approach, chasing, lunging, boxing, and biting. Virgin (VG) females exhibited higher aggression levels but less 5-HT content than post-reproductive (PR) females. Systemic increase of 5-HT via 5-HT injection decreased aggression, while decrease of 5-HT via RNA interference (RNAi) of the tryptophan hydroxylase gene, increased aggression. The involvement of the four 5-HT receptors were determined via individual or combined RNAi. Co-RNAi of the three 5-HT1 genes increased overall aggression with decreased incidents of approach, chasing, lunging, and increased biting. RNAi of 5-HT1B decreased approach and increased biting, whereas RNAi of 5-HT1A or 5-HT1C did not affect aggression. RNAi of 5-HT7 decreased approach only. Therefore, different 5-HT receptor types contribute to different aspects of the inhibitory effects of 5-HT on aggression and provide several pharmacological targets for manipulating spider aggression. 5-HT injection did not affect spiders' predation on their insect prey, the brown planthopper Nilaparvata lugens. The findings reveal 1 neuronal mechanism regulating intraspecific aggression in spiders and provide an insight in developing aggression suppression strategies for spider mass rearing.
Collapse
Affiliation(s)
- Shuchen Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tao Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yunru Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yilin Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihao Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xuerui Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Harter AM, Kim C, Yamazaki A, Lee L, Ji MT, Nemesh M, Redei EE. Stress enhances aggression in male rats with genetic stress hyper-reactivity. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70005. [PMID: 39422001 PMCID: PMC11487273 DOI: 10.1111/gbb.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The current study investigated stress-induced aggressive behavior in the resident-intruder test in males of the genetically stress hyper-reactive Wistar Kyoto More Immobile (WMI), and the nearly isogenic, control Wistar Kyoto Less Immobile (WLI) strains. Tests were carried out against same-age intruders during adolescence, and same-age and juvenile intruders in adulthood. In adolescence and adulthood, prior acute restraint stress decreased social interactions and decreased aggressive behaviors of adolescents and adult WLIs. However, prior stress precipitated aggression in the adult WMI males toward both same-age, and juvenile intruders compared with control WMIs and WLIs. Trunk blood levels of testosterone and androstenedione increased in stressed WLIs, but not in WMIs, suggesting no direct role of androgens in the increased aggression of WMIs. Expressions of aggression-relevant genes showed patterns commensurate with being causative in aggressive behavior. The methyl-CpG binding protein 2 was lower in the frontal cortex of control WMIs, and in the amygdala of stressed WMIs compared with their respective WLIs. Frontal cortex expression of vasopressin receptor 1a and serotonin transporter increased, solely in WMI males after stress. As behaviors were the same toward same-age and non-threatening juvenile intruders, the stress-induced increase in confrontational behavior of the adult WMI male was not because of enhanced fear or anxiety. These results suggest that genetic stress hyper-reactivity is a risk factor for stress-induced increases in aggression in males. Additionally, as known aggression-related genes showed expression patterns paralleling aggressive behavior, this model system could identify novel molecular pathways leading to stress-enhanced aggression.
Collapse
Affiliation(s)
- Aspen M. Harter
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Chris Kim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Anna Yamazaki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Luca Lee
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Michelle T. Ji
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mariya Nemesh
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
8
|
Fu Y, Cheng HW. The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules 2024; 14:1017. [PMID: 39199404 PMCID: PMC11352350 DOI: 10.3390/biom14081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Numerous studies have evidenced that neuropsychiatric disorders (mental illness and emotional disturbances) with aggression (or violence) pose a significant challenge to public health and contribute to a substantial economic burden worldwide. Especially, social disorganization (or social inequality) associated with childhood adversity has long-lasting effects on mental health, increasing the risk of developing neuropsychiatric disorders. Intestinal bacteria, functionally as an endocrine organ and a second brain, release various immunomodulators and bioactive compounds directly or indirectly regulating a host's physiological and behavioral homeostasis. Under various social challenges, stress-induced dysbiosis increases gut permeability causes serial reactions: releasing neurotoxic compounds, leading to neuroinflammation and neuronal injury, and eventually neuropsychiatric disorders associated with aggressive, violent, or impulsive behavior in humans and various animals via a complex bidirectional communication of the microbiota-gut-brain (MGB) axis. The dysregulation of the MGB axis has also been recognized as one of the reasons for the prevalence of social stress-induced injurious behaviors (feather pecking, aggression, and cannibalistic pecking) in chickens. However, existing knowledge of preventing and treating these disorders in both humans and chickens is not well understood. In previous studies, we developed a non-mammal model in an abnormal behavioral investigation by rationalizing the effects of gut microbiota on injurious behaviors in chickens. Based on our earlier success, the perspective article outlines the possibility of reducing stress-induced injurious behaviors in chickens through modifying gut microbiota via cecal microbiota transplantation, with the potential for providing a biotherapeutic rationale for preventing injurious behaviors among individuals with mental disorders via restoring gut microbiota diversity and function.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Peters JR, Schmalenberger KM, Eng AG, Stumper A, Martel MM, Eisenlohr-Moul TA. Dimensional Affective Sensitivity to Hormones across the Menstrual Cycle (DASH-MC): A transdiagnostic framework for ovarian steroid influences on psychopathology. Mol Psychiatry 2024:10.1038/s41380-024-02693-4. [PMID: 39143323 DOI: 10.1038/s41380-024-02693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Fluctuations in progesterone (P4) and estradiol (E2) across the menstrual cycle can exert direct effects on biological systems implicated in neuropsychiatric disorders and represent a key biological source of variability in affective, cognitive, and behavioral disorders. Although these cyclical symptoms may be most readily identified when they occur exclusively in relation to the menstrual cycle, as in DSM-5 premenstrual dysphoric disorder, symptom changes of similar magnitude occur in a larger proportion of people with ongoing psychiatric disorders. Studies investigating cyclical regulation of brain and behavior often produce inconsistent results, which may be attributed to a lack of focus on specific hormonal events and individual differences in related sensitivities. We propose a transdiagnostic Dimensional Affective Sensitivity to Hormones across the Menstrual Cycle (DASH-MC) framework, postulating that atypical neural responses to several key hormonal events provoke specific temporal patterns of affective and behavioral change across the menstrual cycle. We review prospective and experimental evidence providing initial support for these dimensions, which include (1) luteal-onset negative affect caused by a sensitivity to E2 or P4 surges (mediated by neuroactive metabolites such as allopregnanolone), typified by irritability and hyperarousal; (2) perimenstrual-onset negative affect caused by a sensitivity to low or falling E2, typified by low mood and cognitive dysfunction; and (3) preovulatory-onset positive affect dysregulation caused by a sensitivity to E2 surges, typified by harmful substance use and other risky reward-seeking. This multidimensional, transdiagnostic framework for hormone sensitivity can inform more precise research on ovarian steroid regulation of psychopathology, including further mechanistic research, diagnostic refinement, and precision psychiatry treatment development. Additionally, given the high rates of hormone sensitivity across affective disorders, the DASH-MC may guide broader insights into the complex neurobiological vulnerabilities driving female-biased affective risk, as well as potential triggers and mechanisms of affective state change in psychiatric disorders.
Collapse
Affiliation(s)
- Jessica R Peters
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | | | - Ashley G Eng
- Department of Psychology, University of Kentucky, Lexington, KY, USA
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Allison Stumper
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
| | - Michelle M Martel
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
10
|
Zürcher NR, Chen JE, Wey HY. PET-MRI Applications and Future Prospects in Psychiatry. J Magn Reson Imaging 2024. [PMID: 38838352 DOI: 10.1002/jmri.29471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
This article reviews the synergistic application of positron emission tomography-magnetic resonance imaging (PET-MRI) in neuroscience with relevance for psychiatry, particularly examining neurotransmission, epigenetics, and dynamic imaging methodologies. We begin by discussing the complementary insights that PET and MRI modalities provide into neuroreceptor systems, with a focus on dopamine, opioids, and serotonin receptors, and their implications for understanding and treating psychiatric disorders. We further highlight recent PET-MRI studies using a radioligand that enables the quantification of epigenetic enzymes, specifically histone deacetylases, in the brain in vivo. Imaging epigenetics is used to exemplify the impact the quantification of novel molecular targets may have, including new treatment approaches for psychiatric disorders. Finally, we discuss innovative designs involving functional PET using [18F]FDG (fPET-FDG), which provides detailed information regarding dynamic changes in glucose metabolism. Concurrent acquisitions of fPET-FDG and functional MRI provide a time-resolved approach to studying brain function, yielding simultaneous metabolic and hemodynamic information and thereby opening new avenues for psychiatric research. Collectively, the review underscores the potential of a multimodal PET-MRI approach to advance our understanding of brain structure and function in health and disease, which could improve clinical care based on objective neurobiological features and treatment response monitoring. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, Massachusetts, USA
| | - Jingyuan E Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
11
|
Zacher A, Zimmermann J, Cole DM, Friedli N, Opitz A, Baumgartner MR, Steuer AE, Verdejo-Garcia A, Stock AK, Beste C, Quednow BB. Chemical cousins with contrasting behavioural profiles: MDMA users and methamphetamine users differ in social-cognitive functions and aggression. Eur Neuropsychopharmacol 2024; 83:43-54. [PMID: 38642447 DOI: 10.1016/j.euroneuro.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Methamphetamine (METH, "Crystal Meth") and 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") share structural-chemical similarities but have distinct psychotropic profiles due to specific neurochemical actions. Previous research has suggested that their impact on social cognitive functions and social behaviour may differ significantly, however, direct comparisons of METH and MDMA users regarding social cognition and interaction are lacking. Performances in cognitive and emotional empathy (Multifaceted Empathy Test) and emotion sensitivity (Face Morphing Task), as well as aggressive social behaviour (Competitive Reaction Time Task) were assessed in samples of n = 40 chronic METH users, n = 39 chronic MDMA users and n = 86 stimulant-naïve controls (total N = 165). Self-reports and hair samples were used to obtain subjective and objective estimates of substance use patterns. METH users displayed diminished cognitive and emotional empathy towards positive stimuli, elevated punitive social behaviour regardless of provocation, and self-reported heightened trait anger relative to controls. MDMA users diverged from the control group only by exhibiting a distinct rise in punitive behaviour when faced with provocation. Correlation analyses indicated that both higher hair concentrations of MDMA and METH may be associated with reduced cognitive empathy. Moreover, greater lifetime MDMA use correlated with increased punitive behaviour among MDMA users. Our findings confirm elevated aggression and empathy deficits in chronic METH users, while chronic MDMA users only displayed more impulsive aggression. Dose-response correlations indicate that some of these deficits might be a consequence of use. Specifically, the dopaminergic mechanism of METH might be responsible for social-cognitive deficits.
Collapse
Affiliation(s)
- Amelie Zacher
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Joint Center of University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Translational Psychiatry, University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
| | - Nicole Friedli
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Markus R Baumgartner
- Forensic Pharmacology and Toxicology, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea E Steuer
- Forensic Pharmacology and Toxicology, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Antonio Verdejo-Garcia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Joint Center of University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161:105667. [PMID: 38599356 PMCID: PMC11163828 DOI: 10.1016/j.neubiorev.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.
Collapse
Affiliation(s)
- Joseph F Rogers
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Morgane Vandendoren
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Jonathan F Prather
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Jason G Landen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Nicole L Bedford
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA.
| |
Collapse
|
13
|
Neri L, Marziani B, Sebastiani P, Del Beato T, Colanardi A, Legge MP, Aureli A. Aggressiveness in Italian Children with ADHD: MAOA Gene Polymorphism Involvement. Diseases 2024; 12:70. [PMID: 38667528 PMCID: PMC11049508 DOI: 10.3390/diseases12040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
ADHD is a neurodevelopmental disorder that children and adults can develop. A complex interplay of genetic and environmental factors may underlie interindividual variability in ADHD and potentially related aggressive behavior. Using high-resolution molecular biology techniques, we investigated the impact of some MAOA and SLC6A4 variations on ADHD and aggressive behavior in a group of 80 Italian children with ADHD and in 80 healthy controls. We found that homozygous genotypes of MAOA rs6323 and rs1137070 were associated with an increased risk of ADHD (p = 0.02 and p = 0.03, respectively), whereas the heterozygous genotypes (GT of rs6323 and CT of rs1137030) (p = 0.0002 and p = 0.0006) were strongly linked to a lower risk of developing this disorder. In patients with aggressive behavior, we highlighted only a weak negative association of both MAOA polymorphisms (heterozygous genotypes) with aggressiveness, suggesting that these genotypes may be protective towards specific changes in behavior (p = 0.05). Interestingly, an increase in the GG genotype of rs6323 (p = 0.01) and a decrease in GT genotype (p = 0.0005) was also found in patients without aggressive behavior compared to controls. Regarding 5HTT gene genotyping, no allele and genotype differences have been detected among patients and controls. Our work shows that defining a genetic profile of ADHD may help in the early detection of patients who are more vulnerable to ADHD and/or antisocial and aggressive behavior and to design precision-targeted therapies.
Collapse
Affiliation(s)
- Ludovico Neri
- Neurology and Psychiatry Unit for Children and Adolescents, San Salvatore Hospital, via L. Natali, 1, Coppito, 67100 L’Aquila, Italy; (L.N.); (M.P.L.)
| | - Beatrice Marziani
- Emergency Medicine Department, Sant’Anna University Hospital, Via A. Moro, 8, Cona, 44124 Ferrara, Italy;
| | - Pierluigi Sebastiani
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L’Aquila, Italy; (P.S.); (T.D.B.); (A.C.)
| | - Tiziana Del Beato
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L’Aquila, Italy; (P.S.); (T.D.B.); (A.C.)
| | - Alessia Colanardi
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L’Aquila, Italy; (P.S.); (T.D.B.); (A.C.)
| | - Maria Pia Legge
- Neurology and Psychiatry Unit for Children and Adolescents, San Salvatore Hospital, via L. Natali, 1, Coppito, 67100 L’Aquila, Italy; (L.N.); (M.P.L.)
| | - Anna Aureli
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L’Aquila, Italy; (P.S.); (T.D.B.); (A.C.)
| |
Collapse
|
14
|
Ward K. Too good for this world: moral bioenhancement and the ethics of making moral misfits. MEDICAL HUMANITIES 2024; 50:144-152. [PMID: 37932030 DOI: 10.1136/medhum-2023-012709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
Persson and Savulescu argue that moral bioenhancement is not only morally permissible; in some cases, it is morally obligatory. In this article, I introduce a new reason to worry about moral enhancement. I adapt the disability concept of misfit to show how moral enhancement could cause extreme moral disempowerment to those enhanced, which would result in moral injury. I argue that any safety framework that guides the development of moral bioenhancement must be sensitive to the problem of moral misfitting. I present the best case for moral bioenhancement before turning to my own worry concerning the development of moral bioenhancement and its practical implications. Finally, I consider a series of objections and responses.
Collapse
Affiliation(s)
- Katherine Ward
- Philosophy, Bucknell University, Lewisburg, Pennsylvania, USA
| |
Collapse
|
15
|
Guvenc-Bayram G, Semen Z, Polat-Dincer PF, Sertkaya ZT, Ustundag Y, Ates C, Aktas B, Yalcin M. The Relation between Plasma Nesfatin-1 Levels and Aggressive Behavior in Pit Bull Dogs. Animals (Basel) 2024; 14:632. [PMID: 38396600 PMCID: PMC10886264 DOI: 10.3390/ani14040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Aggression is a prevalent and concerning behavioral issue in dogs. Pit Bull dogs, known for their high levels of aggression, are recognized as a focus of concern in society. In our study, we aimed to investigate the behavioral characteristics of Pit Bull dogs and explore the potential roles of peptides involved in the neurobiology of aggression. Initially, female, and male dogs underwent aggression tests, and their aggression levels were categorized. Plasma nesfatin-1, serotonin, oxytocin, and dopamine levels were quantified using ELISA, with blood samples collected after a 24 h fasting period and 2 h post-refeeding. Our findings indicate that aggression in Pit Bull dogs correlates with decreased plasma nesfatin-1, serotonin, and oxytocin levels, while dopamine levels increase. The study's findings indicate that fasted dogs exhibited lower plasma levels of nesfatin-1, serotonin, and dopamine, while plasma oxytocin levels were higher. Furthermore, while the research findings do not suggest a significant relationship between the severity of aggression and the gender of the dog, male Pit Bull breeds appear to have higher plasma nesfatin-1 and serotonin levels compared to their female counterparts. The study's findings demonstrate that nesfatin-1, serotonin, oxytocin, and dopamine play pivotal roles in Pit Bull dogs' aggression, indicating potential interactions among these neuropeptides at the central nervous system level.
Collapse
Affiliation(s)
- Gokcen Guvenc-Bayram
- Department of Physiology, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir 35890, Turkey
| | - Zeynep Semen
- Department of Biochemistry, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir 35890, Turkey;
| | - Pelin Fatos Polat-Dincer
- Department of Internal Medicine, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir 35890, Turkey;
| | - Zeynep Tugce Sertkaya
- Department of Physiology, Faculty of Medicine, Ankara Medipol University, Ankara 06050, Turkey;
| | - Yasemin Ustundag
- Department of Anatomy, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir 35890, Turkey;
| | - Can Ates
- Department of Biostatistics, Faculty of Medicine, Aksaray University, Aksaray 68100, Turkey;
| | - Bugra Aktas
- Manisa Metropolitan Municipality Temporary Animal Shelter, Manisa 45125, Turkey;
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey;
| |
Collapse
|
16
|
Opitz A, Zimmermann J, Cole DM, Coray RC, Zachäi A, Baumgartner MR, Steuer AE, Pilhatsch M, Quednow BB, Beste C, Stock AK. Conflict monitoring and emotional processing in 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine users - A comparative neurophysiological study. Neuroimage Clin 2024; 41:103579. [PMID: 38447413 PMCID: PMC10924209 DOI: 10.1016/j.nicl.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
In stimulant use and addiction, conflict control processes are crucial for regulating substance use and sustaining abstinence, which can be particularly challenging in social-affective situations. Users of methamphetamine (METH, "Ice") and 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") both experience impulse control deficits, but display different social-affective and addictive profiles. We thus aimed to compare the effects of chronic use of the substituted amphetamines METH and MDMA on conflict control processes in different social-affective contexts (i.e., anger and happiness) and investigate their underlying neurophysiological mechanisms. For this purpose, chronic but recently abstinent users of METH (n = 38) and MDMA (n = 42), as well as amphetamine-naïve healthy controls (n = 83) performed an emotional face-word Stroop paradigm, while event-related potentials (ERPs) were recorded. Instead of substance-specific differences, both MDMA and METH users showed smaller behavioral effects of cognitive-emotional conflict processing (independently of emotional valence) and selective deficits in emotional processing of anger content. Both effects were underpinned by stronger P3 ERP modulations suggesting that users of substituted amphetamines employ altered stimulus-response mapping and decision-making. Given that these processes are modulated by noradrenaline and that both MDMA and METH use may be associated with noradrenergic dysfunctions, the noradrenaline system may underlie the observed substance-related similarities. Better understanding the functional relevance of this currently still under-researched neurotransmitter and its functional changes in chronic users of substituted amphetamines is thus an important avenue for future research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Translational Psychiatry Lab, University Psychiatric Clinics Basel, University of Basel, Basel, Switzerland
| | - Rebecca C Coray
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Anna Zachäi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Maximilian Pilhatsch
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany; Department of Psychiatry and Psychotherapy, Elblandklinikum, Radebeul, Germany
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany.
| |
Collapse
|
17
|
Heo S, Choi HM, Lee JT, Bell ML. A nationwide time-series analysis for short-term effects of ambient temperature on violent crime in South Korea. Sci Rep 2024; 14:3210. [PMID: 38331944 PMCID: PMC10853231 DOI: 10.1038/s41598-024-53547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Psychological theories on heat-aggression relationship have existed for decades and recent models suggest climate change will increase violence through varying pathways. Although observational studies have examined the impact of temperature on violent crime, the evidence for associations is primarily limited to coarse temporal resolution of weather and crime (e.g., yearly/monthly) and results from a few Western communities, warranting studies based on higher temporal resolution data of modern systemic crime statistics for various regions. This observational study examined short-term temperature impacts on violent crime using national crime data for the warm months (Jun.-Sep.) across South Korea (2016-2020). Distributed lag non-linear models assessed relative risks (RRs) of daily violent crime counts at the 70th, 90th, and 99th summer temperature percentiles compared to the reference temperature (10th percentile), with adjustments for long-term trends, seasonality, weather, and air pollution. Results indicate potentially non-linear relationships between daily summer temperature (lag0-lag10) and violent crime counts. Violent crimes consistently increased from the lowest temperature and showed the highest risk at the 70th temperature (~ 28.0 °C). The RR at the 70th and 90th percentiles of daily mean temperature (lag0-lag10), compared to the reference, was 1.11 (95% CI 1.09, 1.15) and 1.04 (95% CI 1.01, 1.07), indicating significant associations. Stratified analysis showed significant increases in assault and domestic violence for increases in temperature. The lagged effects, the influences of heat on subsequent crime incidence, did not persist 21 days after the exposure, possibly due to the displacement phenomenon. We found curvilinear exposure-response relationships, which provide empirical evidence to support the psychological theories for heat and violence. Lower public safety through increased violent crime may be an additional public health harm of climate change.
Collapse
Affiliation(s)
- Seulkee Heo
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT, 06511, USA.
| | - Hayon Michelle Choi
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT, 06511, USA
| | - Jong-Tae Lee
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, South Korea
| | - Michelle L Bell
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT, 06511, USA
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul, South Korea
| |
Collapse
|
18
|
Malkani R, Paramasivam S, Wolfensohn S. A Multidimensional Evaluation of the Factors in the Animal Welfare Assessment Grid (AWAG) That Are Associated with, and Predictive of, Behaviour Disorders in Dogs. Animals (Basel) 2024; 14:528. [PMID: 38396496 PMCID: PMC10886356 DOI: 10.3390/ani14040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Behavioural disorders in dogs are common and have severe welfare consequences for dogs. This study aimed to assess the factors that are significant and predictive of behaviour problems in dogs using the animal welfare assessment grid (AWAG) to further understand what factors influence their welfare. 177 AWAG assessments were undertaken across 129 dogs that clinicians deemed to have a behavioural disorder. Wilcoxon rank-sum tests were used to assess the difference in scores between dogs with behaviour disorders and a cohort of healthy dogs (n = 117). This analysis showed that all physical factors besides body condition, all procedural factors besides procedure pain, and all psychological, and environmental factors were significantly different between healthy dogs and dogs with behaviour disorders. Spearman rank correlation coefficient (RS) revealed several significant strong positive correlations including the procedural impact on the dog's daily routine with aggression towards unfamiliar people and procedure pain, as well as other correlations between the dog's behaviour during assessment with the frequency at which they encounter fears and anxieties, clinical assessment and procedure pain, and reaction to stressors and social interactions. These findings highlight the interdependent nature of the various influences of welfare. Logistic regression analysis identified that aggression towards the caregiver, fears and anxieties frequency, and choice, control, and predictability were all significant predictors of behaviour disorders. The findings have important implications for veterinary, behaviour, and animal welfare professionals as any changes across these factors may indicate poor welfare linked to emotional disorders in dogs.
Collapse
Affiliation(s)
- Rachel Malkani
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.P.); (S.W.)
| | | | | |
Collapse
|
19
|
Li Z, Lee CS, Chen S, He B, Chen X, Peng HY, Lin TB, Hsieh MC, Lai CY, Chou D. Blue light at night produces stress-evoked heightened aggression by enhancing brain-derived neurotrophic factor in the basolateral amygdala. Neurobiol Stress 2024; 28:100600. [PMID: 38187456 PMCID: PMC10767493 DOI: 10.1016/j.ynstr.2023.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Light is an underappreciated mood manipulator. People are often exposed to electronic equipment, which results in nocturnal blue light exposure in modern society. Light pollution drastically shortens the night phase of the circadian rhythm. Preclinical and clinical studies have reported that nocturnal light exposure can influence mood, such as depressive-like phenotypes. However, the effects of blue light at night (BLAN) on other moods and how it alters mood remain unclear. Here, we explored the impact of BLAN on stress-provoked aggression in male Sprague‒Dawley rats, focusing on its influence on basolateral amygdala (BLA) activity. Resident-intruder tests, extracellular electrophysiological recordings, and enzyme-linked immunosorbent assays were performed. The results indicated that BLAN produces stress-induced heightened aggressive and anxiety-like phenotypes. Moreover, BLAN not only potentiates long-term potentiation and long-term depression in the BLA but also results in stress-induced elevation of brain-derived neurotrophic factor (BDNF), mature BDNF, and phosphorylation of tyrosine receptor kinase B expression in the BLA. Intra-BLA microinfusion of BDNF RNAi, BDNF neutralizing antibody, K252a, and rapamycin blocked stress-induced heightened aggressive behavior in BLAN rats. In addition, intra-BLA application of BDNF and 7,8-DHF caused stress-induced heightened aggressive behavior in naïve rats. Collectively, these results suggest that BLAN results in stress-evoked heightened aggressive phenotypes, which may work by enhancing BLA BDNF signaling and synaptic plasticity. This study reveals that nocturnal blue light exposure may have an impact on stress-provoked aggression. Moreover, this study provides novel insights into the BLA BDNF-dependent mechanism underlying the impact of the BLAN on mood.
Collapse
Affiliation(s)
- Zhenlong Li
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Chau-Shoun Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Si Chen
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Benyu He
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xinya Chen
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Hsien-Yu Peng
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
| | - Dylan Chou
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| |
Collapse
|
20
|
Kim JH, Kim HK, Son YD, Kim JH. In Vivo Serotonin 5-HT2A Receptor Availability and Its Relationship with Aggression Traits in Healthy Individuals: A Positron Emission Tomography Study with C-11 MDL100907. Int J Mol Sci 2023; 24:15697. [PMID: 37958691 PMCID: PMC10647245 DOI: 10.3390/ijms242115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Serotonergic neurotransmission has been associated with aggression in several psychiatric disorders. Human aggression is a continuum of traits, ranging from normal to pathological phenomena. However, the individual differences in serotonergic neurotransmission and their relationships with aggression traits in healthy individuals remain unclear. In this study, we explored the relationship between 5-HT2A receptor availability in vivo and aggression traits in healthy participants. Thirty-three healthy participants underwent 3-Tesla magnetic resonance imaging and positron emission tomography (PET) with [11C]MDL100907, a selective radioligand for 5-HT2A receptors. To quantify 5-HT2A receptor availability, the binding potential (BPND) was derived using the basis function implementation of the simplified reference tissue model, with the cerebellum as the reference region. The participants' aggression levels were assessed using the Buss-Perry Aggression Questionnaire. The voxel-based correlation analysis with age and sex as covariates revealed that the total aggression score was significantly positively correlated with [11C]MDL100907 BPND in the right middle temporal gyrus (MTG) pole, left fusiform gyrus (FUSI), right parahippocampal gyrus, and right hippocampus. The physical aggression subscale score had significant positive correlations with [11C]MDL100907 BPND in the left olfactory cortex, left orbital superior frontal gyrus (SFG), right anterior cingulate and paracingulate gyri, left orbitomedial SFG, left gyrus rectus, left MTG, left inferior temporal gyrus, and left angular gyrus. The verbal aggression subscale score showed significant positive correlations with [11C]MDL100907 BPND in the bilateral SFG, right medial SFG, left FUSI, and right MTG pole. Overall, our findings suggest the possibility of positive correlations between aggression traits and in vivo 5-HT2A receptor availability in healthy individuals. Future research should incorporate multimodal neuroimaging to investigate the downstream effects of 5-HT2A receptor-mediated signaling and integrate molecular and systems-level information in relation to aggression traits.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
21
|
da Cunha-Bang S, Frokjaer VG, Mc Mahon B, Jensen PS, Svarer C, Knudsen GM. The association between brain serotonin transporter binding and impulsivity and aggression in healthy individuals. J Psychiatr Res 2023; 165:1-6. [PMID: 37441926 DOI: 10.1016/j.jpsychires.2023.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
The serotonin system plays a critical role in the modulation of impulsive aggression. Although serotonin transporters (SERT) are key in modulating synaptic serotonin levels, few studies have investigated the role of SERT levels in human impulsive aggression. The aim of this study was to investigate whether brain SERT levels are associated with trait impulsive aggression. We included 148 healthy individuals (mean age 29.3 ± 13.0, range 18-80 years, 91 females) who had undergone positron emission positron (PET) examinations with the SERT tracer [11C]DASB and filled in self-report questionnaires of trait aggression, trait impulsivity and state aggression. We evaluated the association between cerebral SERT binding (BPND) and trait impulsive aggression in a latent variable model, with one latent variable (LVSERT) modelled from SERT BPND in frontostriatal and frontolimbic networks implicated in impulsive aggression, and another latent variable (LVIA) modelled from various trait measures of impulsivity and aggression. The LVSERT was not significantly associated with the LVIA (p = 0.8). Post-hoc univariate analyses did not reveal any significant associations between regional SERT levels and trait aggression, trait impulsivity or state aggression, but we found that state aggression at the day of PET scan was significantly lower in LA/LA homozygotes vs S-carriers of the 5-HTTLPR gene (p = 0.008). We conclude that brain SERT binding was not related to variations in trait impulsive aggression or state aggression. Our findings do not support that SERT is involved in mediating the serotonergic effects on aggression and impulsivity, at least not in individuals with non-pathological levels of impulsive aggression.
Collapse
Affiliation(s)
- Sofi da Cunha-Bang
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Denmark; Mental Health Services in the Capital Region of Denmark, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Mental Health Services in the Capital Region of Denmark, Denmark
| | - Brenda Mc Mahon
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Peter Steen Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
22
|
Gouveia FV, Diwan M, Martinez RCR, Giacobbe P, Lipsman N, Hamani C. Reduction of aggressive behaviour following hypothalamic deep brain stimulation: Involvement of 5-HT 1A and testosterone. Neurobiol Dis 2023:106179. [PMID: 37276987 DOI: 10.1016/j.nbd.2023.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Aggressive behaviour (AB) may occur in patients with different neuropsychiatric disorders. Although most patients respond to conventional treatments, a small percentage continue to experience AB despite optimized pharmacological management and are considered to be treatment-refractory. For these patients, hypothalamic deep brain stimulation (pHyp-DBS) has been investigated. The hypothalamus is a key structure in the neurocircuitry of AB. An imbalance between serotonin (5-HT) and steroid hormones seems to exacerbate AB. OBJECTIVES To test whether pHyp-DBS reduces aggressive behaviour in mice through mechanisms involving testosterone and 5-HT. METHODS Male mice were housed with females for two weeks. These resident animals tend to become territorial and aggressive towards intruder mice placed in their cages. Residents had electrodes implanted in the pHyp. DBS was administered for 5 h/day for 8 consecutive days prior to daily encounters with the intruder. After testing, blood and brains were recovered for measuring testosterone and 5-HT receptor density, respectively. In a second experiment, residents received WAY-100635 (5-HT1A antagonist) or saline injections prior to pHyp-DBS. After the first 4 encounters, the injection allocation was crossed, and animals received the alternative treatment during the next 4 days. RESULTS DBS-treated mice showed reduced AB that was correlated with testosterone levels and an increase in 5-HT1A receptor density in the orbitofrontal cortex and amygdala. Pre-treatment with WAY-100635 blocked the anti-aggressive effect of pHyp-DBS. CONCLUSIONS This study shows that pHyp-DBS reduces AB in mice via changes in testosterone and 5-HT1A mechanisms.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.
| | - Mustansir Diwan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Raquel C R Martinez
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil; LIM/23, Institute of Psychiatry, University of Sao Paulo School of Medicine, São Paulo, Brazil
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nir Lipsman
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
23
|
Fu Y, Hu J, Erasmus MA, Zhang H, Johnson TA, Cheng H. Cecal microbiota transplantation: unique influence of cecal microbiota from divergently selected inbred donor lines on cecal microbial profile, serotonergic activity, and aggressive behavior of recipient chickens. J Anim Sci Biotechnol 2023; 14:66. [PMID: 37127691 PMCID: PMC10152610 DOI: 10.1186/s40104-023-00866-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Accumulating evidence from human trials and rodent studies has indicated that modulation of gut microbiota affects host physiological homeostasis and behavioral characteristics. Similarly, alterations in gut microbiota could be a feasible strategy for reducing aggressive behavior and improving health in chickens. The study was conducted to determine the effects of early-life cecal microbiota transplantation (CMT) on cecal microbial composition, brain serotonergic activity, and aggressive behavior of recipient chickens. METHODS Chicken lines 63 and 72 with nonaggressive and aggressive behavior, respectively, were used as donors and a commercial strain Dekalb XL was used as recipients for CMT. Eighty-four 1-d-old male chicks were randomly assigned to 1 of 3 treatments with 7 cages per treatment and 4 chickens per cage (n = 7): saline (control, CTRL), cecal solution of line 63 (63-CMT), and cecal solution of line 72 (72-CMT). Transplantation was conducted via oral gavage once daily from d 1 to 10, and then boosted once weekly from week 3 to 5. At weeks 5 and 16, home-cage behavior was recorded, and chickens with similar body weights were assigned to paired aggression tests between the treatments. Samples of blood, brain, and cecal content were collected from the post-tested chickens to detect CMT-induced biological and microbiota changes. RESULTS 63-CMT chickens displayed less aggressive behavior with a higher hypothalamic serotonergic activity at week 5. Correspondingly, two amplicon sequence variants (ASVs) belonging to Lachnospiraceae and one Ruminococcaceae UCG-005 ASV were positively correlated with the levels of brain tryptophan and serotonin, respectively. 72-CMT chickens had lower levels of brain norepinephrine and dopamine at week 5 with higher levels of plasma serotonin and tryptophan at week 16. ASVs belonging to Mollicutes RF39 and GCA-900066225 in 72-CMT chickens were negatively correlated with the brain 5-hydroxyindoleacetic acid (5-HIAA) at week 5, and one Bacteroides ASV was negatively correlated with plasma serotonin at week 16. CONCLUSION Results indicate that CMT at an early age could regulate aggressive behavior via modulating the cecal microbial composition, together with central serotonergic and catecholaminergic systems in recipient chickens. The selected CMT could be a novel strategy for reducing aggressive behavior through regulating signaling along the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiaying Hu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Marisa A Erasmus
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Hengwei Cheng
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
| |
Collapse
|
24
|
Premi E, Dukart J, Mattioli I, Libri I, Pengo M, Gadola Y, Cotelli M, Manenti R, Binetti G, Gazzina S, Alberici A, Magoni M, Koch G, Gasparotti R, Padovani A, Borroni B. Unravelling neurotransmitters impairment in primary progressive aphasias. Hum Brain Mapp 2023; 44:2245-2253. [PMID: 36649260 PMCID: PMC10028634 DOI: 10.1002/hbm.26206] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Primary progressive aphasias (PPAs) are a group of neurodegenerative diseases mainly characterized by language impairment, and with variably presence of dysexecutive syndrome, behavioural disturbances and parkinsonism. Detailed knowledge of neurotransmitters impairment and its association with clinical features hold the potential to develop new tailored therapeutic approaches. In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of magnetic resonance imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 103 PPA patients and 80 age-matched healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in PPA patients (relative to HC) are correlated with specific neurotransmitter systems. As compared to HC, voxel-based brain changes in PPA were significantly associated with spatial distribution of serotonin, dopamine, and glutamatergic pathways (p < .05, False Discovery Rate corrected-corrected). Disease severity was negatively correlated with the strength of GMV colocalization of D1 receptors (p = .035) and serotonin transporter (p = .020). Moreover, we observed a significant negative correlation between positive behavioural symptoms, as measured with Frontal Behavioural Inventory, and GMV colocalization of D1 receptors (p = .007) and serotonin transporter (p < .001). This pilot study suggests that JuSpace is a helpful tool to indirectly assess neurotransmitter deficits in neurodegenerative dementias and may provide novel insight into disease mechanisms and associated clinical features.
Collapse
Affiliation(s)
- Enrico Premi
- Stroke Unit, Department of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM‐7)Research CentreJülichJülichGermany
- Institute of Systems Neuroscience, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Irene Mattioli
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Ilenia Libri
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Marta Pengo
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Yasmine Gadola
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Maria Cotelli
- Neuropsychology UnitIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Rosa Manenti
- Neuropsychology UnitIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers LaboratoryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Stefano Gazzina
- Neurophysiology Unit, Department of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Antonella Alberici
- Neurology Unit, Department of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Mauro Magoni
- Stroke Unit, Department of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Giacomo Koch
- Department of Neuroscience and RehabilitationUniversity of Ferrara and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT)FerraraItaly
- Department of Clinical and Behavioural NeurologySanta Lucia Foundation IRCCSRomeItaly
| | | | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology Unit, Department of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology Unit, Department of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| |
Collapse
|
25
|
Flanigan ME, Hon OJ, D'Ambrosio S, Boyt KM, Hassanein L, Castle M, Haun HL, Pina MM, Kash TL. Subcortical serotonin 5HT 2c receptor-containing neurons sex-specifically regulate binge-like alcohol consumption, social, and arousal behaviors in mice. Nat Commun 2023; 14:1800. [PMID: 37002196 PMCID: PMC10066391 DOI: 10.1038/s41467-023-36808-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/17/2023] [Indexed: 04/03/2023] Open
Abstract
Binge alcohol consumption induces discrete social and arousal disturbances in human populations that promote increased drinking and accelerate the progression of Alcohol Use Disorder. Here, we show in a mouse model that binge alcohol consumption disrupts social recognition in females and potentiates sensorimotor arousal in males. These negative behavioral outcomes were associated with sex-specific adaptations in serotonergic signaling systems within the lateral habenula (LHb) and the bed nucleus of the stria terminalis (BNST), particularly those related to the receptor 5HT2c. While both BNST and LHb neurons expressing this receptor display potentiated activation following binge alcohol consumption, the primary causal mechanism underlying the effects of alcohol on social and arousal behaviors appears to be excessive activation of LHb5HT2c neurons. These findings may have valuable implications for the development of sex-specific treatments for mood and alcohol use disorders targeting the brain's serotonin system.
Collapse
Affiliation(s)
- M E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - O J Hon
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - S D'Ambrosio
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - K M Boyt
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - L Hassanein
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Castle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - H L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M M Pina
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - T L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Sarkar A, Wrangham RW. Evolutionary and neuroendocrine foundations of human aggression. Trends Cogn Sci 2023; 27:468-493. [PMID: 37003880 DOI: 10.1016/j.tics.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 04/03/2023]
Abstract
Humans present a behavioural paradox: they are peaceful in many circumstances, but they are also violent and kill conspecifics at high rates. We describe a social evolutionary theory to resolve this paradox. The theory interprets human aggression as a combination of low propensities for reactive aggression and coercive behaviour and high propensities for some forms of proactive aggression (especially coalitionary proactive aggression). These tendencies are associated with the evolution of groupishness, self-domestication, and social norms. This human aggression profile is expected to demand substantial plasticity in the evolved biological mechanisms responsible for aggression. We discuss the contributions of various social signalling molecules (testosterone, cortisol, oxytocin, vasopressin, serotonin, and dopamine) as the neuroendocrine foundation conferring such plasticity.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Richard W Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
27
|
Zachlod D, Palomero-Gallagher N, Dickscheid T, Amunts K. Mapping Cytoarchitectonics and Receptor Architectonics to Understand Brain Function and Connectivity. Biol Psychiatry 2023; 93:471-479. [PMID: 36567226 DOI: 10.1016/j.biopsych.2022.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
This review focuses on cytoarchitectonics and receptor architectonics as biological correlates of function and connectivity. It introduces the 3-dimensional cytoarchitectonic probabilistic maps of cortical areas and nuclei of the Julich-Brain Atlas, available at EBRAINS, to study structure-function relationships. The maps are linked to the BigBrain as microanatomical reference model and template space. The siibra software tool suite enables programmatic access to the maps and to receptor architectonic data that are anchored to brain areas. Such cellular and molecular data are tools for studying magnetic resonance connectivity including modeling and simulation. At the end, we highlight perspectives of the Julich-Brain as well as methodological considerations. Thus, microstructural maps as part of a multimodal atlas help elucidate the biological correlates of large-scale networks and brain function with a high level of anatomical detail, which provides a basis to study brains of patients with psychiatric disorders.
Collapse
Affiliation(s)
- Daniel Zachlod
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany.
| | - Nicola Palomero-Gallagher
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Department of Psychiatry, Psychotherapy, Psychosomatics, Medical Faculty, RWTH Aachen, Jülich Aachen Research Alliance-Translational Brain Medicine, Aachen, Germany
| | - Timo Dickscheid
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; Helmholtz AI, Research Centre Jülich, Jülich, Germany; Department of Computer Science, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Braccagni G, Scheggi S, Bortolato M. Elevated levels of serotonin 5-HT 2A receptors in the orbitofrontal cortex of antisocial individuals. Eur Arch Psychiatry Clin Neurosci 2023; 273:411-425. [PMID: 36094569 PMCID: PMC10831872 DOI: 10.1007/s00406-022-01480-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Antisocial behavior (ASB) is characterized by frequent violations of the rights and properties of others, as well as aggressive conduct. While ample evidence points to a critical role of serotonin in the emotional modulation of social responses, the implication of this neurotransmitter in ASB is unclear. Here, we performed the first-ever postmortem analysis of serotonergic markers in the orbitofrontal cortex (OFC) of male subjects with ASB (n = 9). We focused on this brain region, given its well-recognized role in social response and ASB pathophysiology. Given that all individuals also had a substance use disorder (SUD) diagnosis, two age-matched control groups were used: SUD only and unaffected controls. Tissues were processed for immunoblotting analyses on eight key serotonergic targets: tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of brain serotonin synthesis; serotonin transporter (SERT), the primary carrier for serotonin uptake; monoamine oxidase A (MAOA), the primary enzyme for serotonin catabolism; and five serotonin receptors previously shown to influence social behavior: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, and 5-HT4. Our analyses documented a significant increase in 5-HT2A receptor levels in the ASB + SUD group compared to SUD-only controls. Furthermore, TPH2 levels were significantly reduced in the SUD group (including SUD only and ASB + SUD) compared to unaffected controls. No difference was detected in the expression of any other serotonergic target. These results are in keeping with previous evidence showing high 5-HT2A receptor binding in the OFC of pathologically aggressive individuals and point to this molecule as a potential target for ASB treatment.
Collapse
Affiliation(s)
- Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, Room 3916, 30 S 2000 E, Salt Lake City, UT, 84112, USA
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, Room 3916, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
29
|
Zheng Q, Liu J, Ji Y, Zhang Y, Chen X, Liu B. Elevated levels of monocyte-lymphocyte ratio and platelet-lymphocyte ratio in adolescents with non-suicidal self-injury. BMC Psychiatry 2022; 22:618. [PMID: 36123674 PMCID: PMC9483869 DOI: 10.1186/s12888-022-04260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), and platelet-lymphocyte ratio (PLR) are blood indicators of systemic inflammation. This study aims to compare the levels of inflammatory indicators derived from blood routine tests between adolescents with non-suicidal self-injury (NSSI) and those with non-NSSI. METHODS A total of 201 adolescents with mood or emotional disorders were enrolled in this study, among which 106 had engaged in NSSI and 95 had never engaged in NSSI. NLR, MLR, and PLR were calculated based on the complete blood cell count. RESULTS There was no significant difference in demographic data between the two groups. The NSSI group exhibited significantly higher MLR (P = 0.001) and PLR (P = 0.007) than the non-NSSI group. Multivariate logistic regression analysis revealed that MLR (OR 1.545, 95%CI [1.087-2.281], P = 0.021) and PLR (OR 1.327, 95%CI [1.215-1.450], P < 0.001) were independently associated with NSSI. Receiver operating characteristic (ROC) curve analyses demonstrated that for differentiating NSSI from non-NSSI, the optimal cut-off value of MLR was 0.135 and the area under curve was 0.638 ([0.561- 0.715], P < 0.001), with a sensitivity of 90.60% and a specificity of 33.70%; the optimal cut-off value of PLR was 127.505 and the area under curve was of 0.611 ([0.533-0.689], P < 0.001), with a sensitivity of 39.60% and a specificity of 81.10%. CONCLUSIONS Systemic inflammation, as indicated by elevated MLR and PLR, was found to be strongly associated with NSSI among adolescents.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Psychology, Xiamen Xianyue Hospital, Xiamen, 361000 Fujian China
| | - Jin Liu
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - YaJuan Ji
- Department of Psychology, Xiamen Xianyue Hospital, Xiamen, 361000 Fujian China
| | - Yan Zhang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - XinChao Chen
- Department of Psychology, Xiamen Xianyue Hospital, Xiamen, 361000, Fujian, China.
| | - BangShan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
30
|
Haller J. Aggression, Aggression-Related Psychopathologies and Their Models. Front Behav Neurosci 2022; 16:936105. [PMID: 35860723 PMCID: PMC9289268 DOI: 10.3389/fnbeh.2022.936105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neural mechanisms of aggression and violence are often studied in the laboratory by means of animal models. A multitude of such models were developed over the last decades, which, however, were rarely if ever compared systematically from a psychopathological perspective. By overviewing the main models, I show here that the classical ones exploited the natural tendency of animals to defend their territory, to fight for social rank, to defend themselves from imminent dangers and to defend their pups. All these forms of aggression are functional and adaptive; consequently, not necessarily appropriate for modeling non-natural states, e.g., aggression-related psychopathologies. A number of more psychopathology-oriented models were also developed over the last two decades, which were based on the etiological factors of aggression-related mental disorders. When animals were exposed to such factors, their aggressiveness suffered durable changes, which were deviant in the meaning that they broke the evolutionarily conserved rules that minimize the dangers associated with aggression. Changes in aggression were associated with a series of dysfunctions that affected other domains of functioning, like with aggression-related disorders where aggression is just one of the symptoms. The comparative overview of such models suggests that while the approach still suffers from a series of deficits, they hold the important potential of extending our knowledge on aggression control over the pathological domain of this behavior.
Collapse
|
31
|
Dukart J, Markello RD, Raine A, Eickhoff SB, Poeppl TB. Aberrant Brain Activity in Individuals With Psychopathy Links to Receptor Distribution, Gene Expression, and Behavior. Biol Psychiatry 2022; 91:e45-e47. [PMID: 34861978 DOI: 10.1016/j.biopsych.2021.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Juergen Dukart
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ross D Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Adrian Raine
- Department of Criminology, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Timm B Poeppl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
32
|
Reply to: Aberrant Brain Activity in Individuals With Psychopathy Links to Receptor Distribution, Gene Expression, and Behavior. Biol Psychiatry 2022; 91:e49. [PMID: 34861976 DOI: 10.1016/j.biopsych.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
|
33
|
Kanen JW, Robbins TW, Trofimova IN. Harnessing temperament to elucidate the complexities of serotonin function. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
The neurobiology of antisocial behavior in adolescence current knowledge and relevance for youth forensic clinical practice. Curr Opin Psychol 2022; 47:101356. [DOI: 10.1016/j.copsyc.2022.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
35
|
Nishina K, Shou Q, Takahashi H, Sakagami M, Inoue-Murayama M, Takagishi H. Association Between Polymorphism (5-HTTLPR) of the Serotonin Transporter Gene and Behavioral Response to Unfair Distribution. Front Behav Neurosci 2022; 16:762092. [PMID: 35368308 PMCID: PMC8966403 DOI: 10.3389/fnbeh.2022.762092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Behavioral responses to unfair distribution have been measured mainly using the Ultimatum Game (UG). Recent studies examining the biological basis of behavioral responses to unfair distribution have focused attention on the role of the serotonin transporter gene. However, studies, to date, have been conducted on non-Asians, and it has not been confirmed whether similar results can be seen in other ethnic groups. It has also been shown that behavioral responses to unfair distribution are not only seen in the case of victims themselves but also in the case of third parties not directly affected. This study aimed to determine whether the results of the previous study would be replicated in an Asian population and whether the serotonin transporter gene would also be associated with behavior toward unfair distribution by third parties. We examined the association between polymorphisms (5-HTTLPR) of the serotonin transporter gene and participants’ behavior in the UG and the third-party punishment game (TPPG). The results did not show an association between punishment for unfair proposals in the TPPG and genetic polymorphisms, while participants with the SL/LL genotype were more likely to reject unfair offers in the UG than those with the SS genotype. These results indicate that 5-HTTLPR is associated with behavior when unfair intentions are directed at oneself.
Collapse
Affiliation(s)
- Kuniyuki Nishina
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Qiulu Shou
- Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan
| | - Hidehiko Takahashi
- Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | | | | | - Haruto Takagishi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
- *Correspondence: Haruto Takagishi,
| |
Collapse
|
36
|
Notari L, Kirton R, Mills DS. Psycho-Behavioural Changes in Dogs Treated with Corticosteroids: A Clinical Behaviour Perspective. Animals (Basel) 2022; 12:ani12050592. [PMID: 35268161 PMCID: PMC8909229 DOI: 10.3390/ani12050592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Corticosteroids hormones are central to stress responses and, along with other hormones and neurotransmitters, contribute to the onset of physiological and behavioural changes aimed at helping the animal cope with anticipated demand. Both the human and animal literature suggest that exposure to systemic exogenous corticosteroid treatments can be associated with negative emotional states. In this paper, the potential behavioural effects of exogenous corticosteroid treatment on dogs and other species are discussed to show why consideration should be given to this matter when prescribing these drugs. Abstract Arousal and distress are often important factors in problematic behaviours, and endogenous corticosteroids are important mediators in the associated stress responses. Exogenous corticosteroid treatments have been reported to change behaviour in human patients and laboratory animals, with similar changes also noted in pet dogs. These behaviours not only potentially adversely impact the welfare of the dogs, but also the quality of life of their owners. Indeed, corticosteroids can bias sensitivity towards aversion in dogs. A decrease in behaviours associated with positive affective states, such as play and exploratory behaviours, together with an increase in aggression and barking have also been described in dogs. According to the available literature, human patients with pre-existing psychiatric disorders are more at risk of developing behavioural side effects due to corticosteroid treatments. It is reasonable to consider that the same may happen in dogs with pre-existing behavioural problems. In this paper, the possible behavioural side effects of exogenous corticosteroids are summarised to help inform and support veterinarians prescribing these drugs.
Collapse
Affiliation(s)
- Lorella Notari
- Royal Society for the Prevention of Cruelty to Animals (RSPCA), Horsham RH13 9RS, UK;
- Correspondence:
| | - Roxane Kirton
- Royal Society for the Prevention of Cruelty to Animals (RSPCA), Horsham RH13 9RS, UK;
| | - Daniel S. Mills
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK;
| |
Collapse
|