1
|
Liu C, Yu J, Zhu X, Shi H, Wang X, Sun D, Dong Z, Zhu Y. Deciphering the anammox microbial community succession with humic acid exposure to optimize large anammox granules for robust nitrogen removal. CHEMOSPHERE 2024; 363:142905. [PMID: 39038710 DOI: 10.1016/j.chemosphere.2024.142905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
The robustness of the anaerobic ammonia oxidation (anammox) process in treating wastewater with high concentrations of humic acids (HAs), including landfill leachate and sludge anaerobic digestion liquid, has been paid great attention. This study revealed that the anammox sludge granule size of 1.0-2.0 mm could be robust under the HA exposure with high concentrations. The total nitrogen removal efficiency (NRE) was 96.2% at the HA concentration of 20-100 mg/L, while the NRE was 88.5% at the HA concentration of 500 mg/L, with reduced by 7.7%. The increased extracellular polymeric substances (EPS) content which was stimulated by the HA exposure favored the formation of large granules (1.0-2.0 mm) by enveloping medium and micro granules (0.2-1.0 mm). The abundance of anammox bacteria Candidatus Brocadia was found to be higher (14.2%) in large anammox granules sized 1.0-2.0 mm, suggesting a potentially high anammox activity. However, the abundance of denitrifiers Denitratisoma increased by 4.3% in ultra-large anammox granules sized >2.0 mm, which could be attributed to the high EPS content for heterotrophic denitrifiers metabolism as organic matter. The feedback mechanism of the anammox community for maintaining the ecological function under the HA exposure resulted in a closely related microbial community, with positive and negative correlations in the ecological network increased by 64.3%. This study revealed that the HA exposure of the anammox system resulted in the anammox granules of 1.0-2.0 mm size being the dominant granules with robust nitrogen removal, providing significant guidance for the optimization of anammox granules for an efficient treatment of HA-containing wastewater in anammox applications.
Collapse
Affiliation(s)
- Changqing Liu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Jianghua Yu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| | - Xinxin Zhu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Haoqian Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Xin Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Dongxiao Sun
- China Railway Shanghai Engineering Group Municipal Environmental Protection Co., Ltd, Shanghai, 201906, PR China
| | - Zhiqiang Dong
- China Railway Shanghai Engineering Group Municipal Environmental Protection Co., Ltd, Shanghai, 201906, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yijing Zhu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
2
|
Xie F, Zhao B, Ji L, Antwi P, Li Y, Yue X. Exploring the potential of a novel alternating current stimulated iron‑carbon anammox process: A new horizon for nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168893. [PMID: 38016562 DOI: 10.1016/j.scitotenv.2023.168893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
This study explored a novel alternating current (AC) stimulation approach to enhance the nitrogen removal efficiency of an iron‑carbon based anammox (FeC anammox) system. In the preliminary experiment, the TN removal efficiency of the AC stimulated system was 8.06 % higher than that of a DC simulated system in same current densities of 0.25 mA/cm2. Gene expression analysis revealed that the AC-stimulated system, where, compared with the anammox system alone, the expression of HZS, HDH, NarG, NirS, NorB and NosZ increased by 1.81, 2.50, 1.64, 0.23, 1.15 and 1.27 times, respectively. In the continuous experiment, the TN removal rate increased from 60.13 % to 84.34 % after AC stimulation, and the working time of the FeC materials increased to 20 days. An analysis of the mechanism revealed that the parallel connection between the capacitive reactance and filler resistance in AC might reduce the internal resistance of the system, thereby improving the actual current density received by local microorganisms, and achieving a better strengthening effect.
Collapse
Affiliation(s)
- Fei Xie
- Taiyuan University of Science and Technology, School of Environment and Resources, Taiyuan 030024, PR China
| | - Bowei Zhao
- Taiyuan University of Technology, College of Environmental Science and Engineering, Taiyuan 030024, PR China
| | - Li Ji
- Taiyuan University of Science and Technology, School of Environment and Resources, Taiyuan 030024, PR China
| | - Philip Antwi
- Environment Protection Authority, Center for Applied Sciences, Water Science Unit, Macleod, Victoria 3085, Australia
| | - Yuan Li
- Taiyuan University of Science and Technology, School of Environment and Resources, Taiyuan 030024, PR China
| | - Xiuping Yue
- Taiyuan University of Technology, College of Environmental Science and Engineering, Taiyuan 030024, PR China.
| |
Collapse
|
3
|
Fan X, Zhang L, Lan S, Wang B, Qi W, Wu Y, Peng Y. A pilot study of situ sludge fermentation-driven multiple biological nitrogen removal pathways (SFBNR): Revealing microbial synergy mechanism based on co-occurrence network analysis. WATER RESEARCH 2023; 247:120796. [PMID: 37918198 DOI: 10.1016/j.watres.2023.120796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
The sludge fermentation-driven biological nitrogen removal (SFBNR) has garnered increasing attention due to its efficient carbon resource utilization from waste activated sludge (WAS). This study successfully extended the application of this technique to a 38 m3 reactor, facilitating a daily ultra-low carbon to nitrogen ratio (<1) wastewater treatment capacity of 16 tons and a WAS capacity of 500 L. After 185-days operation, the system demonstrated commendable performance with a denitrification efficiency (DNE) of 93.22 % and a sludge reduction efficiency (SRE) of 72.07 %. To better understand the potential mechanisms, various functional bacteria interactions were revealed by co-occurrence network analysis. The results unveiled module hubs (e.g., Anaerolineaceae, Denitratisoma, and Candidatus Brocadia) and connectors (e.g., Tuaera and Candidatus Alysiosphaera) in the network exhibited synergistic relationships facilitated by carbon metabolism and nitrogen cycling. Furthermore, the interaction between biofilm sludge (BS) and suspended sludge (SS) contributed to the in-situ enrichment of anaerobic ammonium oxidizing bacteria (AnAOB), whose abundance in BS reached 1.8 % (200-times higher than in SS) after six months, and the suspend-biofilm interface served as a hotspot for anammox activity.
Collapse
Affiliation(s)
- Xuepeng Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Shuang Lan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Weikang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yuchao Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
4
|
Cao S, Lan Y, Du R, Peng Y. Robustness and stability of acetate-driven partial denitrification (PD) in response to high COD/NO 3--N. CHEMOSPHERE 2023; 322:138213. [PMID: 36822519 DOI: 10.1016/j.chemosphere.2023.138213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Partial Denitrification (PD) producing nitrite for anammox may face the issue of relatively high chemical oxygen demand (COD) loading (i.e., COD/NO3--N) due to real wastewater being changed in substrate concentration and flowrate. In this study, three PD systems (R1, R2, R3) with sodium acetate providing electrons were developed to investigate the influence of the relatively high COD/NO3--N ratios (4.0, 6.0, and 8.0) on NO2--N production and the subsequent recoverability. It was found that a relatively high NO2--N production with nitrate-to-nitrite transformation ratio (NTR) of 74.0% could be still obtained despite COD/NO3--N even improving to 8.0 under limited reaction time (10 min) with small nitrate remaining. However, a deteriorated nitrite production was observed with sufficient reaction time (15 min) with NTR being lowered to 19.2%. Delightedly, when reducing influent COD/NO3--N to a normal level of 3.0, PD with high nitrite production was rapidly achieved after suffering from a relatively high COD/NO3--N (4.0-8.0) for 130 cycles. Besides, it was found the relatively high COD/NO3--N had a minor influence on the recoverability of PD, as evidenced by the close NTRs. Microbial analysis revealed the relative abundance of PD functional bacteria, Thauera, decreased under high COD/NO3--N, while it is still highly dominated in the systems, varying from 75.1% in R1 to 62.8% in R3 after around 110-cycles recovery. Furthermore, it appeared that the high pH (9.1-9.2) induced by sodium acetate also likely played a role in maintaining the excellent PD. Overall, this study demonstrated the robustness and stability of acetate-driven PD in response to high COD/NO3--N, further informing the technological superiority of PD in supplying stable and efficient nitrite, which provided solid technical support to apply it with anammox for high-efficient N removal.
Collapse
Affiliation(s)
- Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing, 100124, China
| | - Yu Lan
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing, 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
5
|
Tan Q, Xia S, Xu W, Jian Y. Rapid Start-Up Characteristics of Anammox under Different Inoculation Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2979. [PMID: 36833675 PMCID: PMC9957404 DOI: 10.3390/ijerph20042979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The long multiplication time and extremely demanding enrichment environment requirements of Anammox bacteria (AAOB) have led to difficult reactor start-ups and hindered its practical dissemination. Few feasibility studies have been reported on the recovery of AAOB activity initiation after inlet substrate disconnection caused by an unfavorable condition, and few factors, such as indicators of the recovery process, have been explored. Therefore, in this experiment, two modified expanded granular sludge bed reactors (EGSB) were inoculated with 1.5 L anaerobic granular sludge (AGS) + 1 L Anammox sludge (AMS) (R1) and 2.5 L anaerobic granular sludge (AGS) (R2), respectively. After a long-term (140 days) starvation shock at a high temperature (38 °C), the bacteria population activity recovery experiments were conducted. After 160 days, both reactors were successfully started up, and the total nitrogen removal rates exceeded 87%. Due to the experimental period, the total nitrogen removal rate of R2 was slightly higher than that of R1 in the final stage. However, it is undeniable that R2 had a relatively long activity delay during startup, while R1 had no significant activity delay during startup. The sludge obtained from R1 had a higher specific anammox activity (SAA). Analysis of the extracellular polymer substances (EPS) results showed that the extracellular polymer content in R1 was higher than that in R2 throughout the recovery process, indicating that R1 had higher sludge stability and denitrification performance. Scanning electron microscopy (SEM) analysis showed that more extracellular filamentous bacteria could be seen in the R1 reactor with better morphology of Anammox bacteria. In contrast, the R2 reactor had fewer extracellular hyphae and micropores as a percentage and higher filamentous bacteria content. The results of microbial 16SrDNA analysis showed that R1 used AAOB as inoculum to initiate Anammox, and the reactor was enriched with Anammox bacteria earlier and in much greater abundance than R2. The experimental results indicated that inoculating mixed anaerobic granular sludge and Anammox sludge to initiate an anammox reactor was more effective.
Collapse
Affiliation(s)
- Qiong Tan
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Suhui Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Wenlai Xu
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yue Jian
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
6
|
Chen H, Liu K, Yang E, Chen J, Gu Y, Wu S, Yang M, Wang H, Wang D, Li H. A critical review on microbial ecology in the novel biological nitrogen removal process: Dynamic balance of complex functional microbes for nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159462. [PMID: 36257429 DOI: 10.1016/j.scitotenv.2022.159462] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The novel biological nitrogen removal process has been extensively studied for its high nitrogen removal efficiency, energy efficiency, and greenness. A successful novel biological nitrogen removal process has a stable microecological equilibrium and benign interactions between the various functional bacteria. However, changes in the external environment can easily disrupt the dynamic balance of the microecology and affect the activity of functional bacteria in the novel biological nitrogen removal process. Therefore, this review focuses on the microecology in existing the novel biological nitrogen removal process, including the growth characteristics of functional microorganisms and their interactions, together with the effects of different influencing factors on the evolution of microbial communities. This provides ideas for achieving a stable dynamic balance of the microecology in a novel biological nitrogen removal process. Furthermore, to investigate deeply the mechanisms of microbial interactions in novel biological nitrogen removal process, this review also focuses on the influence of quorum sensing (QS) systems on nitrogen removal microbes, regulated by which bacteria secrete acyl homoserine lactones (AHLs) as signaling molecules to regulate microbial ecology in the novel biological nitrogen removal process. However, the mechanisms of action of AHLs on the regulation of functional bacteria have not been fully determined and the composition of QS system circuits requires further investigation. Meanwhile, it is necessary to further apply molecular analysis techniques and the theory of systems ecology in the future to enhance the exploration of microbial species and ecological niches, providing a deeper scientific basis for the development of a novel biological nitrogen removal process.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Ke Liu
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Yanling Gu
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China.
| | - Min Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
7
|
Tong H, Duan Z, Yang X, Li E, Liu Y, Zhou H, Zhang X, Yang X, Xu W. Characteristics of sludge-based pyrolysis biochar and its application of enhancing denitrification. CHEMOSPHERE 2022; 309:136813. [PMID: 36216110 DOI: 10.1016/j.chemosphere.2022.136813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A modified biochar for enhanced denitrification was developed through a facile pyrolysis method using sewage sludge as raw material and melamine as nitrogen source. Through electrochemical analysis, sludge-based pyrolysis biochar (SPBC) has superior electrical conductivity and poor redox activity. SPBC can increase the electron transfer through the geoconductor mechanism. The effect and the mechanism of SPBC on denitrification were studied. The nitrate treatment efficiency increased with the increase of SPBC dosage. From the perspective of molecular biology, the activities of NAR and NIR enzymes, the degradation efficiency of glucose and the ETSA of bacteria were all promoted with the increase of SPBC, thereby promoting the removal of NO3-. In addition, SPBC had a certain screening effect on microbial communities, and biodiversity decreased with the increase of SPBC dosage. Although the biodiversity decreased, the relative abundance of microorganisms conducive to denitrification increased with the increase of SPBC dosage. The transformation strategy of SPBC proposed in this paper provides a technical solution for sludge recycling and application for strengthening denitrification.
Collapse
Affiliation(s)
- Huiyan Tong
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China.
| | - Zhenghang Duan
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Xin Yang
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - E Li
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Yiding Liu
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Xuwang Zhang
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Xiaojing Yang
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| |
Collapse
|
8
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
9
|
Yang J, Xiang J, Xie Y, Yu K, Gin KYH, Zhang B, He Y. Dynamic distribution and driving mechanisms of antibiotic resistance genes in a human-intensive watershed. WATER RESEARCH 2022; 222:118841. [PMID: 35932710 DOI: 10.1016/j.watres.2022.118841] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Accelerated urbanization has promoted urban watersheds as important reservoirs of antibiotic resistance genes (ARGs); yet the biogeographical patterns and driving mechanisms of ARGs at the watershed scale remain unclear. Here, we examined the dynamic distribution of ARGs in a human-intensive watershed (including city, river and lake systems) over different seasons in a temperate region, as well as revealed the key factors shaping ARGs dynamics through structural equation models (SEMs). High diversity and abundance of ARGs were detected in sediments and surface water, with aminoglycoside, beta-lactamase and multidrug resistance genes dominating. PCoA showed distinct ARGs variations between the two phases. Seasonal changes and regional functions had significant impacts on the distribution patterns of ARGs. More diverse ARGs were detected in winter, while higher ARGs abundances were observed in spring and summer. The city system showed the highest level of ARGs contamination and was mainly derived from wastewater and human/animal feces based on SourceTracker analysis and ARGs indicators. Notably, watershed restoration could significantly mitigate the ARGs pollution status and improve biodiversity in the aquatic environment. Network analysis identified several hub ARGs and bacterial genera, which helped to infer potential bacterial hosts carrying ARGs. Furthermore, ARGs indicators provided insights to trace ARGs sources. SEMs indicated that bioavailable heavy metals and nutrients can greatly shape ARGs dynamics in regions with high-intensity human activities, while the microbial community and MGEs dominate the fate of ARGs in less human-impacted regions. More attention should be given to control heavy metals and nutrients to curb the spread of ARGs. Overall, this study highlights the environmental fate of ARGs and provides novel strategies to mitigate ARGs pollution in the human-intensive watershed.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jinyi Xiang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
10
|
Guo M, Jiang Y, Xie J, Cao Q, Zhang Q, Mabruk A, Chen C. Bamboo charcoal addition enhanced the nitrogen removal of anammox granular sludge with COD: Performance, physicochemical characteristics and microbial community. J Environ Sci (China) 2022; 115:55-64. [PMID: 34969477 DOI: 10.1016/j.jes.2021.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 06/14/2023]
Abstract
The effects of different chemical oxygen demand (COD) concentrations on the anammox granular sludge with Bamboo Charcoal (BC) addition were evaluated in UASB reactor. The results showed that the average total nitrogen (TN) removal efficiency was reduced from 85.9% to 81.4% when COD concentration was increased from 50 to 150 mg/L. However, the TN removal efficiency of BC addition reactors was dramatically 3.1%-6.4% higher than that without BC under different COD concentrations. The average diameter of granular sludge was 0.13 mm higher than that without BC. The settling velocity was increased by elevated COD concentration, while the EPS and VSS/SS were increased with BC addition. The high-throughput Miseq sequencing analyses revealed that the bacterial diversity and richness were decreased under COD addition, and the Planctomycetes related to anammox bacteria were Candidatus Brocadia and Candidatus Kuenenia. The Metagenomic sequencing indicated that the abundance of denitrification related functional genes all increased with elevated COD, while the abundance of anammox related functional genes of decreased. The functional genes related to anammox was hydrazine synthase encoding genes (hzsA, hzsB and hzsB). The average relative abundance of hzs genes in the reactor with BC addition was higher than the control at COD concentrations of 50 mg/L and 150 mg/L. The functional genes of denitrification mediated by BC were higher than those without BC throughout the operation phase. It is interesting to note that BC addition greatly enriched the related functional genes of denitrification and anammox.
Collapse
Affiliation(s)
- Menglei Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ying Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junxiang Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qianfei Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qun Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Adams Mabruk
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
11
|
Wu H, Zhang Q, Chen X, Zhu Y, Yuan C, Zhang C. The influence mechanism of DO on the microbial community and carbon source metabolism in two solid carbon source systems. ENVIRONMENTAL RESEARCH 2022; 206:112410. [PMID: 34801546 DOI: 10.1016/j.envres.2021.112410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The regulation mechanism of parameters on microorganisms and carbon source metabolism of solid carbon source simultaneous nitrification and denitrification (SND) process is not clear. In this paper, the effects of dissolved oxygen (DO) and biodegradable polymer (BDPs) types ((Polycaprolactone, PCL) and (Polybutylene succinate, PBS)) on treatment performance and microbial characteristics were investigated. The results show that the total nitrogen (TN) removal efficiency of SND process using PBS and PCL as fillers reached 93.02% and 97.28% under optimal parameter of DO 5 mg/L, respectively. The dominant genus with nitrogen removal performance in the PCL carbon source system are Hydrogenophaga and Acidovorax, and the main genus in the PBS system are Acidovorax and unclassified_Comamonadaceae. The co-metabolic network in PCL is more complex and easier to be regulated by DO. The BDPs types mainly affect the co-metabolic network with nodes of Thiothrix and Chryseomicrobium, ultimately leading to changes in the community structure. By comparison, BDPs types have a more significant impact on community structure than DO under low DO conditions (1 and 2 mg/L), but not under high DO condition(5 mg/L). Further, the distribution of functional enzymes may conflict between nitrification and carbon source degradation under high DO condition. Controlling the DO within the range of 2 mg-5 mg can further improve carbon source utilization efficiency.
Collapse
Affiliation(s)
- Heng Wu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Xue Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yunan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunbo Yuan
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chu Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
12
|
Wang S, Jiang J, Zhao Q, Wang K. Effects of substrate type on variation of sludge organic compounds, bioelectric production and microbial community structure in bioelectrochemically-assisted sludge treatment wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114548. [PMID: 35078061 DOI: 10.1016/j.jenvman.2022.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/25/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
A bioelectrochemical assisted sludge treatment wetland (BE-STW) is a promising technology used in the elimination of organic compounds and recovery of bio-energy. In this study, four BE-STW systems were constructed to investigate the effects of some substrates (i.e. graphite particles, zeolite, ceramsite, and gravel) on organic compounds biodegradation and transformation, electricity production, and anodic bacterial community. The maximum output voltages were 0.939, 0.870, 0.741 and 0.835 V, and the maximum power densities were 0.467, 0.143, 0.110, and 0.131 W/m3 for the graphite particles (BS-GP), zeolite (BS-Z), ceramsite (BS-C), and gravel (BS-G) systems, respectively. Also, the dissolved organic carbon (DOC) removal rates were 61.84%, 28.54%, 25.56%, and 18.34% in BS-GP, BS-G, BS-Z, and BS-C, respectively. The degradation of aromatic compounds in sludge extracellular biological organic matter (EBOM) was mainly due to the decrease of hydrophilic fraction (HPI) and transphilic acid fraction (TPI-A) contents. Moreover, aromatic proteins were preferentially removed in BS-Z. For BS-C, the tyrosine-like proteins and humic acid-like substances in TPI-A were totally removed. An excitation-emission matrix (EEM) analysis showed that the fluorescent intensity of the humic acid-like substances was the lowest in BS-GP, and no fluorescence peaks of fulvic acid-like substances were observed. Finally, at the genus level, Longilinea, Terrimonas, Ottowia, and Saccharibacteria_genera_incertae_sedis were the dominant bacteria in BE-STW, and Methylophilus was also only detected in BS-GP. These results confirmed that substrate materials have a significant impact on the preferentially degraded organic matter in BE-STWs, which can provide a theoretical basis for the practical application of STW in the future.
Collapse
Affiliation(s)
- Shutian Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKLPEE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Qingliang Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
13
|
Wang Q, He J. Partnering of anammox and denitrifying bacteria benefits anammox's recovery from starvation and complete nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152696. [PMID: 34974008 DOI: 10.1016/j.scitotenv.2021.152696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The cooperative metabolic activity of anammox and denitrifying bacteria could speed up anammox's recovery and reduce nitrate generated from the anammox reaction. In this study, a laboratory-scale model system containing a defined anammox culture AMX and a simultaneous nitrification and denitrification (SND) bacterium - Thauera sp. strain SND5 was established and investigated. Several lines of evidence revealed that strain SND5 consumed soluble microbial products (SMPs) generated by culture AMX (as high as 1.5 mg/L), stimulating anammox activity after long-term starvation. At low C/N ratios with an optimal C/N of 1, SND5 completely consumed organic carbon first at anoxic condition, storing carbon intracellularly as poly-β-hydroxybutyrate (PHB) (as high as 0.6 mg/L biomass), thereby creating a favorable environment for the growth of anammox bacteria. The anammox reaction and nitrate reduction supported by PHB catabolism could then proceed simultaneously, resulting in enhanced nitrogen removal. Cooperative interactions between anammox and denitrifying bacteria involving SMPs consumption and PHB synthesis may play a significant role in nitrogen cycling at nitrite- and carbon-limited environments.
Collapse
Affiliation(s)
- Qingkun Wang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
14
|
Wang S, Zhao Q, Jiang J, Wang K. Insight into the organic matter degradation enhancement in the bioelectrochemically-assisted sludge treatment wetland: Transformation of the organic matter and microbial community evolution. CHEMOSPHERE 2022; 290:133259. [PMID: 34914954 DOI: 10.1016/j.chemosphere.2021.133259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Sludge treatment wetland (STW) has been widely used to dewater and mineralize the various sludge, but the low degradation ability of organic matter can limit its application. Bioelectrochemistry has been proven to accelerate the degradation of organic compounds and recover bioenergy from the sludge. In this study, a bioelectrochemical-assisted sludge treatment wetland (BE-STW) system was constructed to determine the most common types of degraded organic matter and the functional bacterial community. It was found that the bioelectrochemistry process contributed to a further removal of the total chemical oxygen demand (TCOD) by 19% (±0.6) and the additional soluble chemical oxygen demand (SCOD) value was 64.10% (±0.63), with a voltage output of 0.961 V and a power density of 0.351 W/m3. The hydrophilic and hydrophobic acid fractions of the sludge were preferentially removed in BE-STW. The tryptophan-like protein and fulvic acid-like substances were totally removed, whereas, the hydrolysis of aromatic organic compounds in the neutral and hydrophobic acid fractions was enhanced. Also, the enrichment of Longilinea and Methylophilus improved the hydrolysis of organic matter. Moreover, the high relative abundance of Thauera, Dechloromonas, and Syntrophorhabdus could accelerate the degradation of aromatic compounds in the BE-STW system. The bacteria from the genus Geobacter was predominantly detected (2.48%) in the anodic biofilm on BE-STW. The results showed that bioelectrochemistry could improve the sludge stabilization degree in STW, accelerate the organic matter degradation and hydrolysis efficiency, and harvest bioelectricity, simultaneously. This technology can provide a new pathway to increase the efficiency of the traditional STW systems.
Collapse
Affiliation(s)
- Shutian Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Junqiu Jiang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
15
|
Ma XL, He EJ, Cao FT, Fan YY, Zhou XT, Xiao X. Re-evaluation of the environmental hazards of nZnO to denitrification: Performance and mechanism. CHEMOSPHERE 2022; 291:132824. [PMID: 34752835 DOI: 10.1016/j.chemosphere.2021.132824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have shown that zinc oxide nanoparticles (nZnO) have an inhibitory effect on wastewater biotreatment, where doses exceeding ambient concentrations are used. However, the effect of ambient concentrations of ZnO (<1 mg/L) on anaerobic digestion processes is not clear. Herein, this study comprehensively explored the impact of nZnO on the denitrification performance and core microbial community of activated sludge under ambient concentrations. Results showed that only 0.075 mg/L nZnO had shown a beneficial effect on nitrogen removal by activated sludge. When nZnO concentration reached 0.75 mg/L, significant enhancement of nitrate reduction and mitigation of nitrite accumulation were observed, indicating a remarkable stimulatory effect on nitrogen removal. Simultaneously, nZnO could weaken the sludge surface charge and improve the secretion of extracellular polymeric substances, thus enhancing sludge flocculation for denitrification. Microbial community analysis revealed that nZnO exposure increased the relative abundance of denitrifying bacteria, which could contribute to the reinforcement of traditional denitrification. Furthermore, exogenous addition of NH4+ significantly inhibited the accumulation of nitrite, implying that nZnO had a potential to improve the denitrification process via a partial denitrification-anammox pathway. Considering current ambient concentration, the stimulatory effect shown in our work may better represent the actual behavior of ZnO in wastewater biotreatment.
Collapse
Affiliation(s)
- Xiao-Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - En-Jing He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Feng-Ting Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang-Tong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
16
|
Zhang F, Peng Y, Wang Z, Jiang H, Ren S, Qiu J, Zhang L. An Innovative Process for Mature Landfill Leachate and Waste Activated Sludge Simultaneous Treatment Based on Partial Nitrification, In Situ Fermentation, and Anammox (PNFA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1310-1320. [PMID: 34941249 DOI: 10.1021/acs.est.1c06049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An innovative partial nitrification, in situ fermentation, and Anammox (PNFA) system was developed to achieve mature landfill leachate and waste activated sludge simultaneous treatment. Three separate sequencing batch reactors (SBRs) were used for partial nitrification (PN-SBR), integrated fermentation-denitrification (IFD-SBR), and partial nitrification-Anammox (PNA-SBR). After 200 days of continuous operation, a satisfactory nitrogen removal efficiency (NRE) of 99.2 ± 0.1% was obtained, with an effluent total nitrogen (TN) of 15.2 ± 3.2 mg/L. In IFD-SBR, the volatile fatty acids generated from fermentation drove efficient denitrification, obtaining sludge and nitrogen reduction rates of 4.2 ± 0.7 and 0.61 ± 0.04 kg/m3·day, respectively. Furthermore, unwanted fermentation metabolites (134.1 mg/L NH4+-N) were further treated by PNA-SBR using a combination of step-feed and intermittent aeration strategies. In PNA-SBR, Anammox significantly contributed to 82.1% nitrogen removal, and Anammox bacteria (Candidatus Brocadia, 2.3%) mutually benefited with partially denitrifying microorganisms (Thauera, 4.2%), with 66.3% of generated nitrate reduced to nitrite and then reutilized in situ by Anammox. Compared with the conventional nitrification-denitrification process, PNFA reduced oxygen energy consumption, external carbon source dosage, and CO2 emission by 21.3, 100, and 38.9%, respectively, and obtained 50.1% external WAS reduction efficiency.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
17
|
Hu T, Peng Y, Yuan C, Zhang Q. Enhanced nutrient removal and facilitating granulation via intermittent aeration in simultaneous partial nitrification endogenous denitrification and phosphorus removal (SPNEDpr) process. CHEMOSPHERE 2021; 285:131443. [PMID: 34329129 DOI: 10.1016/j.chemosphere.2021.131443] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
A novel simultaneous partial nitrification, endogenous denitrification and phosphorus removal (SPNEDpr) system was operated for 213 days in a sequencing batch reactor to treat real domestic sewage. The nutrient removal was achieved under an operation mode of intermittent aeration at unequal intervals with low oxygen concentrations. Through optimizing intermittent aeration conditions, the removal efficiencies of total inorganic nitrogen (TIN), PO43-P and chemical oxygen demand (COD) reached 78.40%, 98.13% and 84%, respectively. Low-oxygen (0.1-0.7 mg/L) and intermittent aeration effectively inhibited nitrite oxidation bacteria (NOB), maintaining stable partial nitrification with nitrite accumulation ratio of 96.45%. Notably, intermittent aeration promoted the formation of aerobic granular sludge, with the sludge particle size increasing from 217.2 ± 5.3 to 351.8 ± 4.8 μm, thereby enhancing the TIN loss efficiency (81.3%). The predominant genus was Candidatus_Competibacter (11.6%), which stored COD as intracellular carbon source and performed the endogenous denitrification. The SPNEDpr process provided a highly efficient and economical method for treating urban sewage.
Collapse
Affiliation(s)
- Tiantian Hu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| | - Chuansheng Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
18
|
Combined impact of TiO2 nanoparticles and antibiotics on the activity and bacterial community of partial nitrification system. PLoS One 2021; 16:e0259671. [PMID: 34780518 PMCID: PMC8592496 DOI: 10.1371/journal.pone.0259671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of TiO2 nanoparticles (nano-TiO2) together with antibiotics leaking into wastewater treatment plants (WWTPs), especially the partial nitrification (PN) process remain unclear. To evaluate the combined impact and mechanisms of nano-TiO2 and antibiotics on PN systems, batch experiments were carried out with six bench-scale sequencing batch reactors. Nano-TiO2 at a low level had minimal effects on the PN system. In combination with tetracycline and erythromycin, the acute impact of antibiotics was enhanced. Both steps of nitrification were retarded due to the decrease of bacterial activity and abundance, while nitrite-oxidizing bacteria were more sensitive to the inhibition than ammonia-oxidizing bacteria. Proteobacteria at the phylum level and Nitrosospira at the genus level remained predominant under single and combined impacts. The flow cytometry analysis showed that nano-TiO2 enhanced the toxicity of antibiotics through increasing cell permeability. Our results can help clarify the risks of nano-TiO2 combined with antibiotics to PN systems and explaining the behavior of nanoparticles in WWTPs.
Collapse
|
19
|
Wang H, Yan Y, Zhang L, Wang Y. Response of antioxidant defense to oxidative stress induced by H 2O 2 and NO in anammox bacteria. CHEMOSPHERE 2021; 282:131008. [PMID: 34082311 DOI: 10.1016/j.chemosphere.2021.131008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Exposure to the stressful environment results in excessive generation of reactive oxygen species (ROS) or reactive nitrogen species (RNS) in anaerobes, which causes deterioration of microbial activities in biological wastewater treatment systems. Although the genes involved in oxidative stress defense have been primarily identified in the genome of Candidatus Kuenenia stuttgartiensis (a typical anammox species), their function is still not verified. Therefore, the expression of putative antioxidation genes kat, sor, and sod in anammox bacteria was studied by in situ transcription and function validated by heterologous expression under the typical ROS (H2O2) and RNS (NO) stress. After H2O2 and NO additions, the genes involved in the anammox central metabolism (nirS, hzsB, and hdh) were immediately down expressed consistent with the decreased anammox activity. However, the expression of putative antioxidation gene kat did not rise when exposed to H2O2; whereas, its encoding protein KAT enhanced the antioxidant actively of anammox bacteria by H2O2 decomposition like the oxidoreductase enzyme catalase. The sod and sor gene were upregulated with NO treatment, and SOD and SOR can combine with NO and decrease its concentration efficiently. These confirmed the important role of kat, sod, and sor as ROS/RNS scavengers in anammox bacteria, with which anammox bacteria protect themselves when they are exposed to the stressful environment. These verified functional enzymes provide directions for the future regulation of anammox systems, which helps to mitigate the inhibitory effect of the stressful environment on anammox bacteria.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| | - Lingmin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
20
|
Sun T, Du R, Dan Q, Liu Y, Peng Y. Rapidly achieving partial nitrification of municipal wastewater in enhanced biological phosphorus removal (EBPR) reactor: Effect of heterotrophs proliferation and microbial interactions. BIORESOURCE TECHNOLOGY 2021; 340:125712. [PMID: 34426242 DOI: 10.1016/j.biortech.2021.125712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Stable nitritation is the major challenge for short-cut nitrogen removal from municipal wastewater. This paper demonstrated a rapid achievement of partial nitrification (PN) in an enhanced biological phosphorus removal (EBPR) reactor treating domestic wastewater. Polyphosphate accumulating organisms (PAOs) were enriched operated at a short aerobic HRT (2.0 h) and SRT (10 d), with satisfactory phosphorus removal efficiency (95.9%). Both of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were elutriated simultaneously. Interestingly, AOB recovered much faster than NOB by a subsequent extension of aerobic HRT and SRT, resulting in a rapid development of PN within 15 days. Ammonia oxidation rates of AOB significantly increased by 44.2%, facilitating a high nitrite accumulation rate (NAR) of 95.8%. Genus Tetrasphaera, Halomonas, Paracoccus and Candidatus_Accumulibacter belonging to PAOs accounted for 4.6%. The proliferation of heterotrophs, typically as PAOs, maximized the microbial competition against NOB by favoring AOB activity and synergy with functional bacteria.
Collapse
Affiliation(s)
- Tiantian Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Ying Liu
- Zhongshan Public Utilities Water Co.Ltd., Zhongshan 528400, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
21
|
Wu H, Zhang Q, Chen X, Zhu Y, Yuan C, Zhang C, Zhao T. Efficiency and microbial diversity of aeration solid-phase denitrification process bioaugmented with HN-AD bacteria for the treatment of low C/N wastewater. ENVIRONMENTAL RESEARCH 2021; 202:111786. [PMID: 34339699 DOI: 10.1016/j.envres.2021.111786] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
To evaluate the simultaneous nitrification and denitrification (SND) performance of the aeration solid-phase denitrification (SPD) process and improve the operating efficiency, aeration SPD process using polybutanediol succinate as carbon source was optimized and the process was bioaugmented with heterotrophic nitrification-aerobic denitrification bacteria for the treatment of real wastewater. The results showed that after bioaugmentation, the total nitrogen removal efficiency of the aeration SPD process increased by 50.46 % under condition of dissolved oxygen (DO) 3 mg/L. According to Illumina MiSeq sequencing and correlation analyses, the microbial community can perform SND under the conditions of DO 5 mg and HRT 6 h, but is susceptible to DO. Bioaugmentation mainly affected the carbon source metabolic network with heterotrophic bacteria Methyloversatilis, Thiothrix, and norank_Lentimicrobiaceae as nodes to change the community structure, thereby improving the performance of the functional microbial community. Kyoto Encyclopedia of Genes and Genomes analysis suggested that narB, narG, narH, nirK and narI were the key genes involved in the response to bioaugmentation. This work provides new insights for the application of the SPD process in wastewater treatment.
Collapse
Affiliation(s)
- Heng Wu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Xue Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yunan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunbo Yuan
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chu Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
22
|
Wang W, Li D, Li S, Wei Z, Zeng H, Zhang J. Insight into enrichment of anaerobic ammonium oxidation bacteria in anammox granulation under decreasing temperature and no strict anaerobic condition: Comparison between continuous and sequencing batch feeding strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147601. [PMID: 34000529 DOI: 10.1016/j.scitotenv.2021.147601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
A continuous flow reactor (CFR) and a sequencing batch reactor (SBR) were operated in parallel to investigate the difference between anammox granulation in CFR and SBR under decreasing temperature and no strict anaerobic condition. The results showed that the biomass achieved initial granulation successfully (D [4, 3] = 280.44 and 346.28 μm) in both CFR and SBR on day 70. Compared with SBR, a better performance (0.33 kg N m-3 d-1) was gotten in CFR due to a better retention capacity of biomass (1397 mg L-1), when seasonal drop of water temperature occurred (18-14 °C). Thus, different operations led to different granulation styles of anammox. Granules in CFR had better rheological properties than that in SBR. Based on a stable and suitable environment provided by CFR, anaerobic ammonium oxidation bacteria (AnAOB) are able to self-aggregate easily and secret extracellular polymeric substances (EPS), which can capture other bacteria as home guardians. In SBR, AnAOB live inside the tan granules under the protection of other bacteria and thick EPS; other aggregations stick to solid carrier surface to form biofilm.
Collapse
Affiliation(s)
- Wenqiang Wang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
23
|
Ryu J, Jung J, Park K, Song W, Choi B, Kweon J. Humic acid removal and microbial community function in membrane bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126088. [PMID: 34229409 DOI: 10.1016/j.jhazmat.2021.126088] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
A membrane bioreactor with humic acid substrate (MBR-H) was operated to investigate organic removal and membrane performance. Approximately, 60% of chemical oxygen demand removal was observed in MBR-H. The biosorption capacity reached to the maximum value of 29.2 mg g-1 in the experiments with various activated sludge concentrations and the amount adsorbed on the newly produced microbes was limited. To understand key functions of microorganisms in the biodegradation of humic acid, the microbial community was examined. The dominant phylum was changed from Actinobacteria at the raw sludge to Proteobacteria at the MBR-H. Especially, great increases of β-, γ-, and δ-Proteobacteria in the MBR-H indicated that those class of Proteobacteria played a vital role in humic acid removal. Investigation at the genus level showed enrichment of Stenotrophobacter in the MBR-H, which indicated the presence of metabolites in the proposed humic substance degradation pathway. In addition, the bacteria producing extracellular polymeric substances were increased in the MBR-H. Substantial variation of microbial community function was occurred in the MBR to degrade humic acid. Operational parameters in MBRs might be sought to maintain water permeability and to obtain preferable condition to evolution of microbial consortia for degradation of the refractory organic matter.
Collapse
Affiliation(s)
- JunHee Ryu
- Department of Environmental Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - JaeHyun Jung
- HANSU Technical Service Ltd., Bundang Techno-Park, 145 Yatap-Dong, Bundang-Gu, Sungnam-City, Kyunggi-Do 13510, Republic of Korea.
| | - KiYoung Park
- Department of Environmental Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - WonJung Song
- Department of Environmental Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - ByeongGyu Choi
- Water Supply and Sewerage Research Division, Environmental Infrastructure Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Republic of Korea.
| | - JiHyang Kweon
- Department of Environmental Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
24
|
Chen H, Tu Z, Wu S, Yu G, Du C, Wang H, Yang E, Zhou L, Deng B, Wang D, Li H. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. CHEMOSPHERE 2021; 278:130436. [PMID: 33839386 DOI: 10.1016/j.chemosphere.2021.130436] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 05/05/2023]
Abstract
To solve the bottleneck of the unstable accumulation of nitrite in the partial nitrification (PN)-anammox (AMX) in municipal wastewater treatment, a novel process called partial denitrification (PD)-AMX has been developed. PD-AMX, which is known for cost-efficiency and environmental friendliness, has currently exhibited a promising potential for the removal of biological nitrogen from municipal wastewater and has attracted much research interest regarding its process mechanisms, as well as its practical applications. Here, we review the recent advances in the PD process and its coupling to the anammox process, including the development, basic principles, main characteristics, and critical process parameters of the stable operation of the PD-AMX process. We also explore the microbial community and its characteristics in the system and summarize the knowledge of the dominant bacteria to clarify the key factors affecting PD-AMX. Then, we introduce the engineering feasibility and economic feasibility as well as the potential challenges of the process. The induction and implementation of partial denitrification and maintenance of mainstream anammox are critical issues to be urgently solved. Meanwhile, the implementation of a full mainstream anammox application remains burdensome, while the mechanism of partial denitrification coupled to anammox needs to be further studied. Additionally, stable operation performance and process control1 methods need to be optimized or developed for the PD-AMX system for better engineering practice. This review can help to accelerate the research and application of the PD-AMX process for municipal wastewater treatment.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Guanlong Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Chunyan Du
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Lu Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Bin Deng
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
25
|
Wang C, Gao H, Chen J, Wang P, Zhang J, Hu Y, Pan Y. Long-term effects of decabromodiphenyl ether on denitrification in eutrophic lake sediments: Different sensitivity of six-type denitrifying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145147. [PMID: 33609823 DOI: 10.1016/j.scitotenv.2021.145147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 05/28/2023]
Abstract
The widespread use of polybrominated diphenyl ethers inevitably results in their increased release into natural waters and subsequent deposition in sediments. However, their long-term effects on the bacteria participating in each step of denitrification in eutrophic lake sediments are still unknown. Here, we conducted a one-year microcosm experiment to determine the long-term effects of decabromodiphenyl ether (BDE-209), at low (2 mg kg-1 dry weight) and high (20 mg kg-1 dry weight) contamination levels, on six-type denitrifying bacteria and their activities in sediments collected from Taihu Lake, a typical eutrophic lake in China. At the end of the experiment, sediment denitrifying reductase activities were inhibited by BDE-209 at both levels, with the greatest inhibition seen for nitric oxide reductase activity. The higher nitrate concentration in the contaminated sediments was attributed to the inhibition of nitrate reductase activities. The abundances of six-type denitrifying genes (narG, napA, nirK, nirS, norB, and nosZ) significantly decreased under high BDE-209 treatment, and narG and napA genes were more sensitive to the toxicity of BDE-209. The results from pyrosequencing showed that BDE-209, at either treatment concentration, decreased the six-type denitrifying bacterial diversities and altered their community composition. This shift of six-type denitrifying bacterial communities might also be driven by the debrominated products concentrations of BDE-209 and variations in sediment inorganic nitrogen concentrations. In particular, some genera from phylum Proteobacteria such as Pseudomonas, Cupriavidus, and Azoarcus were decreased significantly because of BDE-209 and its debrominated products.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
26
|
Li J, Peng Y, Gao R, Yang L, Deng L, Zhao Q, Liu Q, Li X, Zhang Q, Zhang L. Highly enriched anammox within anoxic biofilms by reducing suspended sludge biomass in a real-sewage A 2/O process. WATER RESEARCH 2021; 194:116906. [PMID: 33609908 DOI: 10.1016/j.watres.2021.116906] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
This study proposes a novel strategy of stably enriching anammox in mainstream, based on the competitive difference to NO2- between anoxic biofilms and suspended sludge. A modified anaerobic-anoxic-oxic (A2/O) process run for 500 days with actual municipal wastewater. Microbial analysis revealed that anoxic-carrier biofilms had a significantly higher abundance of anammox (qPCR: 0.74% - 4.34%) than suspended sludge (P< 0.001). Batch tests showed that anammox within anoxic-carrier biofilms contributed to significant nitrogen removal, coupled with partial-denitrification (NO3- → NO2-). The anammox genus, Ca. Brocadia, was highly enriched when suspended sludge was accidentally lost. Further batch tests found that reducing suspended biomass helped anammox enrichment in anoxic-carrier biofilms, because the suspended sludge had strong NO2- competition (NO2- → N2) with anammox (increased nirK). Metagenomic sequencing revealed that Ca. Brocadia dominates in the anoxic-carrier biofilms, and is the most important narG contributor to NO3- → NO2-, which could have promoted the competition of NO2- with heterotrophic bacteria. For this A2/O process, the low effluent total nitrogen (8.9 mg ± 1.0 mg N/L) was attributed to partial-denitrification coupling with anammox, demonstrating that this process is applicable to the general influent N-concentration range (30 mg - 50 mg NH4+-N/L) of municipal wastewater treatment plants (WWTPs). Based on the special competitive preference of anammox for NO2-, this study provides a promising and practical alternative for enriching anammox bacteria in municipal WWTPs.
Collapse
Affiliation(s)
- Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lan Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
27
|
Jeong D, Bae H. Insight into functionally active bacteria in nitrification following Na + and Mg 2+ exposure based on 16S rDNA and 16S rRNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143592. [PMID: 33277005 DOI: 10.1016/j.scitotenv.2020.143592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Despite increasing interests in osmotic membrane bioreactors, the information regarding the bacterial toxicity effects of reversely transported draw solute (RTDS) is limited. In this study, two representative draw solutes (NaCl and MgCl2) were used at different concentrations (0, 2.5, 5.0, 7.5 and 10.0 g/L) to evaluate their toxicity in a continuous nitrifying bioreactor. Notably, Mg2+ selectively inhibited the activity of ammonia-oxidizing bacteria (AOB), which decreased to 11.3% at 7.5 g-Mg2+/L. The rRNA-based analysis was more effective than the rDNA-based analysis to elucidate the relationship between active communities of nitrifying bacteria and the actual nitrifying performance. Nitrosomonas europaea, a representative AOB, was vulnerable to Mg2+ in comparison to Na+. In contrast, the dominant nitrite-oxidizing bacteria (NOB), Nitrobacter winogradskyi and Nitrolancea hollandica, maintained a relevant level of relative abundance for achieving nitrite oxidation after exposure to 10 g/L Na+ and Mg2+. This fundamental inhibition information of the draw solute can be applied to set the operational regime preventing the critical solute concentration in mixed liquor of nitrifying OMBRs.
Collapse
Affiliation(s)
- Dawoon Jeong
- Institute of Environmental Research, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea.
| | - Hyokwan Bae
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
28
|
Zhou S, Wang J, Peng S, Chen T, Yue Z. Anaerobic co-digestion of landfill leachate and acid mine drainage using up-flow anaerobic sludge blanket reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8498-8506. [PMID: 33067788 DOI: 10.1007/s11356-020-11207-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was developed and constructed for the treatment of landfill leachate and acid mine drainage (AMD). The removal of chemical oxygen demand (COD), sulfate, and metal ions was studied. The maximum COD and sulfate removal efficiency reached 75% and 69%, respectively, during the start-up phase of the UASB. The hydraulic retention time (HRT) had a significant influence on the system. The maximum removal efficiency for COD and sulfate reached 83% and 78%, respectively, at an HRT of 20 h. The methane production process competed with the sulfate reduction process in the UASB. The fractionation of metals in the sludge was analyzed to facilitate metal recovery in a later processing stage. The most abundant sulfate-reducing bacteria was Desulfobulbus, and the methanogen archaeal community in the reactor was mainly composed of Methanobacterium.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Shuchuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Tianhu Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
29
|
Deng L, Peng Y, Li J, Gao R, Li W, Du R. Enhanced simultaneous nitrogen and phosphorus removal from low COD/TIN domestic wastewater through nitritation-denitritation coupling improved anammox process with an optimal Anaerobic/Oxic/Anoxic strategy. BIORESOURCE TECHNOLOGY 2021; 322:124526. [PMID: 33338942 DOI: 10.1016/j.biortech.2020.124526] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Advanced nitrogen and phosphorus removal in a single-stage suspending-sludge system was achieved by employing a novel Anaerobic/Oxic/Anoxic (AOA) strategy over 200 days. Satisfactory total inorganic nitrogen (TIN) removal efficiency of 90.4% was achieved and effluent phosphorus was below 0.5 mg/L when treating domestic wastewater with the chemical oxygen demand (COD)/TIN as low as 2.98 ± 1.26. Stable nitritation was maintained with the ammonia residual and low dissolved oxygen of 0.2-0.5 mg/L at aerobic stage following by a post anoxic stage. The much higher activity of ammonia oxidation bacteria (12.99 mgN/gVSS/h) was achieved than the nitrite oxidation bacteria (0.09 mgN/gVSS/h). Notably, improved anammox performance was obtained without initial inoculation, contributing 47.4% to TIN removal. The abundance of Nitrosomonas increased from 0.12% to 0.95% (P < 0.001) and self-enrichment of anammox bacteria Ca. Brocadia was confirmed. It provided new insight into the advanced nutrient removal with comprehensible regulation and less aeration requirement.
Collapse
Affiliation(s)
- Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
30
|
Li S, Mu J, Du Y, Wu Z. Study and application of real-time control strategy based on DO and ORP in nitritation-denitrification SBR start-up. ENVIRONMENTAL TECHNOLOGY 2021; 42:114-125. [PMID: 31140936 DOI: 10.1080/09593330.2019.1624297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, nitritation-denitrification SBR was successfully begun within 5 days by maintaining a proper condition (pH > 8, DO 0.1-0.5 mg/L and 29.5 ± 0.5°C) and transient excessive aeration would not cause N-NO3 - accumulation. In the start-up stage, FA had an upward trend and reached to 10.98 mg NH3/L, which could entirely inhibit NOB. On the basis of experimental evidence, DO and ORP showed regular trends of variation and the first derivatives of DO and ORP as process control parameters in a nitritation-denitrification SBR was proposed. During the real-time control period, N-NH4 + in the outlet was less than 2 mg N-NH4 +/L and N-NH4 + removal efficiency was 97%, with nitrite accumulation rate (NAR) reaching 98%. After algorithm optimization by using 'Slope', the first derivatives of DO and ORP curves became smooth and interference signals were eliminated. Pre-aeration could promote nitritation rate from 23.76 mg/L/h to 26.27 mg/L/h and increase the transformation rate of N-NH4 + to N-NO2 - from 48.% to 79.6%. The 16S rDNA analysis showed that real-time control could cause a significant difference in microbial community. Nitrosomonas was the dominant strain in AOB and its relative abundance increased from 0.13% to 0.786%. Nitrospira was inhibited and washed out in nitritation-denitrification sludge.
Collapse
Affiliation(s)
- Shunyi Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiannan Mu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yafei Du
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenjun Wu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People's Republic of China
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, People's Republic of China
| |
Collapse
|
31
|
Guo Y, Li YY. Hydroxyapatite crystallization-based phosphorus recovery coupling with the nitrogen removal through partial nitritation/anammox in a single reactor. WATER RESEARCH 2020; 187:116444. [PMID: 32992148 DOI: 10.1016/j.watres.2020.116444] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
For digestion effluent treatment, while the anammox-based process has been successfully applied for nitrogen removal, in most cases, phosphorus (P) represents another major concern. In this study, a novel process, integrating the partial nitritation/anammox and hydroxyapatite crystallization (PNA-HAP) in a single airlift reactor, was developed for the simultaneous nitrogen removal and P recovery from synthetic digestion effluent. With a stable influent P concentration of 20.0 mg/L, an HRT of 6 h, and alternating increases of influent calcium and ammonium, the final achieved nitrogen removal rate was 1.2 kg/m3/d and the P removal efficiency was 83.0%. The settleability of sludge was desirably enhanced with the calcium addition and a high biomass concentration was achieved in reactor. Quantitative and qualitative analyses confirmed that HAP was the main inorganic content in sludge, which could be harvested for P recovery. According to the Scanning Electron Microscope observation and the Energy Dispersive X-ray spectrometry analysis, the microbes were mainly distributed on the outer layer of the sludge aggregate, while the HAP mainly in the interior. The relevant theoretical calculation also revealed that the sludge discharge manipulation has direct effect on the sludge composition and aggregate structure. In sum, the results are evidence of the feasibility of simultaneous nitrogen removal and P recovery through one-stage PNA-HAP process for digestion effluent.
Collapse
Affiliation(s)
- Yan Guo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
32
|
Achieving Partial Nitrification via Intermittent Aeration in SBR and Short-Term Effects of Different C/N Ratios on Reactor Performance and Microbial Community Structure. WATER 2020. [DOI: 10.3390/w12123485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A sequencing batch reactor (SBR) with an intermittent aeration mode was established to achieve partial nitrification (PN) and the short-term effects of C/N ratios were investigated. Stable nitrite accumulation was achieved after 107 cycles, about 56d, with the average ammonia nitrogen removal efficiency (ARE) and nitrite accumulation rate (NAR) of 96.92% and 82.49%, respectively. When the C/N ratios decreased from 4.64 to 3.87 and 2.32, ARE and NAR still kept a stable and high level. However, when the C/N ratio further decreased to 0.77, nitrite accumulation became fluctuation, and ARE, total nitrogen (TN), and chemical oxygen demand (COD) removal performance declined obviously. Except for four common phyla (Proteobacteria, Bacteroidetes, Chloroflexi, and Actinobacteria) in the wastewater treatment system, Patescibacteria, the newly defined superphylum, was found and became the most dominant phylum in the PN sludge for their ultra-small cell size. The only ammonia oxidation bacteria (AOB), Nitrosomonas, and nitrite oxidation bacteria (NOB), Nitrospira, were detected. The relative abundance of NOB was low at different C/N ratios, showing the stable and effective inhibition effects of intermittent aeration on NOB growth.
Collapse
|
33
|
Shi L, Du R, Peng Y, Li Y. Simultaneous carbon reutilization for primary sludge and stable nitrite production in a hydrolytic acidification coupled with partial denitrification system to treat nitrate contaminant. BIORESOURCE TECHNOLOGY 2020; 318:124062. [PMID: 32916459 DOI: 10.1016/j.biortech.2020.124062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Partial denitrification (PD, nitrate → nitrite) is a promising process for the hazardous nitrate removal by producing nitrite for Anammox. In this study, the startup and performance of PD using slowly biodegradable organic matter in primary sludge was explored by combining with in-situ hydrolytic acidification (HA). Results showed that efficient PD was established with 61.3% nitrite production at an influent nitrate level of 50 mg/L, with a simultaneous 23.1% reduction in volatile sludge mass. Efficient electron donors including acetate (13.2%), dissolved saccharide (11.9%), and intracellular poly-hydroxyalkanoates (22.5%) were generated from sludge HA, jointly promoting desirable nitrite production. Microbial analysis revealed that adding primary sludge significantly increased community diversity; however, the specific genera Dechloromonas (11.9%) and Thauera (10.5%) remained stably enriched to facilitate the efficient sludge reduction and nitrite production. These findings provide a novel strategy for simultaneously treating primary sludge, nitrate contaminant, and domestic wastewater using a HAPD and Anammox process.
Collapse
Affiliation(s)
- Liangliang Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Yanan Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
34
|
Yu H, Wang S, Zuo J, Song Y, Li Y, Zhang Y. In situ elimination of nitrite inhibition on AnAOB by acetate dosing in an up-flow granular anammox reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:139738. [PMID: 32603948 DOI: 10.1016/j.scitotenv.2020.139738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The inhibition of over-accumulated nitrite on anaerobic ammonium oxidation (anammox) activity has been widely reported and intensively studied. Surprisingly, there are limited researches on the strategy to deal with nitrite inhibition. In this work, to eliminate nitrite inhibition in an up-flow granular anammox reactor, acetate dosing (600 mg COD L-1) and simultaneous acetate and denitrifying sludge dosing (600 mg COD L-1 and 1.4 g dry weight L-1) were implemented to temporarily activate microbial denitrification to reduce nitrite, respectively. In two strategies, reactor nitrogen removal and extracellular ATP were resumed to initial levels, while the recovery ratios of intracellular ATP and nitrite removal rate (67.1% and 15.6 mg N h-1) of the former were higher than those (52.5% and 11.2 mg N h-1) of the latter, indicating acetate dosing was more qualified to nitrite removal. Meanwhile, although a decrease of the dominated Ca. Brocadia from 30.7 to 25.8% was not reversed through high-throughput sequencing, acetate dosing did not cause denitrifiers proliferation. As easily implemented acetate dosing was as effective as direct discharge of inhibitory nitrite as the control strategy, it was recommended when nitrite inhibition happened. Additionally, an irregular behavior of nitrate overproduction via nitrite oxidation and the drastic increase of extracellular ATP were detected and proposed as the response of AnAOB to nitrite inhibition.
Collapse
Affiliation(s)
- Heng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Sike Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yuqing Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Huang X, Mi W, Ito H, Kawagoshi Y. Unclassified Anammox bacterium responds to robust nitrogen removal in a sequencing batch reactor fed with landfill leachate. BIORESOURCE TECHNOLOGY 2020; 316:123959. [PMID: 32795870 DOI: 10.1016/j.biortech.2020.123959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Treatment of landfill leachate was conducted in a lab-scale sequencing batch reactor (SBR). The SBR was started through inoculating activated sludge with controlling dissolved oxygen of 0.5-1.0 mg/L. Anammox reaction took place within around three months. The SBR established robust nitrogen removal with incremental NLRs of 0.25-2.17 kg N/m3/d. At the final phase, it achieved elevated nitrogen removals of 1.68-1.91 kg N/m3/d. 16S rRNA gene amplicon sequencing analysis revealed Nitrosomonas, unclassified Anammox bacterium, and diverse denitrifying populations coexisted and accounted for 4.02%, 20.05% and 34.69%, respectively. Phylogenic analysis and average nucleotide identity comparison jointly suggested the unclassified Anammox bacterium potentially pertained to a novel Anammox lineage. The functional profiles' prediction suggested sulfate reduction, arsenate reduction and eliminations of antibiotics and drugs likely occurred in the SBR. The finding from this study suggests contribution of unclassified Anammox bacteria in influencing nitrogen budget in natural and engineering systems is currently being underestimated.
Collapse
Affiliation(s)
- Xiaowu Huang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, PR China; Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan.
| | - Wenkui Mi
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Hiroaki Ito
- Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yasunori Kawagoshi
- Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
36
|
Wang Q, He J. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. WATER RESEARCH 2020; 185:116300. [PMID: 32823196 DOI: 10.1016/j.watres.2020.116300] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Bacteria capable of simultaneous nitrification and denitrification (SND) and phosphate removal could eliminate the need for separate reactors to remove nutrients from wastewater and alleviate competition for carbon sources between different heterotrophs in wastewater treatment plants (WWTPs). Here we report a newly isolated Thauera sp. strain SND5, that removes nitrogen and phosphorus from wastewater via SND and denitrifying-phosphate accumulation, respectively, without accumulation of metabolic intermediates. Strain SND5 simultaneously removes ammonium, nitrite, and nitrate at an average rate of 2.85, 1.98, and 2.42 mg-N/L/h, respectively. Batch testing, detection of functional genes, nitrogenous gas detection and thermodynamic analysis suggested that nitrogen gas, with hydroxylamine produced as an intermediate, was the most likely end products of heterotrophic ammonium oxidation by strain SND5. The generated end products and intermediates suggest a novel nitrogen removal mechanism for heterotrophic ammonium oxidation in strain SND5 (NH4+→NH2OH→N2). Strain SND5 was also found to be a denitrifying phosphate-accumulating organism, capable of accumulating phosphate, producing and storing polyhydroxybutyrate (PHB) as an intracellular source of carbon while using nitrate/nitrite or oxygen as an electron acceptor during PHB catabolism. This study identifies a novel pathway by which simultaneous nitrogen and phosphorus removal occurs in WWTPs via a single microbe.
Collapse
Affiliation(s)
- Qingkun Wang
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576, Singapore.
| |
Collapse
|
37
|
Fernandez M, Pereira PP, Agostini E, González PS. Impact assessment of bioaugmented tannery effluent discharge on the microbiota of water bodies. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:973-986. [PMID: 32556791 DOI: 10.1007/s10646-020-02237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 05/09/2023]
Abstract
Effluents are commonly discharged into water bodies, and in order for the process to be as environmentally sound as possible, the potential effects on native water communities must be assessed alongside the quality parameters of the effluents themselves. In the present work, changes in the bacterial diversity of streamwater receiving a tannery effluent were monitored by high-throughput MiSeq sequencing. Physico-chemical and microbiological parameters and acute toxicity were also evaluated through different bioassays. After the discharge of treated effluents that had been either naturally attenuated or bioaugmented, bacterial diversity decreased immediately in the streamwater samples, as evidenced by the over-representation of taxa such as Brachymonas, Arcobacter, Marinobacterium, Myroides, Paludibacter and Acinetobacter, typically found in tannery effluents. However, there were no remarkable changes in diversity over time (after 1 day). In terms of the physico-chemical and microbiological parameters analyzed, chemical oxygen demand and total bacterial count increased in response to discharge of the treated effluents. No lethal effects were observed in Lactuca sativa L. seeds or Rhinella arenarum embryos exposed to the streamwater that had received the treated effluents. All of these results contribute to the growing knowledge about the environmental safety of effluent discharge procedures.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Paola P Pereira
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
38
|
Li Z, Peng Y, Gao H. Enhanced long-term advanced denitrogenation from nitrate wastewater by anammox consortia: Dissimilatory nitrate reduction to ammonium (DNRA) coupling with anammox in an upflow biofilter reactor equipped with EDTA-2Na/Fe(II) ratio and pH control. BIORESOURCE TECHNOLOGY 2020; 305:123083. [PMID: 32145699 DOI: 10.1016/j.biortech.2020.123083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
A long-term experiment in an anaerobic ammonium oxidation (anammox) reactor showed that anammox consortia could perform a stable and efficient Fe(II)-dependent dissimilatory nitrate reduction to ammonium (DNRA) coupled to the anammox (DNRA-anammox) process by controlling the EDTA-2Na/Fe(II) ratio and pH, with a total nitrogen removal rate (TNRR) of 0.23 ± 0.01 kg-N/m3/d. Anammox bacteria (Candidatus Kuenenia) were the dominant and functional microbes in such a nitrate wastewater treatment system. Visual MINTEQ analysis showed that the EDTA-2Na/Fe(II) molar ratio affected the influent composition of Fe and EDTA species and hence nitrate removal, while pH influenced both nitrate removal and the coupling degree of the Fe(II)-dependent DNRA-anammox process due to its own physiology. The kinetic simulation results showed that excess EDTA-2Na imposed a competitive inhibition on the Fe(II)-dependent DNRA-anammox process, and the Bell-shaped (A), (B), (C) and Ratkowsky models could be used to explore the pH dependency of the Fe(II)-dependent DNRA-anammox process.
Collapse
Affiliation(s)
- Zhixing Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Haijing Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
39
|
Li H, Lai R, Jin Y, Fang X, Cui K, Sun S, Gong Y, Li H, Zhang Z, Zhang G, Zhang Z. Directional culture of petroleum hydrocarbon degrading bacteria for enhancing crude oil recovery. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122160. [PMID: 31999958 DOI: 10.1016/j.jhazmat.2020.122160] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/26/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
An oxygen-constrained system of crude oil reservoir environment was constructed to stimulate the growth of indigenous microbes, such as petroleum hydrocarbon-degrading bacteria. Addition of nitrogen and phosphorus sources was investigated for the growth of petroleum hydrocarbon-degrading bacteria. The results show that nitrates and phosphates stimulated the growth of the bacteria and promoted the biodegradation of crude oil as the sole carbon source in this process. The minimum surface tension was 29.63 mN/m when the amounts of the nitrogen (NaNO3: [Formula: see text] = 2:1) and phosphorus (KH2PO4: NaH2PO4 = 5:2) sources added were 0.8 wt% and 1.4 wt%, respectively. Furthermore, the dominant petroleum hydrocarbon-degrading bacteria were shifted from Arcobacter in production water to Pseudomonas after the first subculture and then to Bacillus after the sixth subculture. The heteroatom groups in the crude oil were biodegraded simultaneously with normal alkanes and alkyl cyclohexanes. Addition of the nutrients resulted in microbial growth, microbial community shift, and enhanced microbial degradation.
Collapse
Affiliation(s)
- Hailan Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China
| | - Ruiqiu Lai
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China
| | - Yulin Jin
- Petrochemical Research Institute, PetroChina Kalamay Petrochemical Co. Ltd., Karamay, 834003, PR China
| | - Xinxiang Fang
- Petrochemical Research Institute, PetroChina Kalamay Petrochemical Co. Ltd., Karamay, 834003, PR China
| | - Kai Cui
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China; Petrochemical Research Institute, PetroChina Kalamay Petrochemical Co. Ltd., Karamay, 834003, PR China
| | - Shanshan Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China
| | - Yejing Gong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China
| | - Haonan Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China
| | - Zhongzhi Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China
| | - Guangqing Zhang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Zhiyong Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China.
| |
Collapse
|
40
|
Ji J, Peng Y, Wang B, Li X, Zhang Q. Synergistic Partial-Denitrification, Anammox, and in-situ Fermentation (SPDAF) Process for Advanced Nitrogen Removal from Domestic and Nitrate-Containing Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3702-3713. [PMID: 32092267 DOI: 10.1021/acs.est.9b07928] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study presents a new method for energy-efficient wastewater treatment that synergizes the partial-denitrification, anammox, and in-situ fermentation (SPDAF) processes in an up-flow reactor. Nitrate-containing wastewater and actual domestic sewage were fed into this SPDAF system, which was operated for 180 days without the addition of external carbon sources and aeration. The total inorganic nitrogen (TIN) removal efficiency reached 93.1% with a low C/N ratio of 1.6, a NO3--N/NH4+-N ratio of 1.13 and a TIN concentration of 92.5 mg N/L. The contribution of anammox to nitrogen removal accounted for 95.6%. Batch tests demonstrated that the partial-denitrification process was able to use organics from either the influent or those produced by fermentation, thus providing nitrite for anammox. Significantly, fermentation played a key role in using the slowly biodegradable organics and provided adequate electron donor for partial-denitrification. Metagenomic sequencing analysis showed that the genera related to partial-denitrification, anammox, and fermentation bacteria were coexisted in this SPDAF system. The key functional genes of anammox bacteria (Hzs, 3986 hits; Hdh, 2804 hits) were highly detected in this study. The abundances of cytoplasmic nitrate reductase (58 706 hits) and periplasmic nitrate reductase (70 540 hits) were much higher than copper nitrite reductase (16 436 hits) and cytochrome cd1 nitrite reductase (14 264 hits), potentially contributing to the occurrence of partial-denitrification. Moreover, different abundances of genes involved in fermentation metabolism suggested that fermentation likely generated easily biodegradable organics for partial-denitrification.
Collapse
Affiliation(s)
- Jiantao Ji
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
41
|
Song J, Li Q, Dzakpasu M, Wang XC, Chang N. Integrating stereo-elastic packing into ecological floating bed for enhanced denitrification in landscape water. BIORESOURCE TECHNOLOGY 2020; 299:122601. [PMID: 31874787 DOI: 10.1016/j.biortech.2019.122601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The effects of stereo-elastic packing, as additional bio-carriers, on nitrogen removal in enhanced ecological floating beds (EFBs) are evaluated. Enhanced EFBs with additional stereo-elastic packing was demonstrated to enhance maximum TN removal efficiency (65.8%) over that of EFBs with plant and ceramisite only (54.9%). Performance enhancement was attributable to a 40.6% increase in sediment N accretion and intensification of denitrification by biomass on other carriers in the presence of stereo-elastic packing. Nonetheless, nitrogen uptake by plants was inhibited slightly. Stereo-elastic packing intensified denitrification rates on plant roots and ceramisite by increasing the attached biomass and enhancing the biomass activity, albeit to different extents. The increase in denitrification rate on plant root by 25.7% was significantly higher than that of 4.6% on ceramisite via increased NO2-N removal. Moreover, bacterial diversity on the carriers was significantly altered, and the enrichment of genera such as Aridibacter, Hyphomicrobium and Gemmobacter promoted denitrification processes.
Collapse
Affiliation(s)
- Jia Song
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Shaanxi, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, China; Key Laboratory of Environmental Engineering, Shaanxi, China; Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Qian Li
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Shaanxi, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, China; Key Laboratory of Environmental Engineering, Shaanxi, China; Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China.
| | - Mawuli Dzakpasu
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Shaanxi, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, China; Key Laboratory of Environmental Engineering, Shaanxi, China; Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Shaanxi, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, China; Key Laboratory of Environmental Engineering, Shaanxi, China; Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Nini Chang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Shaanxi, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi, China; Key Laboratory of Environmental Engineering, Shaanxi, China; Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| |
Collapse
|
42
|
Zhang F, Li X, Wang Z, Jiang H, Ren S, Peng Y. Simultaneous Ammonium oxidation denitrifying (SAD) in an innovative three-stage process for energy-efficient mature landfill leachate treatment with external sludge reduction. WATER RESEARCH 2020; 169:115156. [PMID: 31669903 DOI: 10.1016/j.watres.2019.115156] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
High-loaded ammonia and low-strength organics mature landfill leachate is not effectively treated by conventional biological processes. Herein, an innovative solution was proposed using a three-stage Simultaneous Ammonium oxidation Denitrifying (SAD) process. Firstly, ammonia (1760 ± 126 mg N/L) in wastewater was oxidized to nitrite in a partial nitrification sequencing batch reactor (PN-SBR). Next, 93% PN-SBR effluent and concentrated external waste activated sludge (WAS; MLSS = 23057 ± 6014 mg/L) were introduced to an anoxic reactor for integrated fermentation and denitrification (IFD-SBR). Finally, ammonia (101.4 ± 13.8 mg N/L) released by fermentation in the IFD-SBR and residual 7% nitrite in the PN-SBR were removed through the anaerobic ammonium oxidation (anammox) process in the SAD up-flow anaerobic sludge bed (SAD-UASB). In addition, NO3--N generation during the anammox process could be reduced to nitrite by partial denitrification (PD) and reused as substrate for anammox. A satisfactory total nitrogen (TN) removal efficiency (98.3%), external sludge reduction rate (2.5 kg/m3 d) and effluent TN concentration (16.7 mg/L) were achieved after long-term operation (280 days). The IFD-SBR and SAD-UASB contributed to 81.9% and 12.3% nitrogen removal, respectively. Microbial analysis showed that anammox bacteria (1.5% Candidatus Brocadia) cooperated well with partial denitrifying bacteria (4.3% Thauera) in SAD-UASB, and average nitrogen removal contribution were 83.1% during significant stability of anammox and 9.2% during the denitrification process, respectively. The three-stage SAD process provides an environmental and economic approach for landfill leachate treatment since it has the advantage of 25.4% less oxygen, 100% organic matter savings and 47.9% less external sludge than traditional biological processes.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
43
|
Gao Y, Wang X, Li J, Lee CT, Ong PY, Zhang Z, Li C. Effect of aquaculture salinity on nitrification and microbial community in moving bed bioreactors with immobilized microbial granules. BIORESOURCE TECHNOLOGY 2020; 297:122427. [PMID: 31784249 DOI: 10.1016/j.biortech.2019.122427] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The novel immobilized microbial granules (IMG) shows a significant effect of nitrification for freshwater aquaculture. However, there is lack of evaluation study on the performance of nitrification at high salinity due to the concentration of recycled water or seawater utilization. A laboratory scale moving bed bioreactor (MBBR) with IMG was tested on recycled synthetic aquaculture wastewater for the nitrification at 2.5 mg/L NH3-N daily. The results indicated that IMG showed a high salinity tolerance and effectively converted ammonia to nitrate up to 92% at high salinity of 35.0 g/L NaCl. As salinity increased from near zero to 35.0 g/L, the microbial activity of nitrite oxidation bacteria (NOB) in the IMG decreased by 86.32%. The microbial community analysis indicated that salinity significantly influenced the community structure. It was found that Nitrosomonas sp. and Nitrospira sp. were the dominant genera for ammonia oxidation bacteria (AOB) and NOB respectively at different salinity levels.
Collapse
Affiliation(s)
- Yueshu Gao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xupeng Wang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jialun Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chew Tin Lee
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Pei Ying Ong
- Innovation Center in Agritechnology For Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, 84600 Pagoh, Johor, Malaysia
| | - Zhenjia Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunjie Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
44
|
Zhang F, Peng Y, Li B, Wang Z, Jiang H, Zhang Q. Novel insights into integrated fermentation and nitrogen removal by free nitrous acid (FNA) serving as treatment method. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120835. [PMID: 31352150 DOI: 10.1016/j.jhazmat.2019.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/11/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Free nitrous acid (FNA) has only been studied as the pretreatment of waste activated sludge (WAS). Integrated fermentation and nitrogen removal using FNA as a primary means of treatment are seldom investigated. WAS fermentation was characterized under various FNA concentration. The production of COD, protein, and carbohydrate increased with FNA concentration (in the range of 0.197-1.97 mg/L) before the denitrification process. Volatile fatty acids (VFA) were only produced after complete denitrification. Potential FNA impact on fermentation step found FNA facilitated both solubilization and hydrolysis but inhibited acidification, acetogenesis, and methanogenesis processes. The types of fermentation were determined using threedimensional excitation-emission matrix (EEM) fluorescence spectroscopy. Protein-like substances and Tyrosine/Tryptophan were the most dominant dissolved organic matters (DOMs). The cell decay rate increased from 0.044 to 0.102/d based on the nonlinear fitting for the FNA concentration of 0.197-1.97 mg/L. The microbial biomass mortality reached 92.7% when the FNA in tight extracellular polymeric substances (T-EPS) exceeded 0.04 mg/L. In addition, the microbial diversity and microbial structure were substantially reduced by FNA during long-term operation, while the bacterial abundance associated with hydrolysis and acidification increased significantly.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Baikun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
45
|
Zhang QQ, Bai YH, Wu J, Xu LZJ, Zhu WQ, Tian GM, Zheng P, Xu XY, Jin RC. Microbial community evolution and fate of antibiotic resistance genes in anammox process under oxytetracycline and sulfamethoxazole stresses. BIORESOURCE TECHNOLOGY 2019; 293:122096. [PMID: 31493731 DOI: 10.1016/j.biortech.2019.122096] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The microbial community characteristics, functional and antibiotic resistance genes (ARGs), anammox performance under individual and combined oxytetracycline (OTC) and sulfamethoxazole (SMX) were tested under environmentally relevant levels. The results showed that anammox performance was inhibited when the OTC or SMX concentration increased from 0.5 to 1.0 mg L-1. The absolute abundance of tetX in OTC (3.03 × 106 copies mg-1), SMX (2.80 × 106 copies mg-1) and OTC + SMX (2.03 × 106 copies mg-1) was the highest and one more order of magnitude higher than that of tetG, tetM, intI1, or sul2. The anammox performance in the presence of OTC or SMX was lower than that sum of their independent effects. The enrichment of sludge resistomes with prolonged exposure time and increasing OTC and SMX doses might be due to succession of bacterial hosts and potential elevation of ARGs by horizontal transfer.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yu-Hui Bai
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lian-Zeng-Ji Xu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei-Qin Zhu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Guang-Ming Tian
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiang-Yang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
46
|
Xin X, Qin J. Rapid start-up of partial nitritation in aerobic granular sludge bioreactor and the analysis of bacterial community dynamics. Bioprocess Biosyst Eng 2019; 42:1973-1981. [PMID: 31583435 DOI: 10.1007/s00449-019-02190-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/03/2019] [Indexed: 10/25/2022]
Abstract
The rapid start-up of the partial nitritation process in a laboratory-scale aerobic granular sludge-sequencing batch reactor was successful by controlling low dissolved oxygen and gradually increasing the influent ammonia levels. The microbial community dynamics were analyzed by high-throughput sequencing and quantitative polymerase chain reaction. The microbial communities were significantly affected by the different influent NH4+-N concentrations (77.84, 119.42, 170.31, and 252.21 mg/L) in Phases I, II, III, and IV. The sludge Shannon index in Phases I, II, III, and IV was 3.9, 4.39, 3.47, and 2.13, respectively, which was higher than that of the inoculated sludge (1.62). The dominant class transformed from Alphaproteobacteria and Gammaproteobacteria in Phase I to Betaproteobacteria in Phase IV. Furthermore, Sphingobacteria and Clostridia were the dominant bacteria in Phases III and IV. The quantitative polymerase chain reaction (qPCR) results suggested that Nitrosomonadaceae_uncultured belonging to ammonia-oxidizing bacterium was the dominant species, but the relative abundance of nitrite-oxidizing bacteria (mainly Nitrospira and Nitrobacter) was extremely rare in Phase IV. Furthermore, Thauera, Denitratisoma, and Planctomycetacia were the dominant functional nitrogen removal microbes in Phases III and IV. Some nitrogen removal pathways such as partial nitritation, denitrification, and anaerobic ammonium oxidation co-existed in the partial nitritation process.
Collapse
Affiliation(s)
- Xin Xin
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Jiawei Qin
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| |
Collapse
|
47
|
Cheng YF, Zhang Q, Li GF, Xue Y, Zheng XP, Cai S, Zhang ZZ, Jin RC. Long-term effects of copper nanoparticles on granule-based denitrification systems: Performance, microbial communities, functional genes and sludge properties. BIORESOURCE TECHNOLOGY 2019; 289:121707. [PMID: 31271915 DOI: 10.1016/j.biortech.2019.121707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
The widespread use of copper nanoparticles (CuNPs) has attracted increasing concern because of their potential effects on biological wastewater treatment. However, their effect on granule-based denitrification systems is unclear. Hence, the effects of CuNPs on denitrifying granules were investigated during long-term operation. The results showed that 51.9% of nitrogen removal capacity was lost after exposure to 5 mg L-1 CuNPs, with the amount of Cu(II) gradually increasing with elevating CuNP levels. Moreover, the relative abundance of denitrifying bacteria (Castellaniella) and denitrifying functional genes (nirK, napA, narG and nosZ) obviously decreased. Meanwhile, the specific denitrification activity, the content of extracellular polymeric substances and dehydrogenase activity decreased by 44.0%, 15.2% and 99.9%, respectively, compared to their values in the initial sludge. Considering the downtrend in the abundance of copper resistance genes, it was deduced that the toxicity of CuNPs was mainly or at least partially due to the release of Cu(II).
Collapse
Affiliation(s)
- Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Qian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Gui-Feng Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yuan Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xia-Ping Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Shuang Cai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
48
|
Shi L, Du R, Peng Y. Achieving partial denitrification using carbon sources in domestic wastewater with waste-activated sludge as inoculum. BIORESOURCE TECHNOLOGY 2019; 283:18-27. [PMID: 30897389 DOI: 10.1016/j.biortech.2019.03.063] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Partial denitrification (PD, nitrate → nitrite) using carbon sources in domestic wastewater with waste-activated sludge as inoculum was firstly achieved in this study. Through controlling influent pH at about 9.0 and anoxic reaction time of 1 h in the start-up, the nitrite (NO2--N) production reached as high as 25.2 mg/L, with influent nitrate (NO3--N) of about 30 mg/L and chemical oxygen demand (COD) to NO3--N ratio of 5.9. Furthermore, PD performance remained stable without pH control during subsequent operations. Efficient NO2--N production was closely related to the consumed amount of readily biodegradable COD (Ss) fraction, with optimal Ss/NO3--N ratio of about 3.5. Thauera (19.1%), norank_f__Xanthomonadaceae (5.2%), and Thiobacillus (5.0%) were enriched during the 208-day operation, which may be responsible for high NO2--N production. These findings provided a novel strategy for promoting mainstream PD/Anammox application, without additional nitrite-accumulating denitrifying sludge and external carbon sources.
Collapse
Affiliation(s)
- Liangliang Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
49
|
Rodriguez-Sanchez A, Muñoz-Palazon B, Hurtado-Martinez M, Maza-Marquez P, Gonzalez-Lopez J, Vahala R, Gonzalez-Martinez A. Microbial ecology dynamics of a partial nitritation bioreactor with Polar Arctic Circle activated sludge operating at low temperature. CHEMOSPHERE 2019; 225:73-82. [PMID: 30861385 DOI: 10.1016/j.chemosphere.2019.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/06/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
A lab-scale partial nitritation SBR was operated at 11 °C for 300 days used for the treatment of high-ammonium wastewater, which was inoculated with activated sludge from Rovaniemi WWTP (located in Polar Arctic Circle) in order to evaluate the influence the temperature on the performance, stability and dynamics of its microbial community. The partial nitritation achieved steady-state long-term operation and granulation process was not affected despite the low temperature and high ammonia concentration. The steady conditions were reached after 60 days of operation where the granular biomass was fully-formed and the 50%-50% of ammonium-nitrite effluent was successful achieved. Inoculation with cold adapted inoculum showed to yield bigger, denser granules with faster start-up without necessity of low temperature adaptation period. Next-generation sequences techniques showed that Trichosporonaceae and Xanthomonadaceae were the dominant OTUs in the mature granules. Our study could be useful in the implementation of full-scale partial nitritation reactors in cold regions such as Nordic countries for treating wastewater with high concentration of ammonium.
Collapse
Affiliation(s)
| | - Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Paula Maza-Marquez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | | |
Collapse
|
50
|
Yang T, Liu QF, Hao Q, Fu Z. Quinoline's influence on nitrogen removal performance and microbial community composition of the anammox process. ENVIRONMENTAL TECHNOLOGY 2019; 40:1425-1437. [PMID: 29283317 DOI: 10.1080/09593330.2017.1422556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to evaluate the effects of quinoline on nitrogen removal performance and microbial community of an anaerobic biofilm reactor with anammox activity. Results showed that 20 mg L-1 quinoline addition leading the ammonia and nitrite removal efficiency of the ABR reduced from about 90% to 40%. Illumina MiSeq sequencing study indicated that microbial community structure and composition varied with the additive of quinoline. Planctomycetes and Bacteroidetes, decreased in abundance, suggested that quinoline adversely affects the anammox metabolism within the anammox reactor. The distribution of the anammox bacteria was affected by quinoline addition. Ca. Jettenia prevailed over the other two anammox bacteria (Brodica and Kuenenia) in the recovered phase.
Collapse
Affiliation(s)
- Ting Yang
- a School of Ecology and Environment , Inner Mongolia University , Hohhot , People's Republic of China
- b Inner Mongolia Coal Chemical Industry Wastewater Treatment and Reuse Engineering Technology Research Center , Inner Mongolia University , Hohhot , People's Republic of China
| | - Qi-Feng Liu
- a School of Ecology and Environment , Inner Mongolia University , Hohhot , People's Republic of China
- b Inner Mongolia Coal Chemical Industry Wastewater Treatment and Reuse Engineering Technology Research Center , Inner Mongolia University , Hohhot , People's Republic of China
| | - Qian Hao
- a School of Ecology and Environment , Inner Mongolia University , Hohhot , People's Republic of China
- b Inner Mongolia Coal Chemical Industry Wastewater Treatment and Reuse Engineering Technology Research Center , Inner Mongolia University , Hohhot , People's Republic of China
| | - Zhimin Fu
- a School of Ecology and Environment , Inner Mongolia University , Hohhot , People's Republic of China
- b Inner Mongolia Coal Chemical Industry Wastewater Treatment and Reuse Engineering Technology Research Center , Inner Mongolia University , Hohhot , People's Republic of China
| |
Collapse
|