1
|
Santos DHS, Queiroz LF, Silva Neto LD, Santos KE, das Neves DDCS, Silva AF, Fonseca EJS, Fernandes DP, Meili L. Construction and demolition waste as a low-cost adsorbent for water treatment: kinetics, isotherm, thermodynamics, and Fenton regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35393-1. [PMID: 39461904 DOI: 10.1007/s11356-024-35393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
The present study proposes to investigate the feasibility of using construction and demolition waste (CDW) as an aqueous remediation agent through adsorption. The CDW, with and without chemical and thermal pre-activation, was evaluated to remove the methylene blue (MB) dye from the water solution. Variables interfering with adsorption processes, such as adsorbent dosage, solution pH, and particle size, were evaluated. The material was characterized by pHZPC, FTIR, XRD, SEM, EDS, and TG. The kinetic and equilibrium data better fitted the Elovich and Sips models, respectively. A maximum adsorption capacity of 18.62 mg g-1 at 60 °C was observed. Thermodynamic data indicated that adsorption occurred through a spontaneous and favorable process governed mainly by physical processes. The regeneration studies were carried out using processes based on the Fenton reaction, where the catalytic action of the iron naturally present in the CDW was evaluated. The results showed that the desorption balance was the main limiting factor for the effective regeneration of the saturated material. Adding Fe2+ to the system made this process suitable for the regeneration of the CDW and degradation of the pollutant in the aqueous phase. A regeneration efficiency of 65%, maintained practically constant during five adsorption-regeneration cycles, was observed. These results highlight the high potential of using CDWs as an adsorbent material.
Collapse
Affiliation(s)
- Danilo H S Santos
- Technology Center of Federal, University of Alagoas, Av. Lourival Melo Mota, S/N, Campus A.C. Simões, Tabuleiro Do Martins, Maceió, AL, 57072-970, Brazil
| | - Larissa F Queiroz
- Technology Center of Federal, University of Alagoas, Av. Lourival Melo Mota, S/N, Campus A.C. Simões, Tabuleiro Do Martins, Maceió, AL, 57072-970, Brazil
| | - Luiz D Silva Neto
- Drying Center of Pastes, Suspensions, and Seeds, Department of Chemical Engineering, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, 13565-905, Brazil.
| | - Keven E Santos
- Technology Center of Federal, University of Alagoas, Av. Lourival Melo Mota, S/N, Campus A.C. Simões, Tabuleiro Do Martins, Maceió, AL, 57072-970, Brazil
| | - Denio D C S das Neves
- Technology Center of Federal, University of Alagoas, Av. Lourival Melo Mota, S/N, Campus A.C. Simões, Tabuleiro Do Martins, Maceió, AL, 57072-970, Brazil
| | - Anamália F Silva
- Technology Center of Federal, University of Alagoas, Av. Lourival Melo Mota, S/N, Campus A.C. Simões, Tabuleiro Do Martins, Maceió, AL, 57072-970, Brazil
| | - Eduardo J S Fonseca
- Physics Institute of the Federal University of Alagoas, Lourival Melo Mota, S/N, Campus A.C. Simões, Tabuleiro Do Martins, Maceió, AL, 57072-970, Brazil
| | - Daniel P Fernandes
- Technology Center of Federal, University of Alagoas, Av. Lourival Melo Mota, S/N, Campus A.C. Simões, Tabuleiro Do Martins, Maceió, AL, 57072-970, Brazil
| | - Lucas Meili
- Technology Center of Federal, University of Alagoas, Av. Lourival Melo Mota, S/N, Campus A.C. Simões, Tabuleiro Do Martins, Maceió, AL, 57072-970, Brazil
| |
Collapse
|
2
|
Yi H, Gao B, Zhang X, Liang Y, Zhang J, Su J. Application of waste eggshells elevates phytoremediation efficiency of Pb-Zn mine-contaminated farmland and mitigates soil greenhouse gas emissions: A field study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122947. [PMID: 39423615 DOI: 10.1016/j.jenvman.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Remediating heavy metal (HM)-contaminated farmlands and sequestering soil carbon for emission reduction have been prominent topics in environmental research in recent years. However, few studies have looked into the soil greenhouse gas (GHG) impacts of growing hyperaccumulators in composite HM-contaminated farmland, as well as agronomic measures to remediate soil HMs while mitigating GHG emissions. To investigate fertilization measures to improve phytoremediation efficiency and mitigate GHG emissions, S. photeinocarpum was planted with three different fertilization measures on farmland contaminated by lead-zinc (Pb-Zn) mines (1200 kg ha-1 eggshell, 125 kg ha-1 28-homobrassinolide, and 16.7 kg ha-1 mineral potassium fulvic acid) during its growth period. The findings are as follows: Eggshell application significantly enhanced the translocation factor (TF) of Pb, Zn, and cadmium (Cd) from the roots to the shoots of Solanum photeinocarpum. Moreover, eggshells notably increased the bioaccumulation factor (BCF) of Cd and Pb in plant shoots by 120.75% and 159.09%, respectively. Regarding GHG emissions, the combined application of eggshells and 28-homobrassinolide substantially lowered the global warming potential (GWP) of the soil. Correlation analyses revealed that eggshell application increased the relative abundance of the Gemmatimonadota bacterial phylum in the soil, facilitating Pb and Cd migration from the roots to shoot tissues in S. photeinocarpum. Eggshell use inhibited nitrate nitrogen (NO3--N) transformation into nitrous oxide (N2O) by the Myxococcota bacterial phylum and reduced N2O release from the soil. The application of low-cost eggshells can achieve a win-win situation of soil HM remediation and GHG emission reduction, as well as provide simple and scalable management measures for HM-contaminated farmland.
Collapse
Affiliation(s)
- Haifeng Yi
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Yexi Liang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jie Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jiaohui Su
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
3
|
Zhang X, Ma K, Zhao L, Peng H, Gong Y. EDAC-modified chitosan/imidazolium-polysulfone composite beads for removal of Cr(VI) from aqueous solution. Int J Biol Macromol 2024; 278:134876. [PMID: 39168218 DOI: 10.1016/j.ijbiomac.2024.134876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
To enhance the stability and adsorption performance of chitosan in Cr(VI)-contaminated acidic wastewater, a novel EDAC-modified-EDTA-crosslinked chitosan derivative (CSEC) was synthesized via a one-pot method with chitosan, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC), and Na2EDTA as raw materials. To further improve the mechanical strength and separation performance of CSEC, a novel composite bead (CSEP) of CSEC and imidazolium-functionalized polysulfone (IMPSF) was prepared through a phase inversion method. The chemical composition and microstructure of CSEC and CSEP were characterized by FESEM, FTIR, NMR and XPS techniques. The maximum adsorption capacities of CSEC and CSEP for Cr(VI) were 145.96 and 135.82 mg g-1 at pH 3, respectively, and the equilibrium time for Cr(VI) adsorption by CSEC and CSEP was 5 min and 8 h, respectively. The adsorption process of Cr(VI) by both CSEC and CSEP was exothermic and spontaneous. Compared to CSEC, CSEP has significantly enhanced resistance to interference from coexisting anions. The removal mechanism of Cr(VI) by CSEP might involve redox reaction as well as electrostatic attraction between Cr(VI) oxyanions and various nitrogen cations, including protonated amino groups, guanidinium groups, protonated tertiary amine groups, and imidazolium cations. The CSEP beads have potential application value in the treatment of acidic wastewater containing Cr(VI).
Collapse
Affiliation(s)
- Xiaojie Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kangrui Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liqin Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hong Peng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Nakro V, Lotha TN, Ao K, Ao I, Ritse V, Rudithongru L, Pongener C, Aier M, Sinha D, Jamir L. Recent advances in applications of animal biowaste-based activated carbon as biosorbents of water pollutants: a mini-review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:974. [PMID: 39312095 DOI: 10.1007/s10661-024-13123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Advances in green engineering and technology have revealed a number of environmentally acceptable alternatives for water purification. In line with this, recent advances in biosorption of pollutants from aqueous solutions using animal biowaste-based activated carbon (AC) are reported herein. Apart from the fish scale-derived AC which is extensively documented, animal bones, among the rest others, have been studied most widely, followed by hair and feathers. Out of the various target water pollutants, removal of heavy metals has been mostly studied. Majority of the reports showed the Freundlich isotherm and pseudo second order as the best fit. Few investigations on the thermodynamics of the adsorption studies and reports on the Gibbs free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) have also been discussed in this report. It has been concluded that while plant-based AC has gained wide interest, the same is not true for the animal-based counterpart albeit the latter's potential for high sorption efficiency as seen in the present report.
Collapse
Affiliation(s)
- Vevosa Nakro
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Tsenbeni N Lotha
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Ketiyala Ao
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Imkongyanger Ao
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Vimha Ritse
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Lemzila Rudithongru
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Chubaakum Pongener
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Merangmenla Aier
- Department of Chemistry, National Institute of Technology Nagaland, Chumoukedima, 797103, Nagaland, India
| | - Dipak Sinha
- Department of Chemistry, Nagaland University, Lumami Campus, 798627, Nagaland, India
| | - Latonglila Jamir
- Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India.
| |
Collapse
|
5
|
Adeniyi AG, Emenike EC, Ezzat AO, Iwuozor KO, Abd-Elkader OH, Al-Lohedan HA, Ojeyemi T, Saka HB, Emmanuel SS. Investigating the properties and agronomic benefits of onion peel and chicken feather-derived biochars. Heliyon 2024; 10:e35485. [PMID: 39166064 PMCID: PMC11334878 DOI: 10.1016/j.heliyon.2024.e35485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
Biochar production from unconventional biomass, specifically onion peel (OP) and chicken feathers (CF), was investigated in this study. Two distinct biochars were produced by doping each biomass with the other, with the aim of exploring the synergistic effects of different feedstock combinations on biochar properties. The biochar production process was conducted using a retort heating method and characterized using several techniques. A yield of 36 % was obtained for OP-doped biochar (OP92CF8-BC) and 23 % for CF-doped biochar (F92OP8-BC). Fourier Transform Infrared Spectroscopy analysis revealed characteristic functional groups from cellulose, hemicellulose, and lignin in OP92CF8-BC, while CF92OP8-BC displayed keratin-related peaks. Scanning Electron Microscopy imaging showed surface morphology differences, with OP92CF8-BC exhibiting a rougher and more porous structure compared to CF92OP8-BC. Energy-Dispersive X-ray Spectroscopy analysis confirmed the elemental composition, with OP92CF8-BC having higher carbon, calcium, and sulfur contents and CF92OP8-BC having higher nitrogen and oxygen contents. The biochar had specific surface areas of 342.4 and 200.80 m2/g for OP92CF8-BC and CF92OP8-BC, respectively. According to the results, using biochar treatments-more especially, CF92OP8-BC-can significantly enhance cob weight. This could be good for agricultural productivity. These findings highlight the influence of feedstock composition on the properties of biochar and provide insights for its potential applications in soil amendment and pollutant removal.
Collapse
Affiliation(s)
- Adewale George Adeniyi
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, P. M. B. 1515, Nigeria
| | - Ebuka Chizitere Emenike
- Departments of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Abdelrahman O. Ezzat
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kingsley O. Iwuozor
- Departments of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Omar H. Abd-Elkader
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Harvis Bamidele Saka
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, P. M. B. 1515, Nigeria
| | | |
Collapse
|
6
|
Alehegn M, Gonfa G, Vivekanand PA, Lal B, Baigenzhenov O, Hosseini-Bandegharaei A, Bokov DO, Baisalova G. Valorization of castor seed shell waste as lead adsorbent by treatment with hot phosphoric acid: Optimization and evaluation of adsorption properties. CHEMOSPHERE 2024; 362:142655. [PMID: 38908444 DOI: 10.1016/j.chemosphere.2024.142655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Lead is used in many industries such as refining, mining, battery manufacturing, smelting. Releases of lead from these industries is one of the major public health concerns due to widespread persistence in the environment and its resulting poisoning character. In this work, the castor seed shell (CSS) waste was exploited for preparing a beneficial bio-adsorbent for removal of Pb(II) ions from water. The raw CSS was modified with H3PO4 at different acid concentrations, impregnation ratios, activation times, and temperatures. An optimum adsorption capacity was observed for CSS modified with 2 M acid, 5 mL g-1 solid to liquid ratio, treated at 95 °C for 160 min. Exploiting acid modification, the SEM, XRD, and FTIR analyses show some alterations in functional groups and the surface morphology of the biomass. The impacts of physiochemical variables (initial lead ions concentration, pH, adsorbent dose and adsorption time) on the lead removal percentage were investigated, using response surface methodology (RSM). Maximum removal of 72.26% for raw CSS and 97.62% for modified CSS were obtained at an initial lead concentration (50 mg L-1), pH (5.7), adsorption time (123 min) and adsorbent dosage (1.1 g/100 mL). Isothermal and kinetics models were fitted to adsorption equilibrium data and kinetics data for the modified CSS and the adsorption system was evaluated thermodynamically and from the energy point of view. Isothermal scrutinization indicated the mono-layer nature of adsorption, and the kinetics experimental outcomes best fitted with the pseudo-second-order, implying that the interaction of lead ions and hot acid-treated CSS was the rate-controlling phenomenon of process. Overall, results illustrated that the hot acid-treated biomass-based adsorbent can be considered as an alternative bio-adsorbent for removing lead from water media.
Collapse
Affiliation(s)
- Mulusew Alehegn
- Department of Chemical Engineering, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia
| | - Girma Gonfa
- Department of Chemical Engineering, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia; Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia
| | - P A Vivekanand
- Department of Chemistry, Bharath Institute of Higher Education and Research, Selaiyur, Chennai-600073, India
| | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura-281406, India
| | - Omirserik Baigenzhenov
- Department of Metallurgical Engineering, Satbayev University, 22a Satbaev Str., Almaty, 050013, Kazakhstan.
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai-602105, Tamil Nadu, India
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Galiya Baisalova
- Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satpayev Street, Astana, 010008, Kazakhstan
| |
Collapse
|
7
|
Hao J, Cui Z, Liang J, Ma J, Ren N, Zhou H, Xing D. Sustainable efficient utilization of magnetic porous biochar for adsorption of orange G and tetracycline: Inherent roles of adsorption and mechanisms. ENVIRONMENTAL RESEARCH 2024; 252:118834. [PMID: 38565414 DOI: 10.1016/j.envres.2024.118834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Iron-doped biochar has been widely used as an adsorbent to remove contaminants due to the high adsorption performance, but it still suffers from complicated preparation methods, unstable iron loading, unsatisfactory specific surface area, and uneven distribution of active sites. Here, a novel magnetic porous biochar (FeCS800) with nanostructure on surface was synthesized by one-pot pyrolysis method of corn straw with K2FeO4, and used in orange G (OG) and tetracycline (TC) adsorption. FeCS800 exhibited outstanding adsorption capacities for OG and TC after K2FeO4 activation and the adsorption data were fitted satisfactorily to Langmuir isotherm and Pseudo-second-order kinetic model. The maximum adsorption capacities of FeCS800 for OG and TC were around 303.03 mg/g and 322.58 mg/g, respectively, at 25 °C and pH 7.0, which were 16.27 and 24.61 times higher than that before modification. Thermodynamic studies showed that the adsorption of OG/TC by FeCS800 were thermodynamically favorable and highly spontaneous. And the adsorption capacity of OG and TC by FeCS800 remained 77% and 81% after 5 cycles, respectively, indicating that FeCS800 had good stability. The outstanding adsorption properties and remarkable reusability of FeCS800 show its great potential to be an economic and environmental adsorbent in contaminants removal.
Collapse
Affiliation(s)
- Jiayin Hao
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiliang Cui
- College of National Defense Engineering, Army Engineering University of PLA, Nanjing, 210007, China
| | - Jiale Liang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huihui Zhou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Defeng Xing
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Malbenia John M, Benettayeb A, Belkacem M, Ruvimbo Mitchel C, Hadj Brahim M, Benettayeb I, Haddou B, Al-Farraj S, Alkahtane AA, Ghosh S, Chia CH, Sillanpaa M, Baigenzhenov O, Hosseini-Bandegharaei A. An overview on the key advantages and limitations of batch and dynamic modes of biosorption of metal ions. CHEMOSPHERE 2024; 357:142051. [PMID: 38648988 DOI: 10.1016/j.chemosphere.2024.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Water purification using adsorption is a crucial process for maintaining human life and preserving the environment. Batch and dynamic adsorption modes are two types of water purification processes that are commonly used in various countries due to their simplicity and feasibility on an industrial scale. However, it is important to understand the advantages and limitations of these two adsorption modes in industrial applications. Also, the possibility of using batch mode in industrial scale was scrutinized, along with the necessity of using dynamic mode in such applications. In addition, the reasons for the necessity of performing batch adsorption studies before starting the treatment on an industrial scale were mentioned and discussed. In fact, this review article attempts to throw light on these subjects by comparing the biosorption efficiency of some metals on utilized biosorbents, using both batch and fixed-bed (column) adsorption modes. The comparison is based on the effectiveness of the two processes and the mechanisms involved in the treatment. Parameters such as biosorption capacity, percentage removal, and isotherm models for both batch and column (fixed bed) studies are compared. The article also explains thermodynamic and kinetic models for batch adsorption and discusses breakthrough evaluations in adsorptive column systems. The review highlights the benefits of using convenient batch-wise biosorption in lab-scale studies and the key advantages of column biosorption in industrial applications.
Collapse
Affiliation(s)
- Masamvu Malbenia John
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria
| | - Asmaa Benettayeb
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria.
| | - Mohamed Belkacem
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria; Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Chitepo Ruvimbo Mitchel
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria
| | - Mustapha Hadj Brahim
- Laboratoire de Génie Chimique et de Catalyse Hétérogène, département de Génie Chimique, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria; Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Imene Benettayeb
- Département d'automatique et Informatique Industrielle, Université de Sciences et de la Technologie -Mohamed Boudiaf, USTO-MB, BP 1505, EL-M'NAOUAR, 31000, Oran, Algeria
| | - Boumediene Haddou
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Saleh Al-Farraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Soumya Ghosh
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman; Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa.
| | - C H Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mika Sillanpaa
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait, Kuwait; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India; Division of Research & Development, Lovely Professional University, Phagwara, 144411, Punjab, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Omirserik Baigenzhenov
- Department of Metallurgical Engineering, Satbayev University, Almaty, 050013, Kazakhstan
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| |
Collapse
|
9
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
10
|
Deng W, Kuang X, Xu Z, Li D, Li Y, Zhang Y. Adsorption of Cadmium and Lead Capacity and Environmental Stability of Magnesium-Modified High-Sulfur Hydrochar: Greenly Utilizing Chicken Feather. TOXICS 2024; 12:356. [PMID: 38787135 PMCID: PMC11126130 DOI: 10.3390/toxics12050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Chicken feathers represent a viable material for producing biochar adsorbents. Traditional slow pyrolysis methods often result in sulfur element losses from chicken feathers, whereas hydrothermal reactions generate substantial amounts of nutrient-rich hydrothermal liquor. Magnesium-modified high-sulfur hydrochar MWF was synthesized through magnesium modification, achieving a S content of 3.68%. The maximum equilibrium adsorption amounts of MWF for Cd2+ and Pb2+ were 25.12 mg·g-1 and 70.41 mg·g-1, respectively, representing 4.00 times and 2.75 times of WF. Magnesium modification elevated the sulfur content, pH, ash content, and electronegativity of MWF. The primary mechanisms behind MWF's adsorption of Cd2+ and Pb2+ involve magnesium ion exchange and complexation with C=O/O=C-O, quaternary N, and S functional groups. MWF maintains robust stability and antioxidative properties, even with low aromaticity levels. Given the lower energy consumption during hydrochar production, MWF offers notable carbon sequestration benefits. The hydrothermal solution derived from MWF is nutrient-rich. Following supplementation with inorganic fertilizer, the hydrothermal solution of MWF significantly enhanced bok choy growth compared to the control group. In general, adopting magnesium-modified hydrothermal reactions to produce hydrochar and converting the resultant hydrothermal solution into water-soluble fertilizer proves a viable strategy for the eco-friendly utilization of chicken feathers. This approach carries substantial value for heavy metal remediation and agricultural practices.
Collapse
Affiliation(s)
- Weiqi Deng
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
- WENS Foodstuff Group Co., Ltd., Yunfu 527400, China
| | - Xubin Kuang
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Xu
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Deyun Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Yongtao Li
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yulong Zhang
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
- WENS Foodstuff Group Co., Ltd., Yunfu 527400, China
| |
Collapse
|
11
|
Jia Z, Liang F, Wang F, Zhou H, Liang P. Selective adsorption of Cr(VI) by nitrogen-doped hydrothermal carbon in binary system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:121. [PMID: 38483644 DOI: 10.1007/s10653-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/25/2024] [Indexed: 03/19/2024]
Abstract
Selective adsorption of heavy metal ions from industrial effluent is important for healthy ecosystem development. However, the selective adsorption of heavy metal pollutants by biochar using lignin as raw material is still a challenge. In this paper, the lignin carbon material (N-BLC) was synthesized by a one-step hydrothermal carbonization method using paper black liquor (BL) as raw material and triethylene diamine (TEDA) as nitrogen source. N-BLC (2:1) showed excellent selectivity for Cr(VI) in the binary system, and the adsorption amounts of Cr(VI) in the binary system were all greater than 150 mg/g, but the adsorption amounts of Ca(II), Mg(II), and Zn(II) were only 19.3, 25.5, and 6.3 mg/g, respectively. The separation factor (SF) for Cr(VI) adsorption was as high as 120.0. Meanwhile, FTIR, elemental analysis and XPS proved that the surface of N-BLC (2:1) contained many N- and O- containing groups which were favorable for the removal of Cr(VI). The adsorption of N-BLC (2:1) followed the Langmuir model and its maximum theoretical adsorption amount was 618.4 mg/g. After 5th recycling, the adsorption amount of Cr(VI) by N-BLC (2:1) decreased about 15%, showing a good regeneration ability. Therefore, N-BLC (2:1) is a highly efficient, selective and reusable Cr(VI) adsorbent with wide application prospects.
Collapse
Affiliation(s)
- Zuoyu Jia
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Fengkai Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Haifeng Zhou
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Peng Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
12
|
Vercruysse W, Muniz RR, Joos B, Hardy A, Hamed H, Desta D, Boyen HG, Schreurs S, Safari M, Marchal W, Vandamme D. Co-pyrolysis of chicken feathers and macadamia nut shells, a promising strategy to create nitrogen-enriched electrode materials for supercapacitor applications. BIORESOURCE TECHNOLOGY 2024; 396:130417. [PMID: 38316229 DOI: 10.1016/j.biortech.2024.130417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Global food waste emits substantial quantities of nitrogen to the environment (6.3 Mtons annually), chicken feather (CF) waste is a major contributor to this. Pyrolysis, in particular co-pyrolysis of nitrogen-rich and lignocellulosic waste streams is a promising strategy to improve the extent of pyrolytic nitrogen retention by incorporating nitrogen in its solid biochar structure. As such, this biochar can serve as a precursor for nitrogen-enriched activated carbons for application in supercapacitors. Therefore, this study investigates the co-pyrolysis of CF with macadamia nut shells (MNS) to create nitrogen-rich activated carbons. Co-pyrolysis increased nitrogen retention during pyrolysis from 9 % to 18 % compared to CF mono-pyrolysis, while the porosity was maintained. After removing undesirable inorganic impurities by dilute acid washing, this led to a specific capacitance of 21F/g using a scan rate of 20 mV/s. Finally, cycling stability tests demonstrated good stability with 73 % capacitance retention after 10 000 cycles.
Collapse
Affiliation(s)
- W Vercruysse
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - R R Muniz
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - B Joos
- Design and Synthesis of Inorganic Nanomaterials, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; IMEC vzw, Division Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium; EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - A Hardy
- Design and Synthesis of Inorganic Nanomaterials, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; IMEC vzw, Division Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium; EnergyVille, Thor Park 8320, 3600 Genk, Belgium
| | - H Hamed
- Electrochemical Engineering, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium; IMEC vzw, Division Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - D Desta
- Nano Structure Physics, Materials Physics, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - H-G Boyen
- Nano Structure Physics, Materials Physics, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - S Schreurs
- Nuclear Technology Centre (NuTeC), Centre for Environmental Sciences (CMK), Agoralaan, 3590 Diepenbeek, Belgium
| | - M Safari
- Electrochemical Engineering, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium; IMEC vzw, Division Imomec Associated Laboratory, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - W Marchal
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - D Vandamme
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
13
|
An W, Wang Q, Chen H, Di J, Hu X. Recovery of ammonia nitrogen and phosphate from livestock farm wastewater by iron-magnesium oxide coupled lignite and its potential for resource utilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8930-8951. [PMID: 38183541 DOI: 10.1007/s11356-023-31697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
A new adsorbent called iron-magnesium oxide coupled lignite (CIMBC) was developed to address the challenges of recovering high concentrations of ammonia nitrogen and phosphate in livestock farm wastewater and improving the inefficient use of lignite (BC) with low calorific value. CIMBC was synthesized using the modified ferromagnesium salt double-coating method. The experiments demonstrated that Fe2O3 and MgO could be effectively loaded onto the surface of BC at a Fe/Mg molar ratio of 1:2 and pyrolysis temperature of 500 °C. The optimal conditions for adsorption were determined to be an N/P concentration ratio of 2:1, adsorbent dosage of 1 g/L, and pH of 7. The presence of coexisting cations (Ca2+ and Mg2+) inhibited the removal of ammonia nitrogen but enhanced the removal of phosphate. Likewise, the presence of coexisting anions (CO32- and SO42-) hindered the removal of both ammonia nitrogen and phosphate. The adsorption behavior followed the pseudo-second-order model and the Langmuir model, with a maximum adsorption capacity of 95.69 mg N/g for ammonia nitrogen and 101.32 mg P/g for phosphate. The adsorption process was a spontaneous endothermic process controlled by multiple levels. The main mechanisms of adsorption involved electrostatic attraction, intra-particle diffusion, ion exchange, chemical precipitation, and coordination exchange. After 5 times of adsorption-desorption, the recovery rate of CIMBC is less than 50%, and the removal rate of phosphate is less than 40%. Although the RCIMBC exhibited low reusability, but also it showed potential in removing heavy metals (Pb) from wastewater and for use as a slow-release fertilizer. CIMBC is a promising new adsorbent, which can realize resource utilization of lignite with low calorific value while removing nitrogen and phosphorus.
Collapse
Affiliation(s)
- Wenbo An
- School of Civil Engineering, Liaoning Technical University, 88 Yulong Road, Xihe District, Fuxin, 123000, Liaoning Province, China.
- School of Mining Engineering, China University of Mining and Technology, Xuzhou, 221000, China.
| | - Qiqi Wang
- School of Civil Engineering, Liaoning Technical University, 88 Yulong Road, Xihe District, Fuxin, 123000, Liaoning Province, China
| | - He Chen
- School of Mechanics and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Junzhen Di
- School of Civil Engineering, Liaoning Technical University, 88 Yulong Road, Xihe District, Fuxin, 123000, Liaoning Province, China
| | - Xuechun Hu
- School of Civil Engineering, Liaoning Technical University, 88 Yulong Road, Xihe District, Fuxin, 123000, Liaoning Province, China
| |
Collapse
|
14
|
Brindhadevi K, Kim PT, AlSalhi MS, Elkader OHA, T N, Lee J, Bharathi D. Deciphering the photocatalytic degradation of polyaromatic hydrocarbons (PAHs) using hausmannite (Mn 3O 4) nanoparticles and their efficacy against bacterial biofilm. CHEMOSPHERE 2024; 349:140961. [PMID: 38104733 DOI: 10.1016/j.chemosphere.2023.140961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Polyaromatic hydrocarbons (PAHs) are life-threatening organic pollutants that severely threaten ecosystems worldwide due to their poisonous qualities, cancer-causing properties, and mutation-causing qualities. Water and soil together form a critical component of the ecosystem that supports all life. Due to the pollutants that are being disposed of in them, their characteristics have changed, and their toxicity has increased. The goal of this study was to investigate the ability of hausmannite nanoparticles to degrade fluorene from soil and water. Using the chemical method, hausmannite nanoparticles were synthesized and further characterization was performed using UV-Vis, FTIR, DLS, XRD, and SEM-EDAX. Hausmannite significantly degraded fluorene using the batch adsorption method. The degradation was also confirmed by performing reactive kinetics using Freundlich's isotherm model and Langmuir's pseudo-second-order model of soil and water. In addition to the degradation efficacy, hausmannite was also proved to inhibit biofilm formation by Pseudomonas aeruginosa. The findings of the experiments confirmed the presence of hausmannite nanoparticles, as well as their physical properties, chemical properties, degradation properties, and parameters of the kinetic study. As a result, synthesized nanoparticles have been extensively utilized as a low-cost option for removing pollutants and microbial biofilm.
Collapse
Affiliation(s)
- Kathirvel Brindhadevi
- Institute of Research and Development, Duy Tan University, Da Nang ,Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| | - P T Kim
- Institute of Research and Development, Duy Tan University, Da Nang ,Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Omar H Abd Elkader
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naveena T
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
15
|
Han Y, Trakulmututa J, Amornsakchai T, Boonyuen S, Prigyai N, Smith SM. Eggshell-Derived Copper Calcium Hydroxy Double Salts and Their Activity for Treatment of Highly Polluted Wastewater. ACS OMEGA 2023; 8:46663-46675. [PMID: 38107953 PMCID: PMC10719995 DOI: 10.1021/acsomega.3c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023]
Abstract
By using methyl orange (MO) removal as a model reaction, the best temperatures for processing eggshells are 750 °C and above to obtain biobased CaO materials, a raw material for producing CuCa hydroxy double salt (HDS) materials with high efficiency in treatments of highly polluted wastewater (the initial concentration of MO is 500 ppm). Characterization techniques employed in this study include power X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption-desorption analysis, and the colorimetric method, as well as energy-dispersive X-ray, infrared-, and electron spin resonance spectroscopies. Complete MO removal and high chemical oxygen demand (COD) efficiencies (>90%) can be achieved after 3 min treatments of the aqueous MO with the calcined eggshell-derived CuCa HDS materials. The spent, deactivated HDS materials can be regenerated by an acid wash method. The activity of CuCa HDS materials in MO removal is unaffected by eggshell sources, implying that sorting steps may be unnecessary when eggshell food waste (duck, quail, and hen eggshells) is collected to produce biobased CaO. The findings of this study demonstrated that eggshells can be used in place of limestone and could be a more sustainable, renewable, and cost-effective source for material development and other applications.
Collapse
Affiliation(s)
- Yiping Han
- Natural
Resources and Waste Module, Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Rajathewi 10400, Thailand
- Center
of Sustainable Energy and Green Materials and Department of Chemistry,
Faculty of Science, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand
| | - Jirawat Trakulmututa
- Center
of Sustainable Energy and Green Materials and Department of Chemistry,
Faculty of Science, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand
| | - Taweechai Amornsakchai
- Natural
Resources and Waste Module, Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Rajathewi 10400, Thailand
- Center
of Sustainable Energy and Green Materials and Department of Chemistry,
Faculty of Science, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand
| | - Supakorn Boonyuen
- Department
of Chemistry, Faculty of Science and Technology, Thammasat University, Paholyothin, Klong-Luang, Pathumthani 12120, Thailand
| | - Nicha Prigyai
- Center
of Sustainable Energy and Green Materials and Department of Chemistry,
Faculty of Science, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand
| | - Siwaporn Meejoo Smith
- Natural
Resources and Waste Module, Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Rajathewi 10400, Thailand
- Center
of Sustainable Energy and Green Materials and Department of Chemistry,
Faculty of Science, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand
| |
Collapse
|
16
|
Deivasigamani P, Senthil Kumar P, Sundaraman S, Soosai MR, Renita AA, M K, Bektenov N, Baigenzhenov O, D V, Kumar J A. Deep insights into kinetics, optimization and thermodynamic estimates of methylene blue adsorption from aqueous solution onto coffee husk (Coffee arabica) activated carbon. ENVIRONMENTAL RESEARCH 2023; 236:116735. [PMID: 37517489 DOI: 10.1016/j.envres.2023.116735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
In the current study, an attempt was made to synthesize coffee husk (CH) activated carbon by chemical modification approach (sulphuric acid-activated CH (SACH) activated carbon) and was used as a valuable and economical sorbent for plausible remediation of Methylene blue (MB) dye. Batch mode trials were carried out by carefully varying the batch experimental variables: SACH activated carbon (SACH AC) dosage, pH, initial dye concentration, temperature, and contact time. The optimum equilibrium time for adsorption by SACH activated carbon was obtained as 60 min, and the maximum adsorption took place at 30 °C. Morphological and elemental composition, crystallinity behaviour, functional groups, and thermal stability were examined using SEM with EDX, XRD, FTIR, BET, TGA, and DTA and these tests showed successful production of activated carbon. The outcomes showed that chemical activation enhanced the number of pores and roughness which possibly maximized the adsorptive potential of coffee husk. The Box-Benken design (BBD) was used to optimize the MB dye adsorption studies and 99.48% MB dye removed at SACH AC dosage of 4.83 g/L at 30 °C for 60 min and pH 8.12, and the maximum adsorption was yielded for sulphuric acid-activated coffee husk carbon carbon with 88.1 mg/g maximum MB adsorption capacity. Langmuir- Freundlich model deliberately provided a better fit to the equilibrium data. The SACH AC-MB dye system kinetics showed a high goodness-of-fit with pseudo second order model, compared to other studied models. Change in Gibbs's free energy (ΔGo) of the system indicated spontaneity whereas low entropy value (ΔSo) suggested that the removal of MB dye on the SACH activated carbon was an enthalpy-driven process. The exothermic nature of the sorption cycle was affirmed by the negative enthalpy value (ΔHo). The adsorptive-desorptive studies reveal that SACH AC could be restored with the maximum adsorption efficiency being conserved after the fifth cycles. Overall, the outcomes revealed that sulphuric acid-activated coffee husk activated carbon (SACH AC) can be used as prompt alternative for low-cost sorbent for treating dye-laden synthetic wastewaters.
Collapse
Affiliation(s)
- Prabu Deivasigamani
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamilnadu, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Sathish Sundaraman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Michael Rahul Soosai
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Karthikeyan M
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Nessipkhan Bektenov
- Institute of Natural Sciences and Geography, Abai University, Almaty, 050010, Kazakhstan; JSC «Institute of Chemical Sciences named after A.B. Bekturov», Almaty, 050010, Kazakhstan
| | | | - Venkatesan D
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Aravind Kumar J
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamilnadu, 602105, India.
| |
Collapse
|
17
|
Kong Q, Zhang X, Ma K, Gong Y, Peng H, Qi W. PEI-modified chitosan/activated carbon composites for Cu(II) removal from simulated pyrophosphate plating rinsing wastewater. Int J Biol Macromol 2023; 251:126429. [PMID: 37604415 DOI: 10.1016/j.ijbiomac.2023.126429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
It is a challenging task to remove heavy metal ions efficiently from the wastewater containing high concentrations of complexants. In this work, a novel PEI-modified chitosan/activated carbon composite adsorbent (PCA) was prepared and applied to the removal of Cu(II) from pyrophosphate plating rinsing wastewater. The main species of Cu(II) in the pyrophosphate wastewater was [Cu(HP2O7)2]4- or [Cu(P2O7)2]6-, which were denoted as [Cu(II)-PP] anions. The maximum adsorption capacity of PCA for Cu(II) reached 1.41 mmol g-1 under the condition of pH = 8 and molar ratio of pyrophosphate to Cu(II) = 4:1. The adsorption kinetic behavior of Cu(II) on PCA followed the Elovich model best and PCA attained adsorption equilibrium within 36 h. The thermodynamic studies showed that the adsorption process of Cu(II) by PCA was endothermic and spontaneous. The PCA fixed bed column was used to remove Cu(II) from simulated pyrophosphate plating rinsing wastewater. After three consecutive adsorption-desorption cycles, the adsorption performance, hydraulic conductivity, and mechanical stability of PCA column did not decrease. The FTIR and XPS analysis results indicated that [Cu(II)-PP] anions can be adsorbed on PCA by electrostatic attraction with protonated amine groups or coordination with the amine groups of PCA via ligand substitution.
Collapse
Affiliation(s)
- Qingdi Kong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaojie Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kangrui Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hong Peng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Wei Qi
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
18
|
Zhang Y, Xiao YF, Xu GS, Xu MD, Wang DC, Jin Z, Liu JQ, Yang LL. Preparation of basic magnesium carbonate nanosheets modified pumice and its adsorption of heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111137-111151. [PMID: 37801248 DOI: 10.1007/s11356-023-30023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Heavy metal pollution in wastewater poses a grave danger to the environment and the human body. Pumice is a mineral with abundant reserves and low prices, and its prospect of heavy metal adsorbent is very broad. In this work, we modified pumice with basic magnesium carbonate nanosheets by a convenient hydrothermal synthesis. The adsorption capacity of heavy metals is greatly improved. The effects of different pH and adsorption dosages are investigated. All the optimum pH values for Cu2+, Pb2+, and Cd2+ are 5. The adsorption of three kinds of ions conforms to the quasi-second-order adsorption kinetics model. The theoretical adsorption capacities of Cu2+, Pb2+, and Cd2+, which are calculated by the Langmuir model, are 235.29 mg/L, 595.24 mg/L, and 370.34 mg/L, respectively. The adsorption of Cu2+ and Cd2+ fit the Langmuir model better. The Freundlich model is fitted well with the adsorption of Pb2+. In the experiment simulating real wastewater, the adsorption capacity of heavy metals is not affected. It also shows good reusability in three regeneration cycles. And Mg5(CO3)4(OH)2·4H2O@pumice adsorption column showed the good removal efficiency of three heavy metals at different concentrations and different spatial velocities in the column experiment. Thus, it is believed that the Mg5(CO3)4(OH)2·4H2O@pumice is a promising adsorbent for the efficient removal of heavy metals.
Collapse
Affiliation(s)
- Yong Zhang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Yi-Fan Xiao
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Guang-Song Xu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Min-Da Xu
- School of Materials and Chemical Engineering, Anhui JianZhu University, Hefei Anhui, 230601, People's Republic of China
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - De-Cai Wang
- School of Materials and Chemical Engineering, Anhui JianZhu University, Hefei Anhui, 230601, People's Republic of China
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Zhen Jin
- School of Materials and Chemical Engineering, Anhui JianZhu University, Hefei Anhui, 230601, People's Republic of China.
- Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China.
| | - Jia-Qi Liu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| | - Li-Li Yang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei Anhui, 230601, People's Republic of China
| |
Collapse
|
19
|
Sun Q, Yang H, Feng X, Liang Y, Gao P, Song Y. Synchronous stabilization of Pb, Zn, Cd, and As in lead smelting slag by industrial solid waste. CHEMOSPHERE 2023; 339:139755. [PMID: 37567265 DOI: 10.1016/j.chemosphere.2023.139755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
In order to prevent heavy metal (HM) pollution from lead smelting slag (LSS) to the surrounding environment, this work investigated the feasibility, influencing factors, and mechanisms of using industrial solid waste such as fly ash (FA), oil sludge pyrolysis residue (PR), and steel slag (SS) as remediation amendments. The results demonstrated that the stabilization process was influenced by the material dosage, water content, and LSS particle size. Compared to single materials, the combination amendment PR2FA1 (with a mass ratio of PR to FA as 2:1) exhibited the best stabilization effect, simultaneously reducing the leaching concentrations of As, Zn, Cd, and Pb in LSS to 0.032, 0.034, 0.002, and 0.014 mg/L, respectively. The pH value of the leachate remained between 8 and 9, which met the requirements of surface water quality class IV (GB3838-2002). Through morphological analysis, microscopic characterization, and simulated solution adsorption experiments, it was determined that the stabilization process of HMs was controlled by various mechanisms, including electrostatic attraction, physical adsorption, ion exchange, and chemical precipitation. PR2FA1 had more active components, and its fine-porous structure provided more active sites, resulting in good stabilization performance for As, Zn, Cd, and Pb. Furthermore, cost analysis showed that PR2FA1, as an environmentally friendly material, could generate profits of 157.2 ¥/ton. In conclusion, the prepared PR2FA1 not only addressed the HMs pollution from lead smelting slag to the surrounding environment but also achieved the safe and resourceful disposal of hazardous waste-oil sludge. Its excellent performance in stabilizing HMs and cost-effectiveness suggested promising commercial applications.
Collapse
Affiliation(s)
- Qiwei Sun
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huifen Yang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xiaodi Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuhao Liang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pu Gao
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingliang Song
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
20
|
Bergamini MHL, de Oliveira SB, Scalize PS. Production of activated carbon from exhausted coffee grounds chemically modified with natural eucalyptus ash lye and its use in the fluoride adsorption process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91276-91291. [PMID: 37474854 DOI: 10.1007/s11356-023-28825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The objective of this research was to produce an activated carbon (AC) from exhausted coffee grounds (ECG) and chemically activate it with natural lye from eucalyptus ash to subsequently evaluate the fluoride adsorption process in an aqueous medium. The thermal analysis of ECG was determined as well as solubilized extraction, alkalinity and calcium content of eucalyptus ashes. AC was characterized by elemental analysis, scanning electron microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), analysis of textural properties, pH and point of zero charge (PZC). The AC presented macroporosity and XRD confirmed the amorphous characteristic of cellulose-containing materials. Carboxylic acid functional group was identified in the AC surface, which can contribute to the adsorption of fluoride. The specific surface area of ECG and AC were 189.01 and 21.74 m2/g. The adsorption kinetics of fluoride revealed that equilibrium is reached around 800 min and the data followed the pseudo-second order model. The Freundlich model fitted the experimental data with the best quality and Freundlich's constant n allowed inferring that the adsorption is favorable and the isotherm appears to be L-type, with an initial downward curvature, which suggests less availability of active sites when increasing the adsorbent concentration.
Collapse
Affiliation(s)
- Mário Henrique Lobo Bergamini
- School of Civil and Environmental Engineering, Universidade Federal de Goiás, Avenue Universitária 1488, Goiânia, Goiás, Brazil.
| | - Sérgio Botelho de Oliveira
- Chemistry Department, Instituto Federal de Educação, Ciência E Tecnologia de Goiás, Street 75 46, Goiânia, Goiás, Brazil
| | - Paulo Sérgio Scalize
- School of Civil and Environmental Engineering, Universidade Federal de Goiás, Avenue Universitária 1488, Goiânia, Goiás, Brazil
| |
Collapse
|
21
|
Teixeira RA, Lima EC, Benetti AD, Naushad M, Thue PS, Mello BL, Dos Reis GS, Rabiee N, Franco D, Seliem MK. Employ a Clay@TMSPDETA hybrid material as an adsorbent to remove textile dyes from wastewater effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86010-86024. [PMID: 37395882 DOI: 10.1007/s11356-023-28568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
A grafting of N1-(3-trimethoxysilylpropyl)diethylenetriamine (TMSPDETA) on natural clay was carried out to obtain an organic-inorganic hybrid clay material that was applied as an adsorbent to the uptake of Reactive Blue 19 (RB-19) and Reactive Green 19 (RG-19) dyes from aqueous wastewaters. This research demonstrates the effect of TMSPDETA contents on amino-functionalized clay materials' hydrophobic/hydrophilic behavior. The resultant material was utilized to uptake reactive dyes in aqueous solutions. The clay@TMSPDETA hybrid material was characterized by isotherm of adsorption and desorption of nitrogen, FTIR, elemental analysis, TGA, pHpzc, total acidity, total basicity groups, and hydrophilic balance. The hybrid samples were more hydrophilic than the pristine clay for ratios from 0.1 up to 0.5 due to adding amino groups to the pristine clay. FTIR spectra suggest that TMSPDETA was grafted onto the clay. The hybrid material presents a surface area 2.17-fold (42.7 m2/g) lower than pristine clay (92.7 m2/g). The total volume of pores of hybrid material was 0.0822 cm3/g, and the pristine clay material was 0.127 cm3/g, corresponding to a diminution of the total pore volume (Vtot) of 1.54 times. The kinetic data followed the pseudo-second-order (PSO) model for RB-19 and RG-19 reactive dyes. The equilibrium data were better fitted to the Liu isotherm model, displaying a Qmax as 178.8 and 361.1 mg g-1 for RB-19 and RG-19, respectively, at 20.0 °C. The main mechanism of interactions of the reactive dyes with the hybrid clay is electrostatic interaction. The clay@TMSPDETA has a very good effect on treating synthetic dye-textile wastewater. The removal percentage of simulated wastewater was up to 97.67% and 88.34% using distilled water and plastic industry wastewater as the solvents, respectively. The clay@TMSPDETA-0.1 could be recycled up to 5 cycles of adsorption and desorption of both dyes, attaining recoveries of 98.42% (RB-19) and 98.32% (RG-19) using 0.1 M HCl + 10% ethanol.
Collapse
Affiliation(s)
- Roberta A Teixeira
- Graduate Program in Water Resources and Environmental Sanitation, Hydraulic Research Institute (IPH), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Graduate Program in Mine, Metallurgical, and Materials Engineering (PPGE3M). School of Engineering, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil.
- Department of Chemistry, College of Science, King Saud University, Riyadh, P.O. Box 2455, Saudi Arabia.
| | - Antônio D Benetti
- Graduate Program in Water Resources and Environmental Sanitation, Hydraulic Research Institute (IPH), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh, P.O. Box 2455, Saudi Arabia
| | - Pascal S Thue
- Environmental Science Graduate Program, Engineering Center, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Beatris L Mello
- Graduate Program in Mine, Metallurgical, and Materials Engineering (PPGE3M). School of Engineering, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Glaydson S Dos Reis
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Dison Franco
- Universidad de La Costa, CUC, Barranquilla, Atlántico, Colombia
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, Beni Suef, 62511, Egypt
| |
Collapse
|
22
|
Krishnani KK, Boddu VM, Singh RD, Chakraborty P, Verma AK, Brooks L, Pathak H. Plants, animals, and fisheries waste-mediated bioremediation of contaminants of environmental and emerging concern (CEECs)-a circular bioresource utilization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84999-85045. [PMID: 37400699 DOI: 10.1007/s11356-023-28261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/10/2023] [Indexed: 07/05/2023]
Abstract
The release of contaminants of environmental concern including heavy metals and metalloids, and contaminants of emerging concern including organic micropollutants from processing industries, pharmaceuticals, personal care, and anthropogenic sources, is a growing threat worldwide. Mitigating inorganic and organic contaminants, which can be coined as contaminants of environmental and emerging concern (CEECs), is a big challenge as traditional physicochemical processes are not economically viable for managing mixed contaminants of low concentrations. As a result, low-cost materials must be designed to provide high CEEC removal efficiency. One of the environmentally viable and energy-efficient approaches is biosorption, which involves using biomass or biopolymers isolated from plants or animals to decontaminate heavy metals in contaminated environments using inherent biological mechanisms. Among chemical constituents in plant biomass, cellulose, lignin, hemicellulose, proteins, polysaccharides, phenolic compounds, and animal biomass include polysaccharides and other compounds to bind heavy metals covalently and non-covalently. These functional groups include carboxyl, hydroxyl, carbonyl, amide, amine, and sulfhydryl. Cation-exchange capacities of these bioadsorbents can be improved by applying chemical modifications. The relevance of chemical constituents and bioactives in biosorbents derived from agricultural production such as food and fodder crops, bioenergy and cash crops, fruit and vegetable crops, medicinal and aromatic plants, plantation trees, aquatic and terrestrial weeds, and animal production such as dairy, goatery, poultry, duckery, and fisheries is highlighted in this comprehensive review for sequestering and bioremediation of CEECs, including as many as ten different heavy metals and metalloids co-contaminated with other organic micropollutants in circular bioresource utilization and one-health concepts.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
| | - Veera Mallu Boddu
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Rajkumar Debarjeet Singh
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Ajit Kumar Verma
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Lance Brooks
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India
| |
Collapse
|
23
|
Tochetto GA, Brandler D, Pigatto J, Pasquali GDL, de Almeida Alves AA, Kempka AP, da Luz C, Dervanoski A. Kinetic modeling of the adsorption and desorption of metallic ions present in effluents using the biosorbent obtained from Syagrus romanzoffiana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:844. [PMID: 37318618 DOI: 10.1007/s10661-023-11459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
In this study, the kinetic mechanism of adsorption and desorption, as well as the equilibrium isotherms, of four metallic ions (Cd2+, Cu2+, Ni2+, and Zn2+) mono and multicomponent were investigated. The biosorbent used was produced from Jerivá (Syagrus romanzoffiana-commonly known as queen palm) coconut. A kinetic model that considers macropore diffusion as a control step was solved. The finite volume method was used in the discretization of the equations, and the algorithm was implemented in the Fortran programming language. The equilibrium time for monocomponent adsorption was 5 min; for the multicomponent tests, equilibrium occurred instantly (less than 2 min of adsorption). The pseudo-second-order model presented the lowest mean of the sum of normalized errors (SNE) and represented the experimental data of mono and multicomponent adsorption and desorption. Single and multicomponent Langmuir model represented the adsorption isotherms. The maximum capacity of adsorption of metallic ions, both mono and multicomponent, was higher for copper, and the multicomponent adsorption proved to be antagonistic; the presence of co-ions in the solution reduced the removal of metals due to competition between these contaminants. The capture preference order was justified by the physicochemical properties of the ions, such as electron incompatibility and electronegativity. All these situations justified the maximum adsorption of Cu2+, followed by Zn2+, Cd2+, and Ni2+ in the mixture.
Collapse
Affiliation(s)
- Gabriel André Tochetto
- Laboratory of Effluent and Waste (LAER), Department of Environmental and Sanitary Engineering (EAS), Federal University of Fronteira Sul (UFFS), Erechim, Rio Grande Do Sul, 997000-970, Brazil
| | - Danieli Brandler
- Laboratory of Effluent and Waste (LAER), Department of Environmental and Sanitary Engineering (EAS), Federal University of Fronteira Sul (UFFS), Erechim, Rio Grande Do Sul, 997000-970, Brazil
| | - Joceane Pigatto
- Graduate Program in Food Science and Technology (PPGCTA), University of Santa Catarina State (UDESC), Pinhalzinho, Santa Catarina, 89870-000, Brazil
| | - Gean Delise Leal Pasquali
- Laboratory of Effluent and Waste (LAER), Department of Environmental and Sanitary Engineering (EAS), Federal University of Fronteira Sul (UFFS), Erechim, Rio Grande Do Sul, 997000-970, Brazil.
- Graduation Program in Science and Environmental Technology - Federal University of Fronteira Sul, ERS 135 - Km 72, No 200, ZIP: 99700-970, PO Box 764, Erechim, RS, Brazil.
| | - Alcione Aparecida de Almeida Alves
- Department of Environmental and Sanitary Engineering (EAS), Federal University of Fronteira Sul (UFFS), Cerro Largo, Rio Grande Do Sul, 979000-000, Brazil
| | - Aniela Pinto Kempka
- Graduate Program in Food Science and Technology (PPGCTA), University of Santa Catarina State (UDESC), Pinhalzinho, Santa Catarina, 89870-000, Brazil
| | - Cleuzir da Luz
- Graduate Program in Food Science and Technology (PPGCTA), University of Santa Catarina State (UDESC), Pinhalzinho, Santa Catarina, 89870-000, Brazil
| | - Adriana Dervanoski
- Laboratory of Effluent and Waste (LAER), Department of Environmental and Sanitary Engineering (EAS), Federal University of Fronteira Sul (UFFS), Erechim, Rio Grande Do Sul, 997000-970, Brazil
| |
Collapse
|
24
|
Naseri A, Abed Z, Rajabi M, Asghari A, Lal B, Baigenzhenov O, Arghavani-Beydokhti S, Hosseini-Bandegharaei A. Use of Chrysosporium/carbon nanotubes for preconcentration of ultra-trace cadmium levels from various samples after extensive studies on its adsorption properties. CHEMOSPHERE 2023; 335:139168. [PMID: 37295689 DOI: 10.1016/j.chemosphere.2023.139168] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes were used to immobilize Chrysosporium fungus for building an adequate adsorbent to be used as an desirable sorbent for preconcentration and measurement of cadmium ultra-trace levels in various samples. After characterization, the potential of Chrysosporium/carbon nanotubes for the sorption of Cd(II) ions was scrutinized by the aid of central composite design, and comprehensive studies of sorption equilibrium, kinetics and thermodynamic aspects were accomplished. Then, the composite was utilized for preconcentration of ultra-trace cadmium levels, by a mini-column packed with Chrysosporium/carbon nanotubes, before its determination with ICP-OES. The outcomes vouchsafed that (i) Chrysosporium/carbon nanotube has a high tendency for selective and rapid sorption of cadmium ion, at pH 6.1, and (ii) kinetic, equilibrium, and thermodynamic studies showed a high affinity of the Chrysosporium/carbon nanotubes for cadmium ion. Also, the outcomes displayed that cadmium can quantitatively be sorbed at a flow speed lesser than 7.0 mL/min and a 1.0 M HCl solution (3.0 mL) was sufficient to desorbe the analyte. Eventually, preconcentration and measurement of Cd(II) in different foods and waters were successfully accomplished with good accuracy, high precision (RSDs ≤5.65%), and low limit of detection (0.015 μg/L).
Collapse
Affiliation(s)
- Ali Naseri
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Abed
- Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Maryam Rajabi
- Faculty of Chemistry, Semnan University, Semnan, Iran.
| | | | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura, 281406, India
| | - Omirserik Baigenzhenov
- Department of Metallurgical Sciences, Satbayev University, 22a Satbaev Str., Almaty, 050013, Kazakhstan
| | | | | |
Collapse
|
25
|
Hu QD, Jiang HL, Lam KH, Hu ZP, Liu ZJ, Wang HY, Yang YY, Baigenzhenov O, Hosseini-Bandegharaei A, He FA. Polydopamine-modification of a magnetic composite constructed from citric acid-cross-linked cyclodextrin and graphene oxide for dye removal from waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27679-7. [PMID: 37271788 DOI: 10.1007/s11356-023-27679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
The effect of polydopamine (PDA) modification on aminated Fe3O4 nanoparticles (Fe3O4-NH2)/graphite oxide (GO)/β-cyclodextrin polymer cross-linked by citric acid (CDP-CA) composites were studied for the removal of a cationic dye (methylene blue, MB) and an anionic dye (Congo red, CR) from waters. The micro-structural and magnetic characterizations confirmed the successful preparation of Fe3O4-NH2/GO/CDP-CA and PDA/Fe3O4-NH2/GO/CDP-CA composites. The maximum MB and CR adsorption capacities of Fe3O4-NH2/GO/CDP-CA were 75 mg/g and 104 mg/g, respectively, while the corresponding amounts for PDA/Fe3O4-NH2/GO/CDP-CA composite were 195 mg/g and 64 mg/g, respectively. The dye sorption behaviors of these two composites were explained by their corresponding surface-charged properties according to the measured zeta potential results. Moreover, the high saturation magnetizations and the stable dye removal rate in the adsorption-desorption cycles indicated the good recyclability and reusability of the fabricated composites.
Collapse
Affiliation(s)
- Qing-Di Hu
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hong-Liu Jiang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330069, China
| | - Kwok-Ho Lam
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK
| | - Zhi-Peng Hu
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330069, China
| | - Zhi-Jie Liu
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hua-Ying Wang
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Yong-Yu Yang
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | | | | | - Fu-An He
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| |
Collapse
|
26
|
Gill SS, Goyal T, Goswami M, Patel P, Das Gupta G, Verma SK. Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27364-9. [PMID: 37160511 DOI: 10.1007/s11356-023-27364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Adsorption and photocatalytic properties of carbonaceous materials, viz., carbon nanotubes (CNTs), fullerene, graphene, graphene oxide, carbon nanofiber nanospheres, and activated carbon, are the legitimate weapons for the remediation of emerging and persistent inorganic/organic contaminants, heavy metals, and radionucleotides from the environment. High surface area, low or non-toxic nature, ease of synthesis, regeneration, and chemical modification of carbonaceous material make them ideal for the removal of toxicants. The research techniques investigated during the last decade for the elimination of environmental toxicants using carbonaceous materials are reviewed to offer comprehensive insight into the mechanism, efficiency, applications, advantages, and shortcomings. Opportunities and challenges associated with carbon materials have been discussed to suggest future perspectives in the remediation of environmental toxicants.
Collapse
Affiliation(s)
| | - Tanish Goyal
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Megha Goswami
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Preeti Patel
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | | | | |
Collapse
|
27
|
Zhu C, Wang W, Wu Z, Zhang X, Chu Z, Yang Z. Preparation of cellulose-based porous adsorption materials derived from corn straw for wastewater purification. Int J Biol Macromol 2023; 233:123595. [PMID: 36773870 DOI: 10.1016/j.ijbiomac.2023.123595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Various methods have been used to cope with heavy metal ion contamination in wastewater, which caused serious hazards to ecological and human health. Adsorption is one of the most frequent, economical and effective methods for removing these contaminants. Herein, a porous and amino-rich cellulose-based composite adsorbent (PEI-PCS) with anisotropic property was successfully prepared by covalently cross-linking polyethyleneimine on delignified corn straw. Combined with the porosity of straw substrate and the chelating ability of amino group to metal ions, the as-prepared PEI-PCS exhibited universality (various metal ions), rapid adsorption behavior (within 180 min achieve adsorption equilibrium), high adsorption capacity (85.47 mg g-1 for Cu(II)), and good durability (70 % of adsorption efficiency after 5 cycles). In addition, the adsorption process was conformed to pseudo-second-order dynamics and the Langmuir isotherm models. Lastly, the adsorption mechanism was also elucidated. This study provides a sustainable pathway for the manufacture of efficient biomass-based adsorbents and confirms that functionalized corn straw is a promising material for the treatment of heavy metal ions.
Collapse
Affiliation(s)
- Cuiping Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zijie Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaochun Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China.
| | - Zhuangzhuang Chu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| |
Collapse
|
28
|
Sotouneh F, Reza Jamali M, Asghari A, Rajabi M. Simultaneous preconcentration and determination of trace metals in edible plants and water samples by a novel solvent bar microextraction using a meltblown layer of facemask as the extractant phase holder combined with FAAS. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
29
|
Ai D, Ma H, Meng Y, Wei T, Wang B. Phosphorus recovery and reuse in water bodies with simple ball-milled Ca-loaded biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160502. [PMID: 36436628 DOI: 10.1016/j.scitotenv.2022.160502] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The demand to control eutrophication in water bodies and the risk of phosphorus scarcity have prompted the search for treatment technologies for phosphorus recovery. In this study, ball-milled Ca-loaded biochar (BMCa@BC) composites were prepared with CaO and corn stover biochar as raw materials by a new ball-milling method to recover phosphorus from water bodies. Experimental results demonstrated that BMCa@BC could efficiently adsorb phosphorus in water bodies with an excellent sorption capacity of 329 mg P/g. Hydrogen bonding, electrostatic attraction, complexation, and surface precipitation were involved in adsorption process. In addition, phosphorus recovered by BMCa@BC had high bioavailability (86.7 % of TP) and low loss (3.3 % of TP) and was a potential slow-release fertilizer. P-laden BMCa@BC significantly enhanced seed germination and growth in planting experiments, proving that it could be used as a substitute for P-based fertilizer. After five cycles of regeneration, BMCa@BC still showed good adsorption recovery and the P-enriched desorption solution could be recovered as Ca-P products with the fertilizer value. Overall, BMCa@BC has good cost-effectiveness and practical applicability in phosphorus recovery. This provides a new way to recover and reuse phosphorus effectively.
Collapse
Affiliation(s)
- Dan Ai
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Huiqiang Ma
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yang Meng
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Taiqing Wei
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Bo Wang
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
30
|
de Oliveira C, Renda CG, Moreira AJ, Pereira OAP, Pereira EC, Freschi GPG, Bertholdo R. Evaluation of a graphitic porous carbon modified with iron oxides for atrazine environmental remediation in water by adsorption. ENVIRONMENTAL RESEARCH 2023; 219:115054. [PMID: 36521534 DOI: 10.1016/j.envres.2022.115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
In the last decades, the growth of world agricultural activity has significantly contributed to the increased presence of emerging pollutants such as atrazine (ATZ) in aquatic ecosystems. Due to its high stability to the natural or artificial degradation processes, the ATZ environmental remediation by adsorption has been investigated. In this study, a graphitic-porous-carbon- (GPC) based material with magnetic domains was applied to remove ATZ from aqueous solution. ATZ high adsorption efficiency in a reduced time was achieved in the presence of the GPC adsorbent, leading to a detailed investigation of the mechanisms involved in the adsorption processes. Pseudo-first-order (PFO), pseudo-second-order (PSO), Ritchie, Elovich, and Weber-Morris models were applied to calculate the kinetic process efficiency. Likewise, adsorption isotherms based on Langmuir, Freundlich, Temkin, and Redlich-Peterson models were applied for a detailed understanding of the adsorption mechanisms. GPC was successfully applied for ATZ remediation in natural waters, confirming its high potential for treating natural waters contaminated by ATZ using adsorption process. The material can also be recovered and reused for up to 4 application cycles due to its magnetic properties, showing that in addition to ATZ adsorption efficiency, its sustainable use can be achieved.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Federal University of Alfenas, Poços de Caldas - MG Campus, Rod. José Aurelio Vilela, BR 267, Km 533, 11999, University City, Zip Code, 37715-400, Poços de Caldas, MG, Brazil
| | - Carmem G Renda
- Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz, Km 235, Zip Code, 13565-905, São Carlos, SP, Brazil
| | - Ailton J Moreira
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, Zip Code, 13565-905, São Carlos, SP, Brazil
| | - Otávio A P Pereira
- Federal University of Alfenas, Poços de Caldas - MG Campus, Rod. José Aurelio Vilela, BR 267, Km 533, 11999, University City, Zip Code, 37715-400, Poços de Caldas, MG, Brazil
| | - Ernesto C Pereira
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, Zip Code, 13565-905, São Carlos, SP, Brazil
| | - Gian P G Freschi
- Federal University of Alfenas, Poços de Caldas - MG Campus, Rod. José Aurelio Vilela, BR 267, Km 533, 11999, University City, Zip Code, 37715-400, Poços de Caldas, MG, Brazil
| | - Roberto Bertholdo
- Federal University of Alfenas, Poços de Caldas - MG Campus, Rod. José Aurelio Vilela, BR 267, Km 533, 11999, University City, Zip Code, 37715-400, Poços de Caldas, MG, Brazil.
| |
Collapse
|
31
|
Praipipat P, Ngamsurach P, Pratumkaew K. The synthesis, characterizations, and lead adsorption studies of chicken eggshell powder and chicken eggshell powder-doped iron (III) oxide-hydroxide. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
32
|
Chou MY, Lee TA, Lin YS, Hsu SY, Wang MF, Li PH, Huang PH, Lu WC, Ho JH. On the removal efficiency of copper ions in wastewater using calcined waste eggshells as natural adsorbents. Sci Rep 2023; 13:437. [PMID: 36624146 PMCID: PMC9829870 DOI: 10.1038/s41598-023-27682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Eggshells offer many advantages as adsorbents, such as affordability without special preparations other than pulverization and calcination. However, the manufacturing industry generally has a severe problem with high concentrations of heavy metals in wastewater. The purpose of this study was to use eggshell byproducts and calcined eggshell treatment for the adsorption of copper in an aqueous solution. The reaction time, metal concentration, adsorbent dose, temperature, and pH were evaluated using primary factors followed by the response surface method (RSM) to investigate the optimum conditions for eggshell byproducts and calcined eggshell adsorption treatment. The results of the one-factor-at-a-time experiment showed that the optimal adsorption rate was obtained from treatment at 24 h, 25 mg/L, 10 mg, and 25 °C. In addition, the effect of pH on the adsorption rates of eggshells and eggshells with membrane were detected at pH values of 5 and 5.9 and found to be 95.2, 90.5, and 73.3%. The reaction surface experiment showed that the best adsorption rate reached 99.3% after calcination at 900 °C for 2 h and a 20 min reaction. The results showed that eggshells, eggshell membranes, eggshells with membrane, and calcined eggshells could be applied to remove copper ions from industrial wastewater. The adsorption capacity of the calcined eggshell is better than that of the non-calcined eggshell and has good neutrality in acidic industrial wastewater. Therefore, it is convenient and practical for practical production and application. Likewise, this study conveys promising findings in the context of improving wastewater treatment based on a circular economy approach to waste reuse in the food industry and represents a valuable direction for future research.
Collapse
Affiliation(s)
- Ming-Yu Chou
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, 43301, Taiwan
| | - Tan-Ang Lee
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan
| | - Ying-Shen Lin
- Ph.D. Program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung, 43301, Taiwan
| | - Shan-Yin Hsu
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan
| | - Ming-Fu Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, 43301, Taiwan
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan.
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, Jiangsu Province, China
| | - Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City, 60077, Taiwan
| | - Jou-Hsuan Ho
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan.
| |
Collapse
|
33
|
Imidazolium functionalized polysulfone/DTPA-chitosan composite beads for simultaneous removal of Cr(VI) and Cu(II) from aqueous solutions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Mohammadzadeh A, Kadhim MM, Taban TZ, Baigenzhenov O, Ivanets A, Lal B, Kumar N, Hosseini-Bandegharaei A. Adsorption performance of Enterobacter cloacae towards U(VI) ion and application of Enterobacter cloacae/carbon nanotubes to preconcentration and determination of low-levels of U(VI) in water samples. CHEMOSPHERE 2023; 311:136804. [PMID: 36228723 DOI: 10.1016/j.chemosphere.2022.136804] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Keeping the high potential of some microorganisms in adsorption of radionuclides in view, the adsorption properties of Enterobacter cloacae towards uranium were attentively scrutinized, and then it was used for preconcentration of uranium in different samples, using Enterobacter cloacae/carbon nanotube composite. First, using ultrasonic agitation, the effects of operational factors on biosorption of uranium on the inactive Enterobacter cloacae were appraised and modeled by central composite design, and a comprehensive study was performed on the equilibrium, kinetics, thermodynamic, and selectivity aspects of biosorption. The optimization studies along with the evaluations of the adsorption properties revealed that Enterobacter cloacae have a high affinity for fast and selective biosorption of uranium ions, at pH 5.1. Second, the Enterobacter cloacae/carbon nanotube was synthesized, characterized, and utilized for preconcentration of uranium in different samples, using a mini-column packed with the composite. The optimization of operational factors on recovery of uranium, using the central composite design, showed that uranium can be quantitively adsorbed at a sample flow rate lower than 4.5 mL min-1 and the desorption could be accomplished with 3.0 mL HCl 0.6 M solution. Finally, the mini-column was exploited for preconcentration and determination of uranium in different samples. The results revealed the low detection limit (0.015 μg.L-1), high precision (RSDs ≤3.92%), and good accuracy of the proposed procedure.
Collapse
Affiliation(s)
- Alireza Mohammadzadeh
- Department of Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Talib Zeedan Taban
- Laser and Optoelectronics Engineering Department, Kut University College, Kut, Wasit, 52001, Iraq
| | - Omirserik Baigenzhenov
- Department of Metallurgical Sciences, Satbayev University, 22a Satbaev Str., Almaty, 050013, Kazakhstan.
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus, St. Surganova 9/1, 220072, Minsk, Belarus
| | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura, 281406, India
| | - Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | | |
Collapse
|
35
|
Peiravi-Rivash O, Mashreghi M, Baigenzhenov O, Hosseini-Bandegharaei A. Producing bacterial nano-cellulose and keratin from wastes to synthesize keratin/cellulose nanobiocomposite for removal of dyes and heavy metal ions from waters and wastewaters. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Masoumi H, Ghaemi A, Ghanadzadeh Gilani H. Surveying the elimination of hazardous heavy metal from the multi-component systems using various sorbents: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:1047-1087. [PMID: 36406597 PMCID: PMC9672201 DOI: 10.1007/s40201-022-00832-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
In this review, several adsorbents were studied for the elimination of heavy metal ions from multi-component wastewaters. These utilized sorbents are mineral materials, microbes, waste materials, and polymers. It was attempted to probe the structure and chemistry characteristics such as surface morphology, main functional groups, participated elements, surface area, and the adsorbent charges by SEM, FTIR, EDX, and BET tests. The uptake efficiency for metal ions, reusability studies, isotherm models, and kinetic relations for recognizing the adsorbent potentials. Besides, the influential factors such as acidity, initial concentration, time, and heat degree were investigated for selecting the optimum operating conditions in each of the adsorbents. According to the results, polymers especially chitosan, have displayed a higher adsorption capacity relative to the other common adsorbents owing to the excellent surface area and more functional groups such as amine, hydroxyl, and carboxyl species. The high surface area generates the possible active sites for trapping the particles, and the more effective functional groups can complex more metal ions from the polluted water. Also, it was observed that the uptake capacity of each metal ion in the multi-component solutions was different because the ionic radii of each metal ion were different, which influence the competition of metal ions for filling the active sites. Finally, the reusability of the polymers was suitable, because they can use several cycles which proves the economic aspect of the polymers as the adsorbent.
Collapse
Affiliation(s)
- Hadiseh Masoumi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, 13114-16846 Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, 13114-16846 Iran
| | | |
Collapse
|
37
|
Khan R, Saxena A. Potentially toxic elements (PTEs) in Gomti-Ganga Alluvial Plain, associated human health risks assessment and potential remediation using novel-nanomaterials. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:19. [PMID: 36279024 PMCID: PMC9589610 DOI: 10.1007/s10661-022-10562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/22/2022] [Indexed: 06/16/2023]
Abstract
The health risks associated with consumption of water from river Gomti polluted with potentially toxic elements (PTEs), including As, Fe, Pb, Cd, Mn, Cr, Ni, and Hg were investigated at the initiation of unlocking of COVID-19 lockdown and compared with pre-COVID-19 lockdown status. In the current investigation, the total hazard index (THI) values exceeded the acceptable limit of "unity" at all sampling stations. The use of river water for drinking and domestic purposes by millions of people with high THI values has emerged as a matter of huge concern. The individual hazard quotients associated with Cd and Pb were found to be most severe (> 1). A vivid difference between the THI values during the two study phases indicated the positive impact of COVID-19 lockdown signifying the prominent impact of anthropogenic activities on the PTE concentrations. The closure of local manufacturing units (textile, battery, etc.) emerged as a potential reason for decreased health risks associated with PTE levels. The higher susceptibility of children to health risks in comparison with adults through the values of THI and HQs was interpreted across the study area. Potential remedial measures for PTE contamination have also been suggested in the study.
Collapse
Affiliation(s)
- Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India.
| | - Abhishek Saxena
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, India.
| |
Collapse
|
38
|
Charazińska S, Burszta-Adamiak E, Lochyński P. The efficiency of removing heavy metal ions from industrial electropolishing wastewater using natural materials. Sci Rep 2022; 12:17766. [PMID: 36273077 PMCID: PMC9588037 DOI: 10.1038/s41598-022-22466-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 01/19/2023] Open
Abstract
Heavy metals are present in wastewater generated by industrial sectors, posing a threat to the environment, including surface and groundwater resources. With this in mind, there is a growing interest in finding alternative yet effective methods of removing heavy metal ions from industrial wastewater. Sorption is one of the techniques being readily applied due to the simplicity, high efficiency, production of small amounts of sludge, low investment, and the feasibility of the process over a wide range of pH and temperature. This paper deals with the treatment of industrial wastewater from electropolishing of stainless steel containing high concentrations of metal ions Fe(III), Cr(III), Ni(II), and Cu(II). Taking into account the effectiveness, availability and applicability of biosorbents for acidic wastewater, orange peels, algae, Eclipta alba, and eggshells were selected for the study. Sorption tests were carried out for Eclipta alba and the results obtained showed a best fit for the second-order kinetic model (R2 > 0.99) and the Langmuir isotherm model (R2 > 0.99). Maximum adsorption capacity was 17.92 mg/g for mixture of metal ions. The potential use of dried and calcinated eggshells was established. Both materials achieved a high removal rate of over 95%. Iron and chromium are removed from the solution first (about 100% and 90%, respectively), followed by nickel and copper ions. FT-IR and SEM with EDS measurements used to characterize materials, together with laboratory tests using real industrial effluent, made it possible to determine their mechanism of action. Specific surface area was determined for all tested materials and the values were: 1.63, 0.15 and 5.15 m2/g for Eclipta alba, dried eggshells and calcinated eggshells, respectively. The results provide grounds for optimism in the application of selected materials for industrial wastewater treatment.
Collapse
Affiliation(s)
- S. Charazińska
- grid.411200.60000 0001 0694 6014Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 24, 50-365 Wrocław, Poland
| | - E. Burszta-Adamiak
- grid.411200.60000 0001 0694 6014Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 24, 50-365 Wrocław, Poland
| | - P. Lochyński
- grid.411200.60000 0001 0694 6014Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 24, 50-365 Wrocław, Poland
| |
Collapse
|
39
|
Hasan MS, Karmakar AK. Removal of car battery heavy metals from wastewater by activated carbons: a brief review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73675-73717. [PMID: 36085225 DOI: 10.1007/s11356-022-22715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Spent automobile batteries are one of the most significant secondary sources of harmful heavy metals for the environment. After being incorporated into the aquatic ecosystems, these metals disseminate to various plants, microorganisms, and the human body and cause multiple adverse effects. Activated carbons (ACs) have long been used as an effective adsorbent for different heavy metals in wastewater treatment processes. Although numerous research works have been published to date on this topic, they are scattered in the literature. In this review, we have assembled these works and provided an extensive overview of the application of ACs for treating spent car battery heavy metals (CBHMs) from aquatic systems. The preparation of ACs from different precursor materials, their application in the adsorption of CBHMs, the adsorption mechanism, kinetics, adsorption isotherms and various parameters that may affect the adsorption processes have been discussed in detail. A brief comparative analysis of the adsorption performances of ACs prepared from different precursor materials is also provided. Finally, recommendations for future research works are also offered.
Collapse
Affiliation(s)
- Md Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
40
|
Tene T, Bellucci S, Guevara M, Arias Arias F, Sáez Paguay MÁ, Quispillo Moyota JM, Arias Polanco M, Scarcello A, Vacacela Gomez C, Straface S, Caputi LS, Torres FJ. Adsorption of Mercury on Oxidized Graphenes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173025. [PMID: 36080061 PMCID: PMC9457566 DOI: 10.3390/nano12173025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
Graphene oxide (GO) and its reduced form, reduced graphene oxide (rGO), are among the most predominant graphene derivatives because their unique properties make them efficient adsorbent nanomaterials for water treatment. Although extra-functionalized GO and rGO are customarily employed for the removal of pollutants from aqueous solutions, the adsorption of heavy metals on non-extra-functionalized oxidized graphenes has not been thoroughly studied. Herein, the adsorption of mercury(II) (Hg(II)) on eco-friendly-prepared oxidized graphenes is reported. The work covers the preparation of GO and rGO as well as their characterization. In a further stage, the description of the adsorption mechanism is developed in terms of the kinetics, the associated isotherms, and the thermodynamics of the process. The interaction between Hg(II) and different positions of the oxidized graphene surface is explored by DFT calculations. The study outcomes particularly demonstrate that pristine rGO has better adsorbent properties compared to pristine GO and even other extra-functionalized ones.
Collapse
Affiliation(s)
- Talia Tene
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 110160, Ecuador
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, I-00044 Frascati, RM, Italy
| | - Marco Guevara
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
| | - Fabian Arias Arias
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
| | - Miguel Ángel Sáez Paguay
- Facultad de Recursos Naturales, Escuela Superior Politécnica de Chimborazo (ESPOCH), Coca 220201, Ecuador
| | | | - Melvin Arias Polanco
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
- Instituto Tecnológico de Santo Domingo, Área de Ciencias Básicas y Ambientales, Av. Los Próceres, Santo Domingo 10602, Dominican Republic
| | - Andrea Scarcello
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, CS, Italy
| | | | - Salvatore Straface
- Department of Environmental Engineering (DIAm) University of Calabria, Via P. Bucci, Cubo 42B, I-87036 Rende, CS, Italy
| | - Lorenzo S. Caputi
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, CS, Italy
| | - F. Javier Torres
- Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111711, Colombia
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador
| |
Collapse
|
41
|
Mallesh D, Swapna S, Rajitha P, Lingaiah N. Highly efficient CO
2
capture of waste biomass derived porous activated carbons with oxygen rich functional groups. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dosali Mallesh
- Department of Catalysis & Fine Chemicals Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007, Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Shobanaboyina Swapna
- Department of Catalysis & Fine Chemicals Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007, Telangana India
| | - Paka Rajitha
- Department of Catalysis & Fine Chemicals Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007, Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nakka Lingaiah
- Department of Catalysis & Fine Chemicals Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007, Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
42
|
Wang X, Cheng B, Zhang L, Yu J, Normatov I. Adsorption performance of tetracycline on NiFe layered double hydroxide hollow microspheres synthesized with silica as the template. J Colloid Interface Sci 2022; 627:793-803. [PMID: 35901559 DOI: 10.1016/j.jcis.2022.07.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/15/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
Abstract
Tetracycline (TC) has poor degradability and hepatotoxicity which will increase the burden on the aquatic environment when discharged into lakes in large quantities. LDH materials are often used as adsorbents because of their superior surface area and controllability of morphology. Herein, NiFe LDH hollow microspheres (NFHMS) were synthesized by a facile hydrothermal method. The removal of tetracycline by the as-prepared material in an aquatic environment was systematically investigated through comprehensive characterizations. The NFHMS sample presents a larger specific surface area than the two control samples, which contributes to its higher adsorption performance. The adsorption mechanisms of TC on NFHMS is mainly electrostatic adsorption. The fitting results of experimental data coincide well with pseudo-second-order and Weber-Morris models through kinetic simulation. Moreover, the Langmuir model is verified to be more suitable than the Freundlich model in elucidating molecular surface adsorption, and the maximum adsorption capacity of NFHMS obtained from the Langmuir model is 90.9 mg g-1. Higher temperature is beneficial to improve the adsorption performance, and the adsorption process is spontaneous and endothermic. The initial pH of the solution will affect the adsorption capacity, and the partial neutral condition is more favorable. In addition, NFHMS sample exhibits good stability in cyclic tests. Therefore, NFHMS material is expected to be a very promising adsorbent for treating tetracycline in wastewater.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China.
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Inom Normatov
- Meteorology and Climatology Department, Tajik National University, 17 Rudaki Ave, Dushanbe 734025, Tajikistan
| |
Collapse
|
43
|
Shang B, Wang S, Lu L, Ma H, Liu A, Zupanic A, Jiang L, Elnawawy AS, Yu Y. Poultry eggshell-derived antimicrobial materials: Current status and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115096. [PMID: 35462255 DOI: 10.1016/j.jenvman.2022.115096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Poultry eggs, the basic foodstuffs of human society, have been extensively consumed for domestic and industrial uses. A large amount of eggshell waste is generated and discarded every year, resulting in a waste of natural resources and a threat to the environment. In this context, the reutilization of eggshell waste has gained increasing attentions. Meanwhile, the overuse of antibiotics has led to the emergence of many drug-resistant bacteria, which greatly endangers public health. Therefore, manufacturing new materials with strong antimicrobial activities has become the focus of many researchers. Recent studies have revealed that eggshells can be applied as solid substances, the raw materials for calcium oxide, and the calcium source for synthesizing hydroxyapatite or other materials with antimicrobial activities. Herein, the preparation methods, antibacterial mechanisms and the applications of these eggshell waste-derived antibacterial materials are summarized in this review. Finally, the current challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Baoya Shang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Shanshan Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Lingxia Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Huanhuan Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Aiqi Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna Pot 111, Ljubljana, SI, 1000, Slovenia
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Aml S Elnawawy
- Food Engineering and Packaging Department, Food Technology Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
44
|
Valorization of Livestock Keratin Waste: Application in Agricultural Fields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116681. [PMID: 35682267 PMCID: PMC9180014 DOI: 10.3390/ijerph19116681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023]
Abstract
Livestock keratin waste is a rich source of protein. However, the unique structure of livestock keratin waste makes its valorization a great challenge. This paper reviews the main methods for the valorization of livestock keratin waste, which include chemical, biological, and other novel methods, and summarizes the main agricultural applications of keratin-based material. Livestock keratin waste is mainly used as animal feed and fertilizer. However, it has promising potential for biosorbents and in other fields. In the future, researchers should focus on the biological extraction and carbonization methods of processing and keratin-based biosorbents for the soil remediation of farmland.
Collapse
|
45
|
Shahryari T, Singh P, Raizada P, Davidyants A, Thangavelu L, Sivamani S, Naseri A, Vahidipour F, Ivanets A, Hosseini-Bandegharaei A. Adsorption properties of Danthron-impregnated carbon nanotubes and their usage for solid phase extraction of heavy metal ions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Removal of mercury(II) from aqueous solution by partially reduced graphene oxide. Sci Rep 2022; 12:6326. [PMID: 35440687 PMCID: PMC9018808 DOI: 10.1038/s41598-022-10259-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Mercury (Hg(II)) has been classified as a pollutant and its removal from aqueous sources is considered a priority for public health as well as ecosystem protection policies. Oxidized graphenes have attracted vast interest in water purification and wastewater treatment. In this report, a partially reduced graphene oxide is proposed as a pristine adsorbent material for Hg(II) removal. The proposed material exhibits a high saturation Hg(II) uptake capacity of 110.21 mg g−1, and can effectively reduce the Hg(II) concentration from 150 mg L−1 to concentrations smaller than 40 mg L−1, with an efficiency of about 75% within 20 min. The adsorption of Hg(II) on reduced graphene oxide shows a mixed physisorption–chemisorption process. Density functional theory calculations confirm that Hg atom adsorbs preferentially on clean zones rather than locations containing oxygen functional groups. The present work, therefore, presents new findings for Hg(II) adsorbent materials based on partially reduced graphene oxide, providing a new perspective for removing Hg(II).
Collapse
|
47
|
Junfeng W, Bowen H, Xiaoqing W, Zuwen L, Zhaodong W, Biao L, Songya L, Hongbin G, Xinfeng Z, Yanli M. Preparation of N,S-codoped magnetic bagasse biochar and adsorption characteristics for tetracycline. RSC Adv 2022; 12:11786-11795. [PMID: 35481070 PMCID: PMC9016741 DOI: 10.1039/d1ra08404f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Agricultural waste disposal and purification of polluted water are always the key issues of environmental restoration. In this work, thiourea-functionalized magnetic bagasse biochar (MFeBC) was prepared for tetracycline (TC) removal from aqueous solutions. Firstly, MFeBC was prepared by a combined impregnation and chemical coprecipitation method. Furthermore, MFeBC was characterized by Brunauer–Emmett–Teller surface area analysis, Fourier transform infrared spectrometry, X-ray diffraction analysis, scanning electron microscopy, X-ray photoelectron spectroscopy and the magnetic hysteresis curves. For the TC adsorption, the effects of different solution pH level, adsorbent dosage, initial TC concentration and temperature on the adsorption performance were studied respectively. Moreover, the results indicated that the Freundlich isotherm models appropriately described the adsorption process. The kinetic data were better fitted by the pseudo-second-order kinetic model. The maximum TC adsorption capacity of MFeBC reached 69.26 mg g−1. Hydrogen bonding and Π–Π interactions played a dominant role in the adsorption process. Therefore, MFeBC can be used as an effective adsorbent for tetracycline removal from aqueous solution. Preparation of N,S-codoped magnetic bagasse biochar and adsorption of tetracycline.![]()
Collapse
Affiliation(s)
- Wu Junfeng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hou Bowen
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wang Xiaoqing
- Henan Province Town of Comprehensive Design and Research Institute, Pingdingshan, 467036, China
| | - Liu Zuwen
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wang Zhaodong
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Liu Biao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Li Songya
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Gao Hongbin
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhu Xinfeng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Mao Yanli
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
48
|
Huang R, Liu X, Qi F, Jia L, Xu D, Wang L, Ma P. Efficient preparation of carbon nanospheres-anchored porous carbon materials and the investigation on pretreatment methods. BIORESOURCE TECHNOLOGY 2022; 344:126235. [PMID: 34743993 DOI: 10.1016/j.biortech.2021.126235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Manufacturing high-performance activated carbon (AC) materials from abundant biomass at low temperature and short activation time is targeted by the green and sustainable chemical industry. Here, a 1980 m2/g of carbon nanospheres-anchored porous carbon material (PHAC) derived from waste sawdust was prepared by a method of H3PO4 hydrothermal combined with fast activation at 450 °C within 2.8 min. It is found that H3PO4 hydrothermal pretreatment could promote the dehydration of carbohydrates to form more unstable C = O structures, which were decomposed in the subsequent fast activation to form pore structures. In addition, this process is also conducive to the formation of carbon nanospheres, increasing the degree of graphitization and producing more graphite defects. The prepared PHAC showed good adsorption performance for different types of pollutants. This work provides a new insight for the preparation of high performance biomass based carbon materials under mild conditions.
Collapse
Affiliation(s)
- Ruiyi Huang
- School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiaohao Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Fenglei Qi
- School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Liangyuan Jia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Dongzhen Xu
- School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Peiyong Ma
- School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
49
|
Shen Q, Xing DY, Sun F, Dong W, Zhang F. Designed water channels and sieving effect for heavy metal removal by a novel silica-poly(ionic liquid) nanoparticles TFN membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Xue J, Wang H, Li P, Zhang M, Yang J, Lv Q. Efficient reclaiming phosphate from aqueous solution using waste limestone modified sludge biochar: Mechanism and application as soil amendments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149454. [PMID: 34435587 DOI: 10.1016/j.scitotenv.2021.149454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
A novel limestone-modified biochar derived from sewage sludge was prepared to reclaim phosphorus (P) from aqueous solution, and the potential application of P-laden biochar as soil amendments was also investigated. The limestone-modified biochar demonstrated excellent performance on phosphate recovery from aqueous solution in a wide range of pH (2.0-11.0), with maximum adsorption capacity of the biochar (Limestone/sludge mass ratio of 3:1) up to 231.28 mg P/g, which was 10.7 times that of the original sludge biochar. The adsorption was well described by the pseudo second-order model and Langmuir isotherm model. According to the adsorption thermodynamic parameters, the phosphate adsorption was spontaneous (ΔG0 < 0) and endothermic (ΔH0 > 0) so that increasing the temperature was beneficial to adsorption. Characterization analysis by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS) proved that electrostatic attraction, surface complexation and brushite (CaHPO4.2H2O) precipitation were the dominant mechanism. The P-laden biochar exhibited an excellent ability to be reused as a new slow-release P fertilizer for soil. Pot experiment results showed that the treatment of P-laden LB 3:1 (P content of 22.8%) addition (1 wt%) significantly promoted Indian Lettuce germination (increasing by 14.4%), plant height (increasing by 18.6%), and dry biomass (53.0%) compared with the control, though it underperformed compared to commercial fertilizer.
Collapse
Affiliation(s)
- Junbing Xue
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| | - Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China.
| | - Peng Li
- Shandong Gold Group CO., LTD, Jinan 250100, China
| | - Mingliang Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| | - Jie Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| | - Qi Lv
- School of Water Conservancy and Environment, University of Jinan, Jinan 250012, China
| |
Collapse
|