1
|
Wang H, Liu J, Phyu K, Cao Y, Xu X, Liang J, Chang CC, Zhang K, Zhi S. Microalgae create a highway for carbon sequestration in livestock wastewater: Carbon sequestration capacity, sequestration mechanisms, influencing factors, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177282. [PMID: 39477119 DOI: 10.1016/j.scitotenv.2024.177282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Greenhouse gas emissions from the livestock industry are recognized as a major environmental issue. This includes emissions from livestock wastewater. However, the common methods used for carbon sequestration (CS) rarely involve treatment of livestock wastewater, due to an absence of standardized emission points and difficulties in gas collection. To remedy this knowledge gap, this review discusses the sequestration capacity, technical classification, mechanisms, and factors influencing carbon sequestration by microalgae (MCS) in livestock wastewater. First, the carbon emission characteristics of livestock farm are discussed, concluding that, compared with those from enteric fermentation, emissions from waste management are characterized by dispersed emission points, lack of obvious emission patterns, and difficulties in gas collection. Secondly, the use and potential of MCS in livestock wastewater are summarized, with emphasis on the mechanisms involved (both heterotrophic and autotrophic MCS). It was found that development of the heterotrophic microalgal mechanism or combining the use of autotrophic microalgae with bacteria was key to the effective use of MCS for treating livestock wastewater. Finally, physical and chemical factors directly influencing MCS, as well as biological factor (species), were found to determine the potential of MCS. Furthermore, a model for recycling MCS in livestock farms is proposed, providing a novel solution to the achievement of carbon neutrality, resource recycling and ecological environmental protection.
Collapse
Affiliation(s)
- Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Khinkhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yu'ang Cao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; School of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Xiaoyu Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, Ellicott City, MD 21042, USA
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
2
|
Qu X, Niu Q, Sheng C, Xia M, Zhang C, Qu X, Yang C. Co-toxicity and co-contamination remediation of polycyclic aromatic hydrocarbons and heavy metals: Research progress and future perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120211. [PMID: 39442665 DOI: 10.1016/j.envres.2024.120211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) has attracted wide attention due to their high toxicity, mutagenicity, carcinogenicity and teratogenicity. A thorough understanding of the progress of the relevant studies about their co-toxicity and co-contamination remediation is of great importance to prevent environmental risk and develop new efficient remediation methods. This paper summarized the factors resulting in different co-toxic effects, the interaction mechanism influencing co-toxicity and the development of remediation technologies for the co-contamination. Also, the inadequacies of the previous studies related to the co-toxic effect and the remediation methods were pointed out, while the corresponding solutions were proposed. The specific type and concentration of PAHs and HMs, the specific type of their action object and environmental factors could affect their co-toxicity by influencing each other's transmembrane process, detoxification process and increasing reactive oxygen species (ROS) and some other mechanisms that need to be further studied. The specific action mechanisms of the concentration, environmental factors and the specific type of PAHs and HMs, their effect on each other's transmembrane processes, investigations at the cellular and molecular levels, non-targeted metabolomics analysis, as well as long-term ecological effects were proposed to be further explored in order to obtain more information about the co-toxicity. The combination of two or more methods, especially combining bioremediation with other methods, is a potential development field for the remediation of co-contamination. It can make full use of the advantages of each remediation method, to achieve an increase of remediation efficiency and a decrease of both remediation cost and ecological risk. This review intends to further improve the understanding on co-toxicity and provide references for the development and innovation of remediation technologies for the co-contamination of PAHs and HMs.
Collapse
Affiliation(s)
- Xiyao Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China.
| | - Cheng Sheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Mengmeng Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chengxu Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, PR China
| |
Collapse
|
3
|
Luo Z, Qin M, Guo Z, Li X, Zhou T, Zeng Z, Zhou C, Song B. Potential of Salvinia biloba Raddi for the remediation of water polluted with ciprofloxacin: Removal, physiological response, and root microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136038. [PMID: 39366048 DOI: 10.1016/j.jhazmat.2024.136038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
This paper investigated the removal amount of Ciprofloxacin (CIP) by Salvinia biloba Raddi (S. biloba) under various conditions, the physiological response under different CIP concentrations, the influence of CIP on the root microbial community structure of S. biloba, the possible metabolic pathways and removal mechanism. The results showed that under 4 mg/L CIP, the removal rate of CIP was 98 %. Under different CIP concentration conditions, low CIP concentration promoted the growth of S. biloba, while high CIP inhibited the growth of S. biloba and S. biloba was exposed to different degrees of oxidative stress. CIP affected root microbial community diversity and changed microbial community structure. Five possible degradation pathways were proposed through the determination of intermediate metabolites. According to mass balance calculations, biodegradation was the most critical degradation pathway. This study demonstrated the potential use of S. biloba for treating CIP-contaminated water and provided insights into the mechanisms of plant-based antibiotic degradation.
Collapse
Affiliation(s)
- Zhangxiong Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Meng Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zicong Guo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuxin Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
4
|
Coimbra ECL, Borges AC, Bastos ABC, Mounteer AH, Rosa AP. Effects of LED lights and cytokinin on the phytotreatment of simulated swine wastewater by Azolla spp.: Pollutant removal and biomass valorization. WATER RESEARCH 2024; 266:122423. [PMID: 39298903 DOI: 10.1016/j.watres.2024.122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Phytoremediation is an eco-friendly and affordable option for tackling wastewater pollutants. The study focused on how light-emitting diodes (LED) light exposure, measured by intensity and duration (photoperiod), along with cytokinin, impacts Azolla microphylla's simulated swine wastewater treatment performance and biomass production. Under optimal treatment conditions, high removals of COD (89.2 % to 90.8 %), N-NH4+ (72.6 % to 91.2 %), N-NO3- (84.4 % to 88.6 %), Cu (75.4 % to 86.4 %), sulfamethoxazole (77.0 % to 79.0 %), P-PO43- (54.1 % to 59.9 %) and DOC (67.4 % to 71.3 %) while Zn presented a more moderate reduction (2.0 % to 9.7 %). Biomass productivity reached up to 34.8 t ha-1 yr-1. Protein production accounted for 23 % to 27 % of dry weight, while lipids ranged from 20 % to 34 % of dry biomass. Carbohydrate content varied from 8 % to 28 % of fresh weight. Higher light intensities, with both high or low values of photoperiods, and low concentrations of cytokinin were identified as optimal conditions for removal of almost all pollutants. However, pollutant removal was impacted differently by LED light and cytokinin concentration. In treatment conditions with the shortest photoperiods (8 h), the lowest residual Cu and Zn concentrations, whereas with longer photoperiods (24 h), the lowest residual concentrations of N-NH4+ and P-PO43- concentrations were recorded. On the other hand, SMX was the only parameter in which cytokinin had a clear influence on its removal, with the lowest residual concentration observed under 8-hour photoperiods combined with the lowest tested cytokinin concentrations (0.3 mg L-1). For residual COD and N-NO3-, no discernible pattern was evident for any of the analyzed factors. Therefore, the study demonstrates the potential for treating simulated swine wastewater using Azolla microphylla, aligned with its ability to produce biomass rich in high-value compounds.
Collapse
Affiliation(s)
| | - Alisson Carraro Borges
- Department of Agricultural Engineering, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil.
| | | | - Ann Honor Mounteer
- Department of Civil Engineering, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil
| | - André Pereira Rosa
- Department of Agricultural Engineering, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
5
|
Bayuo J, Rwiza MJ, Choi JW, Njau KN, Mtei KM. Recent and sustainable advances in phytoremediation of heavy metals from wastewater using aquatic plant species: Green approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122523. [PMID: 39305882 DOI: 10.1016/j.jenvman.2024.122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
A key component in a nation's economic progress is industrialization, however, hazardous heavy metals that are detrimental to living things are typically present in the wastewater produced from various industries. Therefore, before wastewater is released into the environment, it must be treated to reduce the concentrations of the various heavy metals to maximum acceptable levels. Even though several biological, physical, and chemical remediation techniques are found to be efficient for the removal of heavy metals from wastewater, these techniques are costly and create more toxic secondary pollutants. However, phytoremediation is inexpensive, environmentally friendly, and simple to be applied as a green technology for heavy metal detoxification in wastewater. The present study provides a thorough comprehensive review of the mechanisms of phytoremediation, with an emphasis on the possible utilization of plant species for the treatment of wastewater containing heavy metals. We have discussed the concept, its applications, advantages, challenges, and independent variables that determine how successful and efficient phytoremediation could be in the decontamination of heavy metals from wastewater. Additionally, we argue that the standards for choosing aquatic plant species for target heavy metal removal ought to be taken into account, as they influence various aspects of phytoremediation efficiency. Following the comprehensive and critical analysis of relevant literature, aquatic plant species are promising for sustainable remediation of heavy metals. However, several knowledge gaps identified from the review need to be taken into consideration and possibly addressed. Therefore, the review provides perspectives that indicate research needs and future directions on the application of plant species in heavy metal remediation.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Ghana; School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania; Graduate School of International Agricultural Technology, Seoul National University, South Korea.
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, South Korea
| | - Karoli Nicholas Njau
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| |
Collapse
|
6
|
Abdalla SB, Moghazy RM, Hamed AA, Abdel-Monem MO, El-Khateeb MA, Hassan MG. Strain selection and adaptation of a fungal-yeast-microalgae consortium for sustainable bioethanol production and wastewater treatment from livestock wastewater. Microb Cell Fact 2024; 23:288. [PMID: 39438859 PMCID: PMC11495080 DOI: 10.1186/s12934-024-02537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
This study explores the potential of strain selection and adaptation for developing a fungi-yeast-microalgae consortium capable of integrated bioethanol production and livestock wastewater treatment. We employed a multi-stage approach involving isolation and strain selection/adaptation of these consortiums. The study started with screening some isolated fungi to grow on the cellulosic biomass of the livestock wastewater (saccharification) followed by a fermentation process using yeast for bioethanol production. The results revealed that Penicillium chrysogenum (Cla) and Saccharomyces cerevisiae (Sc) produced a remarkable 99.32 ppm of bioethanol and a concentration of glucose measuring 0.56 mg ml- 1. Following the impact of fungi and yeast, we diluted the livestock wastewater using distilled water and subsequently inoculated Nile River microalgae into the wastewater. The findings demonstrated that Chlorella vulgaris emerged as the dominant species in the microalgal community. Particularly, the growth rate reached its peak at a 5% organic load (0.105385), indicating that this concentration provided the most favorable conditions for the flourishing of microalgae. The results demonstrated the effectiveness of the microalgal treatment in removing the remaining nutrients and organic load, achieving a 92.5% reduction in ammonia, a 94.1% reduction in nitrate, and complete removal of phosphate (100%). The algal treatment also showed remarkable reductions in COD (96.5%) and BOD (96.1%). These findings underscore the potential of fungi, yeast, and Nile River microalgae in the growth and impact on livestock wastewater, with the additional benefit of bioethanol production.
Collapse
Affiliation(s)
- Salma B Abdalla
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt
| | - Reda M Moghazy
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt.
| | - Mohamed O Abdel-Monem
- Faculty of Science, Botany and Microbiology Department, Benha University, Benha, Egypt
| | - Mohamad A El-Khateeb
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt
| | - Mervat G Hassan
- Faculty of Science, Botany and Microbiology Department, Benha University, Benha, Egypt
| |
Collapse
|
7
|
Huang D, Liu C, Zhou H, Wang X, Zhang Q, Liu X, Deng Z, Wang D, Li Y, Yao C, Song W, Rao Q. Simultaneous and High-Throughput Analytical Strategy of 30 Fluorinated Emerging Pollutants Using UHPLC-MS/MS in the Shrimp Aquaculture System. Foods 2024; 13:3286. [PMID: 39456348 PMCID: PMC11507328 DOI: 10.3390/foods13203286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study established novel and high-throughput strategies for the simultaneous analysis of 30 fluorinated emerging pollutants in different matrices from the shrimp aquaculture system in eastern China using UHPLC-MS/MS. The parameters of SPE for analysis of water samples and of QuEChERS methods for sediment and shrimp samples were optimized to allow the simultaneous detection and quantitation of 17 per- and polyfluoroalkyl substances (PFASs) and 13 fluoroquinolones (FQs). Under the optimal conditions, the limits of detection of 30 pollutants for water, sediment, and shrimp samples were 0.01-0.30 ng/L, 0.01-0.22 μg/kg, and 0.01-0.23 μg/kg, respectively, while the limits of quantification were 0.04-1.00 ng/L, 0.03-0.73 μg/kg, and 0.03-0.76 μg/kg, with satisfactory recoveries and intra-day precision. The developed methods were successfully applied to the analysis of multiple samples collected from aquaculture ponds in eastern China. PFASs were detected in all samples with concentration ranges of 0.18-0.77 μg/L in water, 0.13-1.41 μg/kg (dry weight) in sediment, and 0.09-0.96 μg/kg (wet weight) in shrimp, respectively. Only two FQs, ciprofloxacin and enrofloxacin, were found in the sediment and shrimp. In general, this study provides valuable insights into the prevalence of fluorinated emerging contaminants, assisting in the monitoring and control of emerging contaminants in aquatic foods.
Collapse
Affiliation(s)
- Di Huang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chengbin Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
| | - Huatian Zhou
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Xianli Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Qicai Zhang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Xiaoyu Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Zhongsheng Deng
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Danhe Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Yameng Li
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chunxia Yao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Weiguo Song
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Qinxiong Rao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| |
Collapse
|
8
|
Naz M, Afzal MR, Qi SS, Dai Z, Sun Q, Du D. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. CHEMOSPHERE 2024; 365:143397. [PMID: 39313079 DOI: 10.1016/j.chemosphere.2024.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Phytoremediation, the use of plants to remove heavy metals from polluted environments, has been extensively studied. However, abiotic stresses such as drought, salt, and high temperatures can limit plant growth and metal uptake, reducing phytoremediation efficiency. High levels of HMs are also toxic to plants, further decreasing phytoremediation efficacy. This manuscript explores the potential of microbial-assisted and chelation-supported approaches to improve phytoremediation under abiotic stress conditions. Microbial assistance involves the use of specific microbes, including fungi that can produce siderophores. Siderophores bind essential metal ions, increasing their solubility and bioavailability for plant uptake. Chelation-supported methods employ organic acids and amino acids to enhance soil absorption and supply of essential metal ions. These chelating agents bind HMs ions, reducing their toxicity to plants and enabling plants to better withstand abiotic stresses like drought and salinity. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of heavy metal and abiotic stresses. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of HMs and abiotic stresses.These strategies represent a significant advancement in phytoremediation technology, potentially expanding its applicability to more challenging environmental conditions. In this review, we examined how microbial-assisted and chelation-supported techniques can enhance phytoremediation a method that uses plants to remove heavy metals from contaminated sites. These approaches not only boost plant growth and metal uptake but also alleviate the toxic effects of HMs and abiotic stresses like drought and salinity. By doing so, they make phytoremediation a more viable and effective solution for environmental remediation.
Collapse
Affiliation(s)
- Misbah Naz
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Shan Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Zhicong Dai
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu Province, PR China.
| | - Qiuyang Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
9
|
Galoppo S, Fenti A, Falco G, Huang Q, Chianese S, Musmarra D, Iovino P. Efficient electrochemical removal of ammoniacal nitrogen from livestock wastewater: The role of the electrode material. Heliyon 2024; 10:e36803. [PMID: 39263129 PMCID: PMC11388747 DOI: 10.1016/j.heliyon.2024.e36803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Wastewater from livestock farms contains high concentrations of suspended solids, organic contaminants, and nitrogen compounds, such as ammoniacal nitrogen. Discharging livestock effluents into water bodies without appropriate treatment leads to severe environmental pollution. Compared to conventional treatment methods, electrochemical oxidation exhibits higher nitrogen removal efficiencies. In the present work, the electrochemical removal of ammoniacal nitrogen from real livestock wastewater was investigated through a lab-scale reactor. Preliminary experiments were carried out to investigate the effects of different anode materials, including boron-doped diamond and iridium/ruthenium-coated titanium, on the total nitrogen removal efficiency using synthetic wastewater. Boron-doped diamond, a well-known non-active electrode, allowed to obtain 63.7 ± 1.21 % of total nitrogen degradation efficiency. However, the iridium/ruthenium-coated titanium electrode, belonging to the class of active anodes, showed a higher performance, achieving 78.8 ± 0.76 % contaminant degradation. Coupling iridium/ruthenium-coated titanium anode with a stainless-steel cathode improved the performance of the system, achieving even 96.2 ± 2.73 % of total nitrogen removal. The optimized cell configuration was used to treat livestock wastewater, resulting in the degradation of 67.0 ± 2.25 % of total nitrogen and 37.3 ± 0.68 % of total organic carbon when sodium chloride was added. At the end of the process, the ammonium content was completely removed, and only 17.7 ± 0.51 % of the initial nitrogen turned into nitrate. The results show that the proposed system is a promising approach to treating livestock wastewater by coupling high contaminant removal efficiencies with low operational costs. Anyway, further studies on process optimization with an emphasis on power requirements and electrode costs need to be carried out.
Collapse
Affiliation(s)
- Simona Galoppo
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| | - Angelo Fenti
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| | - Giovanni Falco
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, United States
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| | - Pasquale Iovino
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| |
Collapse
|
10
|
Cai Q, Zhang X, Geng W, Liu F, Yuan D, Sun R. Experimental study of microwave-catalytic oxidative degradation of COD in livestock farming effluent by copper-loaded activated carbon. ENVIRONMENTAL TECHNOLOGY 2024; 45:4565-4575. [PMID: 37697812 DOI: 10.1080/09593330.2023.2259092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
The problem of massive discharge of livestock wastewater is becoming more and more severe, causing irreversible damage to the ecological environment, and how to treat livestock wastewater efficiently and rapidly deserves to be studied in depth. In this work, CuO/granular activated carbon (GAC) loaded catalysts were prepared and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption/desorption techniques, and X-ray energy spectroscopy (EDS). The results showed that CuO was successfully attached to the GAC surface with good adsorption performance. The effects of catalyst dosage, H2O2 dosage, initial pH, microwave power and microwave irradiation time in different reaction systems on the degradation efficiency of chemical oxygen demand (COD) in wastewater were investigated, and the orthogonal experiments were used to explore the importance ranking of these factors. The highest degradation rate of COD was found to be enhanced by 12.1% in the reaction system of CuO/GAC, and the initial pH had the greatest effect on the COD removal rate. The combined MW/catalyst/H2O2 method used in this work provided a rapid and effective degradation of COD in wastewater, which can be helpful for reference in other microwave catalytic oxidation studies.
Collapse
Affiliation(s)
- Qingfeng Cai
- School of Thermal Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Xiao Zhang
- School of Thermal Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Wenguang Geng
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Fang Liu
- School of Thermal Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Dongling Yuan
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Rongfeng Sun
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
11
|
Peng Q, Yang Y, Ou W, Wei L, Li Z, Deng X, Gao Q. The characteristics and environmental significance of BVOCs released by aquatic macrophytes. CHEMOSPHERE 2024; 361:142574. [PMID: 38852633 DOI: 10.1016/j.chemosphere.2024.142574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) emitted by plants serve crucial biological functions and potentially impact atmospheric environment and global carbon cycling. Despite their significance, BVOC emissions from aquatic macrophytes have been relatively understudied. In this study, for the first time we identified there were 68 major BVOCs released from 34 common aquatic macrophytes, and these compounds referred to alcohols, aldehydes, alkanes, alkenes, arenes, ethers, furans, ketones, phenol. For type of BVOC emissions from different life form and phylogenetic group of aquatic macrophytes, 34 of the 68 BVOCs from emergent and submerged macrophytes are classified into alkene and alcohol compounds, over 50% BVOCs from dicotyledon and monocotyledon belong to alcohol and arene compounds. Charophyte and pteridophyte emitted significantly fewer BVOCs than dicotyledon and monocotyledon, and each of them only released 12 BVOCs. These BVOCs may be of great importance for the growth and development of macrophytes, because many BVOCs, such as azulene, (E)-β-farnesene, and dimethyl sulfide are proved to play vital roles in plant growth, defense, and information transmission. Our results confirmed that both life form and phylogenetic group of aquatic macrophytes had significantly affected the BVOC emissions form macrophytes, and suggested that the intricate interplay of internal and external factors that shape BVOC emissions from aquatic macrophytes. Thus, further studies are urgently needed to investigate the influence factors and ecological function of BVOCs released by macrophytes within aquatic ecosystem.
Collapse
Affiliation(s)
- Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Wenhui Ou
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Lifei Wei
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, China.
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| |
Collapse
|
12
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
13
|
Zhang Y, Li B, Zhang W, Guo X, Zhu L, Cao L, Yang J. Electro-oxidation of ammonia nitrogen using W, Ti-doped IrO 2 DSA as a treatment method for mariculture and livestock wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44385-44400. [PMID: 38954330 DOI: 10.1007/s11356-024-34160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Animal farming wastewater is one of the most important sources of ammonia nitrogen (NH4+-N) emissions. Electro-oxidation can be a viable solution for removing NH4+-N in wastewater. Compared with other treatment methods, electro-oxidation has the advantages of i) high removal efficiency, ii) smaller size of treatment facilities, and iii) complete removal of contaminant. In this study, a previously prepared DSA (W, Ti-doped IrO2) was used for electro-oxidation of synthetic mariculture and livestock wastewater. The DSA was tested for chlorine evolution reaction (CER) activity, and the reaction kinetics was investigated. CER current efficiency reaches 60-80% in mariculture wastewater and less than 20% in livestock wastewater. In the absence of NH4+-N, the generation of active chlorine follows zero-order kinetics and its consumption follows first-order kinetics, with cathodic reduction being its main consumption pathway, rather than escape or conversion to ClO3-. Cyclic voltammetry experiments show that NH4+-N in the form of NH3 can be oxidized directly on the anode surface. In addition, the generated active chlorine combines with NH4+-N at a fast rate near the anode, rather than in the bulk solution. In electrolysis experiments, the NH4+-N removal rate in synthetic mariculture wastewater (30-40 mg/L NH4+-N) and livestock wastewater (~ 450 mg/L NH4+-N) is 112.9 g NH4+-N/(m2·d) and 186.5 g NH4+-N/(m2·d), respectively, which is much more efficient than biological treatment. The specific energy consumption (SEC) in synthetic mariculture wastewater is 31.5 kWh/kg NH4+-N, comparable to other modified electro-catalysts reported in the literature. However, in synthetic livestock wastewater, the SEC is as high as 260 kWh/kg NH4+-N, mainly due to the suppression of active chlorine generation by HCO3- and the generation of NO3- as a by-product. Therefore, we conclude that electro-oxidation is suitable for mariculture wastewater treatment, but is not recommended for livestock wastewater. Electrolysis prior to urea hydrolysis may enhance the treatment efficiency in livestock wastewater.
Collapse
Affiliation(s)
- Yiheng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Binbin Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Wenjing Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xin Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lin Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Limei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China.
| |
Collapse
|
14
|
Li J, Li T, Sun D, Guan Y, Zhang Z. Treatment of agricultural wastewater using microalgae: A review. ADVANCES IN APPLIED MICROBIOLOGY 2024; 128:41-82. [PMID: 39059843 DOI: 10.1016/bs.aambs.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rapid development of agriculture has led to a large amount of wastewater, which poses a great threat to environmental safety. Microalgae, with diverse species, nutritional modes and cellular status, can adapt well in agricultural wastewater and absorb nutrients and remove pollutants effectively. Besides, after treatment of agricultural wastewater, the accumulated biomass of microalgae has broad applications, such as fertilizer and animal feed. This paper reviewed the current progresses and further perspectives of microalgae-based agricultural wastewater treatment. The characteristics of agricultural wastewater have been firstly introduced; Then the microalgal strains, cultivation modes, cellular status, contaminant metabolism, cultivation systems and biomass applications of microalgae for wastewater treatment have been summarized; At last, the bottlenecks in the development of the microalgae treatment methods, as well as recommendations for optimizing the adaptability of microalgae to wastewater in terms of wastewater pretreatment, microalgae breeding, and microalgae-bacterial symbiosis systems were discussed. This review would provide references for the future developments of microalgae-based agricultural wastewater treatment.
Collapse
Affiliation(s)
- Jiayi Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Tong Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Dongzhe Sun
- College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China
| | - Yueqiang Guan
- School of Life Sciences, Hebei University, Baoding, P.R. China.
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, P.R. China; College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China.
| |
Collapse
|
15
|
Zhang X, Wang H, Zhang W, Lv H, Lin X. Study on the purification mechanism for ammonia nitrogen in micro-polluted rivers by herbaceous plant - Rumex japonicus Houtt. CHEMOSPHERE 2024; 358:142154. [PMID: 38679183 DOI: 10.1016/j.chemosphere.2024.142154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Water eutrophication caused by nitrogen pollution is an urgent global issue that requires attention. The Qingyi River is a typical micro-polluted river in China. In this study, we took this river as the research object to investigate the nitrogen pollution purification capacity of a herbaceous plant, Rumex japonicus Houtt. (RJH). Compared to nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N), RJH showed better purification performance on total nitrogen (TN), total phosphorus (TP) and ammonia nitrogen (NH4+-N), with a highest removal rate of 37.22%, 52.13%, and 100%, respectively. RJH could completely remove ammonia nitrogen and exhibit excellent resistance to pollutant interference when the initial concentration of ammonia nitrogen in the cultivation devices increased from 1 mg/L to 10 mg/L or in the actual river. This indicated the great application potential of RJH in ammonia nitrogen removal from natural micro-polluted rivers. In addition, combined effects of nitrification of roots, absorption of self-growth, stripping, and others contributed to nitrogen removal by RJH. Particularly, the nitrification of roots played a dominant role, accounting for 73.85% ± 8.79%. High-throughput sequencing results indicate that nitrifying bacteria accounted for over 75% of all bacterial species in RJH. Furthermore, RJH showed good growth status and strong adaptability. The correlation coefficients of its relative growth rate with chlorophyll A and the degradation rate of absorption were 0.9677 and 0.9594, respectively. Our research demonstrates that RJH is one of the excellent varieties for ammonia removal. This provides a very promising and sustainable method for purifying micro-polluted rivers.
Collapse
Affiliation(s)
- Xiangyang Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Henan, 450001, China
| | - Huiliang Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Henan, 450001, China
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, Henan, 450001, China
| | - Hong Lv
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, China
| | - Xiaoying Lin
- School of Water Conservancy and Transportation, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
16
|
Yang W, Li J, Yao Z, Li M. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171757. [PMID: 38513856 DOI: 10.1016/j.scitotenv.2024.171757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Antibiotics, widely used in the fields of medicine, animal husbandry, aquaculture, and agriculture, pose a serious threat to the ecological environment and human health. To prevent antibiotic pollution, efforts have been made in recent years to explore alternative options for antibiotics in animal feed, but the effectiveness of these alternatives in replacing antibiotics is not thoroughly understood due to the variation from case to case. Furthermore, a systematic summary of the specific applications and limitations of antibiotic removal techniques in the environment is crucial for developing effective strategies to address antibiotic contamination. This comprehensive review summarized the current development and potential issues on different types of antibiotic substitutes, such as enzyme preparations, probiotics, and plant extracts. Meanwhile, the existing technologies for antibiotic residue removal were discussed under the scope of application and limitation. The present work aims to highlight the strategy of controlling antibiotics from the source and provide valuable insights for green and efficient antibiotic treatment.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Mi Li
- Center for Renewable Carbon, School of Natural Resources, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
17
|
Phyu K, Zhi S, Liang J, Chang CC, Liu J, Cao Y, Wang H, Zhang K. Microalgal-bacterial consortia for the treatment of livestock wastewater: Removal of pollutants, interaction mechanisms, influencing factors, and prospects for application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123864. [PMID: 38554837 DOI: 10.1016/j.envpol.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The livestock sector is responsible for a significant amount of wastewater globally. The microalgal-bacterial consortium (MBC) treatment has gained increasing attention as it is able to eliminate pollutants to yield value-added microalgal products. This review offers a critical discussion of the source of pollutants from livestock wastewater and the environmental impact of these pollutants. It also discusses the interactions between microalgae and bacteria in treatment systems and natural habitats in detail. The effects on MBC on the removal of various pollutants (conventional and emerging) are highlighted, focusing specifically on analysis of the removal mechanisms. Notably, the various influencing factors are classified into internal, external, and operating factors, and the mutual feedback relationships between them and the target (removal efficiency and biomass) have been thoroughly analysed. Finally, a wastewater recycling treatment model based on MBC is proposed for the construction of a green livestock farm, and the application value of various microalgal products has been analysed. The overall aim was to indicate that the use of MBC can provide cost-effective and eco-friendly approaches for the treatment of livestock wastewater, thereby advancing the path toward a promising microalgal-bacterial-based technology.
Collapse
Affiliation(s)
- KhinKhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, Ellicott City, MD, 21042, USA.
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Yuang Cao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
18
|
Trivedi R, Upadhyay TK, Khan F, Pandey P, Kaushal RS, Sonkar M, Kumar D, Saeed M, Khandaker MU, Emran TB, Siddique MAB. Innovative strategies to manage polluted aquatic ecosystem and agri-food waste for circular economy. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 21:100928. [DOI: 10.1016/j.enmm.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
19
|
Wu X, Nawaz S, Li Y, Zhang H. Environmental health hazards of untreated livestock wastewater: potential risks and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24745-24767. [PMID: 38499926 DOI: 10.1007/s11356-024-32853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Due to technological and economic limitations, waste products such as sewage and manure generated in livestock farming lack comprehensive scientific and centralized treatment. This leads to the exposure of various contaminants in livestock wastewater, posing potential risks to both the ecological environment and human health. This review evaluates the environmental and physical health risks posed by common pollutants in livestock wastewater and outlines future treatment methods to mitigate these risks. Residual wastes in livestock wastewater, including pathogenic bacteria and parasites surviving after epidemics or diseases on various farms, along with antibiotics, organic wastes, and heavy metals from farming activities, contribute to environmental damage and pose risks to human health. As the livestock industry's development increasingly impacts society's future negatively, addressing the issue of residual wastes in livestock wastewater discharge becomes imperative. Ongoing advancements in wastewater treatment systems are consistently updating and refining practices to effectively minimize waste exposure at the discharge source, mitigating risks to environmental ecology and human health. This review not only summarizes the "potential risks of livestock wastewater" but also explores "the prospects for the development of wastewater treatment technologies" based on current reports. It offers valuable insights to support the long-term and healthy development of the livestock industry and contribute to the sustainable development of the ecological environment.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Lv S, Zhang S, Zhang M, Liu F, Cheng L. Effects of multi-plant harvesting on nitrogen removal and recovery in constructed wetlands. CHEMOSPHERE 2024; 353:141550. [PMID: 38408572 DOI: 10.1016/j.chemosphere.2024.141550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
The harvesting of plants is considered an effective method for nutrient recovery in constructed wetlands (CWs). However, excessive plant harvesting can lead to a decrease in plant biomass. It remains unclear what harvesting frequency can optimize plant nutrient uptake and pollutant removal. In this study, CWs planted with Myriophyllum aquaticum were constructed, and three different frequencies of plant harvesting (high: 45 days/time; low: 90 days/time; none: CK) were set to investigate nitrogen removal and its influencing mechanism, as well as the capacity for plant nutrient recovery. The results showed that the average removal efficiencies of ammonia nitrogen (NH4+-N) at 45 days/time, 90 days/time, and CK were 90.3%, 90.8%, and 88.3% respectively, while the corresponding total nitrogen (TN) were 61.2%, 67.4%, and 67.4%. Dissolved oxygen (DO) concentration and water temperature were identified as the main environmental factors affecting nitrogen removal efficiency. Low harvest frequency (90 days/time) increased DO concentration and NH4+-N removal efficiency without impacting TN removal. Additionally, TN recovery from plants under high and low harvest was found to be approximately 9.21-9.32 times higher than that from no harvest conditions. The above studies indicated that a harvest frequency of every 90 days was one appropriate option for M. aquaticum, which not only increased NH4+-N removal efficiencies but also facilitated more efficient nitrogen recovery from the wetland system.
Collapse
Affiliation(s)
- Shuangtong Lv
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shunan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China.
| | - Miaomiao Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lihua Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China; College of Resources, Hunan Agricultural University, Hunan 410128, China
| |
Collapse
|
21
|
Meetiyagoda TAOK, Samarakoon T, Takahashi T, Fujino T. Cytogenotoxicity of raw and treated dairy manure slurry by two-stage chemical and electrocoagulation: An application of the Allium cepa bioassay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170001. [PMID: 38218494 DOI: 10.1016/j.scitotenv.2024.170001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Livestock farming is an essential agricultural practice. However, the improper management of livestock wastes and discharge of untreated or partially treated livestock manure slurry poses significant environmental problems. In this study, we aimed to compare the cytogenotoxic potential of untreated and treated dairy manure slurry treated with a two-stage chemical and electrocoagulation (EC) using the Allium cepa bioassay. The A. cepa bioassay is a well-established standard tool for assessing the cytogenotoxic effects of environmental contaminants, especially those that are occurred as complex contaminant mixtures. The dairy manure slurry was subjected to chemical treatment utilizing polyaluminum chloride (PAC) and cationic polyacrylamide (CPAM) at optimized conditions, followed by EC utilizing either aluminum (Al) or steel anodes. The treated and untreated samples were then evaluated for their potential cytogenotoxicty using the A. cepa bioassay, by measuring the nuclear abnormalities (NAs) and chromosomal aberrations (CAs), along with the mitotic indices (MIs). Our findings revealed a significant reduction in cytogenotoxic indicators in the treated liquid fraction compared to the untreated dairy manure slurry. Specifically, the frequency of total NAs showed a significant reduction from 154 ‰ to 37 ‰ when the dairy manure slurry was treated with chemical coagulation followed by EC utilizing an Al anode. Moreover, the MI exhibited a significant improvement from 7 ‰ to 123 ‰, suggesting the mitigation of toxic effects. These results collectively demonstrate the effectiveness of the two-stage chemical and EC treatment under optimal conditions in treating diary manure slurry while reducing its cytogenotoxicity for living systems. The A. cepa bioassay proved to be a sensitive and reliable method for assessing the toxicity of the treated samples. The efficient solid-liquid separation and the reduction of toxicity in the liquid fraction for biological systems achieved through this treatment process highlight its potential for sustainable management of livestock waste and the preservation of water quality. Nevertheless, further studies are required to assess the toxicity of solid fraction.
Collapse
Affiliation(s)
| | - Thilomi Samarakoon
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya 11600, Sri Lanka.
| | - Toshinori Takahashi
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
22
|
Lee JI, Choi D, Kim S, Kim JY, Park SJ, Kwon EE. Developing a sorptive material of cadmium from pyrolysis of hen manure. CHEMOSPHERE 2024; 351:141262. [PMID: 38262492 DOI: 10.1016/j.chemosphere.2024.141262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
A large amount of manure is generated from concentrated animal feeding operations (CAFOs), leading to serious environmental issues and hazardous risks from pathogens, such as methicillin-resistant Staphylococcus aureus. Therefore, developing an effective method for manure disposal is essential. Thus, in this study, we suggest the use of CO2 in pyrolysis of hen manure (HM) as an effective method to convert the carbon in HM into syngas (especially carbon monoxide (CO)). HM was used and tested as the model compound. From the results of thermo-gravimetric analysis, the decarboxylation of CaCO3 in HM in the presence of N2 was realized at temperatures ranging from 638 to 754 °C. The Boudouard reaction was observed at ≥ 664 °C in the presence of CO2. Despite the lack of occurrence of the Boudouard reaction, more CO formation was observed in the presence of CO2 at ≥ 460 °C. This was deemed as a homogeneous reaction induced by CO2. Considering the high Ca content of HM, HM biochar in N2 and CO2 were used as adsorbent for removal of Cadmium (Cd), which is toxic heavy metal. The adsorption capacities of HM_N2 and HM_CO2 were 302.4 and 95.7 mg g-1, respectively. The superior performance of HM_N2 is mainly attributed to the presence of Ca(OH)2, which provides favorable (alkaline) conditions for precipitation and ion exchange. Our results indicate the environmental benefits from using CO2. Specifically, CO2 (representative greenhouse gas) converted into fuel. Given this, pyrolysis of HM in the presence of CO2 was achieved at ≤ 640 °C, and the atmospheric condition should be switched from CO2 to N2 at ≥ 640 °C to ensure the decarboxylation of CaCO3.
Collapse
Affiliation(s)
- Jae-In Lee
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Dongho Choi
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seungwon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jee Young Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seong-Jik Park
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea; Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
23
|
Kim JW, Lim HB, Jang JY, Shin HS. Sludge-based candidate reference materials for enhanced quality control of particulate processes in total organic carbon analysis for wastewater 1. CHEMOSPHERE 2024; 352:141458. [PMID: 38364920 DOI: 10.1016/j.chemosphere.2024.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Accurate analyses of total organic carbon (TOC) encompassing particulate organic carbon in wastewater are key for evaluating the behavior of particulate organic contaminants and maintaining the carbon mass balance throughout the wastewater treatment process. This study was conducted to develop candidate reference materials of environmental origin from excess sludge collected from wastewater treatment facilities, primarily receiving industrial wastewater and livestock manure as the main sources. Homogeneity and stability assessments for total carbon (TC) and TOC were conducted in the particle samples following the standardized procedures of ISO Guide 35 and ISO 13258. The results showed that high inorganic carbon (IC) content in particles, such as YJ(500) (IC: 29%), rendered them unsuitable for TOC quality control (QC), as they increased uncertainty in both homogeneity and stability assessments. Additionally, a13C NMR analysis revealed that samples with a high (O-alkyl)/(C-H-alkyl) ratio in their carbon structures exhibited relatively low stability. Through the homogeneity and stability assessments, a particle sample, YJ(100), was selected as the reference material (RM); the assigned values were as follows: 30.78% for TC and 27.94% for TOC, with uncertainties of 0.01% and 1.1%, respectively. Furthermore, considering sample transportation conditions, the safe storage period for the RM particles was determined to be 2 weeks under harsh conditions (at 40 °C). In our inter-laboratory test (n = 8) using the particle samples, we confirmed that the particle samples can effectively enhance particle processing QC and validate a proposed suspended solids pretreatment method. This study showcases valuable environmental particle sample production and evaluation, offering potential advancements in the QC of TOC analysis for wastewater samples.
Collapse
Affiliation(s)
- Joo-Won Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea
| | - Hye-Bin Lim
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jun-Young Jang
- Material Science and Environmental Engineering Unit, Tampere University, Tampere, 33014, Finland
| | - Hyun-Sang Shin
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea.
| |
Collapse
|
24
|
Rai PK, Nongtri ES. Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): coupling with biorefinery prospects for sustainable phytotechnologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16216-16240. [PMID: 38334920 DOI: 10.1007/s11356-024-32177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Heavy metals/-metalloids can result in serious human health hazards. Phytoremediation is green bioresource technology for the remediation of heavy metals and arsenic (As). However, there exists a knowledge gap and systematic information on duckweed-based metal phytoremediation in an eco-sustainable way. Therefore, the present review offers a critical discussion on the effective use of duckweeds (genera Landoltia and Lemna)-based phytoremediation to decontaminate metallic contaminants from wastewater. Phytoextraction and rhizofiltration were the major mechanism in 'duckweed bioreactors' that can be dependent on physico-chemical factors and plant-microbe interactions. The biotechnological advances such as gene manipulations can accelerate the duckweed-based phytoremediation process. High starch and protein contents of the metal-loaded duckweed biomass facilitate their use as feedstock in biorefinery. Biorefinery prospects such as bioenergy production, value-added products, and biofertilizers can augment the circular economy approach. Coupling duckweed-based phytoremediation with biorefinery can help achieve Sustainable Development Goals (SDGs) and human well-being.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University (A Central University), Aizawl, 796004, India.
| | - Emacaree S Nongtri
- Department of Environmental Science, Mizoram University (A Central University), Aizawl, 796004, India
| |
Collapse
|
25
|
Silva-Gálvez AL, López-Sánchez A, Camargo-Valero MA, Prosenc F, González-López ME, Gradilla-Hernández MS. Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120258. [PMID: 38387343 DOI: 10.1016/j.jenvman.2024.120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Global sustainable development faces several challenges in addressing the needs of a growing population. Regarding food industries, the heightening pressure to meet these needs has resulted in increased waste generation. Thus, recognising these wastes as valuable resources is crucial to integrating sustainable models into current production systems. For instance, the current 24 billion tons of nutrient-rich livestock wastewater (LW) generated yearly could be recovered and valorised via biological uptake through microalgal biomass. Microalgae-based livestock wastewater treatment (MbLWT) has emerged as an effective technology for nutrient recovery, specifically targeting carbon, nitrogen, and phosphorus. However, the viability and efficacy of these systems rely on the characteristics of LW, including organic matter and ammonium concentration, content of suspended solids, and microbial load. Thus, this systematic literature review aims to provide guidance towards implementing an integral MbLWT system for nutrient control and recovery, discussing several pre-treatments used in literature to overcome the challenges regarding LW as a suitable media for microalgae cultivation.
Collapse
Affiliation(s)
- Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico; BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK; Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia
| | - Franja Prosenc
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Martín Esteban González-López
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | - Misael Sebastián Gradilla-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| |
Collapse
|
26
|
Liu J, Wang Z, Zhao C, Lu B, Zhao Y. Phytohormone gibberellins treatment enhances multiple antibiotics removal efficiency of different bacteria-microalgae-fungi symbionts. BIORESOURCE TECHNOLOGY 2024; 394:130182. [PMID: 38081467 DOI: 10.1016/j.biortech.2023.130182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
To develop and characterize novel antibiotics removal biomaterial technology, we constructed three different bacteria-microalgae-fungi consortiums containing Chlorella vulgaris (C. vulgaris), endophytic bacterium, Clonostachys rosea (C. rosea), Ganoderma lucidum, and Pleurotus pulmonarius. The results showed that under treatment with 50 mg/L of gibberellins (GAs), the three bacteria-microalgae-fungi symbionts had maximal growth rates (0.317 ± 0.030 d-1) and the highest removal efficiency for seven different antibiotics. Among them, C. vulgaris-endophytic bacterium-C. rosea symbiont had the best performance, with antibiotics removal efficiencies of 96.0 ± 1.4 %, 91.1 ± 7.9 %, 48.7 ± 5.1 %, 34.6 ± 2.9 %, 61.0 ± 5.5 %, 63.7 ± 5.6 %, and 54.3 ± 4.9 % for tetracycline hydrochloride, oxytetracycline hydrochloride, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethazine, and sulfamethoxazole, respectively. Overall, the present study demonstrates that 50 mg/L GAs enhances biomass production and antibiotics removal efficiency of bacteria-microalgae-fungi symbionts, providing a framework for future antibiotics-containing wastewater treatment using three-phase symbionts.
Collapse
Affiliation(s)
- Jun Liu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Yongjun Zhao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
27
|
Shen M, Hu Y, Zhao K, Qu Z, Lyu C, Liu B, Li M, Bu X, Li C, Zhong S, Cheng J. Effects of dissolved organic matter, pH and nutrient on ciprofloxacin bioaccumulation and toxicity in duckweed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106775. [PMID: 38043483 DOI: 10.1016/j.aquatox.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Water pollution induced by antibiotics has garnered considerable concern, necessitating urgent and effective removal methods. This study focused on exploring ciprofloxacin (CIP) removal by duckweed and assessing CIP bioaccumulation and toxic effects within duckweed under varying dissolved organic matter categories, pH levels, and nutrient (nitrogen (N) and phosphorus (P)) levels. The results revealed the proficient and rapid elimination of CIP from water by duckweed, resulting in 86.17 % to 92.82 % removal efficiency at the end of the 7-day experiment. Across all exposure groups, varying degrees of CIP bioaccumulation in duckweed were evident, with uptake established as a primary pathway for CIP elimination within this plant. Additionally, five CIP metabolites were identified in duckweed tissues. Interestingly, the presence of humic acid (HA) and fulvic acid (FA) reduced CIP absorption by duckweed, with FA yielding a more pronounced impact. Optimal CIP removal was recorded at a pH of 7.5, while duckweed displayed heightened physiological stress induced by CIP at pH 8.5. Although the influence of N and P concentrations on CIP removal by duckweed was modest, excessive N and P levels intensified the physiological strain of CIP on duckweed.
Collapse
Affiliation(s)
- Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Yi Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Zhi Qu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Xiaodan Bu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Jie Cheng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
28
|
Wu X, Zhang X, Xian Y, Liu Y, Luo L, Wang L, Huang C, Chen C, He J, Zhang Y. Konjac glucomannan/pectin/Ca-Mg hydrogel with self-releasing alkalinity to recover phosphate in aqueous solution. Int J Biol Macromol 2023; 252:126355. [PMID: 37607653 DOI: 10.1016/j.ijbiomac.2023.126355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
The combination of polysaccharides can obtain stable, degradable, and environmentally friendly hydrogels, which have broad application prospects in adsorbents assembly. With Ca2+ and Mg2+ as crosslinkers, a new pectin/Konjac glucomannan/Ca-Mg composite hydrogel was prepared for phosphate adsorption by the alkali-thermal co-reaction method. Since Mg(OH)2 can create a suitable pH condition for phosphate adsorption by Ca, Ca and Mg synergistically promoted phosphate adsorption and remained stable in the pH range of 4 to 10. FTIR, SEM-EDS, XRD, XPS, and zero potential analysis corroborated that the hydrogel used Ca and Mg as active sites to trap pollutants by electrostatic adsorption and fix phosphate through complexation to form Mg3(PO4)2·8H2O and CaPO3(OH)2·H2O. Furthermore, it is unnecessary to separate the recovered phosphate from the hydrogel, and it can be used directly as a fertilizer. By being reused in the soil, it promoted seed germination and seedling growth. This adsorbent has the potential for recovery as a phosphorus-containing organic fertilizer after phosphorus adsorption.
Collapse
Affiliation(s)
- Xingyu Wu
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Zhang
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yumei Xian
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Liu
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Luo
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Lilin Wang
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengyi Huang
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Chen
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinsong He
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzong Zhang
- College of Environment Sciences, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
29
|
Shen M, Hu Y, Zhao K, Li C, Liu B, Li M, Lyu C, Sun L, Zhong S. Occurrence, Bioaccumulation, Metabolism and Ecotoxicity of Fluoroquinolones in the Aquatic Environment: A Review. TOXICS 2023; 11:966. [PMID: 38133367 PMCID: PMC10747319 DOI: 10.3390/toxics11120966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been growing concern about antibiotic contamination in water bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat to ecosystems due to their extensive use and the phenomenon of "pseudo-persistence". This article provides a comprehensive review of the literature on FQs in water bodies, summarizing and analyzing contamination levels of FQs in global surface water over the past three years, as well as the bioaccumulation and metabolism patterns of FQs in aquatic organisms, their ecological toxicity, and the influencing factors. The results show that FQs contamination is widespread in surface water across the surveyed 32 countries, with ciprofloxacin and norfloxacin being the most heavy contaminants. Furthermore, contamination levels are generally higher in developing and developed countries. It has been observed that compound types, species, and environmental factors influence the bioaccumulation, metabolism, and toxicity of FQs in aquatic organisms. FQs tend to accumulate more in organisms with higher lipid content, and toxicity experiments have shown that FQs exhibit the highest toxicity to bacteria and the weakest toxicity to mollusk. This article summarizes and analyzes the current research status and shortcomings of FQs, providing guidance and theoretical support for future research directions.
Collapse
Affiliation(s)
- Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Yi Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Lei Sun
- Liaoning Provincial Mineral Exploration Institute Co., Ltd., Shenyang 110031, China
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| |
Collapse
|
30
|
Babu Ponnusami A, Sinha S, Ashokan H, V Paul M, Hariharan SP, Arun J, Gopinath KP, Hoang Le Q, Pugazhendhi A. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques. ENVIRONMENTAL RESEARCH 2023; 237:116944. [PMID: 37611785 DOI: 10.1016/j.envres.2023.116944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Complexity of wastewater is the most challenging phenomenon on successful degradation of pollutant via any wastewater treatment regime. Upon availability of numerous techniques, Advanced Oxidation Processes (AOP) is the most promising technique for treating industrial wastewater. Higher operating cost is the most promising factor that possess challenge for the industrial scale usage of the AOP process. Combination of biological process with AOP helps in achieving sustainable degradation of toxic pollutant in the wastewater. AOP result in complete or partial degradation of toxic emerging pollutants with the help of free radicals like hydroxyl, superoxide, hydroperoxyl and sulphate radicals. In addition to this the presence of bio-enzymes and microorganisms helps in sustainable degradation of pollutant in an economical and environmentally friendly strategy. In this review, a detailed discussion was conducted on various AOP, focusing on catalytic ozonation, electrochemical oxidation, Sono chemical and photocatalytic processes. With the need for sustainable solutions for wastewater treatment, the use of AOP in conjunction with biological process has innumerous opportunities for not only wastewater treatment but also the production of high value by-products. Further, the effect of AOP combined biological processes needs to be analyzed in real time for the different concentration of industrial wastewater and their benefits needs to be explored in future towards achieving SDGs.
Collapse
Affiliation(s)
- A Babu Ponnusami
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - Sanyukta Sinha
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - Hridya Ashokan
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - Mathew V Paul
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - Sai Prashant Hariharan
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore - 632 014, Tamilnadu , India
| | - J Arun
- Centre for Waste Management, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai (OMR), Jeppiaar Nagar, Chennai, 600119, Tamil Nadu, India
| | - K P Gopinath
- Department of Chemical Engineering, Mohamed Sathak Engineering College, Sathak Nagar, SH 49, Keelakarai, Tamil Nadu 623806
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
31
|
Li S, Zhu L. Copper regulates degradation of typical antibiotics by microalgal-fungal consortium in simulated swine wastewater: insights into metabolic routes and dissolved organic matters. WATER RESEARCH 2023; 245:120654. [PMID: 37778083 DOI: 10.1016/j.watres.2023.120654] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Microalgae-based biotechnology for antibiotics biodegradation in swine wastewater has been receiving an increasing attention. In this study, microalgae and fungi co-cultivation system, regulated by copper (Cu(II)), was investigated in terms of nutrients and sulfonamides degradation in simulated swine wastewater. Results showed that the removal of ammonium nitrogen (NH4+-N), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) by microalgal-fungal consortium increased under 0.1-0.5 mg/L Cu(II) with the highest removal efficiency of 79.19%, 76.18%, 93.93% and 93.46%, respectively. The addition of Cu(II) (0-0.5 mg/L) enhanced the removal of sulfamonomethoxine (SMM), sulfamethoxazole (SMX) and sulfamethazine (SMZ) from 49.05% to 58.76%, from 59.31% to 63.51%, and from 37.51% to 63.9%, respectively, and the main removal mechanism was found to be biodegradation. Biodegradation followed a pseudo-first-order model with variable half-lives (10.12 to 15.51 days for SMM, 9.01 to 10.88 days for SMX, and 8.74 to 12.85 days for SMZ). Through mass spectrometry analysis, metabolites and intermediates of sulfonamides were accordingly identified, suggesting that the degradation routes were involved with hydroxylation, deamination, oxidation, de-sulfonation and bond cleavage. Dissolved organic matters released by microalgal-fungal consortium were induced by Cu(II). Fulvic acid-like and protein-like substances were bound to Cu(II), reducing its concentration and thus mitigating the organismal damage to microorganisms. These findings drew an insightful understanding of microalgal-fungal consortium for sulfonamides remediation by Cu(II) regulation in simulated swine wastewater.
Collapse
Affiliation(s)
- Shuangxi Li
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
32
|
Luo Y, Li X, Lin Y, Wu S, Cheng JJ, Yang C. Stress of cupric ion and oxytetracycline in Chlorella vulgaris cultured in swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165120. [PMID: 37379923 DOI: 10.1016/j.scitotenv.2023.165120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Chlorella culturing has the advantages in treatment of wastewater including swine wastewater from anaerobic digesters due to the product of biolipids and the uptake of carbon dioxide. However, there often exist high concentrations of antibiotics and heavy metals in swine wastewater which could be toxic to chlorella and harmful to the biological systems. This study examined the stress of cupric ion and oxytetracycline (OTC) at various concentrations on the nutrient removal and biomass growth in Chlorella vulgaris culturing in swine wastewater from anaerobic digesters, and its biochemical responses were also studied. Results showed that dynamic hormesis of either OTC concentration or cupric ion one on Chlorella vulgaris were confirmed separately, and the presence of OTC not only did not limit biomass growth and lipids content of Chlorella vulgaris but also could mitigate the toxicity of cupric ion on Chlorella vulgaris in combined stress of Cu2+ and OTC. Extracellular polymeric substances (EPS) of Chlorella vulgaris were used to explain the mechanisms of stress for the first time. The content of proteins and carbohydrates in EPS increased, and the fluorescence spectrum intensity of tightly-bound EPS (TB-EPS) of Chlorella vulgaris decreased with increasing concentration of stress because Cu2+ and OTC may be chelated with proteins of TB-EPS to form non-fluorescent characteristic chelates. The low concentration of Cu2+ (≤1.0 mg/L) could enhance the protein content and promote the activity of superoxide dismutase (SOD) while these parameters were decreased drastically under 2.0 mg/L of Cu2+. The activity of adenosine triphosphatase (ATPase) and glutathione (GSH) enhanced with the increase of OTC concentration under combined stress. This study helps to comprehend the impact mechanisms of stress on Chlorella vulgaris and provides a novel strategy to improve the stability of microalgae systems for wastewater treatment.
Collapse
Affiliation(s)
- Yun Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Li
- Hunan Urban and Rural Environmental Construction Co.., Ltd., Changsha, Hunan 410118, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| |
Collapse
|
33
|
Amara NI, Chukwuemeka ES, Obiajulu NO, Chukwuma OJ. Yeast-driven valorization of agro-industrial wastewater: an overview. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1252. [PMID: 37768404 DOI: 10.1007/s10661-023-11863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The intensive industrial and agricultural activities currently on-going worldwide to feed the growing human population have led to significant increase in the amount of wastewater produced. These effluents are high in phosphorus (P), nitrogen (N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and heavy metals. These compounds can provoke imbalance in the ecosystem with grievous consequences to both the environment and humans. Adequate treatment of these wastewaters is therefore of utmost importance to humanity. This can be achieved through valorization of these waste streams, which is based on biorefinery idea and concept of reduce, reuse, and recycle for sustainable circular economy. This concept uses innovative processes to produce value-added products from waste such as wastewater. Yeast-based wastewater treatment is currently on the rise given to the many characteristics of yeast cells. Yeasts are generally fast growing, and they are robust in terms of tolerance to stress and inhibitory compounds, in addition to their ability to metabolize a diverse range of substrates and create a diverse range of metabolites. Therefore, yeast cells possess the capacity to recover and transform agro-industrial wastewater nutrients into highly valuable metabolites. In addition to remediating the wastewater, numerous value-added products such as single cell oil (SCO), single cell proteins (SCPs), biofuels, organic acid, and aromatic compounds amongst others can be produced through fermentation of wastewater by yeast cells. This work thus brings to limelight the potential roles of yeast cells in reducing, reusing, and recycling of agro-industrial wastewaters while proffering solutions to some of the factors that limit yeast-mediated wastewater valorization.
Collapse
|
34
|
Wang H, Lin L, Zhang L, Han P, Ju F. Microbiome assembly mechanism and functional potential in enhanced biological phosphorus removal system enriched with Tetrasphaera-related polyphosphate accumulating organisms. ENVIRONMENTAL RESEARCH 2023; 233:116494. [PMID: 37356531 DOI: 10.1016/j.envres.2023.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Tetrasphaera-related polyphosphate accumulating organisms (PAOs) are the key functional guilds for enhanced biological phosphorus removal (EBPR) systems. Their biomass enrichment can be enhanced by the nitrification inhibitor allylthiourea (ATU). However, the underlying assembly mechanism and the functional potential of the EBPR microbiome regulated by ATU are unclear. This study investigates the effect of ATU on microbiome assembly and functional potential by closely following the microbiota dynamics in an EBPR system enriched with Tetrasphaera-related PAOs for 288-days before, during and after ATU addition. The results showed that ATU addition increased microbiota structural similarity and compositional convergence, and enhanced determinism in the assembly of EBPR microbiome. During exposure to ATU, Tetrasphaera-related PAOs were governed by homogeneous selection and the dominant species revealed by 16S rRNA gene-based phylogenetic analysis shifted from clade III to clade I. Meanwhile, ATU supply promoted significant enrichment of functional genes involved in phosphate transport (pit) and polyphosphate synthesis and degradation (ppk1 and ppk2), whereas both Nitrosomonas and ammonia monooxygenase-encoding genes (amoA/B/C) assignable to this group of nitrifying bacteria decreased. Moreover, ATU addition relieved the significant abundance correlation between filamentous bacteria Ca. Promineofilum and denitrifying Brevundimonas (FDR-adjusted P < 0.01), damaging their potential synergic or cooperative interactions, thus weakening their competitiveness against Tetrasphaera-related PAOs. Notably, ATU withdrawn created opportunistic conditions for the unexpected explosive growth and predominance of Thiothrix filaments, leading to a serious bulking event. Our study provides new insights into the microbial ecology of Tetrasphaera-related PAOs in EBPR system, which could guide the establishment of an efficient microbiota for EBPR.
Collapse
Affiliation(s)
- Hui Wang
- Environmental Science and Engineering Department, Zhejiang University, Hangzhou, 310012, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Limin Lin
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310030, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
35
|
Afzal MA, Javed M, Aroob S, Javed T, M Alnoman M, Alelwani W, Bibi I, Sharif M, Saleem M, Rizwan M, Raheel A, Maseeh I, Carabineiro SAC, Taj MB. The Biogenic Synthesis of Bimetallic Ag/ZnO Nanoparticles: A Multifunctional Approach for Methyl Violet Photocatalytic Degradation and the Assessment of Antibacterial, Antioxidant, and Cytotoxicity Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2079. [PMID: 37513090 PMCID: PMC10385465 DOI: 10.3390/nano13142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
In this study, bimetallic nanoparticles (NPs) of silver (Ag) and zinc oxide (ZnO) were synthesized using Leptadenia pyrotechnica leaf extract for the first time. Monometallic NPs were also obtained for comparison. The characterization of the prepared NPs was carried out using various techniques, including UV-Visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The latter confirmed the crystalline nature and diameter of the monometallic and bimetallic NPs of Ag and ZnO. The SEM images of the prepared NPs revealed their different shapes. The biological activities of the NPs were evaluated concerning their antibacterial, antioxidant, and cytotoxic properties. The antibacterial activities were measured using the time-killing method. The results demonstrated that both the monometallic and bimetallic NPs inhibited the growth of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The antioxidant activities of the NPs were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and their cytotoxicity was checked using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results indicated that the controlled quantity of the monometallic and bimetallic NPs did not affect the viability of the cells. However, the decreased cell (L-929) viability suggested that the NPs could have anticancer properties. Furthermore, the photocatalytic degradation of methyl violet and 4-nitrophenol was investigated using the prepared Ag/ZnO NPs, examining the factors affecting the degradation process and conducting a kinetic and thermodynamic study. The prepared Ag/ZnO NPs demonstrated good photocatalytic degradation (88.9%) of the methyl violet (rate constant of 0.0183 min-1) in comparison to 4-nitrophenol (NPh), with a degradation rate of 81.37% and 0.0172 min-1, respectively. Overall, the bimetallic NPs showed superior antibacterial, antioxidant, cytotoxic, and photocatalytic properties compared to the monometallic NPs of Ag and ZnO.
Collapse
Affiliation(s)
- Muhammad Asjad Afzal
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Javed
- Department of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Sadia Aroob
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tariq Javed
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Maryam M Alnoman
- Department of Biology, Faculty of Science, Taibah University, Yanbu P.O. Box 344, Saudi Arabia
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Ismat Bibi
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Sharif
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Ahmad Raheel
- Department of Chemistry, Quaid-e-Azam University, Islamabad 44000, Pakistan
| | - Ihsan Maseeh
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Muhammad Babar Taj
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
36
|
Ji S, Zhang F, Yao P, Li C, Faheem M, Feng Q, Chen M, Wang B. Optimization of pig manure-derived biochar for ammonium and phosphate simultaneous recovery from livestock wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82532-82546. [PMID: 37326725 DOI: 10.1007/s11356-023-28092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Livestock wastewater has led to serious eco-environmental issues. To effectively treat livestock wastewater and realize the resource utilization of livestock solid waste, manure waste has been widely used to prepare biochar for the recovery of nitrogen and phosphorus. However, fresh biochar has a poor ability to adsorb phosphate due to its negative charge. To overcome the defect, the proportion of biochar samples prepared at 400 °C and 700 °C was optimized under a mass ratio of 2:3 to obtain mixed biochar PM 4-7, achieving the purpose of enhanced ammonium and phosphate recovery in livestock wastewater simultaneously without any modification. The effects of pyrolysis temperature, dosage, and pH were studied, different adsorption models were used to explore the adsorption mechanism, and the effect of biochar loaded with nutrient elements on seed was verified through a seed germination experiment. It was revealed that the maximum removal rates of phosphate and ammonium were 33.88 % and 41.50 %, respectively, endorsing that mixed biochar PM 4-7 can recover nutrients from livestock wastewater, and could be used as a slow-release fertilizer to promote seed germination and growth. This method provides a new potential way for the efficient resource utilization of pig manure and the recovery of nutrients from breeding wastewater.
Collapse
Affiliation(s)
- Sirui Ji
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Fang Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Panpan Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chunlan Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, Guizhou, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
37
|
Guo S, Zhang S, Wang S, Lv X, Chen H, Hu X, Ma Y. Potamogeton crispus restoration increased the epiphytic microbial diversity and improved water quality in a micro-polluted urban river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121485. [PMID: 36958656 DOI: 10.1016/j.envpol.2023.121485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Special characterization and assembly of epiphytic microbial communities remain unclear in micro-polluted water column during submersed macrophytes restoration. In this study, an in-situ enclosure area sowing with turions of Potamogeton crispus (P. crispus) was conducted in a micro-polluted urban river to investigate the characterization of P. crispus and epiphytic microbial communities and their response to water environment under different water depths. Turions completely germinated in water column with <90 cm water depth and the germination speed decreased with increasing water depth within 18 days. There were obvious differences in morphological characteristics of P. crispus between deep and shallow water layers. P. crispus restoration decreased by 12-32%, 13-36%, 9-43% and 5-36% of COD, NH4+-N, TN and TP concentration, respectively, in enclosed overlying water compared to the river (P < 0.05) during 5 months of experiment. Illumina sequencing was employed to explore the epiphytic bacterial and microeukayotic communities at water depth 25-35 cm (shallow area) and 80-90 cm (deep area). A total of 9 bacterial and 12 microeukayotic dominant phyla were obtained in eight samples. It should be noted that the algae abundances were higher in shallow area than deep area but a reverse trend was observed for methanotrophs. Null model analysis revealed that dispersal limitation and undominated process was the most important assembly process, whereas stochastic processes gained more importance in shallow area than deep one. According to cooccurrence analysis (|r| > 0.6, P < 0.05), there were more strongly correlated edges in shallow area (456 edges) than deep area (340 edges). These results highlight that submerged macrophytes restoration can increase microbial diversity and improve water quality, and provide a "summer disease cured in winter" way by using could-resistant P. crispus for water purification in micro-polluted rivers in low-temperature season.
Collapse
Affiliation(s)
- Shaozhuang Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Supeng Wang
- College of Environment, Hohai University, Nanjing, 210098, PR China; CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd, Shanghai, PR China
| | - Xin Lv
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hezhou Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiuren Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yu Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
38
|
Gunjyal N, Rani S, Asgari Lajayer B, Senapathi V, Astatkie T. A review of the effects of environmental hazards on humans, their remediation for sustainable development, and risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:795. [PMID: 37264257 DOI: 10.1007/s10661-023-11353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
In the race for economic development and prosperity, our earth is becoming more polluted with each passing day. Technological advances in agriculture and rapid industrialization have drastically polluted the two pillars of natural resources, land and water. Toxic chemicals and microbial contaminants/agents created by natural and anthropogenic activities are rapidly becoming environmental hazards (EH) with increased potential to affect the natural environment and human health. This review has attempted to describe the various agents (chemical, biological, and physical) responsible for environmental contamination, remediation methods, and risk assessment techniques (RA). The main focus is on finding ways to mitigate the harmful effects of EHs through the simultaneous application of remediation methods and RA for sustainable development. It is recommended to apply the combination of different remediation methods using RA techniques to promote recycling and reuse of different resources for sustainable development. The report advocates for the development of site-specific, farmer-driven, sequential, and plant-based remediation strategies along with policy support for effective decontamination. This review also focuses on the fact that the lack of knowledge about environmental health is directly related to public health risks and, therefore, focuses on promoting awareness of effective ways to reduce anthropological burden and pollution and on providing valuable data that can be used in environmental monitoring assessments and lead to sustainable development.
Collapse
Affiliation(s)
- Neelam Gunjyal
- Department of Civil Engineering, IIT Roorkee, Roorkee, 247667, India
| | - Swati Rani
- Department of Biotechnology, Ambala College of Engineering and Applied Research, 133001, Ambala Cantt, Jagadhari Rd, P.O, Sambhalkha, Haryana, India.
| | | | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
39
|
Jian Y, Zhu J, Zeng Y, Long D, Wang H, Liu Z, Pu S. Pollutant removal from swine wastewater and kinetics in constructed rapid infiltration system (CRI system). ENVIRONMENTAL TECHNOLOGY 2023; 44:1642-1652. [PMID: 34807808 DOI: 10.1080/09593330.2021.2010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this paper is centred on the kinetics of removal of main pollutants in wastewater and to compared different hydraulic loading conditions of the constructed rapid infiltration system (CRI system) in terms of removal efficiencies, effluent concentrations, mass removal rate (MRR), and the first-order removal rate coefficient (k) of COD, TOC, NH4+-N, TN, and TP. The results showed that the higher the hydraulic loading, the higher the effluent concentration. The results that synthesized hydraulic loading, effluent concentrations, removal efficiencies, and other conditions showed that the best hydraulic loading was 40 cm/d. When the hydraulic load was 40 cm/d, the effluent average concentrations of COD, TOC, NH4+-N, TN, TP, Cu2+ and the removal efficiencies were 27.31 ± 16.40 mg/L, 86.11%, 10.55 ± 5.25 mg/L, 84.64%, 0.59 ± 0.87 mg/L, 99.60%, 143.31 ± 14.77 mg/L, 7.04%, 5.64 ± 1.38 mg/L, 79.20%, and 0.13 ± 0.47 mg/L, 97.51%, respectively. According to a kinetic study of the primary pollutants, the MRR increased with an increase in the hydraulic loading, except for ammonia nitrogen. CRI-3, CRI-4 were high significant correlated with ammonia nitrogen (with R2 = 93.65% and R2 = 95.03%, respectively), while CRI-2, CRI-3, and CRI-4 were high significant correlated with total nitrogen (with R2 = 94.56%, R2 = 96.70% and R2 = 96.56% respectively).
Collapse
Affiliation(s)
- Yue Jian
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Jiaming Zhu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Yaqiong Zeng
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Hao Wang
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture and Rural Affairs, Chongqing, People's Republic of China
| |
Collapse
|
40
|
Liu C, Feng C, Duan Y, Wang P, Peng C, Li Z, Yu L, Liu M, Wang F. Ecological risk under the dual threat of heavy metals and antibiotic resistant Escherichia coli in swine-farming wastewater in Shandong Province, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120998. [PMID: 36603760 DOI: 10.1016/j.envpol.2022.120998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Mineral elements and antibiotic-resistant bacterial pollutants in livestock and poultry farms' wastewater are often sources of ecological and public health problems. To understand the heavy-metal pollution status and the characteristics of drug-resistant Escherichia coli (E. coli) in swine-farm wastewater in Shandong Province and to provide guidance for the rational use of mineral-element additives, common antibiotics, and quaternary ammonium compound disinfectants on swine farms, 10 mineral elements were measured and E. coli isolated from wastewater and its resistance to 29 commonly used antibiotics and resistance genes was determined. Finally, phylogenetic and multi-locus sequence typing (MLST) analyses was performed on E. coli. The results showed serious pollution from iron and zinc, with a comprehensive pollution index of 708.94 and 3.13, respectively. It is worth noting that average iron levels in 75% (12/16) of the districts exceed allowable limits. Multidrug-resistant E. coli were found in every city of the province. The E. coli isolated from swine-farm wastewater were mainly resistant to tetracyclines (95.3%), chloramphenicol (77.8%), and sulfonamides (62.2%), while antibiotic resistance genes for quinolones, tetracyclines, sulfonamides, aminoglycosides, and β-lactams were all more than 60%. The clonal complex 10 (CC10) was prevalent, and ST10 and ST48 were dominant in E. coli isolates. Multidrug-resistant E. coli were widely distributed, with mainly A genotypes. However, the mechanism of the effect of iron on antibiotic resistance needs more study in this area. Thus, further strengthening the prevention and control of iron and zinc pollution and standardizing the use of antibiotics and mineral element additives in the swine industry are necessary.
Collapse
Affiliation(s)
- Cong Liu
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China.
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yuanpeng Duan
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Peng Wang
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Chong Peng
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Zixuan Li
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Lanping Yu
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China
| | - Mengda Liu
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, PR China
| | - Fangkun Wang
- Department of Veterinary Public Health, College of Veterinary Medicine & Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
41
|
Zhao X, Zhang M, Sun Z, Zheng H, Zhou Q. Anaerobic Storage Completely Removes Suspected Fungal Pathogens but Increases Antibiotic Resistance Gene Levels in Swine Wastewater High in Sulfonamides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3135. [PMID: 36833839 PMCID: PMC9960201 DOI: 10.3390/ijerph20043135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Wastewater storage before reuse is regulated in some countries. Investigations of pathogens and antibiotic resistance genes (ARGs) during wastewater storage are necessary for lowering the risks for wastewater reuse but are still mostly lacking. This study aimed to investigate pathogens, including harmful plant pathogens, and ARGs during 180 d of swine wastewater (SWW) storage in an anaerobic storage experiment. The contents of total organic carbon and total nitrogen in SWW were found to consistently decrease with the extension of storage time. Bacterial abundance and fungal abundance significantly decreased with storage time, which may be mainly attributed to nutrient loss during storage and the long period of exposure to a high level (4653.2 μg/L) of sulfonamides in the SWW, which have an inhibitory effect. It was found that suspected bacterial pathogens (e.g., Escherichia-Shigella spp., Vibrio spp., Arcobacter spp., Clostridium_sensu_stricto_1 spp., and Pseudomonas spp.) and sulfonamide-resistant genes Sul1, Sul2, Sul3, and SulA tended to persist and even become enriched during SWW storage. Interestingly, some suspected plant fungal species (e.g., Fusarium spp., Ustilago spp. and Blumeria spp.) were detected in SWW. Fungi in the SWW, including threatening fungal pathogens, were completely removed after 60 d of anaerobic storage, indicating that storage could lower the risk of using SWW in crop production. The results clearly indicate that storage time is crucial for SWW properties, and long periods of anaerobic storage could lead to substantial nutrient loss and enrichment of bacterial pathogens and ARGs in SWW.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengjie Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhilin Sun
- College of Architecture Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huabao Zheng
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Qifa Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
42
|
Bôto ML, Dias SM, Crespo RD, Mucha AP, Almeida CMR. Removing chemical and biological pollutants from swine wastewater through constructed wetlands aiming reclaimed water reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116642. [PMID: 36356539 DOI: 10.1016/j.jenvman.2022.116642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Reusing reclaimed wastewater is needed to fight water scarcity, reduce freshwater consumption and conserve water resources, but one must ensure that hazardous substances are fully removed/eliminate before that reuse. The potential of lab-scale constructed wetlands (CWs) for the removal of chemical and biological contaminants from livestock wastewater, while maintaining nutrient levels for fertilization, was assessed, evaluating changes in microbial communities, with particular focus on potential pathogens. CW microcosms with two different substrates (lava rock or light expanded clay aggregate), both planted with Phragmites australis, were tested. After 15 days of treatment, removal rates were higher than 80% for Cd, Cr, Cu, Fe, Pb and Zn, in general with no significant differences between the two different substrates. Organic matter and nutrients were also removed but their levels still allowed the used of the treated wastewater as a fertilizer Removal of bacterial contamination was estimated through enumeration of cultivable bacteria. High removal rates of fecal indicator bacteria were observed, reaching >95% for enterococci and >98% for enterobacteria after 15 days of treatment, decreasing hazardous biological contaminants initially present in the wastewater. In addition, the microbial communities in the initial and treated wastewater, and in the plant roots bed substrate, were characterized by using 16SrRNA gene amplicon sequencing. Microbial communities in the CW systems showed a clear shift comparatively with the initial wastewater showing system adaptation and removal potentialities. This also revealed an important removal of the most represented potential pathogenic genus, Clostridium, which relative abundance decreased from 33% to 1% through the treatment. Overall, CWs showed potential to be efficient in removing chemical and biological contaminants, while maintaining moderated levels of nutrients, allowing the reuse of reclaimed water in agriculture, namely as fertilizer. Current results will contribute for the optimization and use of CWs for a sustainable treatment of liquid wastes, promoting the circular economy.
Collapse
Affiliation(s)
- Maria L Bôto
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Sofia M Dias
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| | - Rute Duarte Crespo
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Ana P Mucha
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - C Marisa R Almeida
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208, Matosinhos, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
43
|
Sura S, Larney FJ, Charest J, McAllister TA, Headley JV, Cessna AJ. Veterinary antimicrobials in cattle feedlot environs and irrigation conveyances in a high-intensity agroecosystem in southern Alberta, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12235-12256. [PMID: 36107301 PMCID: PMC9898329 DOI: 10.1007/s11356-022-22889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The South Saskatchewan River Basin (SSRB) is considered one of the most intensively farmed regions in Canada, with high densities of livestock and expansive areas of irrigated cropland. We measured concentrations of seven veterinary antimicrobials (VAs) in 114 surface water samples from feedlot environs and 219 samples from irrigation conveyances in the SSRB. Overall, detection frequencies in feedlot environs were 100% for chlortetracycline (CTC) and tetracycline (TC), 94% for monensin (MON), 84% for tylosin (TYL), 72% for lincomycin (LIN), 66% for erythromycin (ERY), and 23% for sulfamethazine (SMZ). For irrigation conveyances, detection frequencies for CTC and TC remained high (94-100%), but dropped to 18% for ERY, 15% for TYL, 10% for MON, and 4% for SMZ. Lincomycin was not detected in irrigation conveyance water. Maximum concentrations of VAs ranged from 1384 µg L-1 (TC) to 17 ng L-1 (SMZ) in feedlot environs while those in irrigation conveyances were 155 ng L-1 (TC) to 29 ng L-1 (ERY). High detection frequencies and median concentrations of VAs in both feedlot environs and irrigation conveyances were associated with high amounts of precipitation. However, an irrigation district (ID) with high livestock density (Lethbridge Northern) did not exhibit higher concentrations of VAs compared to IDs with less livestock, while levels of VAs in irrigation conveyances were less influenced by the degree of surface runoff. The ubiquity of CTC and TC in our study is likely a reflection of its widespread use in intensive livestock operations. Additional investigation is required to link environmental concentrations of VAs with livestock densities and increase our understanding of potential antimicrobial resistance in high-intensity agroecosystems.
Collapse
Affiliation(s)
- Srinivas Sura
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada.
| | - Francis J Larney
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - Jollin Charest
- Natural Resource Management Branch, Alberta Agriculture, Forestry, and Rural Economic Development, 5401 1st Avenue S, Lethbridge, AB, T1J 4V6, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - John V Headley
- Environment and Climate Change Canada, National Hydrology Research Centre, 11 Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
| | - Allan J Cessna
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
44
|
Kernou ON, Belbahi A, Sahraoui Y, Bedjaoui K, Kerdouche K, Amir A, Dahmoune F, Madani K, Rijo P. Effect of Sonication on Microwave Inactivation Kinetics of Enterococcus faecalis in Dairy Effluent. Molecules 2022; 27:7422. [PMID: 36364249 PMCID: PMC9657562 DOI: 10.3390/molecules27217422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
The aim of this study is to inactivate Enterococcus faecalis ATCC 29212 present in dairy wastewater effluent using microwave (MW) waves and/or ultrasound waves (US). The ultrasonic bath treatment (35 kHz) had no significant effect on the reduction of the survival rate (predominant declumping effect). At 650 W of microwave treatment, the total destruction was completed at 75 s, while at 350 W a 3 log reduction was achieved. The Weibull model was fitted to the survival curves to describe the inactivation kinetics, and the effect of the combined microwave-ultrasound treatments was evaluated. The scaling parameter α that was estimated from the inactivation kinetics for the microwaves combined with the ultrasound waves in pre-treatment was found to be lower than the scaling parameters obtained in post-treatment, which were in turn lower than those estimated for microwaves or ultrasound waves alone. The use of the ultrasound waves in pre-treatment was more effective than in post-treatment; a total reduction was achieved using a combination of US (30 min) followed by MW (650 W) with α = 28.3 s, while 4.0 log was obtained by reversing all processes with α = 34.5 s. The results from the protein assays indicate that the bacterial wall was damaged and that holes were formed from which protein leakage occurred.
Collapse
Affiliation(s)
- Ourdia-Nouara Kernou
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Amine Belbahi
- Department of Microbiology and Biochemistry, Faculty of Sciences, University of M’Sila, M’Sila 24000, Algeria
| | - Yasmine Sahraoui
- Department of Biology, University M’Hamed Bougara of Boumerdès, Boumerdès 35000, Algeria
| | - Kenza Bedjaoui
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Kamelia Kerdouche
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Akila Amir
- Laboratoire de Biomathématiques, Biophysique, Biochimie, et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Farid Dahmoune
- Departement de Biologie, Faculté des Sciences de la Nature et de La Vie et des Sciences de La Terre, Université de Bouira, Bouira 1000, Algeria
| | - Khodir Madani
- Centre de Recherche en Technologie Agroalimentaire, Route de Targua-Ouzemour, Bejaia 06000, Algeria
| | - Patricia Rijo
- CBIOS-Centro de Investigação em Biociências e Tecnologias da Saúde, Universidade Lusófona, Campo Grande 376, 1749-028 Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
45
|
Lee SA, Kim M, Kim HS, Ahn CY. Extra benefit of microalgae in raw piggery wastewater treatment: pathogen reduction. MICROBIOME 2022; 10:142. [PMID: 36045433 PMCID: PMC9429445 DOI: 10.1186/s40168-022-01339-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Monitoring microbial communities especially focused on pathogens in newly developed wastewater treatment systems is recommended for public health. Thus, we investigated the microbial community shift in a pilot-scale microalgal treatment system for piggery wastewater. RESULTS Microalgae showed reasonable removal efficiencies for COD and ammonia, resulting in higher transparency of the final effluent. Metagenome and microbial diversity analyses showed that heterotrophic microalgal cultivation barely changed the bacterial community; however, the mixotrophic microalgal cultivation induced a sudden change. In addition, an evaluation of risk groups (RGs) of bacteria showed that raw piggery wastewater included abundant pathogens, and the microalgal treatment of the raw piggery wastewater decreased the RG2 pathogens by 63%. However, co-cultivation of microalgae and the most dominant RG2 pathogen, Oligella, showed no direct effects between them. CONCLUSIONS Thus, a microbial interaction network was constructed to elucidate algae-bacteria interrelationships, and the decrease in Oligella was indirectly connected with microalgal growth via Brevundimonas, Sphingopyxis, and Stenotrophomonas. In a validation test, 3 among 4 connecting bacterial strains exhibited inhibition zones against Oligella. Therefore, we showed that microalgal wastewater treatment causes a decrease in RG2 bacteria, which is an indirect impact of microalgae associated with bacteria. Video abstract.
Collapse
Affiliation(s)
- Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123, Saarbrücken, Germany
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
46
|
Zhao X, Liu X, Xing Y, Wang L, Wang Y. Evaluation of water quality using a Takagi-Sugeno fuzzy neural network and determination of heavy metal pollution index in a typical site upstream of the Yellow River. ENVIRONMENTAL RESEARCH 2022; 211:113058. [PMID: 35255414 DOI: 10.1016/j.envres.2022.113058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Assessment of river water quality is very important for understanding the impact of human activities on aquatic ecosystems. As the second-largest river in China, the Yellow River's water environment is closely related to the social development and water security of northern China. The Huangshui River is a major tributary of the upper Yellow River, and it supplies water to cities in the lower reaches. In this study, a Takagi-Sugeno (T-S) fuzzy neural network was used to evaluate water quality of the Huangshui River, and pollutant sources were analyzed. The heavy metal pollution index (HPI) was calculated to assess the heavy metal pollution level, and the health risks posed by heavy metal elements were assessed. The results indicated that the main contaminants in the Huangshui River were ammonia nitrogen (NH3-N) and total phosphorus (TP), which was affected by various activities of industry, agriculture, and urbanization, and the maximum concentration of NH3-N and TP was 5.90 mg/L and 0.36 mg/L, respectively. The T-S evaluation results of some points in the middle reaches were 3.317 and 3.197, which belonged to Level Ⅳ and the water quality was poor. The concentrations of Cu, Zn and Cr in the river were 0.57-44.58 μg/L, 10-122.50 μg/L and 2-28.67 μg/L, respectively, and they were relatively large. The T-S fuzzy neural network could evaluate water quality, avoiding extreme evaluation results by using fuzzy rules to reduce the influence of pollutant concentrations that are too high or too low. In addition to qualitative categorization of water quality, this approach can also quantitatively assess water quality within a single category. The results of water quality assessment could provide a scientific data support for river management.
Collapse
Affiliation(s)
- Xiaohong Zhao
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Xiaojie Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Xing
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
47
|
Cai M, Zhou J, Hao T, Du K. Tolerance of phyllospheric Wickerhamomyces anomalus to BDE-3 and heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56555-56561. [PMID: 35347617 DOI: 10.1007/s11356-022-19798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Few research have focused on the potential microorganism and gene resources for plant resistance to polybrominated diphenyl ether (PBDE) and heavy metal (HM) co-contamination. The purpose of this study was to investigate the impact of phyllospheric Wickerhamomyces anomalus bioremediation ability on PBDE and HM co-contamination. The results showed that the toleration capability of W. anomalus to cadmium (Cd2+) was higher than that to chromium (Cr) or 4-bromodiphenyl ether (BDE-3) contamination. The threshold levels of W. anomalus tolerance to BDE-3, Cd2+, and Cr were 30 mg/L, 500 mg/L, 30 mg/L, respectively. The use of the higher concentration of BDE-3 (30 mg/L) as a carbon source may improve tolerance to Cd2+ and Cr (10 mg/L Cd2+ and 10 mg/L Cr). Overexpression of Wapdr15 gene of ABCG subfamily from W. anomalus improved the tolerance to BDE-3 (10 mg/mL) and Cd2+ (0.5 mg/mL) significantly in transgenic tobacco lines. The synergism effect of BDE-3 and Cd2+ stress existed similarly in W. anomalus and transgenic lines. The findings suggest that W. anomalus should be taken into account for providing an efficient method in improving crops' tolerance during PBDE and HM co-contamination in soil.
Collapse
Affiliation(s)
- Man Cai
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Tree Species Germplasm Resources and Forest Protection of Hebei Province, Hebei Agricultural University, 2596 Lekai South Road, Baoding, 071000, China
| | - Jian Zhou
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Tian Hao
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Kejiu Du
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
- Key Laboratory of Tree Species Germplasm Resources and Forest Protection of Hebei Province, Hebei Agricultural University, 2596 Lekai South Road, Baoding, 071000, China.
| |
Collapse
|
48
|
Sun L, Liu J, Zhao H, Wang Z, Liu X, Chang Y, Yao D. Phytoremediation performance of three traditional ornamental hydrophytes and the structure of their rhizosphere microorganism populations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50727-50741. [PMID: 35243578 DOI: 10.1007/s11356-022-19543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
The use of phytoremediation technology in urban and rural landscapes can permit both aesthetic and water purification functions to be achieved sustainably. Here, the ability of three ornamental aquatic plant species (Lythrum salicaria L., Sagittaria trifolia L., and Typha orientalis C. Presl) to remove nutrients from simulated contaminated water over 35 days and the structure of their rhizosphere microorganism populations were evaluated to examine their potential to be used for landscape phytoremediation as well as determine the mechanism of nutrient removal. L. salicaria had the highest nutrient removal ability (86.91-96.96% removal efficiency of total nitrogen and 46.04-66.70% removal efficiency of total phosphorus). The population structure of rhizosphere microorganisms was mainly affected by plant species and not the nutrient level of the water body according to principal coordinates analysis and non-metric multi-dimensional scaling. Betaproteobacteriales and Chitinophagales were highly correlated with the content of nutrients in water according to redundancy analysis. The accumulation of the two orders by L. salicaria and higher biomass might explain the stronger removal ability of L. salicaria. The findings of this study indicate that these plants could enhance urban and rural water landscape design; our results also shed new light on the mechanism of phytoremediation by rhizosphere microorganisms.
Collapse
Affiliation(s)
- Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Jixiang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Huijun Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China
| | - Yajun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing, 210014, China.
| |
Collapse
|
49
|
López-Sánchez A, Silva-Gálvez AL, Aguilar-Juárez Ó, Senés-Guerrero C, Orozco-Nunnelly DA, Carrillo-Nieves D, Gradilla-Hernández MS. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114612. [PMID: 35149401 DOI: 10.1016/j.jenvman.2022.114612] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The intensive livestock activities that are carried out worldwide to feed the growing human population have led to significant environmental problems, such as soil degradation, surface and groundwater pollution. Livestock wastewater (LW) contains high loads of organic matter, nitrogen (N) and phosphorus (P). These compounds can promote cultural eutrophication of water bodies and pose environmental and human hazards. Therefore, humanity faces an enormous challenge to adequately treat LW and avoid the overexploitation of natural resources. This can be accomplished through circular bioeconomy approaches, which aim to achieve sustainable production using biological resources, such as LW, as feedstock. Circular bioeconomy uses innovative processes to produce biomaterials and bioenergy, while lowering the consumption of virgin resources. Microalgae-based wastewater treatment (MbWT) has recently received special attention due to its low energy demand, the robust capacity of microalgae to grow under different environmental conditions and the possibility to recover and transform wastewater nutrients into highly valuable bioactive compounds. Some of the high-value products that may be obtained through MbWT are biomass and pigments for human food and animal feed, nutraceuticals, biofuels, polyunsaturated fatty acids, carotenoids, phycobiliproteins and fertilizers. This article reviews recent advances in MbWT of LW (including swine, cattle and poultry wastewater). Additionally, the most significant factors affecting nutrient removal and biomass productivity in MbWT are addressed, including: (1) microbiological aspects, such as the microalgae strain used for MbWT and the interactions between microbial populations; (2) physical parameters, such as temperature, light intensity and photoperiods; and (3) chemical parameters, such as the C/N ratio, pH and the presence of inhibitory compounds. Finally, different strategies to enhance nutrient removal and biomass productivity, such as acclimation, UV mutagenesis and multiple microalgae culture stages (including monocultures and multicultures) are discussed.
Collapse
Affiliation(s)
- Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Óscar Aguilar-Juárez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Mexico
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | | | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | | |
Collapse
|
50
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|