1
|
He H, Zhang X, Deng M, Zhou Y, Pang H, Yang H, Lyu J, Feng Y, Geng X, Guo X, Luo G, Guo B. In-situ nucleic acid amplification induced by DNA self-assembly for rapid and ultrasensitive detection of miRNA. Anal Chim Acta 2025; 1335:343457. [PMID: 39643311 DOI: 10.1016/j.aca.2024.343457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND To improve the sensitivity and specificity of nucleic acid detection, coupling two or more signal amplification systems is a feasible pattern, such as nucleic acid isothermal amplification coupling genome-editing technology, and cascaded DNA self-assembly circuits. And representative signal amplification strategies include loop-mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats/associated proteins (CRISPR/Cas) systems, and catalyzed hairpin assembly (CHA). However, these detection strategies often require the enrichment of intermediate products, the replacement of reaction conditions and the design of multiple probes, which may seriously affect the reliability of detection results. RESULTS Herein, we propose a novel nucleic acid detection system which is named as catalyzed hairpin assembly (CHA) coupled with embedded primer triggered isothermal amplification (CEA for short). DNA self-assembly probes in CEA contain a specially designed primer. When target nucleic acid (e.g., miRNA) initiates CHA reaction (the first signal amplification), the self-assembly product of CHA will expose a primer (named as embedded primer). The embedded primer will trigger a special nucleic acid isothermal amplification in situ, then generate plenty of double-stranded DNA products in 30 min with varying lengths (the second signal amplification). Compared to that of a typical CHA reaction, the sensitivity of CEA has increased by three orders of magnitude and the detection limit is as low as 0.228 fM. Besides, it has excellent detection performance in cancer and stem cell samples. SIGNIFICANCE By coupling embedded primer with DNA self-assembly system, a new nucleic acid detection system (CEA) with one-step operation and dual signal amplification has been successfully established. Compared with traditional dual signal amplification systems, CEA can not only significantly improve the reaction efficiency, but also greatly reduce the difficulty of detection system design and experimental operation.
Collapse
Affiliation(s)
- Hongfei He
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Xuewen Zhang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Meng Deng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yan Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hongwei Pang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hui Yang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Jiazhen Lyu
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yuxin Feng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiangqin Geng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Guangcheng Luo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Bin Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
2
|
Gao Z, Liu J, Zhang Y, Xu R, Yang Y, Wu L, Lei J, Ming T, Ren F, Liu L, Chen Q. TdT combined with Cas14a for the electrochemical biosensing of NPC-derived exosomes. Bioelectrochemistry 2025; 163:108900. [PMID: 39798420 DOI: 10.1016/j.bioelechem.2025.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
In this work, the electrochemical biosensor based on the subtle combination of terminal deoxynucleotidyl transferase (TdT), CRISPR/Cas14a, and magnetic nanoparticles (MNPs) was developed for the detection of nasopharyngeal carcinoma (NPC)-derived exosomes. Due to the synergistic effect of the following factors: the powerful elongation capacity of TdT for single-stranded DNA (ssDNA) with 3-hydroxy terminus, the outstanding trans-cleavage ability of CRISPR/Cas14a specifcally activated by the crRNA binding to target DNA, and the excellent separation ability of MNPs, the developed electrochemical biosensor exhibited high sensitivity for the detection of NPC-derived exosome, with a linear range from 6.0 × 102 ∼ 1.0 × 105 particles/mL and a limit of detection as lown as 80 particles/mL. In addition, this electrochemical biosensor successfully distinguished exosomes from NPC patients and healthy individuals. This electrochemical biosensor opens up a new pathway for the early diagnosis of NPC. Abbreviations: NPC, Nasopharyngeal carcinoma; CRISPR/Cas, Clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system; PAMs, Protospacer adjacent motifs; RCA, Rolling circle amplification; CHA, Catalytic hairpin assembly; LAMP, Loop-mediated isothermal amplification; TdT, Terminal deoxynucleotidyl transferase; SgRNA, Single guide RNA.
Collapse
Affiliation(s)
- Zhong Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shenzhen Fuyong People's Hospital, Shenzhen, 518103, China
| | - Jingjian Liu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442008, China
| | - Yu Zhang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Ronghua Xu
- Shenzhen Nanshan People's Hospital, Shenzhen, 518101, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442008, China
| | - Jinan Lei
- Department of Otorhinolaryngology Head and Neck Surgery, Shenzhen Fuyong People's Hospital, Shenzhen, 518103, China
| | - Tingwen Ming
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442008, China
| | - Fangling Ren
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442008, China
| | - Li Liu
- Shenzhen Nanshan People's Hospital, Shenzhen, 518101, China.
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China.
| |
Collapse
|
3
|
Li B, Lin B, Zeng W, Gu Y, Zhao Y, Liu P. A fully integrated microfluidic cartridge for rapid and ultrasensitive nucleic acid detection from oropharyngeal swabs. LAB ON A CHIP 2025. [PMID: 39749581 DOI: 10.1039/d4lc00770k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Rapid and accurate molecular diagnostics are crucial for preventing the global spread of emerging infectious diseases. However, the current gold standard for nucleic acid detection, reverse transcription polymerase chain reaction (RT-PCR), relies heavily on traditional magnetic beads or silica membranes for nucleic acid extraction, resulting in several limitations, including time-consuming processes, the need for trained personnel, and complex equipment. Therefore, there is an urgent need for fully integrated nucleic acid detection technologies that are simple to operate, rapid, and highly sensitive to meet unmet clinical needs. In this study, we developed a novel, integrated microfluidic cartridge featuring a unique needle-plug/piston microvalve, which enables stable long-term reagent storage and flexible liquid handling for on-site nucleic acid analysis. Coupled with in situ tetra-primer recombinase polymerase amplification (tp-RPA), we achieved highly sensitive nucleic acid detection with a remarkable limit of detection of 20 copies per mL (0.02 copies per μL) and a short turnaround time of less than 30 minutes. To validate this assay, we tested 48 oropharyngeal swab samples. The positive detection rate reached 64.58% (31/48), significantly exceeding the approximately 50% positive detection rate of the traditional RT-PCR method. Furthermore, our assay demonstrated a 100% concordance rate with RT-PCR in detecting positive samples. Thus, we believe our microfluidic nucleic acid analysis system represents a promising approach for enabling rapid and ultrasensitive nucleic acid detection of pathogenic microorganisms in resource-limited settings and low-income areas.
Collapse
Affiliation(s)
- Bao Li
- School of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
| | - Baobao Lin
- School of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
| | - Wu Zeng
- School of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
- Changping Laboratory, Beijing, China
| | - Yin Gu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | | | - Peng Liu
- School of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
- Changping Laboratory, Beijing, China
| |
Collapse
|
4
|
Buchanan BC, Loeffler RS, Liang R, Yoon JY. Capillary flow velocity-based length identification of PCR and RPA products on paper microfluidic chips. Biosens Bioelectron 2025; 267:116861. [PMID: 39455308 PMCID: PMC11543505 DOI: 10.1016/j.bios.2024.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
This work demonstrates a novel, non-fluorescence approach to the length identification of polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) products, utilizing capillary flow velocities on paper microfluidic chips. It required only a blank paper chip, aminated microspheres, and a smartphone, with a rapid assay time and under ambient lighting. A smartphone evaluated the initial capillary flow velocities on the paper chips for the PCR and RPA products from various bacterial samples, where the pre-loaded aminated microspheres differentiated their flow velocities. Flow velocities were analyzed at different time frames and compared with the instantaneous flow velocities and interfacial tension (γLV) data. Subsequent error analysis justified the use of the initial time frames. A robust linear relationship could be established between the initial flow velocities against the square root of the product lengths, with R2 values of 0.981 for PCR and 0.993 for RPA. The assay seemed not to have a significant dependency on the cycle numbers and initial target concentrations. This novel method can be potentially used with various paper microfluidic methods of nucleic acid amplification tests towards rapid and handheld assays.
Collapse
Affiliation(s)
- Bailey C Buchanan
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Reid S Loeffler
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Rongguang Liang
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
5
|
Cao Y, Lin H, Lu X, Wu X, Zhu Y, Zhao Z, Li Y, Borje S, Lui GCY, Lee SS, Nyein HYY, Hsing IM. Benchtop to at-home test: Amplicon-depleted CRISPR-regulated loop mediated amplification at skin-temperature for viral load monitoring. Biosens Bioelectron 2025; 267:116866. [PMID: 39467475 DOI: 10.1016/j.bios.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024]
Abstract
CoRPLA (CRISPR-regulated One-pot Recombinase Polymerase Loop-mediated Amplification) is an amplicon-depleted skin-temperature operated iNAAT designed for at-home testing. It uses specially designed loop primers to enhance isothermal amplification, triggering Cas12 for in-situ amplicon depletion and signal amplification. This method addresses issues like amplicon-derived aerosol contamination and complex assay formats, enabling quantitative detection with sub-attomolar sensitivity (0.5 cps/μL). CoRPLA employs a DNA hydrogel wearable tape for real-time, colorimetric readout, allowing visual differentiation of pathogen loads. It was validated with clinical samples for SARS-CoV-2, RSV, influenza A, and HPV, successfully identifying multi-level viral loads of the positive cases with results consistent with qPCR. Offering high sensitivity while eliminating false positives from aerosol contamination, CoRPLA bridges the molecular assay from benchtop to home for daily viral infections monitoring.
Collapse
Affiliation(s)
- Yumeng Cao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China
| | - Haosi Lin
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China
| | - Xiao Lu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China
| | - Xiaolong Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China
| | - Yuxuan Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China
| | - Zibin Zhao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China
| | - Yanan Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China
| | - Samantha Borje
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China
| | - Grace C Y Lui
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Shui Shan Lee
- S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Hnin Yin Yin Nyein
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China.
| | - I-Ming Hsing
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Huang H, Li Y, Wu Y, Zhao X, Gao H, Xie X, Wu L, Zhao H, Li L, Zhang J, Chen M, Wu Q. Advances in Helicobacter pylori detection technology: From pathology-based to multi-omic based methods. Trends Analyt Chem 2025; 182:118041. [DOI: 10.1016/j.trac.2024.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Lee J, Han J, Song Y, Gu B, Kim E. Design and Optimization of Isothermal Gene Amplification for Generation of High-Gain Oligonucleotide Products by MicroRNAs. ACS MEASUREMENT SCIENCE AU 2024; 4:737-750. [PMID: 39713023 PMCID: PMC11660000 DOI: 10.1021/acsmeasuresciau.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 12/24/2024]
Abstract
Thermal cycling-based quantitative polymerase chain reaction (qPCR) represents the gold standard method for accurate and sensitive nucleic acid quantification in laboratory settings. However, its reliance on costly thermal cyclers limits the implementation of this technique for rapid point-of-care (POC) diagnostics. To address this, isothermal amplification techniques such as rolling circle amplification (RCA) have been developed, offering a simpler alternative that can operate without the need for sophisticated instrumentation. This study focuses on the development and optimization of toehold-mediated RCA (TRCA), which employs a conformationally switchable dumbbell DNA template for the sensitive and selective detection of cancer-associated miRNAs, specifically miR-21. In addition, we developed variants of hyperbranched TRCA (HTRCA), nicking-assisted TRCA (NTRCA), and hyperbranched NTRCA (HNTRCA) to facilitate exponential amplification by enhancing TRCA through the sequential incorporation of reverse primer (Pr) and nicking endonuclease (nE). By conducting a systematic kinetic analysis of the initial rate and end point signals for varying concentrations of key reaction components, we could identify optimal conditions that markedly enhanced the sensitivity and specificity of the TRCA variants. In particular, HNTRCA, which exploits the synergistic effect of Pr and nE, demonstrated an approximately 3000-fold improvement in the detection limit (260 fM) and a wider dynamic range of more than 4 log orders of magnitude compared to TRCA, thereby evidencing its superior performance. Also, we established a mechanistic model for TRCA that includes the roles of Pr and nE in different amplification processes. Model parameters were fitted to the experimental data, and additional simulations were conducted to compare the four amplification methods. Further tests with real biological samples revealed that this technique showed a good correlation with qPCR in quantifying miR-21 expression in various cell lines (0.9510 of Pearson's r), confirming its potential as a robust and rapid tool for nucleic acid detection. Therefore, the simplicity, high sensitivity, and potential for integration with POC diagnostic platforms make the HNTRCA system suitable for field deployment in resource-limited environments.
Collapse
Affiliation(s)
- Jihee Lee
- Department
of Bioengineering and Nano-Bioengineering, Research Center for Bio
Materials and Process Development, Incheon
National University, Incheon 22012, Republic of Korea
| | - Jueun Han
- Department
of Bioengineering and Nano-Bioengineering, Research Center for Bio
Materials and Process Development, Incheon
National University, Incheon 22012, Republic of Korea
| | - Yejin Song
- Department
of Bioengineering and Nano-Bioengineering, Research Center for Bio
Materials and Process Development, Incheon
National University, Incheon 22012, Republic of Korea
| | - Boram Gu
- School
of Chemical Engineering, Chonnam National
University, Gwangju 61186, Republic of Korea
| | - Eunjung Kim
- Department
of Bioengineering and Nano-Bioengineering, Research Center for Bio
Materials and Process Development, Incheon
National University, Incheon 22012, Republic of Korea
- Division
of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
8
|
Pang B, Reid MS, Wei J, Peng H, Bu L, Li J, Zhang H, Le XC. Protein-Induced DNA Dumbbell Amplification (PINDA) and its applications to food hazards detection. Biosens Bioelectron 2024; 266:116720. [PMID: 39241338 DOI: 10.1016/j.bios.2024.116720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Quantification of trace amounts of proteins is technically challenging because proteins cannot be directly amplified like nucleic acids. To improve the analytical sensitivity and to complement conventional protein analysis methods, we developed a highly sensitive and homogeneous detection strategy called Protein-Induced DNA Dumbbell Amplification (PINDA). PINDA combines protein recognition with exponential nucleic acid amplification by using protein binding probes made of DNA strands conjugated to protein affinity ligands. When a pair of probes bind to the same target protein, complementary nucleic acid sequences that are conjugated to each probe are brought into close proximity. The increased local concentration of the probes results in the formation of a stable dumbbell structure of the nucleic acids. The DNA dumbbell is readily amplifiable exponentially using techniques such as loop-mediated isothermal amplification. The PINDA assay eliminates the need for washing or separation steps, and is suitable for on-site applications. Detection of the model protein, thrombin, has a linear range of 10 fM-100 pM and detection limit of 10 fM. The PINDA technique is successfully applied to the analysis of dairy samples for the detection of β-lactoglobulin, a common food allergen, and Salmonella enteritidis, a foodborne pathogenic bacterium. The PINDA assay can be easily modified to detect other targets by changing the affinity ligands used to bind to the specific targets.
Collapse
Affiliation(s)
- Bo Pang
- School of Public Health, Jilin University, Changchun, 130021, PR China; Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada
| | - Michael S Reid
- Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada; Alberta Precision Laboratories and Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, T2L 2K8, Canada
| | - Jia Wei
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Liangyun Bu
- School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, PR China.
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
9
|
Tao S, Long Y, Liu G. Entropy-Driven Molecular Beacon Assisted Special RCA Assay with Enhanced Sensitivity for Room Temperature DNA Biosensing. BIOSENSORS 2024; 14:618. [PMID: 39727883 DOI: 10.3390/bios14120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
The Phi29 DNA polymerase is renowned for its processivity in synthesizing single-stranded DNA amplicons by rolling around a circularized DNA template. However, DNA synthesis rolling circle amplification (RCA) is significantly hindered by the secondary structure in the circular template. To overcome this limitation, an engineered circular template without secondary structure could be utilized to improve the sensitivity of RCA-based assays without increasing its complexity. We herein proposed an entropy-driven special RCA technology for the detection of HPV16 E7 gene at room temperature. The strategy is composed of a molecular beacon containing a loop region for nucleic acid target recognition and a stem region to initiate RCA. With the target analyte, the stem region of the molecular beacon will be exposed and then hybridized with a special circular template to initiate the DNA amplification. We tested different designs of the molecular beacon sequence and optimized the assay's working conditions. The assay achieved a sensitivity of 1 pM in 40 min at room temperature. The sensitivity of this assay, at 1 pm, is about a hundred-fold greater than that of conventional linear RCA performed in solution. Our proposed sensor can be easily reprogrammed for detecting various nucleic acid markers by altering the molecular beacon's loop. Its simplicity, rapid assay time, and low cost make it superior to RCA sensors that utilize similar strategies.
Collapse
Affiliation(s)
- Shurui Tao
- CUHKSZ-Boyalife Regenerative Medicine Engineering Joint Laboratory, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yi Long
- CUHKSZ-Boyalife Regenerative Medicine Engineering Joint Laboratory, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guozhen Liu
- CUHKSZ-Boyalife Regenerative Medicine Engineering Joint Laboratory, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
10
|
Lai Z, Wang F, Cui Y, Li Z, Lin J. Innovative strategies for enhancing AuNP-based point-of-care diagnostics: Focus on coronavirus detection. Talanta 2024; 285:127362. [PMID: 39675069 DOI: 10.1016/j.talanta.2024.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Highly pathogenic coronaviruses have consistently threatened humanity, encompassing SARS-CoV, MERS-CoV, SARS-CoV-2 and others. Swift detection and accurate diagnosis play a crucial role in promptly identifying high-risk populations, enabling timely intervention, and effectively breaking the transmission chain to reduce casualties. However, the diagnostic "gold standard" reverse transcription-polymerase chain reaction (RT-PCR) failed to meet the overwhelming demand during the pandemic due to insufficient equipment and trained personnel, impeding the effective control of viral spread. Undoubtedly, there is an urgent need for the development of convenient, rapid, and sensitive point-of-care (POC) diagnostic technology. Gold nanoparticles (AuNPs) satisfy the substantial market demand for biosensors owing to their exceptional optical properties and stability. In this comprehensive review, we summarize the potential advantages of AuNPs in visual solution colorimetry and lateral flow assays (LFAs) for the diagnosis of COVID-19. We delve into the techniques for enhancing LFA signals, with the goal of increasing both detection sensitivity and specificity. Furthermore, we include the application of smartphones for unbiased and objective interpretation of results. The examples presented in this review are anticipated to inspire researchers in designing AuNPs biosensors to address current and potential outbreaks of infectious diseases in the future.
Collapse
Affiliation(s)
- Zhenquan Lai
- College of Materials Science & Engineering, HuaQiao University, Amoy, Fujian, 361021, China; School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Fucai Wang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Yishuang Cui
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063009, China
| | - Zhaofa Li
- School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Junsheng Lin
- College of Materials Science & Engineering, HuaQiao University, Amoy, Fujian, 361021, China; School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China.
| |
Collapse
|
11
|
Tang D, Xiong C, Wu Y, Luo H, Yan J, Huang KJ, Tan X, Ya Y. Super signal-enhancement biosensing platform for precise target recognition based on rolling circle-hybridization chain dual linear cascade amplification technology. Talanta 2024; 285:127321. [PMID: 39632313 DOI: 10.1016/j.talanta.2024.127321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This paper presents a self-powered biosensing platform based on graphdiyne@Au (2D GDY@Au) nanoparticles and rolling circle-hybridization chain (RC-HC) dual linear cascade amplification technology, which significantly enhances target recognition and signal amplification efficiency for miRNA-141. Specifically, the target on bioanode outputs a large amount of single-stranded DNA (T1) through the strand displacement amplification (SDA) mechanism. This efficient target recycling process triggers RC-HC dual linear cascade reaction. The RCA product and H2 form the L-Liner/H2 hybridized chain through a hybridization chain reaction, and then are immobilized on a flexible electrode using a Y-DNA capture handle. [Ru(NH3)6]3+ is precisely anchored in the grooves of the DNA double helix. The 2D GDY@Au enhances the electron mobility of the system to form a rich electron-donating center. The [Ru(NH3)6]3+ on the biocathode receives electrons and is reduced to [Ru(NH3)6]2+, producing a significantly amplified open-circuit voltage signal. Dual linear cascade amplification technology realizes precise target recognition, exponential amplification, and efficient conversion of biological signals. This technique displays an extensive linear range (0.0001-10000 pM) with a detection limit of 25.9 aM (S/N = 3), and it provides an innovative method for developing sensors based on nucleic acid amplification and presents a promising novel approach for the sensitive and precise detection of low-abundance target molecules, highlighting a new tactic for the creation of compact and portable analytical devices.
Collapse
Affiliation(s)
- Danyao Tang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Chunyuan Xiong
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - YeYu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jun Yan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Yu Ya
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
12
|
Liang A, Zhao W, Lv T, Zhu Z, Haotian R, Zhang J, Xie B, Yi Y, Hao Z, Sun L, Luo A. Advances in novel biosensors in biomedical applications. Talanta 2024; 280:126709. [PMID: 39151317 DOI: 10.1016/j.talanta.2024.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
13
|
Su Y, Jin X, Yang F, Liu X, Li F, Zhao Q, Hou J, Zhang S, Li H, Huang G, Fu R. A compact microfluidic platform for rapid multiplex detection of respiratory viruses via centrifugal polar-absorbance spectroscopy. Talanta 2024; 280:126733. [PMID: 39173249 DOI: 10.1016/j.talanta.2024.126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Nucleic acid detection technology has become a crucial tool in cutting-edge research within the life sciences and clinical diagnosis domains. Its significance is particularly highlighted during the respiratory virus pandemic, where nucleic acid testing plays a pivotal role in accurately detecting the virus. Isothermal amplification technologies have been developed and offer advantages such as rapidity, mild reaction conditions and excellent stability. Among these methods, recombinase polymerase amplification (RPA) has gained significant attention due to its simple primer design and resistance to multiple reaction inhibitors. However, the detection of RPA amplicons hinders the widespread adoption of this technology, leading to a research focus on cost-effective and convenient detection methods for RPA nucleic acid testing. In this study, we propose a novel computational absorption spectrum approach that utilizes the polar GelRed dye to efficiently detect RPA amplicons. By exploiting the asymmetry of GelRed molecules upon binding with DNA, polar electric dipoles are formed, leading to precipitate formation through centrifugal vibration and electrostatic interaction. The quantification of amplicon content is achieved by measuring the residual GelRed concentration in the supernatant. Our proposed portable and integrated microfluidic device successfully detected five respiratory virus genes simultaneously. The optimized linear detection was achieved and the sensitivity for all the targets reached 100 copies/μL. The total experiment could be finished in 27 min. The clinical experiments demonstrated the practicality and accuracy. This cost-effective and convenient detection scheme presents a promising biosensor for rapid virus detection, contributing to the advancement of RPA technology.
Collapse
Affiliation(s)
- Ya Su
- School of Medical Technology, Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing, 100081, China; School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Jin
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fan Yang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Xuekai Liu
- Clinical laboratory, Aerospace Center Hospital, Beijing, 100049, China
| | - Fenggang Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Qingchen Zhao
- School of Medical Technology, Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Jialu Hou
- School of Medical Technology, Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuailong Zhang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China; Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing, 100081, China; Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing, 400000, China
| | - Hang Li
- School of Medical Technology, Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing, 100081, China; Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing, 100081, China
| | - Guoliang Huang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Rongxin Fu
- School of Medical Technology, Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Beijing, 100081, China; Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing, 100081, China; Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing, 400000, China.
| |
Collapse
|
14
|
Li Y, Zhao L, Wang J, Ma L, Bai Y, Feng F. Argonaute-Based Nucleic Acid Detection Technology: Advantages, Current Status, Challenges, and Perspectives. ACS Sens 2024; 9:5665-5682. [PMID: 39526595 DOI: 10.1021/acssensors.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Rapid and accurate detection is a prerequisite for precise clinical diagnostics, ensuring food safety, and facilitating biotechnological applications. The Argonaute system, as a cutting-edge technique, has been successfully repurposed in biosensing beyond the CRISPR/Cas system (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins), which has been extensively researched, but recognition of PAM sequences remains restricted. Argonaute, as a programmable and target-activated nuclease, is repurposed for fabricating novel detection methods due to its unparalleled biological features. In this comprehensive review, we initially elaborate on the current methods for nucleic acid testing and programmable nucleases, followed by delving into the structure and nuclease activity of the Argonaute system. The advantages of Argonaute compared with the CRISPR/Cas system in nucleic acid detection are highlighted and discussed. Furthermore, we summarize the applications of Argonaute-based nucleic acid detection and provide an in-depth analysis of future perspectives and challenges. Recent research has demonstrated that Argonaute-based biosensing is an innovative and rapidly advancing technology that can overcome the limitations of existing methods and potentially replace them. In summary, the implementation of Argonaute and its integration with other technologies hold promise in developing customized and intelligent detection methods for nucleic acid testing across various aspects.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Jiali Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
15
|
Zhao Y, Wei Y, Ye C, Cao J, Zhou X, Xie M, Qing J, Chen Z. Application of recombinase polymerase amplification with lateral flow assay to pathogen point-of-care diagnosis. Front Cell Infect Microbiol 2024; 14:1475922. [PMID: 39624267 PMCID: PMC11609166 DOI: 10.3389/fcimb.2024.1475922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/24/2024] [Indexed: 01/03/2025] Open
Abstract
Since the outbreak of the new coronavirus, point-of-care diagnostics based on nucleic acid testing have become a requirement for the development of pathogen diagnostics, which require the ability to accurately, rapidly, and conveniently detect pathogens. Conventional nucleic acid amplification techniques no longer meet the requirements for pathogen detection in low-resource, low-skill environments because they require specialist equipment, complex operations, and long detection times. Therefore, recombinant polymerase amplification (RPA) is becoming an increasingly important method in today's nucleic acid detection technology because it can amplify nucleic acids in 20-30 minutes at a constant temperature, greatly reducing the dependence on specialist equipment and technicians. RPA products are primarily detected through methods such as real-time fluorescence, gel electrophoresis, lateral flow assays (LFAs), and other techniques. Among these, LFAs allow for the rapid detection of amplification products within minutes through the visualization of results, offering convenient operation and low cost. Therefore, the combination of RPA with LFA technology has significant advantages and holds broad application prospects in point-of-care (POC) diagnostics, particularly in low-resource settings. Here, we focus on the principles of RPA combined with LFAs, their application to pathogen diagnosis, their main advantages and limitations, and some improvements in the methods.
Collapse
Affiliation(s)
- Yilian Zhao
- The First Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Yan Wei
- Precision Joint Inspection Centre, The People’s Hospital Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
- Graduate College, Guangxi University of Chinese Medicine, Nanning, China
| | - Chao Ye
- Precision Joint Inspection Centre, The People’s Hospital Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Jinmeng Cao
- Department of Scientific Research, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiaoxing Zhou
- Precision Joint Inspection Centre, The People’s Hospital Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Mengru Xie
- The First Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Jilin Qing
- Center for Reproductive Medicine and Genetics, The People’s Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| | - Zhizhong Chen
- Precision Joint Inspection Centre, The People’s Hospital Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
16
|
Schoffelen T, Papan C, Carrara E, Eljaaly K, Paul M, Keuleyan E, Martin Quirós A, Peiffer-Smadja N, Palos C, May L, Pulia M, Beovic B, Batard E, Resman F, Hulscher M, Schouten J. European society of clinical microbiology and infectious diseases guidelines for antimicrobial stewardship in emergency departments (endorsed by European association of hospital pharmacists). Clin Microbiol Infect 2024; 30:1384-1407. [PMID: 39029872 DOI: 10.1016/j.cmi.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 07/21/2024]
Abstract
SCOPE This European Society of Clinical Microbiology and Infectious Diseases guideline provides evidence-based recommendations to support a selection of appropriate antibiotic use practices for patients seen in the emergency department (ED) and guidance for their implementation. The topics addressed in this guideline are (a) Do biomarkers or rapid pathogen tests improve antibiotic prescribing and/or clinical outcomes? (b) Does taking blood cultures in common infectious syndromes improve antibiotic prescribing and/or clinical outcomes? (c) Does watchful waiting without antibacterial therapy or with delayed antibiotic prescribing reduce antibiotic prescribing without worsening clinical outcomes in patients with specific infectious syndromes? (d) Do structured culture follow-up programs in patients discharged from the ED with cultures pending improve antibiotic prescribing? METHODS An expert panel was convened by European Society of Clinical Microbiology and Infectious Diseases and the guideline chair. The panel selected in consensus the four most relevant antimicrobial stewardship topics according to pre-defined relevance criteria. For each main question for the four topics, a systematic review was performed, including randomized controlled trials and observational studies. Both clinical outcomes and stewardship process outcomes related to antibiotic use were deemed relevant. The literature searches were conducted between May 2021 and March 2022. In April 2022, the panel members were formally asked to suggest additional studies that were not identified in the initial searches. Data were summarized in a meta-analysis if possible or otherwise summarized narratively. The certainty of the evidence was classified according to the Grading of Recommendations Assessment, Development and Evaluation criteria. The guideline panel reviewed the evidence per topic critically appraising the evidence and formulated recommendations through a consensus-based process. The strength of the recommendations was classified as strong or weak. To substantiate the implementation process, implementation trials or observational studies describing facilitators/barriers for implementation were identified from the same searches and were summarized narratively. RECOMMENDATIONS The recommendations on the use of biomarkers and rapid pathogen diagnostic tests focus on the initiation of antibiotics in patients admitted through the ED. Their effect on the discontinuation or de-escalation of antibiotics during hospital stay was not reported, neither was their effect on hospital infection prevention and control practices. The recommendations on watchful waiting (i.e. withholding antibiotics with some form of follow-up) focus on specific infectious syndromes for which the primary care literature was also included. The recommendations on blood cultures focus on the indication in three common infectious syndromes in the ED explicitly excluding patients with sepsis or septic shock. Most recommendations are based on very low and low certainty of evidence, leading to weak recommendations or, when no evidence was available, to best practice statements. Implementation of these recommendations needs to be adapted to the specific settings and circumstances of the ED. The scarcity of high-quality studies in the area of antimicrobial stewardship in the ED highlights the need for future research in this field.
Collapse
Affiliation(s)
- Teske Schoffelen
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Cihan Papan
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany; Centre for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Khalid Eljaaly
- Department of Pharmacy Practice, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacy, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mical Paul
- Infectious Diseases, Rambam Health Care Campus, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Emma Keuleyan
- Department of Clinical Microbiology and Virology, University Hospital Lozenetz, Sofia, Bulgaria; Ministry of Health, Sofia, Bulgaria
| | | | - Nathan Peiffer-Smadja
- Infectious Diseases Department, Bichat-Claude Bernard Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France; Université Paris Cité, INSERM, IAME, Paris, France; National Institute for Health Research, Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - Carlos Palos
- Infection Control and Antimicrobial Resistance Committee, Hospital da Luz, Lisbon, Portugal
| | - Larissa May
- Department of Emergency Medicine, University of California Davis, Sacramento, CA, USA
| | - Michael Pulia
- BerbeeWalsh Department of Emergency Medicine, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI, USA
| | - Bojana Beovic
- Faculty of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Eric Batard
- Emergency Department, CHU Nantes, Nantes, France; Cibles et Médicaments des Infections et du Cancer, IICiMed UR1155, Nantes Université, Nantes, France
| | - Fredrik Resman
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Marlies Hulscher
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen Schouten
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
17
|
He Y, Peng Y, Tong Y. One-Tube Nested PCR Coupled with CRISPR-Cas12a for Ultrasensitive Nucleic Acid Testing. ACS OMEGA 2024; 9:39616-39625. [PMID: 39346871 PMCID: PMC11425923 DOI: 10.1021/acsomega.4c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024]
Abstract
Nucleic acid testing with high sensitivity and specificity is of great importance for accurate disease diagnostics. Here, we developed an in situ one-tube nucleic acid testing assay. In this assay, the target nucleic acid is captured using magnetic silica beads, avoiding an elution step, followed directly by the polymerase chain reaction (PCR) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a detection. This assay achieved visual readout and a sensitivity of 120 copies/mL for detecting SARS-CoV-2. More importantly, the assay demonstrated over 95% sensitivity and 100% specificity compared to the gold standard real-time quantitative PCR (RT-qPCR) test by using 75 SARS-CoV-2 clinical samples. By integrating nested PCR and Cas12a, this all-in-one nucleic acid testing approach enables ultrasensitive, highly specific, and cost-effective diagnosis at community clinics and township hospitals.
Collapse
Affiliation(s)
- Yugan He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co.,Ltd, Shenzhen 518054, PR China
| | - Yadan Peng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
18
|
Wang Y, Peng Y, Liu S, Li M, Pei X, Tong Y. CRISPR/Cas12a coupled with loop-mediated isothermal amplification and lateral flow assay for SARS-CoV-2 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5971-5981. [PMID: 39158842 DOI: 10.1039/d4ay00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Point-of-care testing (POCT) is rapid, exhibits highly sensitive performance, can facilitate home self-testing and avoids cross-contamination. Herein, we developed a biosensor that combines Si-OH magnetic bead (MB)-based fast RNA extraction, reverse transcription-loop-mediated isothermal amplification (RT-LAMP), CRISPR-Cas12a, and lateral flow assay (LFA) for rapid detection of SARS-CoV-2 RNA within 1.5 h. In the presence of the SARS-CoV-2 LAMP amplicon, the trans-cleavage activity of Cas12a was activated to cleave the probe, separating streptavidin from the AuNPs-digoxin (Dig) antibody, resulting in the inability of the test line to capture the AuNPs-Dig antibody. The method can distinguish SARS-CoV-2 from other RNA viruses, with a limit-of-detection (LOD) of 6.2 × 102 copies per mL. Therefore, LAMP-CRISPR-LFA has high specificity and sensitivity and is convenient to develop into commercial assay kits, which could have a broad prospect for practical application.
Collapse
Affiliation(s)
- Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yadan Peng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Sitong Liu
- College of Chemistry and Materials Engineering, Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaojing Pei
- College of Chemistry and Materials Engineering, Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
19
|
Wang J, Kaur S, Kayabasi A, Ranjbaran M, Rath I, Benschikovski I, Raut B, Ra K, Rafiq N, Verma MS. A portable, easy-to-use paper-based biosensor for rapid in-field detection of fecal contamination on fresh produce farms. Biosens Bioelectron 2024; 259:116374. [PMID: 38754195 DOI: 10.1016/j.bios.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Laboratory-based nucleic acid amplification tests (NAATs) are highly sensitive and specific, but they require the transportation of samples to centralized testing facilities and have long turnaround times. During the Coronavirus Disease 2019 (COVID-19) pandemic, substantial advancement has been achieved with the development of paper-based point-of-care (POC) NAATs, offering features such as low cost, being easy to use, and providing rapid sample-to-answer times. Although most of the POC NAATs innovations are towards clinical settings, we have developed a portable, paper-based loop-mediated isothermal amplification (LAMP) testing platform for on-farm applications, capable of detecting Bacteroidales as a fecal contamination biomarker. Our integrated platform includes a drop generator, a heating and imaging unit, and paper-based biosensors, providing sensitive results (limit of detection 3 copies of Bacteroidales per cm2) within an hour of sample collection. We evaluated this integrated platform on a commercial lettuce farm with a concordance of 100% when compared to lab-based tests. Our integrated paper-based LAMP testing platform holds great promise as a reliable and convenient tool for on-site NAATs. We expect that this innovation will encourage the fresh produce industry to adopt NAATs as a complementary tool for decision-making in growing and harvesting. We also hope that our work can stimulate further research in the development of on-farm diagnostic tools for other agricultural applications, leading to improved food safety and technology innovation.
Collapse
Affiliation(s)
- Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Simerdeep Kaur
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Ashley Kayabasi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohsen Ranjbaran
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Ishaan Rath
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ilan Benschikovski
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Bibek Raut
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Kyungyeon Ra
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Nafisa Rafiq
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Sweileh WM. Analysis and mapping of global research publications on point-of-care testing for infectious diseases. J Eval Clin Pract 2024; 30:945-953. [PMID: 38764304 DOI: 10.1111/jep.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/22/2024] [Accepted: 04/07/2024] [Indexed: 05/21/2024]
Abstract
RATIONALE This study presents the first comprehensive analysis and mapping of scientific research on point-of-care testing (POCT) in infectious diseases, filling a gap in understanding the evolving landscape of this field. The identification of research themes and global contributions offers valuable insights. AIMS AND OBJECTIVES This manuscript aims to analyse and map scientific research on POCT in the context of infectious diseases. METHODS The study employed a comprehensive search strategy using terms related to POCT and infectious diseases. The search was conducted on the Scopus database, refining results based on inclusion and exclusion criteria. The dataset of 1719 research articles was then subjected to descriptive analysis and mapping using VOSviewer. RESULTS The research findings indicate an exponential growth in POCT-related publications, with 46.8% published post the COVID-19 pandemic. Plos One journal led in publication frequency, and Biosensors and Bioelectronics received the highest citations per article. North America and Western Europe dominated contributions, with notable participation from China, South Africa, and India. The research landscape revealed the following research themes: detection technologies, human immunodeficiency virus (HIV)/sexually transmitted infection (STI) diagnosis, antibiotic optimisation, and schistosomiasis. Clinical trials focused on antibiotic prescribing, HIV, STIs, and specific infections. The findings suggest a shifting landscape towards POCT, emphasising the need for future planning and investment in healthcare systems. The research identifies areas for future exploration, such as the impact of POCT on antibiotic prescribing and its role in combating infectious diseases in low- and middle-income countries. CONCLUSION Implementation of POCT has the potential to revolutionise infectious disease management, improve patient outcomes, and reduce the global burden of diseases. Better public awareness, healthcare team management, and planning for POCT at entry points are crucial for societal benefit. Results demonstrated the evolving role of POCT in infectious disease management and prevention.
Collapse
Affiliation(s)
- Waleed M Sweileh
- Division of Biomedical Sciences, Department of Physiology and Pharmacology/Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
21
|
Shkodenko LA, Mohamed AA, Ateiah M, Rubel MS, Koshel EI. A DAMP-Based Assay for Rapid and Affordable Diagnosis of Bacterial Meningitis Agents: Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae. Int J Mol Sci 2024; 25:8282. [PMID: 39125852 PMCID: PMC11311791 DOI: 10.3390/ijms25158282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The rapid and accurate diagnosis of meningitis is critical for preventing severe complications and fatalities. This study addresses the need for accessible diagnostics in the absence of specialized equipment by developing a novel diagnostic assay. The assay utilizes dual-priming isothermal amplification (DAMP) with unique internal primers to significantly reduce non-specificity. For fluorescence detection, the dye was selected among Brilliant Green, Thioflavin T, and dsGreen. Brilliant Green is preferred for this assay due to its availability, high fluorescence level, and optimal sample-to-background (S/B) ratio. The assay was developed for the detection of the primary causative agents of meningitis (Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae), and tested on clinical samples. The developed method demonstrated high specificity, no false positives, sensitivity comparable to that of loop-mediated isothermal amplification (LAMP), and a high S/B ratio. This versatile assay can be utilized as a standalone test or an integrated assay into point-of-care systems for rapid and reliable pathogen detection.
Collapse
Affiliation(s)
| | | | | | | | - Elena I. Koshel
- Laboratory of DNA-Nanosensor Diagnostics, ITMO University, Lomonosova Street, 9, 191002 St Petersburg, Russia; (L.A.S.); (A.-A.M.); (M.A.); (M.S.R.)
| |
Collapse
|
22
|
Hu Z, Hu Y, Huang L, Zhong W, Zhang J, Lei D, Chen Y, Ni Y, Liu Y. Recent Progress in Organic Electrochemical Transistor-Structured Biosensors. BIOSENSORS 2024; 14:330. [PMID: 39056606 PMCID: PMC11274720 DOI: 10.3390/bios14070330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The continued advancement of organic electronic technology will establish organic electrochemical transistors as pivotal instruments in the field of biological detection. Here, we present a comprehensive review of the state-of-the-art technology and advancements in the use of organic electrochemical transistors as biosensors. This review provides an in-depth analysis of the diverse modification materials, methods, and mechanisms utilized in organic electrochemical transistor-structured biosensors (OETBs) for the selective detection of a wide range of target analyte encompassing electroactive species, electro-inactive species, and cancer cells. Recent advances in OETBs for use in sensing systems and wearable and implantable applications are also briefly introduced. Finally, challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Zhuotao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yingchao Hu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Lu Huang
- School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Zhong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Jianfeng Zhang
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Dengyun Lei
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yayi Chen
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yao Ni
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| | - Yuan Liu
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; (Z.H.); (Y.H.); (W.Z.); (J.Z.); (D.L.); (Y.C.)
| |
Collapse
|
23
|
Whang K, Min J, Shin Y, Hwang I, Lee H, Kwak T, La JA, Kim S, Kim D, Lee LP, Kang T. Capillarity-Driven Enrichment and Hydrodynamic Trapping of Trace Nucleic Acids by Plasmonic Cavity Membrane for Rapid and Sensitive Detections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403896. [PMID: 38663435 DOI: 10.1002/adma.202403896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Small-reactor-based polymerase chain reaction (PCR) has attracted considerable attention. A significant number of tiny reactors must be prepared in parallel to capture, amplify, and accurately quantify few target genes in clinically relevant large volume, which, however, requires sophisticated microfabrication and longer sample-to-answer time. Here, single plasmonic cavity membrane is reported that not only enriches and captures few nucleic acids by taking advantage of both capillarity and hydrodynamic trapping but also quickly amplifies them for sensitive plasmonic detection. The plasmonic cavity membrane with few nanoliters in a void volume is fabricated by self-assembling gold nanorods with SiO2 tips. Simulations reveal that hydrodynamic stagnation between the SiO2 tips is mainly responsible for the trapping of the nucleic acid in the membrane. Finally, it is shown that the plasmonic cavity membrane is capable of enriching severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes up to 20 000-fold within 1 min, amplifying within 3 min, and detecting the trace genes as low as a single copy µL-1. It is anticipated that this work not only expands the utility of PCR but also provides an innovative way of the enrichment and detection of trace biomolecules in a variety of point-of-care testing applications.
Collapse
Affiliation(s)
- Keumrai Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Junwon Min
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea
| | - Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Inhyeok Hwang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Hyunjoo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea
| | - Taejin Kwak
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea
| | - Ju A La
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Sungbong Kim
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
- Department of Chemistry, Military Academy, Seoul, 01805, South Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, South Korea
| | - Luke P Lee
- Harvard Institute of Medicine, Harvard Medical School, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwonsi, Gyeonggi-do, 16419, South Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, South Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| |
Collapse
|
24
|
Tao S, Han X, Shi D, Yu T, Long Y, Zou S, Lu S, Song L, Liu G. Portable Device with Nicking Enzyme Enhanced Special RCA on μPADs toward Sensitive Detection of High-Risk HPV Infection. Anal Chem 2024. [PMID: 38912660 DOI: 10.1021/acs.analchem.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Development of an accurate, rapid, and cost-effective portable device is in high demand for point-of-care molecular diagnosis toward disease screening. Here we report a one-pot homogeneous isothermal assay that leverages nicking endonuclease and minimum secondary structured rolling circle amplification (N-MSSRCA) for fast and sensitive quantification of nucleic acids on distance microfluidic paper-based analytical devices (dμPAD) by a portable custom-made fluorescence detector. Human papillomavirus (HPV) oncogenic E7 mRNA as the biomarker for cervical cancer was used as the model analyte. N-MSSRCA integrates ligase for target recognition, the nicking enzyme for primer generation, and the dual function of the Phi29 DNA polymerase for both on- and off-loop amplification. The proposed method was capable of detecting 1 and 10 fM of the analyte using the microplate reader and portable detector with dμPAD, respectively, with ∼1 h assay time. A cohort study of 40 cervical swab samples shows N-MSSRCA reached positive and negative predictive values of 87.5% and 93.5% using the portable detector with dμPAD, compared to 91.67% and 100% using the microplate reader. N-MSSRCA demonstrates potential in early screening of high-risk HPV infection as a generic strategy to detect various nucleic acids in point-of-care scenarios.
Collapse
Affiliation(s)
- Shurui Tao
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xin Han
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Dongni Shi
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tian Yu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yingxi Long
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Siyi Zou
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Sheng Lu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Libing Song
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
25
|
Wilkinson AF, Barra MJ, Novak EN, Bond M, Richards-Kortum R. Point-of-care isothermal nucleic acid amplification tests: progress and bottlenecks for extraction-free sample collection and preparation. Expert Rev Mol Diagn 2024; 24:509-524. [PMID: 38973430 PMCID: PMC11514575 DOI: 10.1080/14737159.2024.2375233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Suitable sample collection and preparation methods are essential to enable nucleic acid amplification testing at the point of care (POC). Strategies that allow direct isothermal nucleic acid amplification testing (iNAAT) of crude sample lysate without the need for nucleic acid extraction minimize time to result as well as the need for operator expertise and costly infrastructure. AREAS COVERED The authors review research to understand how sample matrix and preparation affect the design and performance of POC iNAATs. They focus on approaches where samples are directly combined with liquid reagents for preparation and amplification via iNAAT strategies. They review factors related to the type and method of sample collection, storage buffers, and lysis strategies. Finally, they discuss RNA targets and relevant regulatory considerations. EXPERT OPINION Limitations in sample preparation methods are a significant technical barrier preventing implementation of nucleic acid testing at the POC. The authors propose a framework for co-designing sample preparation and amplification steps for optimal performance with an extraction-free paradigm by considering a sample matrix and lytic strategy prior to an amplification assay and readout. In the next 5 years, the authors anticipate increasing priority on the co-design of sample preparation and iNAATs.
Collapse
Affiliation(s)
| | - Maria J. Barra
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Emilie N. Novak
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Meaghan Bond
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
Li T, Wang J, Fang J, Chen F, Wu X, Wang L, Gao M, Zhang L, Li S. A universal nucleic acid detection platform combing CRISPR/Cas12a and strand displacement amplification with multiple signal readout. Talanta 2024; 273:125922. [PMID: 38503121 DOI: 10.1016/j.talanta.2024.125922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Rapid and sensitive detection of nucleic acids has become crucial in various fields. However, most current nucleic acid detection methods can only be used in specific scenarios, such as RT-qPCR, which relies on fluorometer for signal readout, limiting its application at home or in the field due to its high price. In this paper, a universal nucleic acid detection platform combing CRISPR/Cas12a and strand displacement amplification (CRISPR-SDA) with multiple signal readout was established to adapt to different application scenarios. Nucleocapsid protein gene of SARS-CoV-2 (N gene) and hepatitis B virus (HBV) DNA were selected as model targets. The proposed strategy achieved the sensitivity of 53.1 fM, 0.15 pM, and 1 pM for N gene in fluorescence mode, personal glucose meter (PGM) mode and lateral flow assay (LFA) mode, respectively. It possessed the ability to differentiate single-base mismatch and the presence of salmon sperm DNA with a mass up to 105-fold of the targets did not significantly interfere with the assay signal. The general and modular design idea made CRISPR-SDA as simple as building blocks to construct nucleic acid sensing methods to meet different requirements by simply changing the SDA template and selecting suitable signal report probes, which was expected to find a breadth of applications in nucleic acids detection.
Collapse
Affiliation(s)
- Tian Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Jinjin Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jiaoyuan Fang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Fei Chen
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xinru Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Lan Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Meng Gao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Liping Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
27
|
Sun A, Vopařilová P, Liu X, Kou B, Řezníček T, Lednický T, Ni S, Kudr J, Zítka O, Fohlerová Z, Pajer P, Zhang H, Neužil P. An integrated microfluidic platform for nucleic acid testing. MICROSYSTEMS & NANOENGINEERING 2024; 10:66. [PMID: 38784376 PMCID: PMC11111744 DOI: 10.1038/s41378-024-00677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 05/25/2024]
Abstract
This study presents a rapid and versatile low-cost sample-to-answer system for SARS-CoV-2 diagnostics. The system integrates the extraction and purification of nucleic acids, followed by amplification via either reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or reverse transcription loop-mediated isothermal amplification (RT-LAMP). By meeting diverse diagnostic and reagent needs, the platform yields testing results that closely align with those of commercial RT-LAMP and RT‒qPCR systems. Notable advantages of our system include its speed and cost-effectiveness. The assay is completed within 28 min, including sample loading (5 min), ribonucleic acid (RNA) extraction (3 min), and RT-LAMP (20 min). The cost of each assay is ≈ $9.5, and this pricing is competitive against that of Food and Drug Administration (FDA)-approved commercial alternatives. Although some RNA loss during on-chip extraction is observed, the platform maintains a potential limit of detection lower than 297 copies. Portability makes the system particularly useful in environments where centralized laboratories are either unavailable or inconveniently located. Another key feature is the platform's versatility, allowing users to choose between RT‒qPCR or RT‒LAMP tests based on specific requirements.
Collapse
Affiliation(s)
- Antao Sun
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| | - Petra Vopařilová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Xiaocheng Liu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| | - Bingqian Kou
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| | - Tomáš Řezníček
- ITD Tech s.r.o, Osvoboditelů 1005, 735 81 Bohumín, Czech Republic
| | - Tomáš Lednický
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200 Czech Republic
| | - Sheng Ni
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiří Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Ondřej Zítka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Zdenka Fohlerová
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, Brno, 61600 Czech Republic
| | - Petr Pajer
- Military Health Institute, U Vojenské nemocnice 1200, 16200 Praha 6, Czech Republic
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P. R. China
| | - Pavel Neužil
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| |
Collapse
|
28
|
Bai Y, Xu P, Li S, Wang D, Zhang K, Zheng D, Yue D, Zhang G, He S, Li Y, Zou H, Deng Y. Signal amplification strategy of DNA self-assembled biosensor and typical applications in pathogenic microorganism detection. Talanta 2024; 272:125759. [PMID: 38350248 DOI: 10.1016/j.talanta.2024.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Biosensors have emerged as ideal analytical devices for various bio-applications owing to their low cost, convenience, and portability, which offer great potential for improving global healthcare. DNA self-assembly techniques have been enriched with the development of innovative amplification strategies, such as dispersion-to-localization of catalytic hairpin assembly, and dumbbell hybridization chain reaction, which hold great significance for building biosensors capable of realizing sensitive, rapid and multiplexed detection of pathogenic microorganisms. Here, focusing primarily on the signal amplification strategies based on DNA self-assembly, we concisely summarized the strengths and weaknesses of diverse isothermal nucleic acid amplification techniques. Subsequently, both single-layer and cascade amplification strategies based on traditional catalytic hairpin assembly and hybridization chain reaction were critically explored. Furthermore, a comprehensive overview of the recent advances in DNA self-assembled biosensors for the detection of pathogenic microorganisms is presented to summarize methods for biorecognition and signal amplification. Finally, a brief discussion is provided about the current challenges and future directions of DNA self-assembled biosensors.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shi Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shuya He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China.
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| |
Collapse
|
29
|
Guo C, Cui E, Wang M, Liu X, Yu Y, Xie X, Yang D. Tailorable optical properties of polymer nanodots for triple-mode fluorescence detection of nucleic acids. Chem Commun (Camb) 2024; 60:4942-4945. [PMID: 38629242 DOI: 10.1039/d4cc01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
We present a triple-mode nanosensor platform for nucleic acid detection utilizing fluorescence anisotropy and Förster resonance energy transfer (FRET) strategies. The self-assembled nanoprobes serve as mass amplifiers, nanoquenchers, or nanodonors, exhibiting high FRET efficiencies (64.4-86.5%) and demonstrating excellent detection capabilities in DNA and microRNA analysis.
Collapse
Affiliation(s)
- Chao Guo
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Enna Cui
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Mengxiao Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Xuan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yanyan Yu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Dongzhi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
30
|
Duarte LC, Figueredo F, Chagas CLS, Cortón E, Coltro WKT. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Anal Chim Acta 2024; 1299:342429. [PMID: 38499426 DOI: 10.1016/j.aca.2024.342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
3D printing has revolutionized the manufacturing process of microanalytical devices by enabling the automated production of customized objects. This technology promises to become a fundamental tool, accelerating investigations in critical areas of health, food, and environmental sciences. This microfabrication technology can be easily disseminated among users to produce further and provide analytical data to an interconnected network towards the Internet of Things, as 3D printers enable automated, reproducible, low-cost, and easy fabrication of microanalytical devices in a single step. New functional materials are being investigated for one-step fabrication of highly complex 3D printed parts using photocurable resins. However, they are not yet widely used to fabricate microfluidic devices. This is likely the critical step towards easy and automated fabrication of sophisticated, complex, and functional 3D-printed microchips. Accordingly, this review covers recent advances in the development of 3D-printed microfluidic devices for point-of-care (POC) or bioanalytical applications such as nucleic acid amplification assays, immunoassays, cell and biomarker analysis and organs-on-a-chip. Finally, we discuss the future implications of this technology and highlight the challenges in researching and developing appropriate materials and manufacturing techniques to enable the production of 3D-printed microfluidic analytical devices in a single step.
Collapse
Affiliation(s)
- Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Inhumas, 75402-556, Inhumas, GO, Brazil
| | - Federico Figueredo
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Cyro L S Chagas
- Instituto de Química, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| | - Eduardo Cortón
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
31
|
Torres-Salvador F, Ojeda J, Castro C, Gerasimova Y, Chumbimuni-Torres K. A Single Electrochemical Biosensor Designed to Detect Any Virus. Anal Chem 2024; 96:5752-5756. [PMID: 38560822 PMCID: PMC11459061 DOI: 10.1021/acs.analchem.3c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Viruses are the primary cause of many infectious diseases in both humans and animals. Various testing methods require an amplification step of the viral RNA sample before detection, with quantitative reverse transcription polymerase chain reaction (RT-qPCR) being one of the most widely used along with lesser-known methods like Nucleic Acid Sequence-Based Amplification (NASBA). NASBA offers several advantages, such as isothermal amplification and high selectivity for specific sequences, making it an attractive option for low-income facilities. In this research, we employed a single electrochemical biosensor (E-Biosensor) designed for potentially detecting any virus by modifying the NASBA protocol. In this modified protocol, a reverse primer is designed with an additional 22-nucleotide sequence (tag region) at the 5'-end, which is added to the NASBA process. This tag region becomes part of the final amplicon generated by NASBA. It can hybridize with a single specific E-Biosensor probe set, enabling subsequent virus detection. Using this approach, we successfully detected three different viruses with a single E-Biosensor design, demonstrating the platform's potential for virus detection.
Collapse
Affiliation(s)
| | - Julio Ojeda
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, US
| | - Cynthia Castro
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, US
| | - Yulia Gerasimova
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, US
| | | |
Collapse
|
32
|
Gross K, Georgeades C, Bergner C, Van Arendonk KJ, Salazar JH. Preoperative Risk Factors and Postoperative Complications of COVID-Positive Children Requiring Urgent or Emergent Surgical Care. J Pediatr Surg 2024; 59:686-693. [PMID: 38104034 DOI: 10.1016/j.jpedsurg.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Preoperative COVID-19 testing protocols were widely implemented for children requiring surgery, leading to increased resource consumption and many delayed or canceled operations or procedures. This study using multi-center data investigated the relationship between preoperative risk factors, COVID-positivity, and postoperative outcomes among children undergoing common urgent and emergent procedures. METHODS Children (<18 years) who underwent common urgent and emergent procedures were identified in the 2021 National Surgical Quality Improvement Program Pediatric database. The outcomes of COVID-positive and non-COVID-positive (negative or untested) children were compared using simple and multivariable regression models. RESULTS Among 40,628 children undergoing gastrointestinal surgery (appendectomy, cholecystectomy), long bone fracture fixation, cerebrospinal fluid shunt procedures, gonadal procedures (testicular detorsion, ovarian procedures), and pyloromyotomy, 576 (1.4%) were COVID-positive. COVID-positive children had higher American Society of Anesthesiologists scores (p ≤ 0.001) and more frequently had preoperative sepsis (p ≤ 0.016) compared to non-COVID-positive children; however, other preoperative risk factors, including comorbidities, were largely similar. COVID-positive children had a longer length of stay than non-COVID-positive children (median 1.0 [IQR 0.0-2.0] vs. 1.0 [IQR 0.0-1.0], p < 0.001). However, there were no associations between COVID-19 positivity and overall complications, pulmonary complications, infectious complications, or readmissions. CONCLUSIONS Despite increased preoperative risk factors, COVID-positive children did not have an increased risk of postoperative complications after common urgent and emergent procedures. However, length of stay was greater for COVID-positive children, likely due to delays in surgery related to COVID-19 protocols. These findings may be applicable to future preoperative testing and surgical timing guidelines related to respiratory viral illnesses in children. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Kendall Gross
- Division of Pediatric Surgery, Children's Wisconsin and Medical College of Wisconsin, 999 N 92nd Street, Suite 320, Milwaukee, WI, 53226, USA
| | - Christina Georgeades
- Division of Pediatric Surgery, Children's Wisconsin and Medical College of Wisconsin, 999 N 92nd Street, Suite 320, Milwaukee, WI, 53226, USA
| | - Carisa Bergner
- Division of Pediatric Surgery, Children's Wisconsin and Medical College of Wisconsin, 999 N 92nd Street, Suite 320, Milwaukee, WI, 53226, USA
| | - Kyle J Van Arendonk
- Division of Pediatric Surgery, Children's Wisconsin and Medical College of Wisconsin, 999 N 92nd Street, Suite 320, Milwaukee, WI, 53226, USA
| | - Jose H Salazar
- Division of Pediatric Surgery, Children's Wisconsin and Medical College of Wisconsin, 999 N 92nd Street, Suite 320, Milwaukee, WI, 53226, USA.
| |
Collapse
|
33
|
Martin CD, Bender AT, Sullivan BP, Lillis L, Boyle DS, Posner JD. SARS-CoV-2 recombinase polymerase amplification assay with lateral flow readout and duplexed full process internal control. SENSORS & DIAGNOSTICS 2024; 3:421-430. [PMID: 38495597 PMCID: PMC10939122 DOI: 10.1039/d3sd00246b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024]
Abstract
Nucleic acid amplification tests for the detection of SARS-CoV-2 have been an important testing mechanism for the COVID-19 pandemic. While these traditional nucleic acid diagnostic methods are highly sensitive and selective, they are not suited to home or clinic-based uses. Comparatively, rapid antigen tests are cost-effective and user friendly but lack in sensitivity and specificity. Here we report on the development of a one-pot, duplexed reverse transcriptase recombinase polymerase amplification SARS-CoV-2 assay with MS2 bacteriophage as a full process control. Detection is carried out with either real-time fluorescence or lateral flow readout with an analytical sensitivity of 50 copies per reaction. Unlike previously published assays, the RNA-based MS2 bacteriophage control reports on successful operation of lysis, reverse transcription, and amplification. This SARS-CoV-2 assay features highly sensitive detection, visual readout through an LFA strip, results in less than 25 minutes, minimal instrumentation, and a useful process internal control to rule out false negative test results.
Collapse
Affiliation(s)
- Coleman D Martin
- Department of Chemical Engineering, University of Washington Seattle Washington USA
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington Seattle Washington USA
| | - Benjamin P Sullivan
- Department of Mechanical Engineering, University of Washington Seattle Washington USA
| | | | | | - Jonathan D Posner
- Department of Chemical Engineering, University of Washington Seattle Washington USA
- Department of Mechanical Engineering, University of Washington Seattle Washington USA
- Department of Family Medicine, University of Washington Seattle Washington USA
| |
Collapse
|
34
|
Camargo BD, Cassaboni Stracke M, Soligo Sanchuki HB, de Oliveira VK, Ancelmo HC, Mozaner Bordin D, Klerynton Marchini F, Ribeiro Viana E, Blanes L. Low-Cost Arduino Reverse Transcriptase Loop-Mediated Isothermal Amplification (RT-LAMP) for Sensitive Nucleic Acid Detection. BIOSENSORS 2024; 14:128. [PMID: 38534235 DOI: 10.3390/bios14030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
This work presents a low-cost transcription loop-mediated isothermal amplification (RT-LAMP) instrument for nucleic acid detection, employing an Arduino Nano microcontroller. The cooling system includes customized printed circuit boards (PCBs) that serve as electrical resistors and incorporate fans. An aluminum block is designed to accommodate eight vials. The system also includes two PCB heaters-one for sample heating and the other for vial lid heating to prevent condensation. The color detection system comprises a TCS3200 color 8-sensor array coupled to one side of the aluminum heater body and a white 8-LED array coupled to the other side, controlled by two Multiplexer/Demultiplexer devices. LED light passes through the sample, reaching the color sensor and conveying color information crucial for detection. The top board is maintained at 110 ± 2 °C, while the bottom board is held at 65 ± 0.5 °C throughout the RT-LAMP assay. Validation tests successfully demonstrated the efficacy of the colorimetric RT-LAMP reactions using SARS-CoV-2 RNA amplification as a sample viability test, achieving 100% sensitivity and 97.3% specificity with 66 clinical samples. Our instrument offers a cost-effective (USD 100) solution with automated result interpretation and superior sensitivity compared to visual inspection. While the prototype was tested with SARS-CoV-2 RNA samples, its versatility extends to detecting other pathogens using alternative primers, showcasing its potential for broader applications in biosensing.
Collapse
Affiliation(s)
- Bruno Dias Camargo
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
- Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
| | - Mateus Cassaboni Stracke
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
- Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
| | | | - Hellen Cristina Ancelmo
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
- Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
| | - Dayanne Mozaner Bordin
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Fabricio Klerynton Marchini
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
- Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
| | - Emilson Ribeiro Viana
- Academic Department of Physics (DAFIS), Federal University of Technology-Paraná (UTFPR), Sete de Setembro 3165 Av., Curitiba 80230-901, Brazil
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
- Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba 81350-010, Brazil
| |
Collapse
|
35
|
El-Daly MM. Advances and Challenges in SARS-CoV-2 Detection: A Review of Molecular and Serological Technologies. Diagnostics (Basel) 2024; 14:519. [PMID: 38472991 DOI: 10.3390/diagnostics14050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The urgent need for accurate COVID-19 diagnostics has led to the development of various SARS-CoV-2 detection technologies. Real-time reverse transcriptase polymerase chain reaction (RT-qPCR) remains a reliable viral gene detection technique, while other molecular methods, including nucleic acid amplification techniques (NAATs) and isothermal amplification techniques, provide diverse and effective approaches. Serological assays, detecting antibodies in response to viral infection, are crucial for disease surveillance. Saliva-based immunoassays show promise for surveillance purposes. The efficiency of SARS-CoV-2 antibody detection varies, with IgM indicating recent exposure and IgG offering prolonged detectability. Various rapid tests, including lateral-flow immunoassays, present opportunities for quick diagnosis, but their clinical significance requires validation through further studies. Challenges include variations in specificity and sensitivity among testing platforms and evolving assay sensitivities over time. SARS-CoV-2 antigens, particularly the N and S proteins, play a crucial role in diagnostic methods. Innovative approaches, such as nanozyme-based assays and specific nucleotide aptamers, offer enhanced sensitivity and flexibility. In conclusion, ongoing advancements in SARS-CoV-2 detection methods contribute to the global effort in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mai M El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
36
|
Zhang J, Xu L, Sheng Z, Zheng J, Chen W, Hu Q, Shen F. Combination-Lock SlipChip Integrating Nucleic Acid Sample Preparation and Isothermal LAMP Amplification for the Detection of SARS-CoV-2. ACS Sens 2024; 9:646-653. [PMID: 38181090 DOI: 10.1021/acssensors.3c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Nucleic acid analysis with an easy-to-use workflow, high specificity and sensitivity, independence of sophisticated instruments, and accessibility outside of the laboratory is highly desirable for the detection and monitoring of infectious diseases. Integration of laboratory-quality sample preparation on a hand-held system is critical for performance. A SlipChip device inspired by the combination lock can perform magnetic bead-based nucleic acid extraction with several clockwise and counterclockwise rotations. A palm-sized base station was developed to assist sample preparation and provide thermal control of isothermal nucleic acid amplification without plug-in power. The loop-mediated isothermal amplification reaction can be performed with a colorimetric method and directly analyzed by the naked eye or with a mobile phone app. This system achieves good bead recovery during the sample preparation workflow and has minimal residue carryover from the lysis and elution buffers. Its performance is comparable to that of the standard laboratory protocol with real-time qPCR amplification methods. The entire workflow is completed in less than 35 min and the device can achieve 500 copies/mL sensitivity. Thirty clinical nasal swab samples were collected and tested with a sensitivity of 95% and a specificity of 100% for SARS-CoV-2. This combination-lock SlipChip provides a promising fast, easy-to-use nucleic acid test with bead-based sample preparation that produces laboratory-quality results for point-of-care settings, especially in home use applications.
Collapse
Affiliation(s)
- Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Zheyi Sheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Jiayi Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Weiyu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
37
|
Oh C, Xun G, Lane ST, Petrov VA, Zhao H, Nguyen TH. Portable, single nucleotide polymorphism-specific duplex assay for virus surveillance in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168701. [PMID: 37992833 DOI: 10.1016/j.scitotenv.2023.168701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Argonaute protein from the archaeon Pyrococcus furiosus (PfAgo) is a DNA-guided nuclease that targets DNA with any sequence. We designed a virus detection assay in which the PfAgo enzyme cleaves the reporter probe, thus generating fluorescent signals when amplicons from a reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay contain target sequences. We confirmed that the RT-LAMP-PfAgo assay for the SARS-CoV-2 Delta variant produced significantly higher fluorescent signals (p < 0.001) when a single nucleotide polymorphism (SNP), exclusive to the Delta variant, was present, compared to the samples without the SNP. Additionally, the duplex assay for Pepper mild mottle virus (PMMOV) and SARS-CoV-2 detection produced specific fluorescent signals (FAM or ROX) only when the corresponding sequences were present. Furthermore, the RT-LAMP-PfAgo assay does not require dilution to reduce the impact of environmental inhibitors. The limit of detection of the PMMOV assay, determined with 30 wastewater samples, was 28 gc/μL, with a 95 % confidence interval of [11,103]. Finally, using a point-of-use device, the RT-LAMP-PfAgo assay successfully detected PMMOV in wastewater samples. Based on our findings, we conclude that the RT-LAMP-PfAgo assay can be used as a portable, SNP-specific duplex assay, which will significantly improve virus surveillance in wastewater.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA.
| | - Guanhua Xun
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephan Thomas Lane
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Vassily Andrew Petrov
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| | - Huimin Zhao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
38
|
Park SY, Trinh KTL, Song YJ, Lee NY. Pipette-free field-deployable molecular diagnostic kit for bimodal visual detection of infectious RNA viruses. Biotechnol J 2024; 19:e2300521. [PMID: 38403439 DOI: 10.1002/biot.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Here, we developed a field-deployable molecular diagnostic kit for the detection of RNA viruses that operates in a pipette-free manner. The kit is composed of acrylic sticks, PCR tubes, and palm-sized three-dimensional(3D)-printed heaters operated by batteries. The kit performs RNA extraction, reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), and visual detection in one kit. An acrylic stick was engraved with one shallow and one deep cylindrical chamber at each end for the insertion of an FTA card and ethidium homodimer-1 (EthD-1), respectively, to perform RNA extraction/purification and bimodal visual detection of the target amplicons. First, an intercalation of EthD-1 into the target DNA initially produces fluorescence upon UV illumination. Next, the addition of a strong oxidant, in this case sodium (meta) periodate (NaIO4 ), produces intense aggregates in the presence of EthD-1-intercalated DNA, realized by electrostatic interaction. In the absence of the target amplicon, no fluorescence or aggregates are observed. Using this kit, two major infectious viruses-severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus (SARS-CoV-2)-were successfully detected in 1 h, and the limits of detection (LOD) were approximately 1 virus μL-1 for SFTSV and 103 copies μL-1 for SARS-CoV-2 RNA. The introduced kit is portable, end-user-friendly, and can be operated in a pipette-free manner, paving the way for simple and convenient virus detection in resource-limited settings.
Collapse
Affiliation(s)
- So Yeon Park
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
39
|
Wang X, Yuwen X, Lai S, Li X, Lai G. Enhancement of telomerase extension via quadruple nucleic acid recycling to develop a novel colorimetric biosensing method for kanamycin assay. Anal Chim Acta 2024; 1287:342139. [PMID: 38182400 DOI: 10.1016/j.aca.2023.342139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Colorimetric biosensors have important value for antibiotic residue testing. However, many previous methods were constructed based on the optical density change of certain unstable single-colored products with poor discrimination for visual measurements. Moreover, their low extinction coefficients usually result in low sensitivity of biosensors. In addition, many conventional signal amplification strategies often involve sophisticated nanomaterial preparation, inconvenient multi-step assay manipulation and limited signal amplification ability. Therefore, the development of new colorimetric biosensing strategies with excellent visual discrimination, high sensitivity and convenient manipulation is highly desirable. RESULTS We designed a target recycling accelerated cascade DNA walking amplification mechanism to trigger a telomerase extension-related enzymatic reaction, and developed a novel colorimetric biosensing strategy for kanamycin (Kana) assay. The target recycling was induced by an exonuclease III-assisted aptamer recognition reaction, which could also trigger the successive DNA walking at the streptavidin (SA)- and magnetic bead (MB)-based tracks. This not only caused the quantitative exposure of the telomeric substrate primers on MB surfaces but also released another strand to accelerate the SA-based DNA walking. By using the telomerase extension product to link numerous alkaline phosphatases and induce the plasmonic property change of gold nanobipyramids (Au NBPs), a colorimetric signal output strategy was constructed. This method could be applied for the high-resolution visual screening of Kana, and it also showed a very low detection limit of 17.6 fg mL-1 for assaying Kana over a wide, five-order-magnitude linear range. SIGNIFICANCE The quadruple nucleic acid recycling-enhanced telomerase extension resulted in the ultrahigh sensitivity of the method and also excluded the sophisticated manipulations involved in conventional biosensing strategies. The multiple enzyme catalysis-induced plasmonic property change of Au NBPs realized the stable and multicolor visual signal transduction. Together with its low cost, simple operation, high selectivity, excellent repeatability, and reliable performances, this method exhibits great potential for use in practical applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xinyue Yuwen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Shanshan Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
40
|
Yin X, Luo H, Zhou H, Zhang Z, Lan Y, Feng Z, Chen W, Zheng H. A rapid isothermal CRISPR-Cas13a diagnostic test for genital herpes simplex virus infection. iScience 2024; 27:108581. [PMID: 38213624 PMCID: PMC10783623 DOI: 10.1016/j.isci.2023.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024] Open
Abstract
Prompt diagnosis is essential for managing herpes simplex virus types 1 and 2 (HSV-1/2). Existing diagnostic methods are not widely available that required expensive or additional equipment for conducting examinations and result readouts, which can limit their utility in resource-constrained settings. We successfully developed a CRISPR-Cas13a-based assay for the detection and genotyping of HSV. Our assay demonstrated a high sensitivity of 96.15% and 95.15% for HSV-1 and HSV-2, respectively, with a specificity of 100% compared to a commercial qPCR assay when tested on 194 clinical samples. Remarkably, the assay enables a limit of detection of 1 copy/μL of viral DNA, facilitated by an enhanced input of RPA product and is designed for both mobile app integration and colorimetric interpretation, allowing for semiquantitative readings. These findings highlight the excellent performance of our CRISPR-based diagnostic in detecting HSV and its potential for point-of-care testing in resource-constrained settings.
Collapse
Affiliation(s)
- Xiaona Yin
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou 510091, China
| | - Hao Luo
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou 510091, China
| | - Han Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou 510091, China
| | - Ziyan Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou 510091, China
| | - Yinyuan Lan
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou 510091, China
| | - Zhanqin Feng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou 510091, China
| | - Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou 510091, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou 510091, China
| |
Collapse
|
41
|
Ganganboina AB, Park EY. Signal-Amplified Nanobiosensors for Virus Detection Using Advanced Nanomaterials. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:381-412. [PMID: 38337075 DOI: 10.1007/10_2023_244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Rapid diagnosis and treatment of infectious illnesses are crucial for clinical outcomes and public health. Biosensing developments enhance diagnostics at the point of care. This is superior to traditional procedures, which need centralized lab facilities, specialized personnel, and large equipment. The emerging coronavirus epidemic threatens global health and economic security. Increasing viral surveillance and regulatory actions against disease transmission necessitate rapid, sensitive testing tools for viruses. Due to their sensitivity and specificity, biosensors offer a possible reliable and quantifiable viral detection method. Current advances in genetic engineering, such as genetic alteration and material engineering, have provided several opportunities to enhance biosensors' sensitivity, selectivity, and recognition efficiency. This chapter explains biosensing techniques, biosensor varieties, and signal amplification technologies. Challenges and potential developments for viral microorganisms based on biosensors and signal amplification were also investigated.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, Ibaraki, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
42
|
Zhou Y, Tang L, Lyu J, Shiyi L, Liu Q, Pang R, Li W, Guo X, Zhong X, He H. A dual signal amplification system with specific signal identification for rapid and sensitive detection of miRNA. Talanta 2024; 266:125097. [PMID: 37611369 DOI: 10.1016/j.talanta.2023.125097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
False positive which is mostly caused by the nonspecific amplification has severely hindered the development of nucleic acid detection and it is hard to avoid. Therefore, specific signals recognition and output in nucleic acid amplification are crucial to reliability of clinical diagnosis. Herein, we proposed a one-step and rapid miRNA detection strategy with specific signal identification, dual amplification and output. And this strategy was named as high-temperature hybridization chain reaction coupled with strand displacement amplification (HSA). In HSA, we well designed a target signal recognition, replication, and output probe (RRO probe). If the target miRNA exists, RRO probe can initiate a strand displacement amplification and output a target-related special single-stranded DNA (trigger). And the trigger can be identified by a high-temperature hybridization chain reaction and initiate a secondary signal amplification. As a result, the quantitative determination of HSA for miRNA-21 was in the range of 100 fM to 100 pM in 30 min, and with a detection limit of 82 fM. Moreover, with high sensitivity and rapidity, HSA has been successfully used to detect miRNA-21 in real samples.
Collapse
Affiliation(s)
- Yan Zhou
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ling Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiazhen Lyu
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Lixi Shiyi
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qinhao Liu
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ruonan Pang
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Wenxin Li
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiaolan Guo
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiaowu Zhong
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hongfei He
- School of Pharmacy, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Department of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China.
| |
Collapse
|
43
|
Shang Y, Xing G, Lin J, Li Y, Lin Y, Chen S, Lin JM. Multiplex bacteria detection using one-pot CRISPR/Cas13a-based droplet microfluidics. Biosens Bioelectron 2024; 243:115771. [PMID: 37875060 DOI: 10.1016/j.bios.2023.115771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
High-throughput detection of bacteria at low levels is critical in public health, food safety, and first response. Herein, for the first time, we present a platform based on droplet microfluidics coupling with the recombinase aided amplification (RAA)-assisted one-pot clustered regularly interspaced short palindromic repeats together with CRISPR-associated proteins 13a (CRISPR/Cas13a) assay, and droplet encoding strategy for accurate and sensitive determination of nucleic acids from various foodborne pathogens. The workflow takes full advantage of CRISPR/Cas13a signal amplification and droplet confinement effects, which enhances the detection sensitivity and enables end-point quantitation. Meanwhile, by varying the color of droplets, the number of bacteria detected at the same time is greatly improved. It possesses the capability to simultaneously detect seven different types of foodborne pathogens. Notably, the system is also applied to real food samples with satisfactory results. Overall, in view of superiorities in high sensitivity, outstanding selectivity, and large-scale multiplexing, the one-pot CRISPR/Cas13a-based droplet microfluidic system could be expanded and universalized for identifying other bacteria.
Collapse
Affiliation(s)
- Yuting Shang
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Gaowa Xing
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Jiaxu Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yuxuan Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yongning Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Shulang Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
44
|
Ho M, Sathishkumar N, Sklavounos AA, Sun J, Yang I, Nichols KP, Wheeler AR. Digital microfluidics with distance-based detection - a new approach for nucleic acid diagnostics. LAB ON A CHIP 2023; 24:63-73. [PMID: 37987330 DOI: 10.1039/d3lc00683b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
There is great enthusiasm for using loop-mediated isothermal amplification (LAMP) in point-of-care nucleic acid amplification tests (POC NAATs), as an alternative to PCR. While isothermal amplification techniques like LAMP eliminate the need for rapid temperature cycling in a portable format, these systems are still plagued by requirements for dedicated optical detection apparatus for analysis and manual off-chip sample processing. Here, we developed a new microfluidic system for LAMP-based POC NAATs to address these limitations. The new system combines digital microfluidics (DMF) with distance-based detection (DBD) for direct signal readout. This is the first report of the use of (i) LAMP or (ii) DMF with DBD - thus, we describe a number of characterization steps taken to determine optimal combinations of reagents, materials, and processes for reliable operation. For example, DBD was found to be quite sensitive to background signals from low molecular weight LAMP products; thus, a Capto™ adhere bead-based clean-up procedure was developed to isolate the desirable high-molecular-weight products for analysis. The new method was validated by application to detection of SARS-CoV-2 in saliva. The method was able to distinguish between saliva containing no virus, saliva containing a low viral load (104 genome copies per mL), and saliva containing a high viral load (108 copies per mL), all in an automated system that does not require detection apparatus for analysis. We propose that the combination of DMF with distance-based detection may be a powerful one for implementing a variety of POC NAATs or for other applications in the future.
Collapse
Affiliation(s)
- Man Ho
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - N Sathishkumar
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Ivy Yang
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | | | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario, M5S 3H6, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
45
|
Lee S, Bi L, Chen H, Lin D, Mei R, Wu Y, Chen L, Joo SW, Choo J. Recent advances in point-of-care testing of COVID-19. Chem Soc Rev 2023; 52:8500-8530. [PMID: 37999922 DOI: 10.1039/d3cs00709j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Liyan Bi
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, China
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Lin
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
46
|
Wang F, Ma X, Ye J, Shi C, Chen Y, Yu Z, Li T, Yang D, Li M, Wang P. Precise Detection of Viral RNA by Programming Multiplex Rolling Circle Amplification and Strand Displacement. Anal Chem 2023; 95:17699-17707. [PMID: 37971750 DOI: 10.1021/acs.analchem.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Detection of viral infections (e.g., SARS-CoV-2) with high precision is critical to disease control and treatment. There is an urgent need to develop point-of-care detection methods to complement the gold standard laboratory-based PCR assay with comparable sensitivity and specificity. Herein, we developed a method termed mCAD to achieve ultraspecific point-of-care detection of SARS-CoV-2 RNA while maintaining high sensitivity by programming multiplex rolling circle amplification and toehold-mediated strand displacement reactions. RCA offers sufficient amplification of RNA targets for subsequent detection. Most importantly, a multilayer of detection specificity is implemented into mCAD via sequence-specific hybridization of nucleic acids across serial steps of this protocol to fully eliminate potential false-positive detections. Using mCAD, we demonstrated a highly specific, sensitive, and convenient visual detection of SARS-CoV-2 RNA from both synthetic and clinical samples, exhibiting performance comparable to qPCR. We envision that mCAD will find its broad applications in clinical prospects for nucleic acid detections readily beyond SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Fukai Wang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Xiaowei Ma
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chenzhi Shi
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun Chen
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhicai Yu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tianming Li
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
47
|
Thai DA, Park SK, Lee NY. A paper-embedded thermoplastic microdevice integrating additive-enhanced allele-specific amplification and silver nanoparticle-based colorimetric detection for point-of-care testing. LAB ON A CHIP 2023; 23:5081-5091. [PMID: 37929914 DOI: 10.1039/d3lc00739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
This study introduces a thermoplastic microdevice integrated with additive-enhanced allele-specific amplification and hydrazine-induced silver nanoparticle-based detection of single nucleotide polymorphism (SNP) and opportunistic pathogens. For point-of-care testing of SNP, an allele-specific loop-mediated isothermal amplification reaction using nucleotide-mismatched primers and molecular additives was evaluated to discriminate single-nucleotide differences in the samples. The microdevice consists of purification and reaction units that enable DNA purification, amplification, and detection in a sequential manner. The purification unit enables the silica-based preparation of samples using an embedded glass fiber membrane. Hydrazine-induced silver nanoparticle formation was employed for endpoint colorimetric detection of amplicons within three min at room temperature. The versatile applicability of the microdevice was demonstrated by the successful identification of SNPs related to sickle cell anemia, genetically-induced hair loss, and Enterococcus faecium. The microdevice exhibited a detection limit of 103 copies per μL of SNP targets in serum and 102 CFU mL-1 of Enterococcus faecium in tap water within 70 min. The proposed microdevice is a promising and versatile platform for point-of-care nucleic acid testing of different samples in low-resource settings.
Collapse
Affiliation(s)
- Duc Anh Thai
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Seung Kyun Park
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| |
Collapse
|
48
|
Kim TY, Zhu X, Kim SM, Lim JA, Woo MA, Lim MC, Luo K. A review of nucleic acid-based detection methods for foodborne viruses: Sample pretreatment and detection techniques. Food Res Int 2023; 174:113502. [PMID: 37986417 DOI: 10.1016/j.foodres.2023.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Viruses are major pathogens that cause food poisoning when ingested via contaminated food and water. Therefore, the development of foodborne virus detection technologies that can be applied throughout the food distribution chain is essential for food safety. A common nucleic acid-based detection method is polymerase chain reaction (PCR), which has become the gold standard for monitoring food contamination by viruses due to its high sensitivity, and availability of commercial kits. However, PCR-based methods are labor intensive and time consuming, and are vulnerable to inhibitors that may be present in food samples. In addition, the methods are restricted with regard to site of analysis due to the requirement of expensive and large equipment for sophisticated temperature regulation and signal analysis procedures. To overcome these limitations, optical and electrical readout biosensors based on nucleic acid isothermal amplification technology and nanomaterials have emerged as alternatives for nucleic acid-based detection of foodborne viruses. Biosensors are promising portable detection tools owing to their easy integration into compact platforms and ability to be operated on-site. However, the complexity of food components necessitates the inclusion of tedious preprocessing steps, and the lack of stability studies on residual food components further restricts the practical application of biosensors as a universal detection method. Here, we summarize the latest advances in nucleic acid-based strategies for the detection of foodborne viruses, including PCR-based and isothermal amplification-based methods, gene amplification-free methods, as well as food pretreatment methods. The principles, strengths/disadvantages, and performance of each method, problems to be solved, and future prospects for the development of a universal detection method are discussed.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Se-Min Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong-A Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si 34113, Republic of Korea.
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
49
|
Chen Y, Feng L, Han Y, Zhao Z, Diao Z, Huang T, Ma Y, Feng W, Li J, Li Z, Liu C, Chang L, Li J, Zhang R. Performance evaluation of SARS-CoV-2 antigen detection in the post-pandemic era: multi-laboratory assessment. Clin Chem Lab Med 2023; 61:2237-2247. [PMID: 37377068 DOI: 10.1515/cclm-2023-0597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVES Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen detection is an indispensable tool for epidemic surveillance in the post-pandemic era. Faced with irregular performance, a comprehensive external quality assessment (EQA) scheme was conducted by the National Center for Clinical Laboratories (NCCL) to evaluate the analytical performance and status of SARS-CoV-2 antigen tests. METHODS The EQA panel included ten lyophilized samples containing serial 5-fold dilutions of inactivated SARS-CoV-2-positive supernatants of the Omicron BA.1 and BA.5 strains and negative samples, which were classified into "validating" samples and "educational" samples. Data were analyzed according to qualitative results for each sample. RESULTS A total of 339 laboratories in China participated in this EQA scheme, and 378 effective results were collected. All validating samples were correctly reported by 90.56 % (307/339) of the participants and 90.21 % (341/378) of the datasets. The positive percent agreement (PPA) was >99 % for samples with concentrations of 2 × 107 copies/mL but was 92.20 % (697/756) for 4 × 106 copies/mL and 25.26 % (382/1,512) for 8 × 105 copies/mL samples. Colloidal gold was the most frequently used (84.66 %, 320/378) but showed the lowest PPAs (57.11 %, 1,462/2,560) for positive samples compared with fluorescence immunochromatography (90 %, 36/40) and latex chromatography (79.01 %, 335/424). Among 11 assays used in more than 10 clinical laboratories, ACON showed a higher sensitivity than other assays. CONCLUSIONS The EQA study can help to validate whether it's necessary to update antigen detection assays for manufacturers and provide participants with information about the performance of assays to take the first step toward routine post-market surveillance.
Collapse
Affiliation(s)
- Yuqing Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Lei Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yanxi Han
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Zihong Zhao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing, P.R. China
| | - Zhenli Diao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Tao Huang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yu Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Wanyu Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jing Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ziqiang Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Cong Liu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Lu Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, P.R. China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, P.R. China
| |
Collapse
|
50
|
Song X, Fredj Z, Zheng Y, Zhang H, Rong G, Bian S, Sawan M. Biosensors for waterborne virus detection: Challenges and strategies. J Pharm Anal 2023; 13:1252-1268. [PMID: 38174120 PMCID: PMC10759259 DOI: 10.1016/j.jpha.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2024] Open
Abstract
Waterborne viruses that can be harmful to human health pose significant challenges globally, affecting health care systems and the economy. Identifying these waterborne pathogens is essential for preventing diseases and protecting public health. However, handling complex samples such as human and wastewater can be challenging due to their dynamic and complex composition and the ultralow concentration of target analytes. This review presents a comprehensive overview of the latest breakthroughs in waterborne virus biosensors. It begins by highlighting several promising strategies that enhance the sensing performance of optical and electrochemical biosensors in human samples. These strategies include optimizing bioreceptor selection, transduction elements, signal amplification, and integrated sensing systems. Furthermore, the insights gained from biosensing waterborne viruses in human samples are applied to improve biosensing in wastewater, with a particular focus on sampling and sample pretreatment due to the dispersion characteristics of waterborne viruses in wastewater. This review suggests that implementing a comprehensive system that integrates the entire waterborne virus detection process with high-accuracy analysis could enhance virus monitoring. These findings provide valuable insights for improving the effectiveness of waterborne virus detection, which could have significant implications for public health and environmental management.
Collapse
Affiliation(s)
- Xixi Song
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| |
Collapse
|