1
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
2
|
Amin MM, Abuo-Rahma GEDA, Shaykoon MSA, Marzouk AA, Abourehab MAS, Saraya RE, Badr M, Sayed AM, Beshr EAM. Design, synthesis, cytotoxic activities, and molecular docking of chalcone hybrids bearing 8-hydroxyquinoline moiety with dual tubulin/EGFR kinase inhibition. Bioorg Chem 2023; 134:106444. [PMID: 36893547 DOI: 10.1016/j.bioorg.2023.106444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/β-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and β-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.
Collapse
Affiliation(s)
- Mohammed M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt.
| | - Montaser Sh A Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Roshdy E Saraya
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
3
|
Xie H, Qiang P, Wang Y, Xia F, Liu P, Li M. Discovery and mechanism studies of a novel ATG4B inhibitor Ebselen by drug repurposing and its anti-colorectal cancer effects in mice. Cell Biosci 2022; 12:206. [PMID: 36539845 PMCID: PMC9767854 DOI: 10.1186/s13578-022-00944-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cysteine protease ATG4B, a key autophagy protein, is an attractive target for colorectal cancer therapy. However, ATG4B inhibitors with higher efficiency, safety, and clear mechanism are still limited. In this study, we discovered ATG4B inhibitors based on the FDA-approved drug library through FRET-based high-throughput screening and gel-based analysis. Among the nine hits, compound Ebselen showed the most potent ATG4B inhibitory activity (IC50 = 189 nM) and exhibited controllable selectivity and structural optimizable possibility against ATG4A and caspases. We then performed mass spectrometry assay and cysteine mutations to confirm that Ebselen could covalently bind to ATG4B at Cys74. Moreover, Cys292 and Cys361 instead of Cys74 are responsible for the redox-oligomerization and efficient activity inhibition of ATG4B. Ultimately through cell culture and mouse xenograft tumor models, we established the impact of Ebselen on autophagy and tumor suppression via ATG4B inhibition other than apoptosis. These results suggest that old drug Ebselen as an ATG4B inhibitor through oxidative modification may be repurposed as a promising anti-colorectal cancer drug.
Collapse
Affiliation(s)
- Huazhong Xie
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Pengfei Qiang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Yao Wang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Fan Xia
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Peiqing Liu
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Min Li
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| |
Collapse
|
4
|
Richter A, Seidel R, Goddard R, Eckhardt T, Lehmann C, Dörner J, Siersleben F, Sondermann T, Mann L, Patzer M, Jäger C, Reiling N, Imming P. BTZ-Derived Benzisothiazolinones with In Vitro Activity against Mycobacterium tuberculosis. ACS Med Chem Lett 2022; 13:1302-1310. [PMID: 35982823 PMCID: PMC9380706 DOI: 10.1021/acsmedchemlett.2c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
8-Nitro-1,3-benzothiazin-4-ones (BTZs) are known as potent antitubercular agents. BTZ043 as one of the most advanced compounds has reached clinical trials. The putative oxidation products of BTZ043, namely, the corresponding BTZ sulfoxide and sulfone, were reported in this journal (Tiwari et al. ACS Med. Chem Lett. 2015, 6, 128-133). The molecular structures were later revised to the constitutionally isomeric benzisothiazolone and its 1-oxide, respectively. Here, we report two BTZ043-derived benzisothiazolinones (BITs) with in vitro activity against mycobacteria. The constitutionally isomeric O-acyl benzisothiazol-3-ols, in contrast, show little or no antimycobacterial activity in vitro. The structures of the four compounds were investigated by X-ray crystallography and NMR spectroscopy. Molecular covalent docking of the new compounds to Mycobacerium tuberculosis decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) suggests that the active BITs exert antimycobacterial activity through inhibition of DprE1 like BTZs.
Collapse
Affiliation(s)
- Adrian Richter
- Martin-Luther-Universität
Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Rüdiger
W. Seidel
- Martin-Luther-Universität
Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Richard Goddard
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Tamira Eckhardt
- Martin-Luther-Universität
Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Christoph Lehmann
- Martin-Luther-Universität
Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Julia Dörner
- Martin-Luther-Universität
Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Fabienne Siersleben
- Martin-Luther-Universität
Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Theresia Sondermann
- Martin-Luther-Universität
Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Lea Mann
- Martin-Luther-Universität
Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Michael Patzer
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christian Jäger
- Fraunhofer-Institut
für Zelltherapie und Immunologie, Außenstelle Molekulare Wirkstoffbiochemie und Therapieentwicklung, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Norbert Reiling
- Microbial
Interface Biology, Research Center Borstel,
Leibniz Lung Center, 23845 Borstel, Germany
- German
Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Peter Imming
- Martin-Luther-Universität
Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Zhang K, Gao L, Wang HX, Ye L, Shi YY, Yang WY, Li YN, Li Y. Interleukin-18 Inhibition Protects Against Intervertebral Disc Degeneration via the Inactivation of Caspase-3/9 Dependent Apoptotic Pathways. Immunol Invest 2022; 51:1895-1907. [PMID: 35921125 DOI: 10.1080/08820139.2022.2077113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The present study was designed to identify and understand the potential effectiveness of therapeutic target in intervertebral disc degeneration (IVDD) and its regulation mechanism. METHODS The role and mechanism of interleukin-18 (IL-18) in the disease were investigated. The IVDD degenerative nucleus pulposus (NP) tissues from the human and mouse models were used.A total of three groups of Male BALB/c mice were randomly made i.e control, IVDD, and IVDD+Ad-shIL-18 groups. After Ad-shIL-18 transfection, the expression of ECM synthesis related protein Aggrecan (ACAN) and Collagen II, apoptotic effector Caspases (Caspase-3, 8, 9, 12 and Cleaved-Caspase 3, 8, 9, 12), pro-apoptotic gene Bax and anti-apoptotic factors Bcl-2 in NP cells of the human were evaluated. RESULTS The results of our study revealed that the mRNA and protein expression levels of IL-18 were notably increased in the NP tissues of IVDD patients and mice models. In the IVDD mice model, Ad-sh-IL-18 treatment reversed the IVDD progression. The levels of Aggrecan and Collagen II, contributing to ECM degradation in NP cells, were also significantly increased. Additionally, Ad-sh-IL-18 could inhibit the NP cell's apoptosis via regulating the caspase-3/9 pathway. CONCLUSION The IL-18 knockdown via the caspase-3/9 pathway, might reduce the NP cell's death as well as the imbalance between catabolism and anabolism of ECM in IVDD.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Lei Gao
- Department of Bone Oncology, Second Hospital of Zhangjiakou, Zhangjiakou, Hebei, China
| | - Hai-Xu Wang
- Department of Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Ye
- Department of Infection Control, HanDan Central Hospital, Handan, Hebei, China
| | - Yan-Yan Shi
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Wu-Yan Yang
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Ya-Nan Li
- Department of Neurology, HanDan Central Hospital, Handan, Hebei, China
| | - Yan Li
- Department of Spine Surgery, HanDan Central Hospital, Handan, Hebei, China
| |
Collapse
|
6
|
Lee HF, Lacbay CM, Boutin R, Matralis AN, Park J, Waller DD, Guan TL, Sebag M, Tsantrizos YS. Synthesis and Evaluation of Structurally Diverse C-2-Substituted Thienopyrimidine-Based Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase. J Med Chem 2022; 65:2471-2496. [PMID: 35077178 DOI: 10.1021/acs.jmedchem.1c01913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.
Collapse
Affiliation(s)
- Hiu-Fung Lee
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Cyrus M Lacbay
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Rebecca Boutin
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Alexios N Matralis
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Daniel D Waller
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Tian Lai Guan
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Michael Sebag
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
7
|
Wen W, Cao H, Huang Y, Tu J, Wan C, Wan J, Han X, Chen H, Liu J, Rao L, Su C, Peng C, Sheng C, Ren Y. Structure-Guided Discovery of the Novel Covalent Allosteric Site and Covalent Inhibitors of Fructose-1,6-Bisphosphate Aldolase to Overcome the Azole Resistance of Candidiasis. J Med Chem 2022; 65:2656-2674. [PMID: 35099959 DOI: 10.1021/acs.jmedchem.1c02102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) represents an attractive new antifungal target. Here, we employed a structure-based optimization strategy to discover a novel covalent binding site (C292 site) and the first-in-class covalent allosteric inhibitors of FBA from Candida albicans (CaFBA). Site-directed mutagenesis, liquid chromatography-mass spectrometry, and the crystallographic structures of APO-CaFBA, CaFBA-G3P, and C157S-2a4 revealed that S268 is an essential pharmacophore for the catalytic activity of CaFBA, and L288 is an allosteric regulation switch for CaFBA. Furthermore, most of the CaFBA covalent inhibitors exhibited good inhibitory activity against azole-resistant C. albicans, and compound 2a11 can inhibit the growth of azole-resistant strains 103 with the MIC80 of 1 μg/mL. Collectively, this work identifies a new covalent allosteric site of CaFBA and discovers the first generation of covalent inhibitors for fungal FBA with potent inhibitory activity against resistant fungi, establishing a structural foundation and providing a promising strategy for the design of potent antifungal drugs.
Collapse
Affiliation(s)
- Wuqiang Wen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongxuan Cao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chen Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Han Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiaqi Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
8
|
Emert-Sedlak LA, Moukha-Chafiq O, Shi H, Du S, Alvarado JJ, Pathak V, Tanner SG, Hunter RN, Nebane M, Chen L, Ilina TV, Ishima R, Zhang S, Kuzmichev YV, Wonderlich ER, Schader SM, Augelli-Szafran CE, Ptak RG, Smithgall TE. Inhibitors of HIV-1 Nef-Mediated Activation of the Myeloid Src-Family Kinase Hck Block HIV-1 Replication in Macrophages and Disrupt MHC-I Downregulation. ACS Infect Dis 2022; 8:91-105. [PMID: 34985256 PMCID: PMC9274903 DOI: 10.1021/acsinfecdis.1c00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
HIV-1 Nef is an attractive target for antiretroviral drug discovery because of its role in promoting HIV-1 infectivity, replication, and host immune system avoidance. Here, we applied a screening strategy in which recombinant HIV-1 Nef protein was coupled to activation of the Src-family tyrosine kinase Hck, which enhances the HIV-1 life cycle in macrophages. Nef stimulates recombinant Hck activity in vitro, providing a robust assay for chemical library screening. High-throughput screening of more than 730 000 compounds using the Nef·Hck assay identified six unique hit compounds that bound directly to recombinant Nef by surface plasmon resonance (SPR) in vitro and inhibited HIV-1 replication in primary macrophages in the 0.04 to 5 μM range without cytotoxicity. Eighty-four analogs were synthesized around an isothiazolone scaffold from this series, many of which bound to recombinant Nef and inhibited HIV-1 infectivity in the low to submicromolar range. Compounds in this series restored MHC-I to the surface of HIV-infected primary cells and disrupted a recombinant protein complex of Nef with the C-terminal tail of MHC-I and the μ1 subunit of the AP-1 endocytic trafficking protein. Nef inhibitors in this class have the potential to block HIV-1 replication in myeloid cells and trigger recognition of HIV-infected cells by the adaptive immune system in vivo.
Collapse
Affiliation(s)
- Lori A. Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Omar Moukha-Chafiq
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - John J. Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Vibha Pathak
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Samuel G. Tanner
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Robert N. Hunter
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Miranda Nebane
- Department of High-throughput Screening, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Li Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Tatiana V. Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260
| | - Sixue Zhang
- Department of High-throughput Screening, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Yury V. Kuzmichev
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | - Elizabeth R. Wonderlich
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | | | - Roger G. Ptak
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| |
Collapse
|
9
|
Diao X, Cui Q, Tian N, Zhou Z, Xiang W, Jiang Y, Deng J, Liao H, Lin X, Li Q, Liao R. Hemorrhage-Induced Sphingosine Kinase 1 Contributes to Ferroptosis-Mediated Secondary Brain Injury in Intracerebral Hemorrhage. Mol Neurobiol 2022; 59:1381-1397. [PMID: 34993846 DOI: 10.1007/s12035-021-02605-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
The pathogenic processes of brain injury after intracerebral hemorrhage (ICH) have not yet been fully elucidated. Increasing evidence suggests that ferroptosis activation aggravates injury after ICH, but the underlying mechanism remains unclear. Sphingosine kinase 1 (Sphk1) is a key enzyme in the regulation of sphingosine metabolism involved in the ferroptosis pathway, but its role in ICH needs clarification. In this study, transcriptional changes in ICH patients were assessed by microarray data, exposing Sphk1 as a highly upregulated gene during ICH. Furthermore, Sphk1 chemical inhibitors and siRNA were used to inhibit ICH-induced Sphk1 upregulation in in vivo and in vitro models, showing that Sphk1 inhibition after protects against ferroptosis and attenuates secondary brain injury and cell death. Mechanistically, this study unveiled that sphingosine kinase 1/sphingosine 1-phosphate/extracellular-regulated protein kinases/phosphorylated extracellular-regulated protein kinases (Sphk1/S1p/ERK/p-ERK) pathway is responsible for regulation of ferroptosis leading to secondary brain injury and cell death following ICH. Collectively, this study demonstrates that ferroptosis is closely associated with ICH, and that Sphk1 has a critical role in this lethal process. These results suggest a novel unique and effective therapeutic approach for ICH prevention and treatment.
Collapse
Affiliation(s)
- Xiaojun Diao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Qi Cui
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Ning Tian
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Zixian Zhou
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Wenjing Xiang
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Yanlin Jiang
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Jungang Deng
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Hongzhan Liao
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Xiaohui Lin
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Qinghua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China.
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China.
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China.
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China.
| | - Rujia Liao
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China.
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China.
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
10
|
Design, synthesis and antitumor activity of novel sorafenib derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Zhou G, Liu J, Li X, Sang Y, Zhang Y, Gao L, Wang J, Yu Y, Ge W, Sun Z, Zhou X. Silica nanoparticles inducing the apoptosis via microRNA-450b-3p targeting MTCH2 in mice and spermatocyte cell. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116771. [PMID: 33652185 DOI: 10.1016/j.envpol.2021.116771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Silica nanoparticles (SiNPs) could cause reproductive toxicity. The role of miRNAs in reproductive toxicity induced by SiNPs is still ambiguous. The present study was designed to investigate the role of miRNA-450 b-3p. In vivo, 40 male mice were randomly divided into control, and 20 mg/kg SiNPs groups. The mice were administrated by tracheal perfusion for 35 days. In vitro, spermatocyte cells (GC-2spd cells) were divided into 6 groups: 0 μg/mL SiNPs groups, 5 μg/mL SiNPs groups, 5 μg/mL SiNPs + miRNA-450 b-3p mimic transfection group, 5 μg/mL SiNPs + miRNA-450 b-3p mimic negative control group, 5 μg/mL SiNPs + miRNA-450 b-3p inhibitor transfection group, and 5 μg/mL SiNPs + miRNA-450 b-3p inhibitor negative control group. The results showed that SiNPs induced the apoptosis of spermatogenic cells, decreased the quantity and quality of the sperm, reduced the expressions of miR-450 b-3p, and increased the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, and Caspase-3 in the testis. In vitro, the mimic of miRNA-450 b-3p reversed the decrease of viability and the increase of apoptosis rate and significantly antagonized the expression enhancements of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, Caspase-3 induced by SiNPs, while inhibitor of miRNA-450 b-3p further promoted the effects induced by SiNPs. The result suggested that SiNPs could inhibit the miR-450 b-3p expression resulting in activation of the mitochondrial apoptosis signaling pathways by regulating the MTCH2 in the spermatocyte cells and, thus, induce the reproductive toxicity.
Collapse
Affiliation(s)
- Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Leqiang Gao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Ahmed SK, Haese NN, Cowan JT, Pathak V, Moukha-Chafiq O, Smith VJ, Rodzinak KJ, Ahmad F, Zhang S, Bonin KM, Streblow AD, Streblow CE, Kreklywich CN, Morrison C, Sarkar S, Moorman N, Sander W, Allen R, DeFilippis V, Tekwani BL, Wu M, Hirsch AJ, Smith JL, Tower NA, Rasmussen L, Bostwick R, Maddry JA, Ananthan S, Gerdes JM, Augelli-Szafran CE, Suto MJ, Morrison TE, Heise MT, Streblow DN, Pathak AK. Targeting Chikungunya Virus Replication by Benzoannulene Inhibitors. J Med Chem 2021; 64:4762-4786. [PMID: 33835811 PMCID: PMC9774970 DOI: 10.1021/acs.jmedchem.0c02183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A benzo[6]annulene, 4-(tert-butyl)-N-(3-methoxy-5,6,7,8-tetrahydronaphthalen-2-yl) benzamide (1a), was identified as an inhibitor against Chikungunya virus (CHIKV) with antiviral activity EC90 = 1.45 μM and viral titer reduction (VTR) of 2.5 log at 10 μM with no observed cytotoxicity (CC50 = 169 μM) in normal human dermal fibroblast cells. Chemistry efforts to improve potency, efficacy, and drug-like properties of 1a resulted in a novel lead compound 8q, which possessed excellent cellular antiviral activity (EC90 = 270 nM and VTR of 4.5 log at 10 μM) and improved liver microsomal stability. CHIKV resistance to an analog of 1a, compound 1c, tracked to a mutation in the nsP3 macrodomain. Further mechanism of action studies showed compounds working through inhibition of human dihydroorotate dehydrogenase in addition to CHIKV nsP3 macrodomain. Moderate efficacy was observed in an in vivo CHIKV challenge mouse model for compound 8q as viral replication was rescued from the pyrimidine salvage pathway.
Collapse
Affiliation(s)
| | | | - Jaden T. Cowan
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Vibha Pathak
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Omar Moukha-Chafiq
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Valerie J. Smith
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Kevin J. Rodzinak
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Fahim Ahmad
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Sixue Zhang
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Kiley M. Bonin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Aaron D. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Cassilyn E. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Clayton Morrison
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Nathaniel Moorman
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Wes Sander
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Robbie Allen
- Oregon Translational Research and Development Institute, Portland, Oregon 97239, United States
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Babu L. Tekwani
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Mousheng Wu
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Alec J. Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Jessica L. Smith
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Nichole A. Tower
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Lynn Rasmussen
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Robert Bostwick
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Joseph A. Maddry
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Subramaniam Ananthan
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - John M Gerdes
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | | | - Mark J. Suto
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Mark T. Heise
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Ashish K. Pathak
- Drug Discovery Division, Southern, Research, Birmingham, Alabama 35205, United States
| |
Collapse
|
13
|
Roy T, Boateng ST, Banang-Mbeumi S, Singh PK, Basnet P, Chamcheu RCN, Ladu F, Chauvin I, Spiegelman VS, Hill RA, Kousoulas KG, Nagalo BM, Walker AL, Fotie J, Murru S, Sechi M, Chamcheu JC. Synthesis, inverse docking-assisted identification and in vitro biological characterization of Flavonol-based analogs of fisetin as c-Kit, CDK2 and mTOR inhibitors against melanoma and non-melanoma skin cancers. Bioorg Chem 2021; 107:104595. [PMID: 33450548 PMCID: PMC7870562 DOI: 10.1016/j.bioorg.2020.104595] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Due to hurdles, including resistance, adverse effects, and poor bioavailability, among others linked with existing therapies, there is an urgent unmet need to devise new, safe, and more effective treatment modalities for skin cancers. Herein, a series of flavonol-based derivatives of fisetin, a plant-based flavonoid identified as an anti-tumorigenic agent targeting the mammalian targets of rapamycin (mTOR)-regulated pathways, were synthesized and fully characterized. New potential inhibitors of receptor tyrosine kinases (c-KITs), cyclin-dependent kinase-2 (CDK2), and mTOR, representing attractive therapeutic targets for melanoma and non-melanoma skin cancers (NMSCs) treatment, were identified using inverse-docking, in vitro kinase activity and various cell-based anticancer screening assays. Eleven compounds exhibited significant inhibitory activities greater than the parent molecule against four human skin cancer cell lines, including melanoma (A375 and SK-Mel-28) and NMSCs (A431 and UWBCC1), with IC50 values ranging from 0.12 to < 15 μM. Seven compounds were identified as potentially potent single, dual or multi-kinase c-KITs, CDK2, and mTOR kinase inhibitors after inverse-docking and screening against twelve known cancer targets, followed by kinase activity profiling. Moreover, the potent compound F20, and the multi-kinase F9 and F17 targeted compounds, markedly decreased scratch wound closure, colony formation, and heightened expression levels of key cancer-promoting pathway molecular targets c-Kit, CDK2, and mTOR. In addition, these compounds downregulated Bcl-2 levels and upregulated Bax and cleaved caspase-3/7/8 and PARP levels, thus inducing apoptosis of A375 and A431 cells in a dose-dependent manner. Overall, compounds F20, F9 and F17, were identified as promising c-Kit, CDK2 and mTOR inhibitors, worthy of further investigation as therapeutics, or as adjuvants to standard therapies for the control of melanoma and NMSCs.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Samuel T Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Pankaj K Singh
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Pratik Basnet
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA; Department of Chemistry, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Roxane-Cherille N Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Federico Ladu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Isabel Chauvin
- Department of Chemistry, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Vladimir S Spiegelman
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Bolni Marius Nagalo
- Division of Hematology and Medical Oncology, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Anthony L Walker
- School of Clinical Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SELU, Hammond, LA 70402-0878, USA
| | - Siva Murru
- Department of Chemistry, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA.
| |
Collapse
|
14
|
Zhang S, Zhang S, Wang H, Huang X, Wang J, Li J, Cheng D, Wang H, Lu D, Wang Y. Silencing myelin protein zero-like 1 expression suppresses cell proliferation and invasiveness of human glioma cells by inhibiting multiple cancer-associated signal pathways. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system. It has high morbidity and poor survival. Myelin protein zero-like protein 1 (MPZL1) is a cell surface glycoprotein that activates numerous adhesion-dependent signaling pathways. MPZL1 plays important roles in human cancers that include metastatic process; however, it is not clear if MPZL1 plays a role in human glioma. Therefore, this study aimed to determine if silencing MPZL1 impacted the cell proliferative features of human glioma cells. First, MPZL1 expression was investigated in human glioma samples and tumor cell lines. Then the effects of small interfering RNA (siRNA)-targeting MPZL1 were analyzed on proliferation, colony formation, cell cycle progression, and invasion of human glioma cells. The results from this study demonstrated that MPZL1 was highly expressed in human glioma tissues and glioma cell lines. In addition, knockdown of MPZL1 significantly inhibited cell proliferation, colony formation, and invasiveness of glioma cells, and effectively induced cell cycle arrest at the G1 phase. Western blotting analysis indicated that silencing MPZL1 expression downregulated the expression of matrix metalloproteinase-2 (MMP-2), WNT1, caspase-3, cyclin A1, epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3), and upregulated p53. The results from this study suggest that MPZL1 might be a marker for tumors and could be a potential therapeutic target for human glioma.
Collapse
|
15
|
Moon S, Nishii Y, Miura M. Synthesis of Isothiazoles and Isoselenazoles through Rhodium-Catalyzed Oxidative Annulation with Elemental Sulfur and Selenium. Org Lett 2021; 23:49-53. [PMID: 33306913 DOI: 10.1021/acs.orglett.0c03674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A rhodium-catalyzed oxidative annulation of benzimidates with elemental sulfur for the direct construction of isothiazole rings is reported. The proposed reaction mechanism involving Rh(I)/Rh(III) redox is supported by a stoichiometric reaction of metallacycle species as well as DFT calculations. This method is also applicable to selenium cyclization to produce isoselenazole derivatives. The alkoxy substituent at C3 can be used for further functionalization of the azole core.
Collapse
Affiliation(s)
- Sanghun Moon
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Ashraf-Uz-Zaman M, Shahi S, Akwii R, Sajib MS, Farshbaf MJ, Kallem RR, Putnam W, Wang W, Zhang R, Alvina K, Trippier PC, Mikelis CM, German NA. Design, synthesis and structure-activity relationship study of novel urea compounds as FGFR1 inhibitors to treat metastatic triple-negative breast cancer. Eur J Med Chem 2021; 209:112866. [PMID: 33039722 PMCID: PMC7744370 DOI: 10.1016/j.ejmech.2020.112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of cancer characterized by higher metastatic and reoccurrence rates, where approximately one-third of TNBC patients suffer from the metastasis in the brain. At the same time, TNBC shows good responses to chemotherapy, a feature that fuels the search for novel compounds with therapeutic potential in this area. Recently, we have identified novel urea-based compounds with cytotoxicity against selected cell lines and with the ability to cross the blood-brain barrier in vivo. We have synthesized and analyzed a library of more than 40 compounds to elucidate the key features responsible for the observed activity. We have also identified FGFR1 as a molecular target that is affected by the presence of these compounds, confirming our data using in silico model. Overall, we envision that these compounds can be further developed for the potential treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sadisna Shahi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Racheal Akwii
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Raja Reddy Kallem
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - William Putnam
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Wei Wang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ruiwen Zhang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Karina Alvina
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
17
|
Synthesis and biological evaluation of a new series of 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives as new anticancer agents. Med Chem Res 2020; 29:1413-1423. [PMID: 32427204 PMCID: PMC7232929 DOI: 10.1007/s00044-020-02554-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
The diaryl ureas are very important fragments in medicinal chemistry. By means of computer-aided design, 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives were designed and synthesized, and evaluated for their antiproliferative activity against A549, HCT-116, PC-3 cancer cell lines, and HL7702 human normal liver cell lines in vitro by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Most of the target compounds demonstrate significant antiproliferative effects on all the selective cancer cell lines. The calculated IC50 values were reported. The target compound 1-(4-chlorophenyl)-3-{4-{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methoxy}phenyl}urea (7u) demonstrated the most potent inhibitory activity (IC50 = 2.39 ± 0.10 μM for A549 and IC50 = 3.90 ± 0.33 μM for HCT-116), comparable to the positive-control sorafenib (IC50 = 2.12 ± 0.18 μM for A549 and IC50 = 2.25 ± 0.71 μM for HCT-116). Conclusively, 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives as the new anticancer agents were discovered, and could be used as the potential BRAF inhibitors for further research.
Collapse
|
18
|
Yang YQ, Chen H, Liu QS, Sun Y, Gu W. Synthesis and anticancer evaluation of novel 1H-benzo[d]imidazole derivatives of dehydroabietic acid as PI3Kα inhibitors. Bioorg Chem 2020; 100:103845. [PMID: 32344183 DOI: 10.1016/j.bioorg.2020.103845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is one of the most attractive therapeutic targets for cancer treatment. In this study, a series of new 2-arylthio- and 2-arylamino-1H-benzo[d]imidazole derivatives of dehydroabietic acid were designed, synthesized and characterized by 1H NMR, 13C NMR, IR and MS spectra analyses. In the in vitro anticancer assay, some title compounds showed significant inhibitory activities against four cancer cell lines (HCT-116, MCF-7, HeLa and HepG2). Among them, compound 9g exhibited the most potent activity with IC50 values of 0.18 ± 0.03, 0.43 ± 0.05, 0.71 ± 0.08 and 0.63 ± 0.09 μM against four cancer cell lines, and considerably lower cytotoxicity to human gastric mucosal cell line Ges-1 (IC50: 21.95 ± 0.73 μM). Besides, compound 9g displayed a certain selective activity to PI3Kα (IC50 = 0.012 ± 0.002 μM) over PI3Kβ, γ and δ, and meanwhile, it can remarkably decrease the expression level of p-Akt (Ser473). In addition, compound 9g could increase intracellular reactive oxygen species level, decrease mitochondrial membrane potential, upregulate Bax and cleaved caspase-3/9 levels, downregulate Bcl-2 level and thus induce the apoptosis of HCT-116 cells in a dose-dependent manner. The results suggested that compound 9g could be considered as a promising PI3Kα inhibitor.
Collapse
Affiliation(s)
- Ya-Qun Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qing-Song Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
19
|
Ruan B, Zhang Y, Tadesse S, Preston S, Taki AC, Jabbar A, Hofmann A, Jiao Y, Garcia-Bustos J, Harjani J, Le TG, Varghese S, Teguh S, Xie Y, Odiba J, Hu M, Gasser RB, Baell J. Synthesis and structure-activity relationship study of pyrrolidine-oxadiazoles as anthelmintics against Haemonchus contortus. Eur J Med Chem 2020; 190:112100. [PMID: 32018095 DOI: 10.1016/j.ejmech.2020.112100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Parasitic roundworms (nematodes) are significant pathogens of humans and animals and cause substantive socioeconomic losses due to the diseases that they cause. The control of nematodes in livestock animals relies heavily on the use of anthelmintic drugs. However, their extensive use has led to a widespread problem of drug resistance in these worms. Thus, the discovery and development of novel chemical entities for the treatment of parasitic worms of humans and animals is needed. Herein, we describe our medicinal chemistry optimization efforts of a phenotypic hit against Haemonchus contortus based on a pyrrolidine-oxadiazole scaffold. This led to the identification of compounds with potent inhibitory activities (IC50 = 0.78-22.4 μM) on the motility and development of parasitic stages of H. contortus, and which were found to be highly selective in a mammalian cell counter-screen. These compounds could be used as suitable chemical tools for drug target identification or as lead compounds for further optimization.
Collapse
Affiliation(s)
- Banfeng Ruan
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia; Key Lab of Biofabrication of Anhui Higher Education, Institution Centre for Advanced Biofabrication, Hefei University, Hefei, 230601, PR China
| | - Yuezhou Zhang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Solomon Tadesse
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia; School of Health and Life Sciences, Federation University, Ballarat, Victoria, 3353, Australia
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jose Garcia-Bustos
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jitendra Harjani
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Thuy Giang Le
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Swapna Varghese
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Silvia Teguh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Yiyue Xie
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Jephthah Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia; Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
20
|
Chen H, Qiao C, Miao TT, Li AL, Wang WY, Gu W. Synthesis and biological evaluation of novel N-(piperazin-1-yl)alkyl-1 H-dibenzo[ a, c]carbazole derivatives of dehydroabietic acid as potential MEK inhibitors. J Enzyme Inhib Med Chem 2020; 34:1544-1561. [PMID: 31448648 PMCID: PMC6720511 DOI: 10.1080/14756366.2019.1655407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this paper, a series of novel 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid bearing different N-(piperazin-1-yl)alkyl side chains were designed, synthesised and evaluated for their in vitro anticancer activities against three human hepatocarcinoma cell lines (SMMC-7721, HepG2 and Hep3B). Among them, compound 10g exhibited the most potent activity against three cancer cell lines with IC50 values of 1.39 ± 0.13, 0.51 ± 0.09 and 0.73 ± 0.08 µM, respectively. In the kinase inhibition assay, compound 10g could significantly inhibit MEK1 kinase activity with IC50 of 0.11 ± 0.02 µM, which was confirmed by western blot analysis and molecular docking study. In addition, compound 10g could elevate the intracellular ROS levels, decrease mitochondrial membrane potential, destroy the cell membrane integrity, and finally lead to the oncosis and apoptosis of HepG2 cells. Therefore, compound 10g could be a potent MEK inhibitor and a promising anticancer agent worthy of further investigations.
Collapse
Affiliation(s)
- Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Chao Qiao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Ting-Ting Miao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University , Nanjing , PR China
| |
Collapse
|
21
|
Zhang Z, Du G, Wang Z. Lactamization of Alkenyl C-H Bonds to Generate 2-Quinolinones with Triphosgene. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Castelli R, Scalvini L, Vacondio F, Lodola A, Anselmi M, Vezzosi S, Carmi C, Bassi M, Ferlenghi F, Rivara S, Møller IR, Rand KD, Daglian J, Wei D, Dotsey EY, Ahmed F, Jung KM, Stella N, Singh S, Mor M, Piomelli D. Benzisothiazolinone Derivatives as Potent Allosteric Monoacylglycerol Lipase Inhibitors That Functionally Mimic Sulfenylation of Regulatory Cysteines. J Med Chem 2019; 63:1261-1280. [PMID: 31714779 DOI: 10.1021/acs.jmedchem.9b01679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe a set of benzisothiazolinone (BTZ) derivatives that are potent inhibitors of monoacylglycerol lipase (MGL), the primary degrading enzyme for the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). Structure-activity relationship studies evaluated various substitutions on the nitrogen atom and the benzene ring of the BTZ nucleus. Optimized derivatives with nanomolar potency allowed us to investigate the mechanism of MGL inhibition. Site-directed mutagenesis and mass spectrometry experiments showed that BTZs interact in a covalent reversible manner with regulatory cysteines, Cys201 and Cys208, causing a reversible sulfenylation known to modulate MGL activity. Metadynamics simulations revealed that BTZ adducts favor a closed conformation of MGL that occludes substrate recruitment. The BTZ derivative 13 protected neuronal cells from oxidative stimuli and increased 2-AG levels in the mouse brain. The results identify Cys201 and Cys208 as key regulators of MGL function and point to the BTZ scaffold as a useful starting point for the discovery of allosteric MGL inhibitors.
Collapse
Affiliation(s)
- Riccardo Castelli
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Federica Vacondio
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy.,Centro Interdipartimentale Biopharmanet-tec , Università degli Studi di Parma, Parco Area delle Scienze , Tecnopolo Padiglione 33 , I-43124 Parma , Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Mattia Anselmi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Stefano Vezzosi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Caterina Carmi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Michele Bassi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Francesca Ferlenghi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy.,Centro Interdipartimentale Biopharmanet-tec , Università degli Studi di Parma, Parco Area delle Scienze , Tecnopolo Padiglione 33 , I-43124 Parma , Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy.,Centro Interdipartimentale Biopharmanet-tec , Università degli Studi di Parma, Parco Area delle Scienze , Tecnopolo Padiglione 33 , I-43124 Parma , Italy
| | - Ingvar R Møller
- Department of Pharmacy , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Kasper D Rand
- Department of Pharmacy , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | | | | | | | | | | | - Nephi Stella
- Department of Pharmacology, Psychiatry and Behavioral Sciences , University of Washington , Seattle , Washington 98195-7280 , United States
| | - Simar Singh
- Department of Pharmacology, Psychiatry and Behavioral Sciences , University of Washington , Seattle , Washington 98195-7280 , United States
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy.,Centro Interdipartimentale Biopharmanet-tec , Università degli Studi di Parma, Parco Area delle Scienze , Tecnopolo Padiglione 33 , I-43124 Parma , Italy
| | | |
Collapse
|
23
|
Jin XY, Chen H, Li DD, Li AL, Wang WY, Gu W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J Enzyme Inhib Med Chem 2019; 34:955-972. [PMID: 31072147 PMCID: PMC6522941 DOI: 10.1080/14756366.2019.1605364] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
In this article, a series of novel quinoline derivatives of ursolic acid (UA) bearing hydrazide, oxadiazole, or thiadiazole moieties were designed, synthesised, and screened for their in vitro antiproliferative activities against three cancer cell lines (MDA-MB-231, HeLa, and SMMC-7721). A number of compounds showed significant activity against at least one cell line. Among them, compound 4d exhibited the most potent activity against three cancer cell lines with IC50 values of 0.12 ± 0.01, 0.08 ± 0.01, and 0.34 ± 0.03 μM, respectively. In particular, compound 4d could induce the apoptosis of HeLa cells, arrest cell cycle at the G0/G1 phase, elevate intracellular reactive oxygen species level, and decrease mitochondrial membrane potential. In addition, compound 4d could significantly inhibit MEK1 kinase activity and impede Ras/Raf/MEK/ERK transduction pathway. Therefore, compound 4d may be a potential anticancer agent and a promising lead worthy of further investigation.
Collapse
Affiliation(s)
- Xiao-Yan Jin
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Hao Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Dong-Dong Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|
24
|
Zhou F, Ding K, Zhou Y, Liu Y, Liu X, Zhao F, Wu Y, Zhang X, Tan Q, Xu F, Tan W, Xiao Y, Zhao S, Tao H. Colocalization Strategy Unveils an Underside Binding Site in the Transmembrane Domain of Smoothened Receptor. J Med Chem 2019; 62:9983-9989. [PMID: 31408335 DOI: 10.1021/acs.jmedchem.9b00283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We unveiled an underside binding site on smoothened receptor (SMO) by a colocalization strategy using two structurally complementary photoaffinity probes derived from a known ligand Allo-1. Docking study and structural dissection identified key interactions within the site, including hydrogen bonding, π-π interactions, and hydrophobic interactions between Allo-1 and its contacting residues. Taken together, our results reveal the molecular base of Allo-1 binding and provide a basis for the design of new-generation ligands to overcome drug resistance.
Collapse
Affiliation(s)
- Fang Zhou
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China.,Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road, Building 3, Room 426 , Shanghai 201203 , China.,University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Kang Ding
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology , Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , China.,University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology , Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China.,School of Biotechnology and Food Engineering , Changshu Institute of Technology , Suzhou , Jiangsu 215500 , China
| | - Yang Liu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China
| | - Xiaoyan Liu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China
| | - Fei Zhao
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China
| | - Yiran Wu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China
| | - Xianjun Zhang
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China.,University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China.,Institute of Biochemistry and Cell Biology , Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , China
| | - Qiwen Tan
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China
| | - Fei Xu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology , Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China.,University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
| | - Suwen Zhao
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Houchao Tao
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Pudong New District, Shanghai 201210 , China
| |
Collapse
|
25
|
Wu C, Zhou Q, Song D, Li H, Bao C, Liu X, Bao X, Chen G. An improved process for the preparation of pimavanserin tartrate. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819873643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A practical synthetic route to pimavanserin tartrate, in which the target compound was obtained with 99.84% purity and in 46% total yield via a 5-step synthesis starting from 4-hydroxybenzaldehyde and (4-fluorophenyl)methanamine, is reported. The main advantages of the route include inexpensive starting materials, mild reaction conditions and an acceptable overall yield.
Collapse
Affiliation(s)
- Caijiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Qifan Zhou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Dake Song
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Hui Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Changshun Bao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Xuelong Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
26
|
Zhang C, Tan X, Feng J, Ding N, Li Y, Jin Z, Meng Q, Liu X, Hu C. Design, Synthesis and Biological Evaluation of a New Series of 1-Aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea Derivatives as Antiproliferative Agents. Molecules 2019; 24:molecules24112108. [PMID: 31167363 PMCID: PMC6600452 DOI: 10.3390/molecules24112108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
To discover new antiproliferative agents with high efficacy and selectivity, a new series of 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea derivatives (7a–7t) were designed, synthesized and evaluated for their antiproliferative activity against A549, HCT-116 and PC-3 cancer cell lines in vitro. Most of the target compounds demonstrated significant antiproliferative effects on all the selective cancer cell lines. Among them, the target compound, 1-[4-chloro-3-(trifluoromethyl)phenyl]-3-{4-{{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methyl}thio}phenyl}urea (7i) was identified to be the most active one against three cell lines, which was more potent than the positive control with an IC50 value of 1.53 ± 0.46, 1.11 ± 0.34 and 1.98 ± 1.27 μM, respectively. Further cellular mechanism studies confirmed that compound 7i could induce the apoptosis of A549 cells in a concentration-dependent manner and elucidated compound 7i arrests cell cycle at G1 phase by flow cytometry analysis. Herein, the studies suggested that the 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea skeleton might be regarded as new chemotypes for designing effective antiproliferative agents.
Collapse
Affiliation(s)
- Chuanming Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaoyu Tan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jian Feng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Ning Ding
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yongpeng Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Zhe Jin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qingguo Meng
- Department of Pharmacy, Yantai University, Yantai 264005, China.
| | - Xiaoping Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
27
|
Hua S, Chen F, Xu G, Gou S. Multifunctional platinum(IV) complexes as immunostimulatory agents to promote cancer immunochemotherapy by inhibiting tryptophan-2,3-dioxygenase. Eur J Med Chem 2019; 169:29-41. [PMID: 30852385 DOI: 10.1016/j.ejmech.2019.02.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022]
Abstract
Increasing evidences suggested that cisplatin can be involved in a tumor-specific immune response as an immunomodulator to improve antitumor immunity, but the designation and development are limited. Here, we report a series of novel Pt(IV) complexes derived from the conjugation of platinum(II) anticancer agents with an immune checkpoint TDO inhibitor. These complexes not only showed significant cytotoxic effects on the tested cancer cell lines, but also could enhance antitumor immune response. Particularly, complex T2, the mono-conjuagte of oxoplatin and (E)-4-oxo-4-(3-(2-(pyridin-3-yl)vinyl)-1H-indol-1-yl)butanoic acid, displayed 35-fold more potency than cisplatin against TDO-overexpressed HepG-2 cancer cells. Further study indicated that T2 could inhibit TDO via releasing a derivative of a TDO inhibitor and block kynurenine production, resulting in T-cell activation and proliferation in vitro. In vivo tests proved that T2 as a potent immunomodulator could highly promote the antitumor activity of cisplatin and effectively suppress the expression of TDO. This immunochemotherapeutic strategy can be promisingly applied to treat with TDO-overexpressed cancers.
Collapse
Affiliation(s)
- Shixian Hua
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Gang Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
28
|
Ebsulfur as a potent scaffold for inhibition and labelling of New Delhi metallo-β-lactamase-1 in vitro and in vivo. Bioorg Chem 2019; 84:192-201. [DOI: 10.1016/j.bioorg.2018.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022]
|
29
|
Vinothkanna A, Palanisamy P, Sekar S. Activity of antibacterial compounds from Bacillus subtilis against cellular oncoproteins by in silico approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Shi ZH, Liu FT, Tian HZ, Zhang YM, Li NG, Lu T. Design, synthesis and structure-activity relationship of diaryl-ureas with novel isoxazol[3,4-b]pyridine-3-amino-structure as multi-target inhibitors against receptor tyrosine kinase. Bioorg Med Chem 2018; 26:4735-4744. [DOI: 10.1016/j.bmc.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
|
31
|
Huang X, Hua S, Huang R, Liu Z, Gou S, Wang Z, Liao Z, Wang H. Dual-targeting antitumor hybrids derived from Pt(IV) species and millepachine analogues. Eur J Med Chem 2018; 148:1-25. [PMID: 29448138 DOI: 10.1016/j.ejmech.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Many strategies have been developed to circumvent the shortcomings of Pt(II)-based chemotherapy, but the inherent problems still have not been effectively resolved. Here we report a new series of dual-targeting Pt(IV) prodrugs, conjugates of millepachine analogues with the related Pt(IV) complexes derived from cisplatin or oxaliplatin, respectively, which can inhibit tubulin polymerization and induce DNA damage. Among them, compound 19 possessed excellent antitumor activities against the tested human cancer cell lines, and arrested the cell cycle at the G2/M phases and ultimately induced cell apoptosis. Interestingly, its low cytotoxicity toward two human normal cells and sensitivity toward two cisplatin-resistant cells revealed the possibility for cancer therapy. More importantly, 19 displayed excellent antitumor efficacy in the SK-OV-3 xenograft model better than cisplatin and the corresponding millepachine analogue. Our research provided an efficient strategy for multi-targeting antitumor drug development.
Collapse
Affiliation(s)
- Xiaochao Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shixian Hua
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Rizhen Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
32
|
Insight into the mechanism of action and selectivity of caspase-3 reversible inhibitors through in silico studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Xia J, Feng B, Shao Q, Yuan Y, Wang XS, Chen N, Wu S. Virtual Screening against Phosphoglycerate Kinase 1 in Quest of Novel Apoptosis Inhibitors. Molecules 2017. [PMID: 28635653 PMCID: PMC5720137 DOI: 10.3390/molecules22061029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhibition of apoptosis is a potential therapy to treat human diseases such as neurodegenerative disorders (e.g., Parkinson’s disease), stroke, and sepsis. Due to the lack of druggable targets, it remains a major challenge to discover apoptosis inhibitors. The recent repositioning of a marketed drug (i.e., terazosin) as an anti-apoptotic agent uncovered a novel target (i.e., human phosphoglycerate kinase 1 (hPgk1)). In this study, we developed a virtual screening (VS) pipeline based on the X-ray structure of Pgk1/terazosin complex and applied it to a screening campaign for potential anti-apoptotic agents. The hierarchical filters in the pipeline (i.e., similarity search, a pharmacophore model, a shape-based model, and molecular docking) rendered 13 potential hits from Specs chemical library. By using PC12 cells (exposed to rotenone) as a cell model for bioassay, we first identified that AK-918/42829299, AN-465/41520984, and AT-051/43421517 were able to protect PC12 cells from rotenone-induced cell death. Molecular docking suggested these hit compounds were likely to bind to hPgk1 in a similar mode to terazosin. In summary, we not only present a versatile VS pipeline for potential apoptosis inhibitors discovery, but also provide three novel-scaffold hit compounds that are worthy of further development and biological study.
Collapse
Affiliation(s)
- Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Bo Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qianhang Shao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yuhe Yuan
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiang Simon Wang
- Molecular Modeling and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA.
| | - Naihong Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
34
|
|
35
|
Viani F, Rossi B, Panzeri W, Merlini L, Martorana AM, Polissi A, Galante YM. Synthesis and anti-bacterial activity of a library of 1,2-benzisothiazol-3(2H)-one (BIT) derivatives amenable of crosslinking to polysaccharides. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Benmansour F, Trist I, Coutard B, Decroly E, Querat G, Brancale A, Barral K. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design. Eur J Med Chem 2017; 125:865-880. [DOI: 10.1016/j.ejmech.2016.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
37
|
Zhang B, Huang R, Hua J, Liang H, Pan Y, Dai L, Liang D, Wang H. Antitumor lignanamides from the aerial parts of Corydalis saxicola. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1599-1609. [PMID: 27823624 DOI: 10.1016/j.phymed.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Cancer is one of the leading cause of unnatural death globally. There is still a great need for effective anticancer agents from plant sources. Corydalis saxicola Bunting is a medicinal plant that is traditionally used to treat various diseases in southwest China. Previous phytochemical investigations of C. saxicola have focused on isoquinoline alkaloids that have been isolated, which have activity against anti-hepatitis B virus and inhibit DNA topoisomerase I. However, the exploration of other classes of constituents and their bioactivities needs further study. PURPOSE The aim of this study was to investigate the antitumor activity of isolated lignanamides as well as their detailed cellular proliferation, suppression, and cytotoxic mechanisms. METHODS Herbs were extracted and constituents were purified by chromatographic separation, including silica gel, ODS, MCI, Sephadex LH-20 and Preparative HPLC. The compound structures were elucidated by the use of UV, IR, NMR and MS spectral data. The cytotoxicity effects of all compounds from the MGC-803, HepG2, T24, NCI-H460, Spca-2, and HL-7702 cell lines were studied by MTT assays. The induction of apoptosis by corydalisin C was investigated using acridine orange/ethidium bromide staining, Hoechst 33,258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry. RESULTS Three new lignanamides, together with five known analogues, were isolated from the aerial parts of C. saxicola. Corydalisin C possessed the most potent inhibitory effects, with an IC50 value of 8.81 ± 2.05µM against MGC-803 cells. SAR analysis showed that the sterics and chirality of lignanamides play a crucial role in pharmacologically relevant events. The antitumor activity was possibly due to the induction of cell apoptosis. Western blot experiments demonstrated that corydalisin C may induce apoptosis through both intrinsic and extrinsic apoptosis pathways, accompanied by down-regulating the expression of Bcl-2 and FasL in a time-dependent manner. CONCLUSION This study provides evidence that a lignanamide from the ethyl acetate extract of whole plants of C. saxicola showing potential in cancer treatment.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi, China
| | - Rizhen Huang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi, China
| | - Yingming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi, China
| | - Lumei Dai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi, China.
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
38
|
Price KE, Armstrong CM, Imlay LS, Hodge DM, Pidathala C, Roberts NJ, Park J, Mikati M, Sharma R, Lawrenson AS, Tolia NH, Berry NG, O'Neill PM, John ARO. Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD. Sci Rep 2016; 6:36777. [PMID: 27857147 PMCID: PMC5114681 DOI: 10.1038/srep36777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 01/10/2023] Open
Abstract
The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria.
Collapse
Affiliation(s)
- Kathryn E Price
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Christopher M Armstrong
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leah S Imlay
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dana M Hodge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - C Pidathala
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Natalie J Roberts
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Jooyoung Park
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwa Mikati
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raman Sharma
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | | | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
Design, Synthesis and Structure-Activity Relationships of Novel Diaryl Urea Derivatives as Potential EGFR Inhibitors. Molecules 2016; 21:molecules21111572. [PMID: 27869742 PMCID: PMC6273962 DOI: 10.3390/molecules21111572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023] Open
Abstract
Two novel series of diaryl urea derivatives 5a–i and 13a–l were synthesized and evaluated for their cytotoxicity against H-460, HT-29, A549, and MDA-MB-231 cancer cell lines in vitro. Therein, 4-aminoquinazolinyl-diaryl urea derivatives 5a–i demonstrated significant activity, and seven of them are more active than sorafenib, with IC50 values ranging from 0.089 to 5.46 μM. Especially, compound 5a exhibited the most active potency both in cellular (IC50 = 0.15, 0.089, 0.36, and 0.75 μM, respectively) and enzymatic assay (IC50 = 56 nM against EGFR), representing a promising lead for further optimization.
Collapse
|
40
|
Kumar KS, Daniel V, Kaki SS, Rao CP, Krupadanam GD. Synthesis and antimicrobial evaluation of novel urea derivatives from chromene based oxadiazole amines. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1651-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Zhong Y, Xu Y, Zhang AX, Li XF, Xu ZY, Li P, Wu B. Synthesis and biological evaluation of aryloxyacetamide derivatives as neuroprotective agents. Bioorg Med Chem Lett 2016; 26:2526-2530. [DOI: 10.1016/j.bmcl.2016.03.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
|
42
|
Hudson BM, Nguyen E, Tantillo DJ. The influence of intramolecular sulfur-lone pair interactions on small-molecule drug design and receptor binding. Org Biomol Chem 2016; 14:3975-80. [PMID: 27049933 DOI: 10.1039/c6ob00254d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sulfur-lone pair interactions are important conformational control elements in sulfur-containing heterocycles that abound in pharmaceuticals, natural products, agrochemicals, polymers and other important classes of organic molecules. Nonetheless, the role of intramolecular sulfur-lone pair interactions in the binding of small molecules to receptors is often overlooked. Here we analyze the magnitudes and origins of these interactions for a variety of biologically relevant small molecules using quantum chemical and automated docking calculations. In most cases examined in this study, the lowest energy conformation of the small molecule displays a sulfur-lone pair close contact. However, docking studies, both published and new, often predict that conformations without sulfur-lone pair contacts have the best binding affinity for their respective receptors. This is a serious problem. Since many of these predicted bound conformations are not actually energetically accessible, pursuing design (e.g., drug design) around these binding modes necessarily will lead, serendipity aside, to dead end designs. Our results constitute a caution that one best not neglect these interactions when predicting the binding affinities of potential ligands (drugs or not) for hosts (enzymes, receptors, DNA, RNA, synthetic hosts). Moreover, a better understanding and awareness of sulfur-lone pair interactions should facilitate the rational modulation of host-guest interactions involving sulfur-containing molecules.
Collapse
Affiliation(s)
- B M Hudson
- Department of Chemistry, University of California, Davis, CA 95618, USA.
| | | | | |
Collapse
|
43
|
Wei D, Chen L, Yan X, Li Y, Li J, Wang D. A Scalable and Facile Process for the Preparation of N-(Pyridin-4-yl) Piperazine-1-Carboxamide Hydrochloride. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14546711471143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A scalable and facile synthetic process for N-(pyridin-4-yl)piperazine-1-carboxamide hydrochloride, a novel Rho kinase inhibitor with an unsymmetrical urea structure currently under investigation for the treatment of central nervous system disorders, was established. After optimisation of the reaction conditions, N-(pyridin-4-yl)piperazine-1-carboxamide hydrochloride was synthesised from 4-aminopyridine and N,N′-carbonyldiimidazole through acylation, deprotection and salt formation. This new procedure affords the product in 53% overall yield with high purity and it can be easily scaled up for production.
Collapse
Affiliation(s)
- Daiyan Wei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Jianye Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Donghua Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
44
|
Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur J Med Chem 2016; 107:12-25. [DOI: 10.1016/j.ejmech.2015.10.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022]
|
45
|
Huang X, Huang R, Liao Z, Pan Y, Gou S, Wang H. Synthesis and pharmacological evaluation of dehydroabietic acid thiourea derivatives containing bisphosphonate moiety as an inducer of apoptosis. Eur J Med Chem 2015; 108:381-391. [PMID: 26706349 DOI: 10.1016/j.ejmech.2015.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/18/2015] [Accepted: 12/03/2015] [Indexed: 11/15/2022]
Abstract
A series of DHAA thiourea derivatives containing bisphosphonate moiety were designed and synthesized as potent antitumor agents. Structures of target molecules were confirmed using HR-MS, (1)H NMR and (13)C NMR and they exhibited potent anti-tumor activities against the SK-OV-3, BEL-7404, A549, HCT-116 and NCI-H460 tumor cell lines in vitro. Especially, compound 6e (IC50 = 1.79 ± 0.43 μM) exhibited the best anticancer activity against SK-OV-3 cell line. Its role as an inducer of apoptosis was investigated in this cell line by Annexin-V/PI binding assay and by following its capability for ROS generation, depolarization of mitochondrial transmembrane potential, activation of caspases and expression of pro- and anti-apoptotic proteins. Elevated level of ROS generation, activation of caspase-3, caspase-8, caspase-9, and Fas, higher expression of Bax, lower expression of Bcl-2, and increased level of Bax/Bcl-2 ratio identified 6e as a promising inducer of apoptosis that follows both of the mitochondria dependent pathway and the death receptor-mediated pathway. In addition, the cell cycle analysis indicated that compound 6e caused cell cycle arrest at G1 phase, induced apoptosis and led to cell death by increasing the proportion of sub-G1 cells. Furthermore, molecular docking studies showed that 6e could bind to the ATP pocket sites.
Collapse
Affiliation(s)
- Xiaochao Huang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Rizheng Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Zhixin Liao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Yingming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China.
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
46
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
47
|
Dong X, Zhou Y, Song Y, Qu J. Anthracene-Fe3+ ensemble based turn-on fluorescent probes for selective detection of fluoride. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Xu B, Mao Z, Ji X, Yao M, Chen M, Zhang X, Hang B, Liu Y, Tang W, Tang Q, Xia Y. miR-98 and its host gene Huwe1 target Caspase-3 in Silica nanoparticles-treated male germ cells. Sci Rep 2015; 5:12938. [PMID: 26263183 PMCID: PMC4531786 DOI: 10.1038/srep12938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 07/01/2015] [Indexed: 12/22/2022] Open
Abstract
Silica nanoparticles (NP) is one of the most commonly used nanomaterials with potential health hazards. However, the effects of Silica NP on germ cells and the underlying mechanisms are still unclear. In this study, GC-2 and TM-4, which are two different types of male germ cells were exposed to Silica NP for 24h, and then general cytotoxicity and multi-parameter cytotoxicity were evaluated. Our results showed that Silica NP could induce apoptosis in GC-2 cells. Transmission electron microscopy (TEM) results showed that Silica NP was localized in the lysosomes of GC-2 cells. High content screening (HCS) showed that Silica NP exposure could increased cell permeabilization and decreased mitochondrial membrane potential in GC-2 cells. The mRNA and protein levels of apoptosis markers (Bax, Caspase-3, Caspase-9) in GC-2 cells were significantly increased, while Bcl-2 was decreased. Accordingly, the expression level of miR-98, which can regulate Caspase-3, was significantly decreased. Huwe1, the host gene of miR-98, was positively associated with miR-98 expression after Silica NP exposure. Dual luciferase reporter assay suggested that miR-98 directly targets Caspase-3. These results suggest that Silica NP induces apoptosis via loss of mitochondrial membrane potential and Caspase-3 activation, while miR-98 plays key role in modulating this effect.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Endocrinology, The Affiliated Jiangyin Hospital of Wuxi Clinical School of Medicine, Nanjing Medical University, Jiangyin 214400, China
| | - Zhilei Mao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoli Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengmeng Yao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xuemei Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bo Hang
- Department of Cancer & DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA 94720, USA
| | - Wei Tang
- Department of Endocrinology, The Affiliated Jiangyin Hospital of Wuxi Clinical School of Medicine, Nanjing Medical University, Jiangyin 214400, China
| | - Qiusha Tang
- Medical School, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
49
|
Li Z, Pan Y, Zhong W, Zhu Y, Zhao Y, Li L, Liu W, Zhou H, Yang C. Synthesis and evaluation of N-acyl-substituted 1,2-benzisothiazol-3-one derivatives as caspase-3 inhibitors. Bioorg Med Chem 2015; 22:6735-45. [PMID: 25468037 DOI: 10.1016/j.bmc.2014.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
A small molecule library of N-acyl-substituted 1,2-benzisothiazol-3-one derivatives has been synthesized and evaluated as inhibitors of caspase-3 and -7, in which some of them showed nanomolar potency against caspase-3 and -7 in vitro. Meanwhile, in 10 lM concentration, both compounds 24 and 25 showed significant protection against apoptosis in camptothecin-induced Jurkat T cells system. The docking studies predicted the interactions and binding modes of the synthesized inhibitors in the caspase-3 active site.
Collapse
|
50
|
Yu J, Gao C, Song Z, Yang H, Fu H. Metal-Free Oxidative C-H Amidation ofN,N′-Diarylureas with PhI(OAc)2: Synthesis of Benzimidazol-2-one Derivatives. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500726] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|