1
|
Di Martino S, Amico P, De Rosa M. Applications of Bridgehead Heterocycles in Drug Design and Medicinal Chemistry. Top Curr Chem (Cham) 2025; 383:16. [PMID: 40117080 DOI: 10.1007/s41061-025-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/27/2025] [Indexed: 03/23/2025]
Abstract
Bridged heterocycles are highly relevant in medicinal chemistry and drug discovery due to the unique features associated with their three-dimensional configuration that ensures great scaffold complexity. In general, inserting bridged systems into a chemical structure positively influences the pharmacokinetic (PK) profile of leads, reducing lipophilicity and enhancing metabolic stability. Several optimization studies show that bridged systems often promoted a significant improvement of the small molecule-enzyme binding interaction due to conformational changes within the biological target active site. To date, many drugs including bridged cores are available in the market to cure several diseases. Given the broad range of biological activities of naturally occurring and (semi)-synthetic bridgehead heterocycles, here, we have thoroughly reviewed the rational design and the structure-activity relationship (SAR) studies of the most remarkable bridged compounds developed during the past decade, to highlight both the chemical and biological roles of these motifs.
Collapse
Affiliation(s)
- Simona Di Martino
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy
| | - Pietro Amico
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy
| | - Maria De Rosa
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy.
| |
Collapse
|
2
|
Xu H, Chen Y, Tong H, Chen L, Morisseau C, Zhou Z, Zhuang J, Song C, Cai P, Liu Z, Hammock BD, Chen G. Design and Synthesis of sEH/HDAC6 Dual-Targeting Inhibitors for the Treatment of Inflammatory Pain. J Med Chem 2024; 67:12887-12911. [PMID: 39033411 PMCID: PMC11412156 DOI: 10.1021/acs.jmedchem.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Soluble epoxide hydrolase (sEH) and HDAC6 mediate the NF-κB pathway in inflammatory responses, and their inhibitors exhibit powerful anti-inflammatory and analgesic activities in treating both inflammation and pain. Therefore, a series of dual-targeting inhibitors containing urea or squaramide and hydroxamic acid moieties were designed and synthesized, and their role as a new sEH/HDAC6 dual-targeting inhibitor in inflammatory pain was evaluated in a formalin-induced mice model and a xylene-induced mouse ear swelling model. Among them, compounds 28g and 28j showed the best inhibitory and selectivity of sEH and HDAC6. Compound 28g had satisfactory pharmacokinetic characteristics in rats. Following administration at 30 mg/kg, compound 28g exhibited more effective analgesic activity than either an sEH inhibitor (GL-B437) or an HDAC6 inhibitor (Rocilinostat) alone and coadministration of both inhibitors. Thus, these novel sEH/HDAC6 dual-targeting inhibitors exhibited powerful analgesic activity in nociceptive behavior and are worthy of further development.
Collapse
Affiliation(s)
- Huashen Xu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanguang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Tong
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Zijian Zhou
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Junning Zhuang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuqiao Song
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pengcheng Cai
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhongbo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Edin ML, Gruzdev A, Graves JP, Lih FB, Morisseau C, Ward JM, Hammock BD, Bosio CM, Zeldin DC. Effects of sEH inhibition on the eicosanoid and cytokine storms in SARS-CoV-2-infected mice. FASEB J 2024; 38:e23692. [PMID: 38786655 PMCID: PMC11141730 DOI: 10.1096/fj.202302202rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves an initial viral infection phase followed by a host-response phase that includes an eicosanoid and cytokine storm, lung inflammation and respiratory failure. While vaccination and early anti-viral therapies are effective in preventing or limiting the pathogenic host response, this latter phase is poorly understood with no highly effective treatment options. Inhibitors of soluble epoxide hydrolase (sEH) increase levels of anti-inflammatory molecules called epoxyeicosatrienoic acids (EETs). This study aimed to investigate the impact of sEH inhibition on the host response to SARS-CoV-2 infection in a mouse model with human angiotensin-converting enzyme 2 (ACE2) expression. Mice were infected with SARS-CoV-2 and treated with either vehicle or the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU). At day 5 post-infection, SARS-CoV-2 induced weight loss, clinical signs, a cytokine storm, an eicosanoid storm, and severe lung inflammation with ~50% mortality on days 6-8 post-infection. SARS-CoV-2 infection induced lung expression of phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) pathway genes, while suppressing expression of most cytochrome P450 genes. Treatment with the sEH inhibitor TPPU delayed weight loss but did not alter clinical signs, lung cytokine expression or overall survival of infected mice. Interestingly, TPPU treatment significantly reversed the eicosanoid storm and attenuated viral-induced elevation of 39 fatty acids and oxylipins from COX, LOX and P450 pathways, which suggests the effects at the level of PLA2 activation. The suppression of the eicosanoid storm by TPPU without corresponding changes in lung cytokines, lung inflammation or mortality reveals a surprising dissociation between systemic oxylipin and cytokine signaling pathways during SARS-CoV-2 infection and suggests that the cytokine storm is primarily responsible for morbidity and mortality in this animal model.
Collapse
Affiliation(s)
- Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Joan P. Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Fred. B. Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, USA
| | - James M. Ward
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, USA
| | - Catharine M. Bosio
- Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
4
|
Burmistrov VV, Morisseau C, Danilov DV, Gladkikh BP, D’yachenko VS, Zefirov NA, Zefirova ON, Butov GM, Hammock BD. Fluorine and chlorine substituted adamantyl-urea as molecular tools for inhibition of human soluble epoxide hydrolase with picomolar efficacy. J Enzyme Inhib Med Chem 2023; 38:2274797. [PMID: 37975322 PMCID: PMC11003477 DOI: 10.1080/14756366.2023.2274797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Series of 1,3-disubstituted ureas and diadamantyl disubstituted diureas with fluorinated and chlorinated adamantane residues were shown to inhibit human soluble epoxide hydrolase (sEH) with inhibition potency ranging from 40 pM to 9.2 nM. The measured IC50 values for some molecules were below the accuracy limit of the existing in vitro assays. Such an increase in activity was achieved by minimal structural modifications to the molecules of known inhibitors, including 4-[trans-4-(1-adamantylcarbamoylamino)cyclohexyl]oxybenzoic acid. For the chlorinated homologue of the latter the sharp jump in inhibitory activity can be (according to molecular dynamics data) the result of interactions - Cl-π interaction. Considering the extremely high inhibitory activity, acceptable solubility and partial blockage of metabolically sensitive centres in their structures, some compounds are of interest for further in vivo biotesting.
Collapse
Affiliation(s)
- Vladimir V. Burmistrov
- Volgograd State Technical University, Volgograd, Russia
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | | | | | - Vladimir S. D’yachenko
- Volgograd State Technical University, Volgograd, Russia
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nikolay A. Zefirov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga N. Zefirova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Gennady M. Butov
- Volgograd State Technical University, Volgograd, Russia
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Yang H, Qi M, He Q, Hwang SH, Yang J, McCoy M, Morisseau C, Zhao S, Hammock BD. Quantification of soluble epoxide hydrolase inhibitors in experimental and clinical samples using the nanobody-based ELISA. J Pharm Anal 2023; 13:1013-1023. [PMID: 37842656 PMCID: PMC10568103 DOI: 10.1016/j.jpha.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 10/17/2023] Open
Abstract
To ensure proper dosage of a drug, analytical quantification of it in biofluid is necessary. Liquid chromatography mass spectrometry (LC-MS) is the conventional method of choice as it permits accurate identification and quantification. However, it requires expensive instrumentation and is not appropriate for bedside use. Using soluble epoxide hydrolase (sEH) inhibitors (EC5026 and TPPU) as examples, we report development of a nanobody-based enzyme-linked immunosorbent assay (ELISA) for such small molecules and its use to accurately quantify the drug chemicals in human samples. Under optimized conditions, two nanobody-based ELISAs were successfully established for EC5026 and TPPU with low limits of detection of 0.085 ng/mL and 0.31 ng/mL, respectively, and two order of magnitude linear ranges with high precision and accuracy. The assay was designed to detect parent and two biologically active metabolites in the investigation of a new drug candidate EC5026. In addition, the ELISAs displayed excellent correlation with LC-MS analysis and evaluation of inhibitory potency. The results indicate that nanobody-based ELISA methods can efficiently analyze drug like compounds. These methods could be easily implemented by the bedside, in the field in remote areas or in veterinary practice. This work illustrates that nanobody based assays offer alternative and supplementary analytical tools to mass spectrometry for monitoring small molecule medicines during clinical development and therapy. Attributes of nanobody based pharmaceutical assays are discussed.
Collapse
Affiliation(s)
- Huiyi Yang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Meng Qi
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
- Langfang Normal University, Langfang, Hebei, 065000, China
| | - Qiyi He
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Mark McCoy
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Kanbay M, Copur S, Tanriover C, Ucku D, Laffin L. Future treatments in hypertension: Can we meet the unmet needs of patients? Eur J Intern Med 2023; 115:18-28. [PMID: 37330317 DOI: 10.1016/j.ejim.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of arterial hypertension is approximately 47% in the United States and 55% in Europe. Multiple different medical therapies are used to treat hypertension including diuretics, beta blockers, calcium channel blockers, angiotensin receptor blockers, angiotensin converting enzyme inhibitors, alpha blockers, central acting alpha receptor agonists, neprilysin inhibitors and vasodilators. However, despite the numerous number of medications, the prevalence of hypertension is on the rise, a considerable proportion of the hypertensive population is resistant to these therapeutic modalities and a definitive cure is not possible with the current treatment approaches. Therefore, there is a need for novel therapeutic strategies to provide better treatment and control of hypertension. In this review, our aim is to describe the latest developments in the treatment of hypertension including novel medication classes, gene therapies and RNA-based modalities.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Duygu Ucku
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Luke Laffin
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
7
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Jeon JH, Im S, Kim HS, Lee D, Jeong K, Ku JM, Nam TG. Chemical Chaperones to Inhibit Endoplasmic Reticulum Stress: Implications in Diseases. Drug Des Devel Ther 2022; 16:4385-4397. [PMID: 36583112 PMCID: PMC9793730 DOI: 10.2147/dddt.s393816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is responsible for structural transformation or folding of de novo proteins for transport to the Golgi. When the folding capacity of the ER is exceeded or excessive accumulation of misfolded proteins occurs, the ER enters a stressed condition (ER stress) and unfolded protein responses (UPR) are triggered in order to rescue cells from the stress. Recovery of ER proceeds toward either survival or cell apoptosis. ER stress is implicated in many pathologies, such as diabetes, cardiovascular diseases, inflammatory diseases, neurodegeneration, and lysosomal storage diseases. As a survival or adaptation mechanism, chaperone molecules are upregulated to manage ER stress. Chemical versions of chaperone have been developed in search of drug candidates for ER stress-related diseases. In this review, synthetic or semi-synthetic chemical chaperones are categorized according to potential therapeutic area and listed along with their chemical structure and activity. Although only a few chemical chaperones have been approved as pharmaceutical drugs, a dramatic increase in literatures over the recent decades indicates enormous amount of efforts paid by many researchers. The efforts warrant clearer understanding of ER stress and the related diseases and consequently will offer a promising drug discovery platform with chaperone activity.
Collapse
Affiliation(s)
- Jae-Ho Jeon
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA campus, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Somyoung Im
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA campus, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Hyo Shin Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA campus, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Dongyun Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA campus, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Kwiwan Jeong
- Gyeonggi Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jin-Mo Ku
- Gyeonggi Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA campus, Ansan, Gyeonggi-do, 15588, Republic of Korea,Correspondence: Tae-Gyu Nam, Tel +82-31-400-5807, Fax +82-31-400-5958, Email
| |
Collapse
|
9
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
10
|
Kuznetsov YP, Burmistrov VV, Butov GM. Synthesis and Properties of Symmetrical Bis-ureas Containing a 4-(Trifluoromethoxy)phenyl Fragment. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Otsuka K, Miyahara M, Takaki S, Wakabayashi R, Miyako K, Irie R, Takamizawa S, Sakai R, Oikawa M. Synthetic Studies on the Initially Proposed Structure of Protoaculeine B: Discovery of Neuronally Active Heterotricyclic Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kazunori Otsuka
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Masayoshi Miyahara
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Sara Takaki
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Ryoya Wakabayashi
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Kei Miyako
- Hokkaido University Faculty of Fisheries Sciences Graduate School of Fisheries Sciences School of Fisheries Sciences: Hokkaido Daigaku Daigakuin Suisan Kagaku Kenkyuin Daigakuin Suisan Kagakuin Suisan Gakubu Faculty of Fisheries Sciences JAPAN
| | - Raku Irie
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Satoshi Takamizawa
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Ryuichi Sakai
- Hokkaido University Faculty of Fisheries Sciences Graduate School of Fisheries Sciences School of Fisheries Sciences: Hokkaido Daigaku Daigakuin Suisan Kagaku Kenkyuin Daigakuin Suisan Kagakuin Suisan Gakubu Faculty of Fisheries Sciences JAPAN
| | - Masato Oikawa
- Yokohama City University Graduate School of Nanobioscience Seto 22-2Kanazawa-ku 236-0027 Yokohama JAPAN
| |
Collapse
|
12
|
Repositioning of Quinazolinedione-Based Compounds on Soluble Epoxide Hydrolase (sEH) through 3D Structure-Based Pharmacophore Model-Driven Investigation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123866. [PMID: 35744994 PMCID: PMC9228872 DOI: 10.3390/molecules27123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
The development of new bioactive compounds represents one of the main purposes of the drug discovery process. Various tools can be employed to identify new drug candidates against pharmacologically relevant biological targets, and the search for new approaches and methodologies often represents a critical issue. In this context, in silico drug repositioning procedures are required even more in order to re-evaluate compounds that already showed poor biological results against a specific biological target. 3D structure-based pharmacophoric models, usually built for specific targets to accelerate the identification of new promising compounds, can be employed for drug repositioning campaigns as well. In this work, an in-house library of 190 synthesized compounds was re-evaluated using a 3D structure-based pharmacophoric model developed on soluble epoxide hydrolase (sEH). Among the analyzed compounds, a small set of quinazolinedione-based molecules, originally selected from a virtual combinatorial library and showing poor results when preliminarily investigated against heat shock protein 90 (Hsp90), was successfully repositioned against sEH, accounting the related built 3D structure-based pharmacophoric model. The promising results here obtained highlight the reliability of this computational workflow for accelerating the drug discovery/repositioning processes.
Collapse
|
13
|
Wagner KM, Yang J, Morisseau C, Hammock BD. Soluble Epoxide Hydrolase Deletion Limits High-Fat Diet-Induced Inflammation. Front Pharmacol 2022; 12:778470. [PMID: 34975481 PMCID: PMC8719166 DOI: 10.3389/fphar.2021.778470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 01/28/2023] Open
Abstract
The soluble epoxide hydrolase (sEH) enzyme is a major regulator of bioactive lipids. The enzyme is highly expressed in liver and kidney and modulates levels of endogenous epoxy-fatty acids, which have pleiotropic biological effects including limiting inflammation, neuroinflammation, and hypertension. It has been hypothesized that inhibiting sEH has beneficial effects on limiting obesity and metabolic disease as well. There is a body of literature published on these effects, but typically only male subjects have been included. Here, we investigate the role of sEH in both male and female mice and use a global sEH knockout mouse model to compare the effects of diet and diet-induced obesity. The results demonstrate that sEH activity in the liver is modulated by high-fat diets more in male than in female mice. In addition, we characterized the sEH activity in high fat content tissues and demonstrated the influence of diet on levels of bioactive epoxy-fatty acids. The sEH KO animals had generally increased epoxy-fatty acids compared to wild-type mice but gained less body weight on higher-fat diets. Generally, proinflammatory prostaglandins and triglycerides were also lower in livers of sEH KO mice fed HFD. Thus, sEH activity, prostaglandins, and triglycerides increase in male mice on high-fat diet but are all limited by sEH ablation. Additionally, these changes also occur in female mice though at a different magnitude and are also improved by knockout of the sEH enzyme.
Collapse
Affiliation(s)
- Karen M Wagner
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| |
Collapse
|
14
|
Verma K, Jain S, Paliwal S, Paliwal S, Sharma S. A clinical perspective of soluble epoxide hydrolase inhibitors in metabolic and related cardiovascular diseases. Curr Mol Pharmacol 2021; 15:763-778. [PMID: 34544352 DOI: 10.2174/1874467214666210920104352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
Epoxide hydrolase (EH) is a crucial enzyme responsible for catabolism, detoxification, and regulation of signaling molecules in various organisms including human beings. In mammals, EHs are classified according to their DNA sequence, sub-cellular location, and activity into eight major classes: soluble EH (sEH), microsomal EH (mEH), leukotriene A4 hydrolase (LTA4H), cholesterol EH (ChEH), hepoxilin EH, paternally expressed gene 1 (peg1/MEST), EH3 and EH4. The sEH, an α/β-hydrolase fold family enzyme is an emerging pharmacological target in multiple diseases namely, cardiovascular disease, neurodegenerative disease, chronic pain, fibrosis, diabetes, pulmonary diseases, and immunological disease. It exhibits prominent physiological effect that includes anti-inflammatory, anti-migratory and vasodilatory effects. Its efficacy has been documented in several kinds of clinical trials and observational studies. This review specifically highlights the development of soluble epoxide hydrolase inhibitors (sEHIs) in the clinical setting for the management of metabolic syndrome and related disorders such as cardiovascular effects, endothelial dysfunction, arterial disease, hypertension, diabetes, obesity, heart failure, and dyslipidemia. In addition, limitations and future aspects of sEHIs have also been highlighted which will help the investigators to bring the sEHI to the clinics.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| | - Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith. Banasthali-304022, Rajasthan. India
| |
Collapse
|
15
|
Abdelshaheed MM, Fawzy IM, El-Subbagh HI, Youssef KM. Piperidine nucleus in the field of drug discovery. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00335-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Piperidine is an essential heterocyclic system and a pivotal cornerstone in the production of drugs. Piperidine byproducts showed several important pharmacophoric features and are being utilized in different therapeutic applications.
Main text
Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.
Conclusions
This review article sheds a light on the most recent studies proving the importance of piperidine nucleus in the field of drug discovery.
Collapse
|
16
|
Cytochrome P450-epoxygenated fatty acids inhibit Müller glial inflammation. Sci Rep 2021; 11:9677. [PMID: 33958662 PMCID: PMC8102485 DOI: 10.1038/s41598-021-89000-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Free fatty acid dysregulation in diabetics may elicit the release of inflammatory cytokines from Müller cells (MC), promoting the onset and progression of diabetic retinopathy (DR). Palmitic acid (PA) is elevated in the sera of diabetics and stimulates the production of the DR-relevant cytokines by MC, including IL-1β, which induces the production of itself and other inflammatory cytokines in the retina as well. In this study we propose that experimental elevation of cytochrome P450 epoxygenase (CYP)-derived epoxygenated fatty acids, epoxyeicosatrienoic acid (EET) and epoxydocosapentaenoic acid (EDP), will reduce PA- and IL-1β-induced MC inflammation. Broad-spectrum CYP inhibition by SKF-525a increased MC expression of inflammatory cytokines. Exogenous 11,12-EET and 19,20-EDP significantly decreased PA- and IL-1β-induced MC expression of IL-1β and IL-6. Both epoxygenated fatty acids significantly decreased IL-8 expression in IL-1β-induced MC and TNFα in PA-induced MC. Interestingly, 11,12-EET and 19,20-EDP significantly increased TNFα in IL-1β-treated MC. GSK2256294, a soluble epoxide hydrolase (sEH) inhibitor, significantly reduced PA- and IL-1β-stimulated MC cytokine expression. 11,12-EET and 19,20-EDP were also found to decrease PA- and IL-1β-induced NFκB-dependent transcriptional activity. These data suggest that experimental elevation of 11,12-EET and 19,20-EDP decreases MC inflammation in part by blocking NFκB-dependent transcription and may represent a viable therapeutic strategy for inhibition of early retinal inflammation in DR.
Collapse
|
17
|
Hammock B, McReynolds CB, Wagner K, Buckpitt A, Cortes-Puch I, Croston G, Lee KSS, Yang J, Schmidt WK, Hwang SH. Movement to the Clinic of Soluble Epoxide Hydrolase Inhibitor EC5026 as an Analgesic for Neuropathic Pain and for Use as a Nonaddictive Opioid Alternative. J Med Chem 2021; 64:1856-1872. [PMID: 33550801 PMCID: PMC7917437 DOI: 10.1021/acs.jmedchem.0c01886] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 12/12/2022]
Abstract
This report describes the development of an orally active analgesic that resolves inflammation and neuropathic pain without the addictive potential of opioids. EC5026 acts on the cytochrome P450 branch of the arachidonate cascade to stabilize epoxides of polyunsaturated fatty acids (EpFA), which are natural mediators that reduce pain, resolve inflammation, and maintain normal blood pressure. EC5026 is a slow-tight binding transition-state mimic that inhibits the soluble epoxide hydrolase (sEH) at picomolar concentrations. The sEH rapidly degrades EpFA; thus, inhibiting sEH increases EpFA in vivo and confers beneficial effects. This mechanism addresses disease states by shifting endoplasmic reticulum stress from promoting cellular senescence and inflammation toward cell survival and homeostasis. We describe the synthesis and optimization of EC5026 and its development through human Phase 1a trials with no drug-related adverse events. Additionally, we outline fundamental work leading to discovery of the analgesic and inflammation-resolving CYP450 branch of the arachidonate cascade.
Collapse
Affiliation(s)
- Bruce
D. Hammock
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Cindy B. McReynolds
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Karen Wagner
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Alan Buckpitt
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Irene Cortes-Puch
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Glenn Croston
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | | | - Jun Yang
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - William K. Schmidt
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Sung Hee Hwang
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| |
Collapse
|
18
|
Cizkova K, Koubova K, Foltynkova T, Jiravova J, Tauber Z. Soluble Epoxide Hydrolase as an Important Player in Intestinal Cell Differentiation. Cells Tissues Organs 2021; 209:177-188. [PMID: 33588415 DOI: 10.1159/000512807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
There is growing evidence that soluble epoxide hydrolase (sEH) may play a role in cell differentiation. sEH metabolizes biologically highly active and generally cytoprotective epoxyeicosatrienoic acids (EETs), generated from arachidonic acid metabolism by CYP epoxygenases (CYP2C and CYP2J subfamilies), to less active corresponding diols. We investigated the effect of sEH inhibitor (TPPU) on the expression of villin, CYP2C8, CYP2C9, CYP2J2, and sEH in undifferentiated and in vitro differentiated HT-29 and Caco2 cell lines. The administration of 10 μM TPPU on differentiated HT-29 and Caco2 cells resulted in a significant decrease in expression of villin, a marker for intestinal cell differentiation. It was accompanied by a disruption of the brush border when microvilli appeared sparse and short in atomic force microscope scans of HT-29 cells. Although inhibition of sEH in differentiated HT-29 and Caco2 cells led to an increase in sEH expression in both cell lines, this treatment had an opposite effect on CYP2J2 expression in HT-29 and Caco2 cells. In addition, tissue samples of colorectal carcinoma and adjacent normal tissues from 45 patients were immunostained for sEH and villin. We detected a significant decrease in the expression of both proteins in colorectal carcinoma in comparison to adjacent normal tissue, and the decrease in both sEH and villin expression revealed a moderate positive association. Taken together, our results showed that sEH is an important player in intestinal cell differentiation.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Katerina Koubova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Tereza Foltynkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Jana Jiravova
- Department of Medical Biophysics, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia,
| |
Collapse
|
19
|
Ligand-based optimization to identify novel 2-aminobenzo[d]thiazole derivatives as potent sEH inhibitors with anti-inflammatory effects. Eur J Med Chem 2020; 212:113028. [PMID: 33248848 DOI: 10.1016/j.ejmech.2020.113028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
Inhibition of the soluble epoxide hydrolase (sEH) is a promising new therapeutic approach in the treatment of inflammation. Driven by the in-house database product lead 1, a hybridization strategy was utilized for the design of a series of novel benzo [d]thiazol derivatives. To our delight, D016, a byproduct of compound 9, was obtained with an extraordinarily low IC50 value of 0.1 nM but poor physical and chemical properties. After removal of a non-essential urea moiety or replacement of the urea group by an amide group, compounds 15a, 17p, and 18d were identified as promising sEH inhibitors, and their molecular binding modes to sEH were constructed. Furthermore, compounds 15a and 18d exhibited more effective in vivo anti-inflammatory effect than t-AUCB in carrageenan-induced mouse paw edema. Compound 15a also showed moderate metabolic stability with a half-time of 34.7 min. Although 18d was unstable in rat liver microsomes, it might be a "prodrug". In conclusion, this study could provide valuable insights into discovery of new sEH inhibitors, and compounds 15a and 18d were worthy of further development as potential drug candidates to treat inflammation.
Collapse
|
20
|
An G, Lee KSS, Yang J, Hammock BD. Target-Mediated Drug Disposition-A Class Effect of Soluble Epoxide Hydrolase Inhibitors. J Clin Pharmacol 2020; 61:531-537. [PMID: 33078430 DOI: 10.1002/jcph.1763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Pharmacological target-mediated drug disposition (TMDD) represents a special source of nonlinear pharmacokinetics, and its occurrence in large-molecule compounds has been well recognized because numerous protein drugs have been reported to have TMDD due to specific binding to their pharmacological targets. Although TMDD can also happen in small-molecule compounds, it has been largely overlooked. In this mini-review, we summarize the occurrence of TMDD that we discovered recently in a series of small-molecule soluble epoxide hydrolase (sEH) inhibitors. Our journey started with an accidental discovery of target-mediated kinetics of 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU), a potent sEH inhibitor, in a pilot clinical study. To confirm what we observed in humans, we conducted a series of mechanism experiments in animals, including pharmacokinetic experiments using sEH knockout mice as well as in vivo displacement experiments with co-administration of another potent sEH inhibitor. Our mechanism studies confirmed that the TMDD of TPPU is due to its pharmacological target sEH. We further expanded our evaluation to various other sEH inhibitors and found that TMDD is a class effect of this group of small-molecule sEH inhibitors. In addition to summarizing the occurrence of TMDD in sEH inhibitors, in this mini-review we also highlighted the importance of recognizing TMDD of small-molecule compounds and its impact in clinical development as well as using pharmacometric modeling in facilitating quantitative understanding of TMDD.
Collapse
Affiliation(s)
- Guohua An
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, Iowa, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.,Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Jun Yang
- Department of Entomology and Nematology and UCD Cancer Research Center, University of California at Davis, Davis, California, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Cancer Research Center, University of California at Davis, Davis, California, USA
| |
Collapse
|
21
|
Codony S, Pujol E, Pizarro J, Feixas F, Valverde E, Loza MI, Brea JM, Saez E, Oyarzabal J, Pineda-Lucena A, Pérez B, Pérez C, Rodríguez-Franco MI, Leiva R, Osuna S, Morisseau C, Hammock BD, Vázquez-Carrera M, Vázquez S. 2-Oxaadamant-1-yl Ureas as Soluble Epoxide Hydrolase Inhibitors: In Vivo Evaluation in a Murine Model of Acute Pancreatitis. J Med Chem 2020; 63:9237-9257. [PMID: 32787085 PMCID: PMC7755424 DOI: 10.1021/acs.jmedchem.0c00310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In vivo pharmacological inhibition of soluble epoxide hydrolase (sEH) reduces inflammatory diseases, including acute pancreatitis (AP). Adamantyl ureas are very potent sEH inhibitors, but the lipophilicity and metabolism of the adamantane group compromise their overall usefulness. Herein, we report that the replacement of a methylene unit of the adamantane group by an oxygen atom increases the solubility, permeability, and stability of three series of urea-based sEH inhibitors. Most of these oxa-analogues are nanomolar inhibitors of both the human and murine sEH. Molecular dynamics simulations rationalize the molecular basis for their activity and suggest that the presence of the oxygen atom on the adamantane scaffold results in active site rearrangements to establish a weak hydrogen bond. The 2-oxaadamantane 22, which has a good solubility, microsomal stability, and selectivity for sEH, was selected for further in vitro and in vivo studies in models of cerulein-induced AP. Both in prophylactic and treatment studies, 22 diminished the overexpression of inflammatory and endoplasmic reticulum stress markers induced by cerulein and reduced the pancreatic damage.
Collapse
Affiliation(s)
- Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Javier Pizarro
- Pharmacology, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Ferran Feixas
- CompBioLab Group, Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Elena Valverde
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Pharmacology, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - M. Isabel Loza
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - José M. Brea
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Elena Saez
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Antonio Pineda-Lucena
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Concepción Pérez
- Institute of Medicinal Chemistry, Spanish National Research Council (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Institute of Medicinal Chemistry, Spanish National Research Council (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Sílvia Osuna
- CompBioLab Group, Departament de Química and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Manuel Vázquez-Carrera
- Pharmacology, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Du Y, Minn I, Foss C, Lesniak WG, Hu F, Dannals RF, Pomper MG, Horti AG. PET imaging of soluble epoxide hydrolase in non-human primate brain with [ 18F]FNDP. EJNMMI Res 2020; 10:67. [PMID: 32572592 PMCID: PMC7310027 DOI: 10.1186/s13550-020-00657-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Soluble epoxide hydrolase (sEH) is a promising candidate positron emission tomography (PET) imaging biomarker altered in various disorders, including vascular cognitive impairment (VCI), Alzheimer’s disease (AD), Parkinson’s disease (PD), stroke, and depression, known to regulate levels of epoxyeicosatrienoic acids (EETs) and play an important role in neurovascular coupling. [18F]FNDP, a PET radiotracer for imaging sEH, was evaluated through quantitative PET imaging in the baboon brain, radiometabolite analysis, and radiation dosimetry estimate. Methods Baboon [18F]FNDP dynamic PET studies were performed at baseline and with blocking doses of the selective sEH inhibitor AR-9281 to evaluate sEH binding specificity. Radiometabolites of [18F]FNDP in mice and baboons were measured by high-performance liquid chromatography. Regional brain distribution volume (VT) of [18F]FNDP was computed from PET using radiometabolite-corrected arterial input functions. Full body distribution of [18F]FNDP was studied in CD-1 mice, and the human effective dose was estimated using OLINDA/EXM software. Results [18F]FNDP exhibited high and rapid brain uptake in baboons. AR-9281 blocked [18F]FNDP uptake dose-dependently with a baseline VT of 10.9 ± 2.4 mL/mL and a high-dose blocking VT of 1.0 ± 0.09 mL/mL, indicating substantial binding specificity (91.70 ± 1.74%). The VND was estimated as 0.865 ± 0.066 mL/mL. The estimated occupancy values of AR-9281 were 99.2 ± 1.1% for 1 mg/kg, 88.6 ± 1.3% for 0.1 mg/kg, and 33.8 ± 3.8% for 0.02 mg/kg. Murine biodistribution of [18F]FNDP enabled an effective dose estimate for humans (0.032 mSv/MBq). [18F]FNDP forms hydrophilic radiometabolites in murine and non-human primate plasma. However, only minute amounts of the radiometabolites entered the animal brain (< 2% in mice). Conclusions [18F]FNDP is a highly sEH-specific radiotracer that is suitable for quantitative PET imaging in the baboon brain. [18F]FNDP holds promise for translation to human subjects.
Collapse
Affiliation(s)
- Yong Du
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA.
| | - Il Minn
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Catherine Foss
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Wojciech G Lesniak
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Feng Hu
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Robert F Dannals
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Martin G Pomper
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA
| | - Andrew G Horti
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, JHOC 3223, Baltimore, MD, 21287, USA.
| |
Collapse
|
23
|
Wan D, Yang J, McReynolds CB, Barnych B, Wagner KM, Morisseau C, Hwang SH, Sun J, Blöcher R, Hammock BD. In vitro and in vivo Metabolism of a Potent Inhibitor of Soluble Epoxide Hydrolase, 1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea. Front Pharmacol 2019; 10:464. [PMID: 31143115 PMCID: PMC6520522 DOI: 10.3389/fphar.2019.00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
1-(1-Propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (TPPU) is a potent soluble epoxide hydrolase (sEH) inhibitor that is used extensively in research for modulating inflammation and protecting against hypertension, neuropathic pain, and neurodegeneration. Despite its wide use in various animal disease models, the metabolism of TPPU has not been well-studied. A broader understanding of its metabolism is critical for determining contributions of metabolites to the overall safety and effectiveness of TPPU. Herein, we describe the identification of TPPU metabolites using LC-MS/MS strategies. Four metabolites of TPPU (M1–M4) were identified from rat urine by a sensitive and specific LC-MS/MS method with double precursor ion scans. Their structures were further supported by LC-MS/MS comparison with synthesized standards. Metabolites M1 and M2 were formed from hydroxylation on a propionyl group of TPPU; M3 was formed by amide hydrolysis of the 1-propionylpiperdinyl group on TPPU; and M4 was formed by further oxidation of the hydroxylated metabolite M2. Interestingly, the predicted α-keto amide metabolite and 4-(trifluoromethoxy)aniline (metabolite from urea cleavage) were not detected by the LC-MRM-MS method. This indicates that if formed, the two potential metabolites represent <0.01% of TPPU metabolism. Species differences in the formation of these four identified metabolites was assessed using liver S9 fractions from dog, monkey, rat, mouse, and human. M1, M2, and M3 were generated in liver S9 fractions from all species, and higher amounts of M3 were generated in monkey S9 fractions compared to other species. In addition, rat and human S9 metabolism showed the highest species similarity based on the quantities of each metabolite. The presence of all four metabolites were confirmed in vivo in rats over 72-h post single oral dose of TPPU. Urine and feces were major routes for TPPU excretion. M1, M4 and parent drug were detected as major substances, and M2 and M3 were minor substances. In blood, M1 accounted for ~9.6% of the total TPPU-related exposure, while metabolites M2, M3, and M4 accounted for <0.4%. All four metabolites were potent inhibitors of human sEH but were less potent than the parent TPPU. In conclusion, TPPU is metabolized via oxidation and amide hydrolysis without apparent breakdown of the urea. The aniline metabolites were not observed either in vitro or in vivo. Our findings increase the confidence in the ability to translate preclinical PK of TPPU in rats to humans and facilitates the potential clinical development of TPPU and other sEH inhibitors.
Collapse
Affiliation(s)
- Debin Wan
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Cindy B McReynolds
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Karen M Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Jia Sun
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States.,State Forestry Administration Key Open Laboratory, International Center for Bamboo and Rattan, Beijing, China
| | - René Blöcher
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Abstract
Therapeutics for arachidonic acid pathways began with the development of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX). The enzymatic pathways and arachidonic acid metabolites and respective receptors have been successfully targeted and therapeutics developed for pain, inflammation, pulmonary and cardiovascular diseases. These drugs target the COX and lipoxygenase pathways but not the third branch for arachidonic acid metabolism, the cytochrome P450 (CYP) pathway. Small molecule compounds targeting enzymes and CYP epoxy-fatty acid metabolites have evolved rapidly over the last two decades. These therapeutics have primarily focused on inhibiting soluble epoxide hydrolase (sEH) or agonist mimetics for epoxyeicosatrienoic acids (EET). Based on preclinical animal model studies and human studies, major therapeutic indications for these sEH inhibitors and EET mimics/analogs are renal and cardiovascular diseases. Novel small molecules that inhibit sEH have advanced to human clinical trials and demonstrate promise for cardiovascular diseases. Challenges remain for sEH inhibitor and EET analog drug development; however, there is a high likelihood that a drug that acts on this third branch of arachidonic acid metabolism will be utilized to treat a cardiovascular or kidney disease in the next decade.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
25
|
Solanki M, Pointon A, Jones B, Herbert K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug Metab Dispos 2018; 46:1053-1065. [PMID: 29695613 DOI: 10.1124/dmd.117.078964] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/19/2018] [Indexed: 02/13/2025] Open
Abstract
Drug-induced cardiotoxicity may be modulated by endogenous arachidonic acid (AA)-derived metabolites known as epoxyeicosatrienoic acids (EETs) synthesized by cytochrome P450 2J2 (CYP2J2). The biologic effects of EETs, including their protective effects on inflammation and vasodilation, are diverse because, in part, of their ability to act on a variety of cell types. In addition, CYP2J2 metabolizes both exogenous and endogenous substrates and is involved in phase 1 metabolism of a variety of structurally diverse compounds, including some antihistamines, anticancer agents, and immunosuppressants. This review addresses current understanding of the role of CYP2J2 in the metabolism of xenobiotics and endogenous AA, focusing on the effects on the cardiovascular system. In particular, we have promoted here the hypothesis that CYP2J2 influences drug-induced cardiotoxicity through potentially conflicting effects on the production of protective EETs and the metabolism of drugs.
Collapse
Affiliation(s)
- Meetal Solanki
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| | - Amy Pointon
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| | - Barry Jones
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| | - Karl Herbert
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
26
|
|
27
|
Blöcher R, Wagner KM, Gopireddy RR, Harris TR, Wu H, Barnych B, Hwang SH, Xiang YK, Proschak E, Morisseau C, Hammock BD. Orally Available Soluble Epoxide Hydrolase/Phosphodiesterase 4 Dual Inhibitor Treats Inflammatory Pain. J Med Chem 2018; 61:3541-3550. [PMID: 29614224 PMCID: PMC5933862 DOI: 10.1021/acs.jmedchem.7b01804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Inspired by previously discovered enhanced analgesic efficacy between soluble epoxide hydrolase (sEH) and phosphodiesterase 4 (PDE4) inhibitors, we designed, synthesized and characterized 21 novel sEH/PDE4 dual inhibitors. The best of these displayed good efficacy in in vitro assays. Further pharmacokinetic studies of a subset of four selected compounds led to the identification of a bioavailable dual inhibitor N-(4-methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (MPPA). In a lipopolysaccharide induced inflammatory pain rat model, MPPA rapidly increased in the blood ( Tmax = 30 min; Cmax = 460 nM) after oral administration of 3 mg/kg and reduced inflammatory pain with rapid onset of action correlating with blood levels over a time course of 4 h. Additionally, MPPA does not alter self-motivated exploration of rats with inflammatory pain or the withdrawal latency in control rats.
Collapse
Affiliation(s)
- René Blöcher
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Karen M. Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Raghavender R. Gopireddy
- Department of Pharmacology, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A., and VA Northern California Health Care System, CA 95655 Mather, U.S.A
| | - Todd R. Harris
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Hao Wu
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Bogdan Barnych
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Yang K. Xiang
- Department of Pharmacology, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A., and VA Northern California Health Care System, CA 95655 Mather, U.S.A
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, CA 95616, Davis, U.S.A
| |
Collapse
|
28
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Huang X, Zhuang T, Kates PA, Gao H, Chen X, Groves JT. Alkyl Isocyanates via Manganese-Catalyzed C-H Activation for the Preparation of Substituted Ureas. J Am Chem Soc 2017; 139:15407-15413. [PMID: 28976738 DOI: 10.1021/jacs.7b07658] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Organic isocyanates are versatile intermediates that provide access to a wide range of functionalities. In this work, we have developed the first synthetic method for preparing aliphatic isocyanates via direct C-H activation. This method proceeds efficiently at room temperature and can be applied to functionalize secondary, tertiary, and benzylic C-H bonds with good yields and functional group compatibility. Moreover, the isocyanate products can be readily converted to substituted ureas without isolation, demonstrating the synthetic potential of the method. To study the reaction mechanism, we have synthesized and characterized a rare MnIV-NCO intermediate and demonstrated its ability to transfer the isocyanate moiety to alkyl radicals. Using EPR spectroscopy, we have directly observed a MnIV intermediate under catalytic conditions. Isocyanation of celestolide with a chiral manganese salen catalyst followed by trapping with aniline afforded the urea product in 51% enantiomeric excess. This represents the only example of an asymmetric synthesis of an organic urea via C-H activation. When combined with our DFT calculations, these results clearly demonstrate that the C-NCO bond was formed through capture of a substrate radical by a MnIV-NCO intermediate.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Thompson Zhuang
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Patrick A Kates
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Hongxin Gao
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Xinyi Chen
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - John T Groves
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
30
|
Kitamura S, Morisseau C, Harris TR, Inceoglu B, Hammock BD. Occurrence of urea-based soluble epoxide hydrolase inhibitors from the plants in the order Brassicales. PLoS One 2017; 12:e0176571. [PMID: 28472063 PMCID: PMC5417501 DOI: 10.1371/journal.pone.0176571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Recently, dibenzylurea-based potent soluble epoxide hydrolase (sEH) inhibitors were identified in Pentadiplandra brazzeana, a plant in the order Brassicales. In an effort to generalize the concept, we hypothesized that plants that produce benzyl glucosinolates and corresponding isothiocyanates also produce these dibenzylurea derivatives. Our overall aim here was to examine the occurrence of urea derivatives in Brassicales, hoping to find biologically active urea derivatives from plants. First, plants in the order Brassicales were analyzed for the presence of 1, 3-dibenzylurea (compound 1), showing that three additional plants in the order Brassicales produce the urea derivatives. Based on the hypothesis, three dibenzylurea derivatives with sEH inhibitory activity were isolated from maca (Lepidium meyenii) roots. Topical application of one of the identified compounds (compound 3, human sEH IC50 = 222 nM) effectively reduced pain in rat inflammatory pain model, and this compound was bioavailable after oral administration in mice. The biosynthetic pathway of these urea derivatives was investigated using papaya (Carica papaya) seed as a model system. Finally, a small collection of plants from the Brassicales order was grown, collected, extracted and screened for sEH inhibitory activity. Results show that several plants of the Brassicales order could be potential sources of urea-based sEH inhibitors.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Todd R. Harris
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bora Inceoglu
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Proschak E, Heitel P, Kalinowsky L, Merk D. Opportunities and Challenges for Fatty Acid Mimetics in Drug Discovery. J Med Chem 2017; 60:5235-5266. [PMID: 28252961 DOI: 10.1021/acs.jmedchem.6b01287] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fatty acids beyond their role as an endogenous energy source and storage are increasingly considered as signaling molecules regulating various physiological effects in metabolism and inflammation. Accordingly, the molecular targets involved in formation and physiological activities of fatty acids hold significant therapeutic potential. A number of these fatty acid targets are addressed by some of the oldest and most widely used drugs such as cyclooxygenase inhibiting NSAIDs, whereas others remain unexploited. Compounds orthosterically binding to proteins that endogenously bind fatty acids are considered as fatty acid mimetics. On the basis of their structural resemblance, fatty acid mimetics constitute a family of bioactive compounds showing specific binding thermodynamics and following similar pharmacokinetic mechanisms. This perspective systematically evaluates targets for fatty acid mimetics, investigates their common structural characteristics, and highlights demands in their discovery and design. In summary, fatty acid mimetics share particularly favorable characteristics justifying the conclusion that their therapeutic potential vastly outweighs the challenges in their design.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Lena Kalinowsky
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| |
Collapse
|
32
|
Epoxyeicosatrienoic acids and glucose homeostasis in mice and men. Prostaglandins Other Lipid Mediat 2016; 125:2-7. [PMID: 27448715 DOI: 10.1016/j.prostaglandins.2016.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are formed from arachidonic acid by the action of P450 epoxygenases (CYP2C and CYP2J). Effects of EETs are limited by hydrolysis by soluble epoxide hydrolase to less active dihydroxyeicosatrienoic acids. Studies in rodent models provide compelling evidence that epoxyeicosatrienoic acids exert favorable effects on glucose homeostasis, either by enhancing pancreatic islet cell function or by increasing insulin sensitivity in peripheral tissues. Specifically, the tissue expression of soluble epoxide hydrolase appears to be increased in rodent models of obesity and diabetes. Pharmacological inhibition of epoxide hydrolase or deletion of the gene encoding soluble epoxide hydrolase (Ephx2) preserves islet cells in rodent models of type 1 diabetes and enhances insulin sensitivity in models of type 2 diabetes, as does administration of epoxyeicosatrienoic acids or their stable analogues. In humans, circulating concentrations of epoxyeicosatrienoic acids correlate with insulin sensitivity, and a loss-of-function genetic polymorphism in EPHX2 is associated with insulin sensitivity.
Collapse
|
33
|
Lazaar AL, Yang L, Boardley RL, Goyal NS, Robertson J, Baldwin SJ, Newby DE, Wilkinson IB, Tal‐Singer R, Mayer RJ, Cheriyan J. Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibitor. Br J Clin Pharmacol 2016; 81:971-9. [PMID: 26620151 PMCID: PMC4834590 DOI: 10.1111/bcp.12855] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS Endothelial-derived epoxyeicosatrienoic acids may regulate vascular tone and are metabolized by soluble epoxide hydrolase enzymes (sEH). GSK2256294 is a potent and selective sEH inhibitor that was tested in two phase I studies. METHODS Single escalating doses of GSK2256294 2-20 mg or placebo were administered in a randomized crossover design to healthy male subjects or obese smokers. Once daily doses of 6 or 18 mg or placebo were administered for 14 days to obese smokers. Data were collected on safety, pharmacokinetics, sEH enzyme inhibition and blood biomarkers. Single doses of GSK2256294 10 mg were also administered to healthy younger males or healthy elderly males and females with and without food. Data on safety, pharmacokinetics and biliary metabolites were collected. RESULTS GSK2256294 was well-tolerated with no serious adverse events (AEs) attributable to the drug. The most frequent AEs were headache and contact dermatitis. Plasma concentrations of GSK2256294 increased with single doses, with a half-life averaging 25-43 h. There was no significant effect of age, food or gender on pharmacokinetic parameters. Inhibition of sEH enzyme activity was dose-dependent, from an average of 41.9% on 2 mg (95% confidence interval [CI] -51.8, 77.7) to 99.8% on 20 mg (95% CI 99.3, 100.0) and sustained for up to 24 h. There were no significant changes in serum VEGF or plasma fibrinogen. CONCLUSIONS GSK2256294 was well-tolerated and demonstrated sustained inhibition of sEH enzyme activity. These data support further investigation in patients with endothelial dysfunction or abnormal tissue repair, such as diabetes, wound healing or COPD.
Collapse
Affiliation(s)
| | - Lucy Yang
- Experimental Medicine & Immunotherapeutics, Department of MedicineUniversity of Cambridge, and Cambridge Clinical Trials UnitCambridge
| | | | | | | | | | - David E. Newby
- University Centre for Cardiovascular Science, University of EdinburghEdinburghUK
| | - Ian B. Wilkinson
- Experimental Medicine & Immunotherapeutics, Department of MedicineUniversity of Cambridge, and Cambridge Clinical Trials UnitCambridge
| | | | | | - Joseph Cheriyan
- Experimental Medicine & Immunotherapeutics, Department of MedicineUniversity of Cambridge, and Cambridge Clinical Trials UnitCambridge
- GSK R&DStevenageCambridge and Ware
- Cambridge University Hospitals NHS Foundation TrustCambridge and
| |
Collapse
|
34
|
Waltenberger B, Garscha U, Temml V, Liers J, Werz O, Schuster D, Stuppner H. Discovery of Potent Soluble Epoxide Hydrolase (sEH) Inhibitors by Pharmacophore-Based Virtual Screening. J Chem Inf Model 2016; 56:747-62. [DOI: 10.1021/acs.jcim.5b00592] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Birgit Waltenberger
- Institute
of Pharmacy/Pharmacognosy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Ulrike Garscha
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Veronika Temml
- Institute
of Pharmacy/Pharmacognosy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Josephine Liers
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Oliver Werz
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | | | - Hermann Stuppner
- Institute
of Pharmacy/Pharmacognosy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
35
|
Tong X, Khandelwal AR, Wu X, Xu Z, Yu W, Chen C, Zhao W, Yang J, Qin Z, Weisbrod RM, Seta F, Ago T, Lee KSS, Hammock BD, Sadoshima J, Cohen RA, Zeng C. Pro-atherogenic role of smooth muscle Nox4-based NADPH oxidase. J Mol Cell Cardiol 2016; 92:30-40. [PMID: 26812119 PMCID: PMC5008453 DOI: 10.1016/j.yjmcc.2016.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE Our goal was to investigate the role of smooth muscle Nox4 in atherosclerosis. APPROACH AND RESULTS Atherosclerosis-prone conditions (disturbed blood flow and Western diet) increased Nox4 mRNA level in smooth muscle of arteries. To address whether upregulated smooth muscle Nox4 under atherosclerosis-prone conditions was directly involved in the development of atherosclerosis, mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), specifically in smooth muscle, were generated on a FVB/N ApoE deficient genetic background to counter the effect of increased smooth muscle Nox4. Nox4DN significantly decreased aortic stiffness and atherosclerotic lesions, with no effect on blood pressure. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly downregulated in Nox4DN smooth muscle cells (SMC), at both mRNA and protein levels. Downregulation of sEH by siRNA decreased SMC proliferation and migration, and suppressed inflammation and macrophage adhesion to SMC. CONCLUSIONS Downregulation of smooth muscle Nox4 inhibits atherosclerosis by suppressing sEH, which, at least in part, accounts for inhibition of SMC proliferation, migration and inflammation.
Collapse
Affiliation(s)
- Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China.
| | - Alok R Khandelwal
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaojuan Wu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Weimin Yu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wanzhou Zhao
- The Nanjing Han & Zaenker Cancer Institute, OG Pharmaceuticals, Nanjing 210019, China
| | - Jian Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhexue Qin
- Department of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Robert M Weisbrod
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 812-8581, Japan
| | - Kin Sing Stephen Lee
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
36
|
Xue Y, Olsson T, Johansson CA, Öster L, Beisel HG, Rohman M, Karis D, Bäckström S. Fragment Screening of Soluble Epoxide Hydrolase for Lead Generation-Structure-Based Hit Evaluation and Chemistry Exploration. ChemMedChem 2016; 11:497-508. [PMID: 26845235 DOI: 10.1002/cmdc.201500575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 12/20/2022]
Abstract
Soluble epoxide hydrolase (sEH) is involved in the regulation of many biological processes by metabolizing the key bioactive lipid mediator, epoxyeicosatrienoic acids. For the development of sEH inhibitors with improved physicochemical properties, we performed both a fragment screening and a high-throughput screening aiming at an integrated hit evaluation and lead generation. Followed by a joint dose-response analysis to confirm the hits, the identified actives were then effectively triaged by a structure-based hit-classification approach to three prioritized series. Two distinct scaffolds were identified as tractable starting points for potential lead chemistry work. The oxoindoline series bind at the right-hand side of the active-site pocket with hydrogen bonds to the protein. The 2-phenylbenzimidazole-4-sulfonamide series bind at the central channel with significant induced fit, which has not been previously reported. On the basis of the encouraging initial results, we envision that a new lead series with improved properties could be generated if a vector is found that could merge the cyclohexyl functionality of the oxoindoline series with the trifluoromethyl moiety of the 2-phenylbenzimidazole-4-sulfonamide series.
Collapse
Affiliation(s)
- Yafeng Xue
- Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Thomas Olsson
- Department Medicinal Chemistry, CVMD iMED, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Carina A Johansson
- Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Linda Öster
- Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Hans-Georg Beisel
- Department Medicinal Chemistry, CVMD iMED, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Mattias Rohman
- Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - David Karis
- Department Medicinal Chemistry, CVMD iMED, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Stefan Bäckström
- Department Discovery Sciences, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden.
| |
Collapse
|
37
|
Zuo SJ, Zhang S, Mao S, Xie XX, Xiao X, Xin MH, Xuan W, He YY, Cao YX, Zhang SQ. Combination of 4-anilinoquinazoline, arylurea and tertiary amine moiety to discover novel anticancer agents. Bioorg Med Chem 2015; 24:179-90. [PMID: 26706113 DOI: 10.1016/j.bmc.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/10/2023]
Abstract
In present study, 4-anilinoquinazolines scaffold, arylurea and tertiary amine moiety were combined to design, synthesize gefitinib analogs and discover novel anticancer agents. A series of 4-anilinoquinazoline derivatives (1, 2, 3 and 4) bearing arylurea and tertiary amine moiety at its 6-position were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against A431 cell and A549 cell. The SAR of the title compounds was discussed. The compounds 2d, 2i and 2j with potent antiproliferative activities were evaluated their inhibitory activity against EGFR-TK. Compound 2j displayed potent inhibitory activity against EGFR-TK. In addition, compound 2j, at 50 mg/kg, can completely inhibit cancer growth in established nude mouse A549 xenograft model in vivo. These results suggest that the 4-anilinoquinazoline derivatives bearing diarylurea and tertiary amino moiety at its 6-position can serve as anticancer agents and EGFR inhibitors.
Collapse
Affiliation(s)
- Sai-Jie Zuo
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Sai Zhang
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xiao-Xiao Xie
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Min-Hnag Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wei Xuan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yuan-Yuan He
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
38
|
Amano Y, Tanabe E, Yamaguchi T. Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening. Bioorg Med Chem 2015; 23:2310-7. [DOI: 10.1016/j.bmc.2015.03.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/30/2022]
|
39
|
Kodani SD, Hammock BD. The 2014 Bernard B. Brodie award lecture-epoxide hydrolases: drug metabolism to therapeutics for chronic pain. Drug Metab Dispos 2015; 43:788-802. [PMID: 25762541 PMCID: PMC4407705 DOI: 10.1124/dmd.115.063339] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022] Open
Abstract
Dr. Bernard Brodie's legacy is built on fundamental discoveries in pharmacology and drug metabolism that were then translated to the clinic to improve patient care. Similarly, the development of a novel class of therapeutics termed the soluble epoxide hydrolase (sEH) inhibitors was originally spurred by fundamental research exploring the biochemistry and physiology of the sEH. Here, we present an overview of the history and current state of research on epoxide hydrolases, specifically focusing on sEHs. In doing so, we start with the translational project studying the metabolism of the insect juvenile hormone mimic R-20458 [(E)-6,7-epoxy-1-(4-ethylphenoxy)-3,7-dimethyl-2-octene], which led to the identification of the mammalian sEH. Further investigation of this enzyme and its substrates, including the epoxyeicosatrienoic acids, led to insight into mechanisms of inflammation, chronic and neuropathic pain, angiogenesis, and other physiologic processes. This basic knowledge in turn led to the development of potent inhibitors of the sEH that are promising therapeutics for pain, hypertension, chronic obstructive pulmonary disorder, arthritis, and other disorders.
Collapse
Affiliation(s)
- Sean D Kodani
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| |
Collapse
|
40
|
Abstract
Hypertension is the most common modifiable risk factor for cardiovascular disease and death, and lowering blood pressure with antihypertensive drugs reduces target organ damage and prevents cardiovascular disease outcomes. Despite a plethora of available treatment options, a substantial portion of the hypertensive population has uncontrolled blood pressure. The unmet need of controlling blood pressure in this population may be addressed, in part, by developing new drugs and devices/procedures to treat hypertension and its comorbidities. In this Compendium Review, we discuss new drugs and interventional treatments that are undergoing preclinical or clinical testing for hypertension treatment. New drug classes, eg, inhibitors of vasopeptidases, aldosterone synthase and soluble epoxide hydrolase, agonists of natriuretic peptide A and vasoactive intestinal peptide receptor 2, and a novel mineralocorticoid receptor antagonist are in phase II/III of development, while inhibitors of aminopeptidase A, dopamine β-hydroxylase, and the intestinal Na
+
/H
+
exchanger 3, agonists of components of the angiotensin-converting enzyme 2/angiotensin(1–7)/Mas receptor axis and vaccines directed toward angiotensin II and its type 1 receptor are in phase I or preclinical development. The two main interventional approaches, transcatheter renal denervation and baroreflex activation therapy, are used in clinical practice for severe treatment resistant hypertension in some countries. Renal denervation is also being evaluated for treatment of various comorbidities, eg, chronic heart failure, cardiac arrhythmias and chronic renal failure. Novel interventional approaches in early development include carotid body ablation and arteriovenous fistula placement. Importantly, none of these novel drug or device treatments has been shown to prevent cardiovascular disease outcomes or death in hypertensive patients.
Collapse
Affiliation(s)
- Suzanne Oparil
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama (S.O.); and Department of Nephrology and Hypertension, University Hospital of the University Erlangen-Nürnberg, Germany (R.E.S.)
| | - Roland E. Schmieder
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama (S.O.); and Department of Nephrology and Hypertension, University Hospital of the University Erlangen-Nürnberg, Germany (R.E.S.)
| |
Collapse
|
41
|
Shim CY, Kim S, Chadderdon S, Wu M, Qi Y, Xie A, Alkayed NJ, Davidson BP, Lindner JR. Epoxyeicosatrienoic acids mediate insulin-mediated augmentation in skeletal muscle perfusion and blood volume. Am J Physiol Endocrinol Metab 2014; 307:E1097-104. [PMID: 25336524 PMCID: PMC4269677 DOI: 10.1152/ajpendo.00216.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Skeletal muscle microvascular blood flow (MBF) increases in response to physiological hyperinsulinemia. This vascular action of insulin may facilitate glucose uptake. We hypothesized that epoxyeicosatrienoic acids (EETs), a family of arachadonic, acid-derived, endothelium-derived hyperpolarizing factors, are mediators of insulin's microvascular effects. Contrast-enhanced ultrasound (CEU) was performed to quantify skeletal muscle capillary blood volume (CBV) and MBF in wild-type and obese insulin-resistant (db/db) mice after administration of vehicle or trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (t-AUCB), an inhibitor of soluble epoxide hydrolase that converts EETs to less active dihydroxyeicosatrienoic acids. Similar studies were performed in rats pretreated with l-NAME. CEU was also performed in rats undergoing a euglycemic hyperinsulinemic clamp, half of which were pretreated with the epoxygenase inhibitor MS-PPOH to inhibit EET synthesis. In both wild-type and db/db mice, intravenous t-AUCB produced an increase in CBV (65-100% increase at 30 min, P < 0.05) and in MBF. In db/db mice, t-AUCB also reduced plasma glucose by ∼15%. In rats pretreated with l-NAME, t-AUCB after produced a significant ≈20% increase in CBV, indicating a component of vascular response independent of nitric oxide (NO) production. Hyperinsulinemic clamp produced a time-dependent increase in MBF (19 ± 36 and 76 ± 49% at 90 min, P = 0.026) that was mediated in part by an increase in CBV. Insulin-mediated changes in both CBV and MBF during the clamp were blocked entirely by MS-PPOH. We conclude that EETs are a mediator of insulin-mediated augmentation in skeletal muscle perfusion and are involved in regulating changes in CBV during hyperinsulinemia.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors
- 8,11,14-Eicosatrienoic Acid/metabolism
- Animals
- Benzoates/pharmacology
- Blood Volume/drug effects
- Epoxide Hydrolases/antagonists & inhibitors
- Hyperinsulinism/physiopathology
- Insulin/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microcirculation/drug effects
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Rats
- Rats, Sprague-Dawley
- Regional Blood Flow/drug effects
- Urea/analogs & derivatives
- Urea/pharmacology
Collapse
Affiliation(s)
| | | | | | | | - Yue Qi
- Knight Cardiovascular Institute and
| | - Aris Xie
- Knight Cardiovascular Institute and
| | - Nabil J Alkayed
- Knight Cardiovascular Institute and Department of Anesthesia and Peri-operative Medicine, Oregon Health and Science University, Portland, Oregon
| | | | | |
Collapse
|
42
|
Tacconelli S, Patrignani P. Inside epoxyeicosatrienoic acids and cardiovascular disease. Front Pharmacol 2014; 5:239. [PMID: 25426071 PMCID: PMC4226225 DOI: 10.3389/fphar.2014.00239] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) generated from arachidonic acid through cytochrome P450 (CYP) epoxygenases have many biological functions. Importantly, CYP epoxygenase-derived EETs are involved in the maintenance of cardiovascular homeostasis. In fact, in addition to their potent vasodilating effect, EETs have potent anti-inflammatory properties, inhibit platelet aggregation, promote fibrinolysis, and reduce vascular smooth muscle cell proliferation. All EETs are metabolized to the less active dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH). Numerous evidences support the role of altered EET biosynthesis in the pathophysiology of hypertension and suggest the utility of antihypertensive strategies that increase CYP-derived EET or EET analogs. Indeed, a number of studies have demonstrated that EET analogs and sEH inhibitors induce vasodilation, lower blood pressure and decrease inflammation. Some of these agents are currently under evaluation in clinical trials for treatment of hypertension and diabetes. However, the role of CYP epoxygenases and of the metabolites generated in cancer progression may limit the use of these drugs in humans.
Collapse
Affiliation(s)
- Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Science, Center of Excellence on Aging (CeSI), "Gabriele d'Annunzio" University Chieti, Italy
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Science, Center of Excellence on Aging (CeSI), "Gabriele d'Annunzio" University Chieti, Italy
| |
Collapse
|
43
|
Martini RP, Ward J, Siler DA, Eastman JM, Nelson JW, Borkar RN, Alkayed NJ, Dogan A, Cetas JS. Genetic variation in soluble epoxide hydrolase: association with outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 2014; 121:1359-66. [PMID: 25216066 DOI: 10.3171/2014.7.jns131990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECT Patients with aneurysmal subarachnoid hemorrhage (SAH) are at high risk for delayed cerebral ischemia (DCI) and stroke. Epoxyeicosatrienoic acids (EETs) play an important role in cerebral blood flow regulation and neuroprotection after brain injury. Polymorphisms in the gene for the enzyme soluble epoxide hydrolase (sEH), which inactivates EETs, are associated with ischemic stroke risk and neuronal survival after ischemia. This prospective observational study of patients with SAH compares vital and neurologic outcomes based on functional polymorphisms of sEH. METHODS Allelic discrimination based on quantitative real-time polymerase chain reaction was used to differentiate wild-type sEH from K55R heterozygotes (predictive of increased sEH activity and reduced EETs) and R287Q heterozygotes (predictive of decreased sEH activity and increased EETs). The primary outcome was new stroke after SAH. Secondary outcomes were death, Glasgow Outcome Scale score, and neurological deterioration attributable to DCI. RESULTS Multivariable logistic regression models adjusted for age at admission and Glasgow Coma Scale scores revealed an increase in the odds of new stroke (OR 5.48 [95% CI 1.51-19.91]) and death (OR 7.52 [95% CI 1.27-44.46]) in the K55R group, but no change in the odds of new stroke (OR 0.56 [95% CI 0.16-1.96]) or death (OR 3.09 [95% CI 0.51-18.52]) in patients with R287Q genotype, compared with wild-type sEH. The R287Q genotype was associated with reduced odds of having a Glasgow Outcome Scale score of ≤ 3 (OR 0.23 [95% CI 0.06-0.82]). There were no significant differences in the odds of neurological deterioration due to DCI. CONCLUSIONS Genetic polymorphisms of sEH are associated with neurological and vital outcomes after aneurysmal SAH.
Collapse
Affiliation(s)
- Ross P Martini
- Departments of Anesthesiology & Perioperative Medicine and
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Structure-based optimization of cyclopropyl urea derivatives as potent soluble epoxide hydrolase inhibitors for potential decrease of renal injury without hypotensive action. Bioorg Med Chem 2014; 22:1548-57. [DOI: 10.1016/j.bmc.2014.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
|
45
|
Rezaee Zavareh E, Hedayati M, Hoghooghi Rad L, Shahhosseini S, Faizi M, Tabatabai SA. Design, synthesis and biological evaluation of 4-benzamidobenzoic Acid hydrazide derivatives as novel soluble epoxide hydrolase inhibitors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2014; 13:51-9. [PMID: 24711829 PMCID: PMC3977053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Inhibitors of soluble epoxide hydrolase (sEH) represent one of the novel pharmaceutical approaches for treating hypertension, vascular inflammation, pain and other cardiovascular related diseases. Most of the potent sEH inhibitors reported in literature often suffer from poor solubility and bioavailability. Toward improving pharmacokinetic profile beside favorable potency, two series of 4-benzamidobenzoic acid hydrazide derivatives with hydrazide group as a novel secondary pharmacophore against sEH enzyme were developed. The designed compounds were synthesized in acceptable yield and their in vitro assay was determined. Most of the synthesized compounds have appropriate physical properties and exhibited considerable in-vitro sEH inhibitory activity in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoicacid (AUDA), a potent urea-based sEH inhibitor. 4-(2-(4-(4-chlorobenzamido) benzoyl)hydrazinyl)-4-oxobutanoic acid 6c was found to be the most potent inhibitor with inhibitory activity of 72% targeting sEH enzyme.
Collapse
Affiliation(s)
- Elham Rezaee Zavareh
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Laleh Hoghooghi Rad
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayyed Abbas Tabatabai
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Corresponding author:
E-mail:
| |
Collapse
|
46
|
Soluble epoxide hydrolase inhibition does not prevent cardiac remodeling and dysfunction after aortic constriction in rats and mice. J Cardiovasc Pharmacol 2013; 61:291-301. [PMID: 23232840 DOI: 10.1097/fjc.0b013e31827fe59c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epoxyeicosatrienoic acids, substrates for soluble epoxide hydrolase (sEH), exhibit vasodilatory and antihypertrophic activities. Inhibitors of sEH might therefore hold promise as heart failure therapeutics. We examined the ability of sEH inhibitors GSK2188931 and GSK2256294 to modulate cardiac hypertrophy, fibrosis, and function after transverse aortic constriction (TAC) in rats and mice. GSK2188931 administration was initiated in rats 1 day before TAC, whereas GSK2256294 treatment was initiated in mice 2 weeks after TAC. Four weeks later, cardiovascular function was assessed, plasma was collected for drug and sEH biomarker concentrations, and left ventricle was isolated for messenger RNA and histological analyses. In rats, although GSK2188931 prevented TAC-mediated increases in certain genes associated with hypertrophy and fibrosis (α-skeletal actin and connective tissue growth factor), the compound failed to attenuate TAC-induced increases in left ventricle mass, posterior wall thickness, end-diastolic volume and pressure, and perivascular fibrosis. Similarly, in mice, GSK2256294 did not reverse cardiac remodeling or systolic dysfunction induced by TAC. Both compounds increased the sEH substrate/product (leukotoxin/leukotoxin diol) ratio, indicating sEH inhibition. In summary, sEH inhibition does not prevent cardiac remodeling or dysfunction after TAC. Thus, targeting sEH seems to be insufficient for reducing pressure overload hypertrophy.
Collapse
|
47
|
Chen H, Zhang Y, Ye C, Feng TT, Han JG. Insight into the binding modes and inhibition mechanisms of adamantyl-based 1,3-disubstituted urea inhibitors in the active site of the human soluble epoxide hydrolase. J Biomol Struct Dyn 2013; 32:1231-47. [DOI: 10.1080/07391102.2013.812981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
49
|
Prevention of Coronary Artery Disease: Recent Advances in the Management of Hypertension. Curr Atheroscler Rep 2013; 15:311. [DOI: 10.1007/s11883-013-0311-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Wagner K, Inceoglu B, Dong H, Yang J, Hwang SH, Jones P, Morisseau C, Hammock BD. Comparative efficacy of 3 soluble epoxide hydrolase inhibitors in rat neuropathic and inflammatory pain models. Eur J Pharmacol 2012; 700:93-101. [PMID: 23276668 DOI: 10.1016/j.ejphar.2012.12.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 12/20/2022]
Abstract
Epoxy-fatty acids have been recognized as important cell signaling molecules with multiple biological effects including anti-nociception. The main degradation pathway of these signaling molecules is via the soluble epoxide hydrolase (sEH) enzyme. Inhibitors of sEH extend the anti-nociceptive effects of fatty acid epoxides. In this study two models of pain with different etiology, streptozocin induced type I diabetic neuropathic pain and lipopolysaccharide induced inflammatory pain were employed to test sEH inhibitors. A dose range of three sEH inhibitors with the same central pharmacophore but varying substituent moieties was used to investigate maximal anti-allodynic effects in these two models of pain. Inhibiting the sEH enzyme in these models successfully blocked pain related behavior in both models. The sEH inhibitors were more potent and more efficacious than celecoxib in reducing both diabetic neuropathic pain and lipopolysaccharide induced inflammatory pain. Because of their ability to block diabetic neuropathic pain sEH inhibition is a promising new approach to treat chronic pain conditions.
Collapse
Affiliation(s)
- Karen Wagner
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|