1
|
Feng H, Luo J, Li Z, Zhao Y, Liu Y, Zhu H. Valproic acid attenuates the severity of astrogliosis in the hippocampus of animal models of temporal lobe epilepsy. IBRO Neurosci Rep 2024; 17:471-479. [PMID: 39669223 PMCID: PMC11635005 DOI: 10.1016/j.ibneur.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
Reactive astrogliosis is one of the most frequency neuropathological alterations in the hippocampus of animal models and patients with temporal lobe epilepsy (TLE). Valproic acid (VPA), a widely used antiepileptic drug (AED), acts by blocking ion channels and enhancing GABAergic activity. This study investigated the effects of VPA on hippocampal astrogliosis in a rat model of TLE. The results demonstrated that chronic administration of VPA at a dose of 200 mg/kg significantly reduced the severity of astrogliosis and ameliorated neuronal loss in the hippocampus at the early and middle stages post-status epilepticus (SE), while also improving cognitive impairments at the middle and late stages in KA-SE rats. Long-term administration of VPA at 400 mg/kg attenuated astrogliosis in the hippocampus at the middle stage post-SE, but lacked neuroprotective effects and exacerbated cognitive impairments at the late stage. These findings suggest that VPA at an appropriate dose could mitigate hippocampal astrogliosis, potentially offering a new antiepileptic mechanism for its long-term use.
Collapse
Affiliation(s)
- Hu Feng
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Jiamin Luo
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Zhiwei Li
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Yuxiao Zhao
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Yamei Liu
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Hongyan Zhu
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| |
Collapse
|
2
|
Kavrik O, Gumral N, Ozmen O, Aslankoc R, Saygin M, Yalcin A. The combined use of thymoquinone and metformin provides more effective neuroprotection in a mouse model of MPTP-induced Parkinson's disease. J Recept Signal Transduct Res 2024; 44:161-173. [PMID: 39585743 DOI: 10.1080/10799893.2024.2434112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Thymoquinone (TQ) is known for its antioxidant properties, and although metformin (MM) is known as an antidiabetic drug, it is suggested that it reduces neurodegeneration. The study aimed to investigate the neuroprotective effects of TQ and MM, particularly when used together, in relation to Parkinson's disease (PD). In the study, sixty-eight male C57BL/6 mice weighing 25-30 g were divided into five groups as follows: control, MPTP, MPTP+TQ, MPTP+MM, and MPTP+TQ+MM. MM (500 mg/kg, orally) and TQ (5 mg/kg, i.p.) were administered for 21 days. Motor coordination and locomotor activities were evaluated by the pole test. TOS and TAS analyses were conducted to determine oxidative stress levels in the substantia nigra. Dopaminergic degeneration in the substantia nigra was evaluated by analyzing Tyrosine hydroxylase (TH). To evaluate the apoptotic pathway, the expression levels of iNOS, BDNF, Complex 1, Bax, Bcl-2, Cytochrome C, AIF, and Caspase-3 were examined immunohistochemically. Compared to the MPTP-treated group, TQ, MM and MM+TQ treatment provided significant improvement in locomotor activity in mice, significantly increased antioxidant activity, significantly reduced the expression levels of iNOS, Bax, Cytochrome C, Caspase-3, and AIF, significantly increased BDNF, Bcl-2, and Complex 1 expressions, and significantly increased the number of TH positive cells. The separate use of TQ and MM exhibits neuroprotective activity, however, we showed that using TQ and MM in combination may be more effective. This may provide preclinical evidence supporting the therapeutic potential of their combined use for treating PD.
Collapse
Affiliation(s)
- Oguzhan Kavrik
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Nurhan Gumral
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University Faculty of Veterinary, Burdur, Turkey
| | - Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Saygin
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Arzu Yalcin
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
3
|
Huang L, Liang D, Zhang Y, Chen X, Chen J, Wen C, Liu H, Yang X, Yang X, Lin S. METTL3 promotes colorectal cancer metastasis by promoting the maturation of pri-microRNA-196b. J Cancer Res Clin Oncol 2023; 149:5095-5108. [PMID: 36348020 PMCID: PMC10349789 DOI: 10.1007/s00432-022-04429-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Methyltransferase-like 3 (METTL3), a key member of the m6A methyltransferase complex, is upregulated in multiple human malignancies and plays a role in regulating tumor migration. This study aimed to reveal the underlying mechanism by which METTL3 in regulates the metastasis of colorectal cancer (CRC). METHODS We compared METTL3 expression levels in CRC tumor tissues and adjacent nontumor tissues by immunohistochemistry (IHC). The functional roles of METTL3 in CRC were assessed by real-time cell migration assays, wound-healing assays and Transwell assays. miRNA sequencing (miRNA-seq), RNA-binding protein immunoprecipitation (RIP) assays and N6-methyladenosine immunoprecipitation (MeRIP) assays were performed to confirm the molecular mechanism underlying the involvement of METTL3 in CRC cell metastasis. RESULTS We found that METTL3 was overexpressed in CRC tissues. METTL3 knockdown significantly inhibited CRC cell migration and invasion, while METTL3 overexpression had the opposite effects. Furthermore, we demonstrated that METTL3 regulates miR-196b expression via an N6-methyladenosine (m6A)-pri-miR-196b-dependent mechanism and thereby promotes CRC metastasis. CONCLUSION This study shows the important role of METTL3 in CRC metastasis and provides novel insight into m6A modification in CRC metastasis.
Collapse
Affiliation(s)
- Lanlan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Danlu Liang
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhang
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoting Chen
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junxiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaorong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shaoqiang Lin
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
4
|
Combining Bone Collagen Matrix with hUC-MSCs for Application to Alveolar Process Cleft in a Rabbit Model. Stem Cell Rev Rep 2023; 19:133-154. [PMID: 34420159 DOI: 10.1007/s12015-021-10221-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Most materials used clinically for filling severe bone defects either cannot induce bone re-generation or exhibit low bone conversion, therefore, their therapeutic effects are limited. Human umbilical cord mesenchymal stem cells (hUC-MSCs) exhibit good osteoinduction. However, the mechanism by which combining a heterogeneous bone collagen matrix with hUC-MSCs to repair the bone defects of alveolar process clefts remains unclear. METHODS A rabbit alveolar process cleft model was established by removing the bone tissue from the left maxillary bone. Forty-eight young Japanese white rabbits (JWRs) were divided into normal, control, material and MSCs groups. An equal volume of a bone collagen matrix alone or combined with hUC-MSCs was implanted in the defect. X-ray, micro-focus computerized tomography (micro-CT), blood analysis, histochemical staining and TUNEL were used to detect the newly formed bone in the defect area at 3 and 6 months after the surgery. RESULTS The bone formation rate obtained from the skull tissue in MSCs group was significantly higher than that in control group at 3 months (P < 0.01) and 6 months (P < 0.05) after the surgery. The apoptosis rate in the MSCs group was significantly higher at 3 months after the surgery (P < 0.05) and lower at 6 months after the surgery (P < 0.01) than those in the normal group. CONCLUSIONS Combining bone collagen matrix with hUC-MSCs promoted the new bone regeneration in the rabbit alveolar process cleft model through promoting osteoblasts formations and chondrocyte growth, and inducing type I collagen formation and BMP-2 generation.
Collapse
|
5
|
Sharma M, Malim FM, Goswami A, Sharma N, Juvvalapalli SS, Chatterjee S, Kate AS, Khairnar A. Neuroprotective Effect of Swertiamarin in a Rotenone Model of Parkinson's Disease: Role of Neuroinflammation and Alpha-Synuclein Accumulation. ACS Pharmacol Transl Sci 2022; 6:40-51. [PMID: 36654754 PMCID: PMC9841796 DOI: 10.1021/acsptsci.2c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with no permanent cure affecting around 1% of the population over 65. There is an urgency to search for a disease-modifying agent with fewer untoward effects. PD pathology involves the accumulation of toxic alpha-synuclein (α-syn) and neuronal inflammation leading to the degeneration of dopaminergic (DAergic) neurons. Swertiamarin (SWE), a well-studied natural product, possesses a strong anti-inflammatory effect. It is a secoiridoid glycoside isolated from Enicostemma littorale Blume. SWE showed a reversal effect on the α-syn accumulation in the 6-hydroxydopamine (6-OHDA)-induced Caenorhabditis elegans model of PD. However, there are no reports in the literature citing the effect of SWE as a neuroprotective agent in rodents. The present study aimed to evaluate the anti-inflammatory activity of SWE against lipopolysaccharide (LPS)-induced C6 glial cell activation and its neuroprotective effect in the intrastriatal rotenone mouse PD model. SWE treatment showed a significant reduction in interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels in LPS-induced C6 glial cell activation. Further, our studies demonstrated the suppression of microglial and astroglial activation in substantia nigra (SN) after administration of SWE (100 mg/kg, intraperitoneally) in a rotenone mouse model. Moreover, SWE alleviated the rotenone-induced α-syn overexpression in the striatum and SN. SWE ameliorated the motor impairment against rotenone-induced neurotoxicity and mitigated the loss of DAergic neurons in the nigrostriatal pathway. Therefore, SWE has the potential to develop as an adjunct therapy for PD, but it warrants further mechanistic studies.
Collapse
Affiliation(s)
- Monika Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355 India
| | - Fehmina Mushtaque Malim
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355 India
| | - Ashutosh Goswami
- Department
of Natural Products, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355 India
| | - Nishant Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355 India
| | - Sai Sowmya Juvvalapalli
- Department
of Natural Products, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355 India
| | - Sayan Chatterjee
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355 India
| | - Abhijeet S. Kate
- Department
of Natural Products, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355 India,; . Phone: +79 66745555
| | - Amit Khairnar
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355 India,International
Clinical Research Center, St. Anne’s
University Hospital Brno, Brno 656 91 Czech Republic,..
Phone: +91 9284349396
| |
Collapse
|
6
|
Zhang M, Wang S, Tang X, Ye X, Chen Y, Liu Z, Li L. Use of potassium ion channel and spliceosome proteins as diagnostic biomarkers for sudden unexplained death in schizophrenia. Forensic Sci Int 2022; 340:111471. [PMID: 36162298 DOI: 10.1016/j.forsciint.2022.111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
Abstract
Sudden unexplained death in schizophrenia (SUD-SCZ) is not uncommon and its incidence is approximately three times higher than that in the general population. However, diagnosis of SUD-SCZ remains a great challenge in forensic pathology. This study designed a two-phase study to investigate whether three proteins, namely two potassium ion channel proteins (KCNJ3 and KCNAB1) and one spliceosome protein (SF3B3) that were identified in our previous work, could be applied in the postmortem diagnosis of SUD-SCZ. Immunohistochemical staining of the three biomarkers, followed by a rigorous quantitative analysis, was performed on heart specimens from both SUD-SCZ and control groups. A diagnostic software based on the logistic regression formula derived from the test phase data was then constructed. In the test phase, we found that the staining intensities of KCNJ3, KCNAB1, and SF3B3 were all significantly lower in the SUD-SCZ group (n = 20) as compared with the control group that died from non-natural causes (n = 25), with fold-changes being 14.85 (p < 0.001), 4.13 (p = 0.028) and 2.12 (p = 0.048), respectively. Receiver operating characteristic analysis further illustrated that combination of the three biomarkers achieved the optimal diagnostic specificity (92%) and area under the curve (0.886). In the validation phase, the diagnostic software was confirmed to be a promising tool for predicting the risk of SUD-SCZ in authentic cases. Our study provided a valid strategy towards the practical diagnosis of SUD-SCZ by using KCNJ3, KCNAB1, and SF3B3 proteins as diagnostic biomarkers.
Collapse
Affiliation(s)
- Molin Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Xinru Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Xing Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China; Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| | - Yongsheng Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security Bureau, Shanghai 200083, PR China.
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
7
|
Yang FY, Huang LH, Wu MT, Pan ZY. Ultrasound Neuromodulation Reduces Demyelination in a Rat Model of Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms231710034. [PMID: 36077437 PMCID: PMC9456451 DOI: 10.3390/ijms231710034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Microglia, astrocytes, and oligodendrocyte progenitor cells (OPCs) may serve as targets for remyelination-enhancing therapy. Low-intensity pulsed ultrasound (LIPUS) has been demonstrated to ameliorate myelin loss and inhibit neuroinflammation in animal models of brain disorders; however, the underlying mechanisms through which LIPUS stimulates remyelination and glial activation are not well-understood. This study explored the impacts of LIPUS on remyelination and resident cells following lysolecithin (LPC)-induced local demyelination in the hippocampus. Demyelination was induced by the micro-injection of 1.5 μL of 1% LPC into the rat hippocampus, and the treatment groups received daily LIPUS stimulation for 5 days. The therapeutic effects of LIPUS on LPC-induced demyelination were assessed through immunohistochemistry staining. The staining was performed to evaluate remyelination and Iba-1 staining as a microglia marker. Our data revealed that LIPUS significantly increased myelin basic protein (MBP) expression. Moreover, the IHC results showed that LIPUS significantly inhibited glial cell activation, enhanced mature oligodendrocyte density, and promoted brain-derived neurotrophic factor (BDNF) expression at the lesion site. In addition, a heterologous population of microglia with various morphologies can be found in the demyelination lesion after LIPUS treatment. These data show that LIPUS stimulation may serve as a potential treatment for accelerating remyelination through the attenuation of glial activation and the enhancement of mature oligodendrocyte density and BDNF production.
Collapse
Affiliation(s)
- Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-2826-7281; Fax: +886-2-2820-1095
| | - Li-Hsin Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Meng-Ting Wu
- Division of Neurosurgery, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Zih-Yun Pan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
8
|
Lee TK, Lee JC, Kim D, Lee JW, Kim SS, Kim HI, Shin M, Cho J, Won MH, Choi S. Effects of Brain Factor‑7® against motor deficit and oxidative stress in a mouse model of MPTP‑induced Parkinson's disease. Exp Ther Med 2022; 24:635. [PMID: 36160902 PMCID: PMC9468851 DOI: 10.3892/etm.2022.11572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is strongly implicated in the pathogenesis of Parkinson's disease (PD) through degeneration of dopaminergic neurons. The present study was designed to investigate the underlying mechanisms and therapeutic potential of Brain Factor-7® (BF-7®), a natural compound in silkworm, in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP (20 mg/kg) was intraperitoneally injected into mice to cause symptoms of PD. Mice were orally administered BF-7® (a mixture of silk peptides) before and after MPTP treatment. Rotarod performance test was used to assess motor performance. Fluoro-Jade B staining for neurons undergoing degeneration and immunohistochemistry of tyrosine hydroxylase for dopaminergic neurons, 4-hydroxy-2-nonenal (4HNE) for lipid peroxidation, 8-hydroxy-2'-deoxyguanosine (8OHdG) for DNA damage and superoxide dismutase (SOD) 1 and SOD2 for antioxidative enzymes in the pars compacta of the substantia nigra were performed. Results showed that BF-7® treatment significantly improved MPTP-induced motor deficit and protected MPTP-induced dopaminergic neurodegeneration. Furthermore, BF-7® treatment significantly ameliorated MPTP-induced oxidative stress. Increased 4HNE and 8OHdG immunoreactivities induced by MPTP were significantly reduced by BF-7®, whereas SOD1 and SOD2 immunoreactivities decreased by MPTP were significantly enhanced by BF-7®. In conclusion, BF-7® exerted protective and/or therapeutic effects in a mouse model of PD by decreasing effects of oxidative stress on dopaminergic neurons in the substantia nigra pars compacta.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung‑Wonju National University, Gangneung 25457, Republic of Korea
| | - Ji-Won Lee
- Precision Medicine R&D Center, Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Sung-Su Kim
- Precision Medicine R&D Center, Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Hyung-Il Kim
- Department of Emergency Medicine, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Myoung Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jun Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Soo Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
9
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Norrara B, Morais PLAG, Oliveira LC, Engelberth RCGJ, Cavalcante JS, Cavalcanti JRLP. Effect of senescence on the tyrosine hydroxylase and S100B immunoreactivity in the nigrostriatal pathway of the rat. J Chem Neuroanat 2022; 124:102136. [PMID: 35809809 DOI: 10.1016/j.jchemneu.2022.102136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Senescence is a natural and progressive physiological event that leads to a series of morphophysiological alterations in the organism. The brain is the most vulnerable organ to both structural and functional changes during this process. Dopamine is a key neurotransmitter for the proper functioning of the brain, directly involved in circuitries related with emotions, learning, motivation and reward. One of the main dopamine- producing nuclei is the substantia nigra pars compacta (SNpc), which establish connections with the striatum forming the so-called nigrostriatal pathway. S100B is a calcium binding protein mainly expressed by astrocytes, involved in both intracellular and extracellular processes, and whose expression is increased following injury in the nervous tissue, being a useful marker in altered status of central nervous system. The present study aimed to analyze the impact of senescence on the cells immunoreactive for tyrosine hydroxylase (TH) and S100B along the nigrostriatal pathway of the rat. Our results show an decreased expression of S100B+ cells in SNpc. In addition, there was a significant decrease in TH immunoreactivity in both projection fibers and TH+ cell bodies. In the striatum, a decrease in TH immunoreactivity was also observed, as well as an enlargement of the white matter bundles. Our findings point out that senescence is related to the anatomical and neurochemical changes observed throughout the nigrostriatal pathway.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Marco Aurelio M Freire
- Graduate Program in Health and Society, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Karina M Paiva
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Rodrigo F Oliveira
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Bianca Norrara
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Lucidio C Oliveira
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | | | | | - José Rodolfo L P Cavalcanti
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil; Graduate Program in Health and Society, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil; Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil.
| |
Collapse
|
10
|
Flaive A, Ryczko D. From retina to motoneurons: A substrate for visuomotor transformation in salamanders. J Comp Neurol 2022; 530:2518-2536. [PMID: 35662021 PMCID: PMC9545292 DOI: 10.1002/cne.25348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
The transformation of visual input into motor output is essential to approach a target or avoid a predator. In salamanders, visually guided orientation behaviors have been extensively studied during prey capture. However, the neural circuitry involved is not resolved. Using salamander brain preparations, calcium imaging and tracing experiments, we describe a neural substrate through which retinal input is transformed into spinal motor output. We found that retina stimulation evoked responses in reticulospinal neurons of the middle reticular nucleus, known to control steering movements in salamanders. Microinjection of glutamatergic antagonists in the optic tectum (superior colliculus in mammals) decreased the reticulospinal responses. Using tracing, we found that retina projected to the dorsal layers of the contralateral tectum, where the dendrites of neurons projecting to the middle reticular nucleus were located. In slices, stimulation of the tectal dorsal layers evoked glutamatergic responses in deep tectal neurons retrogradely labeled from the middle reticular nucleus. We then examined how tectum activation translated into spinal motor output. Tectum stimulation evoked motoneuronal responses, which were decreased by microinjections of glutamatergic antagonists in the contralateral middle reticular nucleus. Reticulospinal fibers anterogradely labeled from tracer injection in the middle reticular nucleus were preferentially distributed in proximity with the dendrites of ipsilateral motoneurons. Our work establishes a neural substrate linking visual and motor centers in salamanders. This retino‐tecto‐reticulo‐spinal circuitry is well positioned to control orienting behaviors. Our study bridges the gap between the behavioral studies and the neural mechanisms involved in the transformation of visual input into motor output in salamanders.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
11
|
Louçano M, Oliveira J, Martins I, Vaz R, Tavares I. Pain Modulation from the Locus Coeruleus in a Model of Hydrocephalus: Searching for Oxidative Stress-Induced Noradrenergic Neuroprotection. Int J Mol Sci 2022; 23:ijms23073970. [PMID: 35409327 PMCID: PMC8999514 DOI: 10.3390/ijms23073970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Pain transmission at the spinal cord is modulated by noradrenaline (NA)-mediated actions that arise from supraspinal areas. We studied the locus coeruleus (LC) to evaluate the expression of the cathecolamine-synthetizing enzyme tyrosine hydroxylase (TH) and search for local oxidative stress and possible consequences in descending pain modulation in a model of hydrocephalus, a disease characterized by enlargement of the cerebral ventricular system usually due to the obstruction of cerebrospinal fluid flow. Four weeks after kaolin injection into the cisterna magna, immunodetection of the catecholamine-synthetizing enzymes TH and dopamine-β-hydroxylase (DBH) was performed in the LC and spinal cord. Colocalization of the oxidative stress marker 8-OHdG (8-hydroxyguanosine; 8-OHdG), with TH in the LC was performed. Formalin was injected in the hindpaw both for behavioral nociceptive evaluation and the immunodetection of Fos expression in the spinal cord. Hydrocephalic rats presented with a higher expression of TH at the LC, of TH and DBH at the spinal dorsal horn along with decreased nociceptive behavioral responses in the second (inflammatory) phase of the formalin test, and formalin-evoked Fos expression at the spinal dorsal horn. The expression of 8-OHdG was increased in the LC neurons, with higher co-localization in TH-immunoreactive neurons. Collectively, the results indicate increased noradrenergic expression at the LC during hydrocephalus. The strong oxidative stress damage at the LC neurons may lead to local neuroprotective-mediated increases in NA levels. The increased expression of catecholamine-synthetizing enzymes along with the decreased nociception-induced neuronal activation of dorsal horn neurons and behavioral pain signs may indicate that hydrocephalus is associated with alterations in descending pain modulation.
Collapse
Affiliation(s)
- Marta Louçano
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (M.L.); (I.M.)
- IBMC-Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- Chemical and Biomolecule Sciences, School of Health, Polytechnic of Porto, 4099-002 Porto, Portugal;
- International Doctoral School, University of Vigo, 36310 Vigo, Spain
| | - Joana Oliveira
- Neurosurgery Service of Centro Hospital São João, 4200-319 Porto, Portugal;
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (M.L.); (I.M.)
- IBMC-Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Rui Vaz
- Chemical and Biomolecule Sciences, School of Health, Polytechnic of Porto, 4099-002 Porto, Portugal;
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (M.L.); (I.M.)
- IBMC-Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- I3S-Institute of Investigation and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +35-12-2551-3654
| |
Collapse
|
12
|
Neves PFR, Milanesi BB, Paz LV, de Miranda Monteiro VAC, Neves LT, da Veiga LC, da Silva RB, Sulzbach JH, Knijkik GP, de Revoredo Ribeiro EC, de Souza Silva EL, Vieira MQ, Bagatini PB, Wieck A, Mestriner RG, Xavier LL. Age-related tolerance to paraquat-induced parkinsonism in Drosophila melanogaster. Toxicol Lett 2022; 361:43-53. [DOI: 10.1016/j.toxlet.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
|
13
|
Downregulation of CPT2 promotes proliferation and inhibits apoptosis through p53 pathway in colorectal cancer. Cell Signal 2022; 92:110267. [DOI: 10.1016/j.cellsig.2022.110267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
|
14
|
Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2021; 118:2110934118. [PMID: 34670837 DOI: 10.1073/pnas.2110934118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
In Parkinson's disease (PD), the loss of midbrain dopaminergic cells results in severe locomotor deficits, such as gait freezing and akinesia. Growing evidence indicates that these deficits can be attributed to the decreased activity in the mesencephalic locomotor region (MLR), a brainstem region controlling locomotion. Clinicians are exploring the deep brain stimulation of the MLR as a treatment option to improve locomotor function. The results are variable, from modest to promising. However, within the MLR, clinicians have targeted the pedunculopontine nucleus exclusively, while leaving the cuneiform nucleus unexplored. To our knowledge, the effects of cuneiform nucleus stimulation have never been determined in parkinsonian conditions in any animal model. Here, we addressed this issue in a mouse model of PD, based on the bilateral striatal injection of 6-hydroxydopamine, which damaged the nigrostriatal pathway and decreased locomotor activity. We show that selective optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus in mice expressing channelrhodopsin in a Cre-dependent manner in Vglut2-positive neurons (Vglut2-ChR2-EYFP mice) increased the number of locomotor initiations, increased the time spent in locomotion, and controlled locomotor speed. Using deep learning-based movement analysis, we found that the limb kinematics of optogenetic-evoked locomotion in pathological conditions were largely similar to those recorded in intact animals. Our work identifies the glutamatergic neurons of the cuneiform nucleus as a potentially clinically relevant target to improve locomotor activity in parkinsonian conditions. Our study should open avenues to develop the targeted stimulation of these neurons using deep brain stimulation, pharmacotherapy, or optogenetics.
Collapse
|
15
|
Hu X, Wu J, Xiong H, Zeng L, Wang Z, Wang C, Huang D, Zhang T, Peng Y, Chen W, Xia K, Su T. Type 2 diabetes mellitus promotes the proliferation, metastasis, and suppresses the apoptosis in oral squamous cell carcinoma. J Oral Pathol Med 2021; 51:483-492. [PMID: 34551155 DOI: 10.1111/jop.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Our previous study revealed that patients with oral squamous cell carcinoma and concomitant type 2 diabetes mellitus presented a lower 5-year survival rate. Hyperglycemia has been increasingly recognized as a risk factor for more advanced disease and poorer prognosis in patients with oral squamous cell carcinoma. However, its role remains unclear. METHODS The expressions of BRIP1, Ki67, E-cadherin, and cleaved caspase-3 were detected by immunohistochemistry in oral squamous cell carcinoma tissues with or without type 2 diabetes mellitus. Cell counting kit-8 assay and wound healing assay were used to determine the proliferative and migratory ability of oral squamous cell carcinoma cells cultured with or without high glucose in vitro. Flow cytometry was applied to distinguish the role of high glucose on the cell cycle and apoptosis rates. RESULTS The expression level of Ki67 was elevated while BRIP1, E-cadherin, and cleaved caspase-3 were downregulated in patients with oral squamous cell carcinoma coexisting with diabetes. The cell proliferation and migration in oral squamous cell carcinoma cell lines were significantly enhanced by high glucose. Flow cytometric analysis suggested that high glucose predisposed cancer cells to stay at S/G2 phase and to exhibit lower apoptosis rates. CONCLUSION Our results implicated that type 2 diabetes mellitus may play a crucial role in the development and progression of oral squamous cell carcinoma through hyperglycemia, affecting cancer cell proliferation, migration, and apoptosis. This finding might provide a new direction for the prevention and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Xin Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Jin Wu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Haofeng Xiong
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Liujun Zeng
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Zijia Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Can Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Danni Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Tianyi Zhang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Ying Peng
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Weijun Chen
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Vilhena ER, Bonato JM, Schepers M, Kunieda JKC, Milani H, Vanmierlo T, Prickaerts J, de Oliveira RMW. Positive effects of roflumilast on behavior, neuroinflammation, and white matter injury in mice with global cerebral ischemia. Behav Pharmacol 2021; 32:459-471. [PMID: 34320520 DOI: 10.1097/fbp.0000000000000640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhibition of phosphodiesterase 4 (PDE4) is a promising pharmacological strategy for the treatment of cerebral ischemic conditions. To increase the relevance and increase the translational value of preclinical studies, it is important to conduct experiments using different animal species and strains, different animal models, and to evaluate long-term functional outcomes after cerebral ischemia. In the present study, the effects of the selective PDE4 inhibitor roflumilast were evaluated in vivo and in vitro. Balb/c mice were subjected to bilateral common carotid artery occlusion (BCCAO) and tested during 21 days in multiple behavioral tasks to investigate the long-term effects of roflumilast on functional recovery. The effects of roflumilast were also investigated on hippocampal cell loss, white matter injury, and expression of neuroinflammatory markers. Roflumilast prevented cognitive and emotional deficits induced by BCCAO in mice. Roflumilast also prevented neurodegeneration and reduced the white matter damage in the brain of ischemic animals. Besides, roflumilast decreased Iba-1 (microglia marker) levels and increased Arginase-1 (Arg-1; microglia M2 phenotype marker) levels in the hippocampus of these mice. Likewise, roflumilast suppressed inducible nitric oxide synthase (microglia M1 phenotype marker) expression and increased Arg-1 levels in a primary mouse microglia culture. These findings support evidence that PDE4 inhibition by roflumilast might be beneficial in cerebral ischemic conditions. The neuroprotective effects of roflumilast appear to be mediated by a decrease in neuroinflammation.
Collapse
Affiliation(s)
- Emanuella R Vilhena
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Melissa Schepers
- Neuroimmune Connect and Repair Lab., Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Juliana K C Kunieda
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Tim Vanmierlo
- Neuroimmune Connect and Repair Lab., Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia M W de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| |
Collapse
|
17
|
Rat Adipose-Derived Stromal Cells (ADSCs) Increases the Glioblastoma Growth and Decreases the Animal Survival. Stem Cell Rev Rep 2021; 18:1495-1509. [PMID: 34403074 DOI: 10.1007/s12015-021-10227-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.
Collapse
|
18
|
Lin TK, Lin KJ, Lin HY, Lin KL, Lan MY, Wang PW, Wang TJ, Wang FS, Tsai PC, Liou CW, Chuang JH. Glucagon-Like Peptide-1 Receptor Agonist Ameliorates 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Neurotoxicity Through Enhancing Mitophagy Flux and Reducing α-Synuclein and Oxidative Stress. Front Mol Neurosci 2021; 14:697440. [PMID: 34305527 PMCID: PMC8292641 DOI: 10.3389/fnmol.2021.697440] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 01/22/2023] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease without known disease modification therapy to slow down disease progression. This disease has pathological features of Lewy bodies with α-synuclein aggregation being the major component and selective dopaminergic neuronal loss over the substantia nigra. Although the exact etiology is still unknown, mitochondrial dysfunction has been shown to be central in PD pathophysiology. Type 2 diabetes mellitus has recently been connected to PD, and anti-diabetic drugs, such as glucagon-like peptide-1 receptor agonists (GLP-1RAs), have been shown to possess neuroprotective effects in PD animal models. The GLP-1RA liraglutide is currently under a phase 2 clinical trial to measure its effect on motor and non-motor symptoms in PD patients. In this study, we used an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD to test the possible mechanism of the GLP-1RA liraglutide in the pathogenesis of PD. We show that the neurobehavioral and motor dysfunction caused by the mitochondrial complex I inhibitor, MPTP, can be partially reversed by liraglutide. The GLP-1RA can protect mice from apoptosis of substantia nigra neurons induced by MPTP. MPTP treatment led to imbalanced mitochondrial fusion and fission dynamics, altered mitochondrial morphology, impeded autophagy flux, increased α-synuclein accumulation, and elevated oxidative stress. Specifically, the normalizing of mitochondrial fusion-fission dynamic-related proteins and enhancement of autophagy flux after administration of liraglutide is associated with improving neuronal survival. This suggests that GLP-1RAs may provide potential beneficial effects for PD caused by mitochondrial dysfunction through improvement of mitochondrial morphology balance and enhancing damaged organelle degradation.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Research Assistant Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Jou Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Po-Chin Tsai
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Kim S, Lee J, Park M, Kim H, Kim S, Byun JW, Hwang-Bo J, Park KH. Technique for analyzing the transfer of colored cosmetics onto face masks. Skin Res Technol 2021; 27:1043-1048. [PMID: 33974723 DOI: 10.1111/srt.13056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND With the rapid spread of COVID-19, the makeup trend in the cosmetics market is changing as mask-wearing has become a common practice. This study was conducted to establish an objective and reliable method for analyzing the transfer of colored cosmetics onto face masks. METHODS A total of 24 women participated in this test. The participants were requested to wear Korean Filter 94 masks after having applied colored cosmetics on their faces and lips. VISIA-CR was used to photograph the face, and a camera was used to photograph the mask, which had smeared the cosmetics. Each image was analyzed using the Image-pro® 10 image analysis software. RESULTS Immediately after applying the cosmetics, the intensity of the face decreased and the redness of the lips increased when compared with the results 30 minutes after washing the face. After wearing a mask, the intensity increased and the redness decreased when compared with immediately after applying the cosmetics. The area before and after the colored cosmetics smeared onto the mask was increased. CONCLUSION It is expected that this study could be used as a reference for further experiments on analysis of methods for preventing mask stains.
Collapse
Affiliation(s)
- Suyeon Kim
- Skin Clinical Trials Center, OATC Inc., Seoul, South Korea
| | - Juseon Lee
- Skin Clinical Trials Center, OATC Inc., Seoul, South Korea
| | - Minhye Park
- Skin Clinical Trials Center, OATC Inc., Seoul, South Korea
| | - Hongbi Kim
- Skin Clinical Trials Center, OATC Inc., Seoul, South Korea
| | - Sungeun Kim
- Skin Clinical Trials Center, OATC Inc., Seoul, South Korea
| | - Ji Won Byun
- Department of Dermatology, Inha University School of Medicine, Incheon, South Korea
| | - Jeon Hwang-Bo
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | | |
Collapse
|
20
|
Zhan JW, Wang SQ, Feng MS, Gao JH, Wei X, Yu J, Yin XL, Yin H, Sun K, Chen M, Xie R, Zhang P, Zhu LG. Effects of Axial Compression and Distraction on Vascular Bud and VEGFA Expression in the Vertebral Endplate of an Ex Vivo Rabbit Spinal Motion Segment Culture Model. Spine (Phila Pa 1976) 2021; 46:421-432. [PMID: 33186278 DOI: 10.1097/brs.0000000000003816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An ex vivo study of the rabbit's vertebral endplate. OBJECTIVE The aim of this study was to assess the effect of axial compression and distraction on vascular buds and vascular endothelial growth factor (VEGFA) expression of the vertebral endplate (VEP). SUMMARY OF BACKGROUND DATA The abnormal load can lead to intervertebral disc degeneration (IDD), whereas axial distraction can delay this process. The effects of different mechanical loads on the intervertebral disc (IVD) have been hypothesized to be related to changes in the vascular buds of the VEP; moreover, the process that might involve the vascular endothelial growth factor (VEGF) within the VEP. METHODS Rabbit spinal segments (n = 40) were harvested and randomly classified into four groups: Control group, no stress was applied; Group A, a constant compressive load applied; Group B, compression load removed for a fixed time daily on a continuous basis, and substituted with a distraction load for 30 minutes; and Group C, compression removed for 30 minutes for a fixed period daily on a continuous basis. Tissue specimens were collected before the culture (day 0) and on day 14 post-culture of each group for analysis of IVDs' morphology, and protein and mRNA expression of Aggrecan, COL2al, VEGFA, and vascular endothelial growth factor receptor 2 of the VEPs. RESULTS Application of axial distraction and dynamic load compression significantly delayed time- and constant compression-mediated VEP changes and IDD. Moreover, the degree of degeneration was associated with loss of vascular buds, as well as the downregulation of VEGFA and its receptor. CONCLUSION The regulation of vascular buds and VEGF expression in the VEP represents one of the mechanisms of axial distraction and dynamic loading.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Jia-Wen Zhan
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Suo LG, Qin RX, Cui YY, Qin XJ. Decreased expression of TIPE2 in the eye under high-glucose conditions tested in vivo and in vitro. Int Immunopharmacol 2021; 95:107517. [PMID: 33725633 DOI: 10.1016/j.intimp.2021.107517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
AIMS Inflammation is important in the development of angiogenesis diabetic retinopathy (DR). Anti-inflammation is promising strategy in early DR management. This study aimed to evaluate the level of tumour necrosis factor (TNF)-α-induced protein-8 like-2 (TIPE2), a formerly anti-inflammatory factor, under high-glucose conditions. METHODS TIPE2 was detected in the ① retina from db/db and streptozotocin-induced diabetic mice; ② vitreous fluid of patients with proliferative diabetic retinopathy (PDR) and ③ mouse retinal microendothelial cells (RMEC) cultured in glucose of varying concentrations. In situ expression was evaluated by immunohistochemistry and immunofluorescence assay. The expression of protein was analysed by Western blot or ELISA and mRNA by qRT-PCR. RESULTS TIPE2 was down-regulated in the retina of the mice with diabetes. TIPE2 was present in the cytoplasm of RMEC and down-regulated in high-glucose conditions in line with concentration and time. The expression of TIPE2 in the vitreous fluid of patients with PDR was significantly lower than that without diabetes. Silencing TIPE2 by an siRNA resulted in increased expression of vascular endothelial growth factor (a vital factor in the development of DR), TNF-α and IL-1β. CONCLUSIONS TIPE2 down-expressed and exerted anti-VEGF and anti-inflammatory function in the high-glucose environment. TIPE2 was verified to be involved in the process of DR and might be a potential regulator for DR development.
Collapse
Affiliation(s)
- Ling-Ge Suo
- Department of Ophthalmology, Qilu Hospital of Shandong University, China; Department of Ophthalmology, Peking University Third Hospital, China
| | - Rui-Xi Qin
- Department of Pathology, Qilu Hospital of Shandong University, China
| | - Yan-Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, China
| | - Xue-Jiao Qin
- Department of Ophthalmology, Qilu Hospital of Shandong University, China.
| |
Collapse
|
22
|
Portioli C, Bussy C, Mazza M, Lozano N, Jasim DA, Prato M, Bianco A, Bentivoglio M, Kostarelos K. Intracerebral Injection of Graphene Oxide Nanosheets Mitigates Microglial Activation Without Inducing Acute Neurotoxicity: A Pilot Comparison to Other Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004029. [PMID: 33210448 DOI: 10.1002/smll.202004029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/09/2020] [Indexed: 05/24/2023]
Abstract
Carbon-based nanomaterials (CNMs) are being explored for neurological applications. However, systematic in vivo studies investigating the effects of CNM nanocarriers in the brain and how brain cells respond to such nanomaterials are scarce. To address this, functionalized multiwalled carbon nanotubes and graphene oxide (GO) sheets are injected in mice brain and compared with charged liposomes. The induction of acute neuroinflammatory and neurotoxic effects locally and in brain structures distant from the injection site are assessed up to 1 week postadministration. While significant neuronal cell loss and sustained microglial cell activation are observed after injection of cationic liposomes, none of the tested CNMs induces either neurodegeneration or microglial activation. Among the candidate nanocarriers tested, GO sheets appear to elicit the least deleterious neuroinflammatory profile. At molecular level, GO induces moderate activation of proinflammatory markers compared to vehicle control. At histological level, brain response to GO is lower than after vehicle control injection, suggesting some capacity for GO to reduce the impact of stereotactic injection on brain. While these findings are encouraging and valuable in the selection and design of nanomaterial-based brain delivery systems, they warrant further investigations to better understand the mechanisms underlying GO immunomodulatory properties in brain.
Collapse
Affiliation(s)
- Corinne Portioli
- Nanomedicine Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Cyrill Bussy
- Nanomedicine Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Mariarosa Mazza
- Nanomedicine Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Neus Lozano
- Nanomedicine Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Dhifaf A Jasim
- Nanomedicine Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, ISIS, University of Strasbourg, Strasbourg, 67000, France
| | - Marina Bentivoglio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Kostas Kostarelos
- Nanomedicine Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
23
|
Trevathan JK, Asp AJ, Nicolai EN, Trevathan JM, Kremer NA, Kozai TDY, Cheng D, Schachter MJ, Nassi JJ, Otte SL, Parker JG, Lujan JL, Ludwig KA. Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures. J Neural Eng 2020; 18:10.1088/1741-2552/abb7a4. [PMID: 32916665 PMCID: PMC8485730 DOI: 10.1088/1741-2552/abb7a4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of study in humans and animal models, there remains a lack of consensus regarding how the action of electrical stimulation on neuronal and non-neuronal elements - e.g. neuropil, cell bodies, glial cells, etc. - leads to the therapeutic effects of neuromodulation therapies. To further our understanding of neuromodulation therapies, there is a critical need for novel methodological approaches using state-of-the-art neuroscience tools to study neuromodulation therapy in preclinical models of disease. In this manuscript we outline one such approach combining chronic behaving single-photon microendoscope recordings in a pathological mouse model with electrical stimulation of a common deep brain stimulation (DBS) target. We describe in detail the steps necessary to realize this approach, as well as discuss key considerations for extending this experimental paradigm to other DBS targets for different therapeutic indications. Additionally, we make recommendations from our experience on implementing and validating the required combination of procedures that includes: the induction of a pathological model (6-OHDA model of Parkinson's disease) through an injection procedure, the injection of the viral vector to induce GCaMP expression, the implantation of the GRIN lens and stimulation electrode, and the installation of a baseplate for mounting the microendoscope. We proactively identify unique data analysis confounds occurring due to the combination of electrical stimulation and optical recordings and outline an approach to address these confounds. In order to validate the technical feasibility of this unique combination of experimental methods, we present data to demonstrate that 1) despite the complex multifaceted surgical procedures, chronic optical recordings of hundreds of cells combined with stimulation is achievable over week long periods 2) this approach enables measurement of differences in DBS evoked neural activity between anesthetized and awake conditions and 3) this combination of techniques can be used to measure electrical stimulation induced changes in neural activity during behavior in a pathological mouse model. These findings are presented to underscore the feasibility and potential utility of minimally constrained optical recordings to elucidate the mechanisms of DBS therapies in animal models of disease.
Collapse
Affiliation(s)
- James K Trevathan
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Anders J Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Evan N Nicolai
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Jonathan M Trevathan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Nicholas A Kremer
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Takashi DY Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
- NeuroTech Center of the University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - David Cheng
- Inscopix, Palo Alto, CA, United States of America
| | | | | | | | - Jones G Parker
- CNC Program, Stanford University, Stanford, CA, United States of America
| | - J Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
- These authors contributed equally
| | - Kip A Ludwig
- Department of Bioengineering, University of Wisconsin, Madison, WI 53706, United States of America
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53706, United States of America
- These authors contributed equally
| |
Collapse
|
24
|
Wang LY, Zhao S, Lv GJ, Ma XJ, Zhang JB. Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer. World J Clin Cases 2020; 8:2425-2437. [PMID: 32607320 PMCID: PMC7322414 DOI: 10.12998/wjcc.v8.i12.2425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the leading causes of cancer-related deaths worldwide. According to the Global Cancer Statistics, colorectal cancer is the second leading cause of cancer-related mortality, closely followed by gastric cancer (GC). Environmental, dietary, and lifestyle factors including cigarette smoking, alcohol intake, and genetics are the most important risk factors for GI cancer. Furthermore, infections caused by Helicobacter pylori are a major cause of GC initiation. Despite improvements in conventional therapies, including surgery, chemotherapy, and radiotherapy, the length or quality of life of patients with advanced GI cancer is still poor because of delayed diagnosis, recurrence and side effect. Resveratrol (3, 4, 5-trihydroxy-trans-stilbene; Res), a natural polyphenolic compound, reportedly has various pharmacologic functions including anti-oxidant, anti-inflammatory, anti-cancer, and cardioprotective functions. Many studies have demonstrated that Res also exerts a chemopreventive effect on GI cancer. Research investigating the anti-cancer mechanism of Res for the prevention and treatment of GI cancer has implicated multiple pathways including oxidative stress, cell proliferation, and apoptosis. Therefore, this paper provides a review of the function and molecular mechanisms of Res in the prevention and treatment of GI cancer.
Collapse
Affiliation(s)
- Li-Yan Wang
- Department of Pharmacy, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Shan Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Guo-Jun Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Xiao-Jun Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Jian-Bin Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
25
|
Zhan JW, Wang SQ, Feng MS, Wei X, Yu J, Yin XL, Han T, Zhu LG. Constant compression decreases vascular bud and VEGFA expression in a rabbit vertebral endplate ex vivo culture model. PLoS One 2020; 15:e0234747. [PMID: 32584845 PMCID: PMC7316323 DOI: 10.1371/journal.pone.0234747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
SUMMARY OF BACKGROUND DATA The vascular buds in the vertebral endplate (VEP) are the structural foundation of nutrient exchange in the intervertebral disc (IVD). VEGF is closely related to angiogenesis in the endplate and intervertebral disc degeneration (IDD). OBJECTIVE To investigate the effects of static load on vascular buds and VEGF expression in the VEP and to further clarify the relation between IDD and VEGF. METHODS IVD motion segments were harvested from rabbit lumbar spines and cultured under no-loading conditions (controls) or in custom-made apparatuses under a constant compressive load (0.5 MPa) for up to 14 days. Tissue integrity and the number of vascular buds were determined, and the concentrations and expression of Aggrecan, COL2a1, and VEGFA in the VEPs were assessed after 3, 7, and 14 days of culturing and then compared with those of fresh tissues. RESULTS Under the constant compression, the morphological integrity of the VEPs was gradually disrupted, and immunohistochemistry results showed a significant decrease in the levels of Agg and COL2a1. During the static load, the number of vascular buds in the VEPs was gradually reduced from the early stage of culture, and ELISA showed that the constant compressive load caused a significant decrease in the VEGFA and VEGFR2 protein concentrations, which were consistent with the immunohistochemistry results. Western blot and RT-PCR results also showed that the loading state caused a significant decrease in VEGFA expression compared with that of fresh and control samples. CONCLUSIONS Constant compression caused degeneration of the VEP as well as a decreased number of vascular buds, thereby accelerating disc degeneration. VEGFA is involved in this process. We anticipate that regulating the expression of VEGFA may improve the condition of the lesions to the vascular buds in the endplates, thus enhancing the nutritional supply function in IVD and providing new therapeutic targets and strategies for the effective prevention and treatment of IDD.
Collapse
Affiliation(s)
- Jia-Wen Zhan
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shang-Quan Wang
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min-Shan Feng
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Scientific Research Office, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Yu
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xun-Lu Yin
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Han
- General Orthopedics Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Guo Zhu
- Key Laboratory of Beijing of Palasy Technology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Di Domenico M, Benevenuto SGDM, Tomasini PP, Yariwake VY, de Oliveira Alves N, Rahmeier FL, da Cruz Fernandes M, Moura DJ, Nascimento Saldiva PH, Veras MM. Concentrated ambient fine particulate matter (PM 2.5) exposure induce brain damage in pre and postnatal exposed mice. Neurotoxicology 2020; 79:127-141. [PMID: 32450181 DOI: 10.1016/j.neuro.2020.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Air pollution is a public health concern that has been associated with adverse effects on the development and functions of the central nervous system (CNS). However, studies on the effects of exposure to pollutants on the CNS across the entire developmental period still remain scarce. In this study, we investigated the impacts of prenatal and/or postnatal exposure to fine particulate matter (PM2.5) from São Paulo city, on the brain structure and behavior of juvenile male mice. BALB/c mice were exposed to PM2.5 concentrated ambient particles (CAP) at a daily concentration of 600 μg/m³ during the gestational [gestational day (GD) 1.5-18.5] and the postnatal periods [postnatal day (PND) 22-90] to filtered air (FA) in both periods (FA/FA), to CAP only in the postnatal period (FA/CAP), to CAP only in the gestational period (CAP/FA), and to CAP in both periods (CAP/CAP). Behavioral tests were performed when animals were at PND 30 and PND 90. Glial activation, brain volume, cortical neuron number, serotonergic and GABAergic receptors, as well as oxidative stress, were measured. Mice at PND 90 presented greater behavioral changes in the form of greater locomotor activity in the FA-CAP and CAP-CAP groups. In general, these same groups explored objects longer and the CAP-FA group presented anxiolytic behavior. There was no difference in total brain volume among groups, but a lower corpus callosum (CC) volume was observed in the CAP-FA group. Also, the CAP-CAP group presented an increase in microglia in the cortex and an increased in astrocytes in the cortex, CC, and C1A and dentate gyrus of hippocampus regions. Gene expression analysis showed a decrease in BDNF in the hippocampus of CAP-CAP group. Treatment of immortalized glial cells with non-cytotoxic doses of ambient PM2.5 increased micronuclei frequencies, indicating genomic instability. These findings highlight the potential for negative neurodevelopmental outcomes induced by exposure to moderate levels of PM2.5 in Sao Paulo city.
Collapse
Affiliation(s)
- Marlise Di Domenico
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | | | - Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Yuji Yariwake
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Nilmara de Oliveira Alves
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Francine Luciano Rahmeier
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marilda da Cruz Fernandes
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana Matera Veras
- Department of Pathology, LIM05-HCFMUSP, Laboratory of Experimental Air Pollution, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Qin H, Liu J, Yu M, Wang H, Thomas AM, Li S, Yan Q, Wang L. FUT7 promotes the malignant transformation of follicular thyroid carcinoma through α1,3-fucosylation of EGF receptor. Exp Cell Res 2020; 393:112095. [PMID: 32442537 DOI: 10.1016/j.yexcr.2020.112095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Aberrant protein glycosylation is involved in many diseases including cancer. This study investigated the role of fucosyltransferase VII (FUT7) in the progression of follicular thyroid carcinoma (FTC). FUT7 expression was found to be upregulated in FTC compared to paracancerous thyroid tissue, and in FTC with T2 stage of TMN classification compared to FTC with T1 stage. FUT7 overexpression promoted cell proliferation, epithelial-mesenchymal transition (EMT), and the migration and invasion of primary FTC cell line FTC-133. Consistently, FUT7 knock-down inhibited cell proliferation, EMT, as well as the migration and invasion of the metastatic FTC cell line FTC-238. Mechanistic investigation revealed that FUT7 catalyzed the α1,3-fucosylation of epidermal growth factor receptor (EGFR) in FTC cells. The extent of glycan α1,3-fucosylation on EGFR was positively correlated with the activation of EGFR in the presence/absence of epidermal growth factor (EGF) treatment. Furthermore, FUT7 was shown to enhance EGF-induced progression of FTC cells through mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways. These findings provide a new perspective on FUT7 that may be a novel diagnostic and therapeutic target of FTC.
Collapse
Affiliation(s)
- Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Ming Yu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China.
| | - Lifen Wang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
28
|
Grigoruţă M, Martínez-Martínez A, Dagda RY, Dagda RK. Psychological Stress Phenocopies Brain Mitochondrial Dysfunction and Motor Deficits as Observed in a Parkinsonian Rat Model. Mol Neurobiol 2020; 57:1781-1798. [PMID: 31836946 PMCID: PMC7125028 DOI: 10.1007/s12035-019-01838-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Psychological distress is a public health issue as it contributes to the development of human diseases including neuropathologies. Parkinson's disease (PD), a chronic, progressive neurodegenerative disorder, is caused by multiple factors including aging, mitochondrial dysfunction, and/or stressors. In PD, a substantial loss of substantia nigra (SN) neurons leads to rigid tremors, bradykinesia, and chronic fatigue. Several studies have reported that the hypothalamic-pituitary-adrenal (HPA) axis is altered in PD patients, leading to an increase level of cortisol which contributes to neurodegeneration and oxidative stress. We hypothesized that chronic psychological distress induces PD-like symptoms and promotes neurodegeneration in wild-type (WT) rats and exacerbates PD pathology in PINK1 knockout (KO) rats, a well-validated animal model of PD. We measured the bioenergetics profile (oxidative phosphorylation and glycolysis) in the brain by employing an XF24e Seahorse Extracellular Flux Analyzer in young rats subjected to predator-induced psychological distress. In addition, we analyzed anxiety-like behavior, motor function, expression of antioxidant enzymes, mitochondrial content, and neurotrophic factors brain-derived neurotrophic factor (BDNF) in the brain. Overall, we observed that psychological distress diminished up to 50% of mitochondrial respiration and glycolysis in the prefrontal cortex (PFC) derived from both WT and PINK1-KO rats. Mechanistically, the level of antioxidant proteins, mitochondrial content, and BDNF was significantly altered. Finally, psychological distress robustly induced anxiety and Parkinsonian symptoms in WT rats and accelerated certain symptoms of PD in PINK1-KO rats. For the first time, our collective data suggest that psychological distress can phenocopy several aspects of PD neuropathology, disrupt brain energy production, as well as induce ataxia-like behavior.
Collapse
Affiliation(s)
- Mariana Grigoruţă
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
- Departamento de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente Pronaf y Estocolmo s/n, 32310, Ciudad Juarez, Mexico
| | - Alejandro Martínez-Martínez
- Departamento de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente Pronaf y Estocolmo s/n, 32310, Ciudad Juarez, Mexico.
| | - Raul Y Dagda
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
29
|
Yeh PT, Chen YJ, Lin NC, Yeh AI, Yang CH. The Ocular Protective Effects of Nano/Submicron Particles Prepared from Lycium barbarum Fruits Against Oxidative Stress in an Animal Model. J Ocul Pharmacol Ther 2020; 36:179-189. [PMID: 31951153 DOI: 10.1089/jop.2019.0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose: To investigate the antioxidative properties of Lycium barbarum (LB) fruits in the eyes and to study whether LB fruits prepared with new nanotechnology have stronger antioxidative effects. Methods: Fourteen days post-supplementation with milled or blended LB fruits, intravitreal paraquat (PQ) was injected into Wistar rats to create oxidative stress. After an additional 14-day supplementation with LB fruits, the rats were sacrificed. An electroretinogram (ERG) was performed to evaluate retinal function before and after the PQ injection. Expression levels of antioxidative responders' mRNA in retina were detected by reverse transcription-polymerase chain reaction. Superoxide dismutase (SOD) and glutathione reductase activity in the aqueous humor (AqH) were analyzed by ELISA. Immunohistochemistry was conducted to evaluate the morphological changes of retina and the levels of oxidative biomarkers. The levels of cell apoptosis were assessed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The reactive oxygen species (ROS) levels in AqH were measured by chemiluminescence methods. Results: The murine eyes supplemented with LB fruits exhibited several changes compared with the control group. The ERGs revealed significant improvement in retinal function. The mRNA expression levels of oxidative responders were downregulated in the retinas. The ROS was significantly reduced in the retinas, but the SOD meaningfully increased in the AqH. Immunohistochemistry staining and TUNEL assays showed decreased incidences of oxidative biomarkers and apoptosis in the retinas. Milled LB fruits exhibited better antioxidative effects than blended fruits. Conclusions: Milled LB fruits demonstrated superior protection against oxidative threats than blended fruits. Thus, these fruits could be an inexpensive supplement for many oxidative stress-related ocular diseases.
Collapse
Affiliation(s)
- Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-Ju Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Nien-Chen Lin
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - An-I Yeh
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
30
|
Yu J, Zong GN, Wu H, Zhang KQ. Podoplanin mediates the renoprotective effect of berberine on diabetic kidney disease in mice. Acta Pharmacol Sin 2019; 40:1544-1554. [PMID: 31270434 PMCID: PMC7470856 DOI: 10.1038/s41401-019-0263-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
Hyperglycemia-caused podocyte injury plays a crucial role in the progress of diabetic kidney disease. Podoplanin, one of the podocyte-associated molecules, is closely related to the integrity of the glomerular filtration barrier. A number of studies demonstrate that berberine could ameliorate renal dysfunction in diabetic mice with nephropathy, but the molecular mechanisms have not been fully elucidated. In this study, we explored the relationship between the renoprotective effect of berberine and podoplanin expression in streptozotocin (STZ)-induced diabetic mice as well as mouse podocytes (MPC5 cells) cultured in high glucose (HG, 30 mM) medium. We found that the expression levels of podoplanin were significantly decreased both in the renal glomerulus of STZ-induced diabetic mice and HG-cultured MPC5 cells. We also demonstrated that NF-κB signaling pathway was activated in MPC5 cells under HG condition, which downregulated the expression level of podoplanin, thus leading to increased podocyte apoptosis. Administration of berberine (100, 200 mg/kg every day, ig, for 8 weeks) significantly improved hyperglycemia and the renal function of STZ-induced diabetic mice and restored the expression level of podoplanin in renal glomerulus. In high glucose-cultured MPC5 cells, treatment with berberine (30–120 μM) dose-dependently decreased the apoptosis rate, increased the expression of podoplanin, and inhibited the activation of NF-κB signaling pathway. When podoplanin expression was silenced with shRNA, berberine treatment still inhibited the NF-κB signaling pathway, but its antiapoptotic effect on podocytes almost disappeared. Our results suggest that berberine inhibits the activation of NF-κB signaling pathway, thus increasing the podoplanin expression to exert renoprotective effects.
Collapse
|
31
|
Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson's disease. Neurosci Lett 2019; 716:134652. [PMID: 31778768 DOI: 10.1016/j.neulet.2019.134652] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a progressive, late-onset, and degenerative disorder that affects the central nervous system with an unknown etiology. Due to its incredible complexity in disease nature, many of the existing treatment approaches show a vain recovery in Parkinson's patients. Therefore, an in search of disease-modifying therapeutics for an effective recovery is essential. Alpha mangostin is an important polyphenolic xanthone reported for its neuroprotective effect against rotenone-induced α-synuclein aggregation and loss of tyrosine hydroxylase positive (TH+)-neurons in SH-SY5Y cells. Hence, the current study aims to test its protective effect in managing the in-vivo rat model of PD. To justify this aim, adult male Sprague Dawley rats (250 ± 20 g) were subjected to chronic treatment of rotenone (2 mg/kg/day, s.c.) for 21 days. In parallel alpha mangostin treatment (10 mg/kg, i.p) was administered along with rotenone for 21 days. Chronic rotenone treatment for 21 days increased lipid peroxidation, nitrite concentration, and decreased glutathione levels. Further, depletion of TH+-dopaminergic neuron expression in substantia nigra pars compacta (SNc), and the development of motor and behavioral deficits in rotenone treated animals like cognitive impairment, muscle incoordination, and neuromuscular weakness were observed. Moreover, western blot studies ascertained the reduced normal alpha-synuclein levels and increased phosphorylated α-synuclein levels in comparison to the vehicle-treated group. Treatment with alpha mangostin significantly restored the locomotor activity, memory deficits, and improved the levels of antioxidant enzymes. It also significantly reduced the levels of phosphorylated α-synuclein which in turn gave protection against TH+-dopaminergic neuronal loss in SNc, suggesting it's anti-oxidant and anti-aggregatory potential against α-synuclein. In conclusion through our current results, we could suggest that alpha mangostin has a potential neuroprotective effect against rotenone-induced PD and might be used as a neuroprotective agent. Further mechanistic studies on preclinical and clinical levels are required to be conducted with alpha mangostin to avail and foresee it as a potential agent in the treatment and management of PD.
Collapse
|
32
|
Diene LD, Costa-Ferro ZSM, Barbosa S, Milanesi BB, Lazzari GZ, Neves LT, Paz LV, Neves PFR, Battisti V, Martins LA, Gehlen G, Mestriner RG, Da Costa JC, Xavier LL. Selective brain neuronal and glial losses without changes in GFAP immunoreactivity: Young versus mature adult Wistar rats. Mech Ageing Dev 2019; 182:111128. [PMID: 31404554 DOI: 10.1016/j.mad.2019.111128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Normal ageing results in brain selective neuronal and glial losses. In the present study we analyze neuronal and glial changes in Wistar rats at two different ages, 45 days (young) and 420 days (mature adult), using Nissl staining and glial fibrillary acidic protein (GFAP) immunohistochemistry associated to the Sholl analysis. Comparing mature adults with young rats we noted the former present a decrease in neuronal density in the cerebral cortex, corpus callosum, pyriform cortex, L.D.D.M., L.D.V.L., central medial thalamic nucleus and zona incerta. A decrease in glial density was found in the dorsomedial and ventromedial hypothalamic nuclei. Additionally, the neuron/glia ratio was reduced in the central medial thalamic nucleus and increased in the habenula. No changes were found in the neuronal and glial densities or neuron/glia ratio in the other studied regions. The number of astrocytic primary processes and the number of intersections counted in the Sholl analysis presented no significant difference in any of the studied regions. Overall, neither GFAP positive astrocytic density nor GFAP immunoreactivity showed alteration.
Collapse
Affiliation(s)
- Leonardo D Diene
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Silvia Barbosa
- Laboratório de Histofisiologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bueno Milanesi
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriele Zenato Lazzari
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiê Valéria Paz
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Battisti
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas A Martins
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jaderson C Da Costa
- Instituto do Cérebro do Rio Grande do Sul (InsCer/RS), Porto Alegre, RS, Brazil
| | - Léder L Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Huf F, Bandiera S, Müller CB, Gea L, Carvalho FB, Rahmeier FL, Reiter KC, Tortorelli LS, Gomez R, da Cruz Fernandes M. Comparative study on the effects of cigarette smoke exposure, ethanol consumption and association: Behavioral parameters, apoptosis, glial fibrillary acid protein and S100β immunoreactivity in different regions of the rat hippocampus. Alcohol 2019; 77:101-112. [PMID: 30870710 DOI: 10.1016/j.alcohol.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023]
Abstract
Exposure to cigarette smoke and ethanol are proposed to trigger neurotoxicity, apoptosis, and to impair neuronal signaling. However, it is little known how the combination of both might trigger astrogliosis and the morphological changes capable of affecting a differential susceptibility of hippocampal regions to these licit drugs. The present study investigated the chronic effects of exposure to cigarette smoke and/or ethanol on behavioral parameters, apoptosis, and alteration in immunoreactivity of glial fibrillary acid protein (GFAP) and S100β in the CA1, CA3, and dentate gyrus (DG) of the rat hippocampus. Adult male Wistar rats (n = 32) were divided into four groups: vehicle (VE, glucose 3% in water, 10 mL/kg), cigarette smoke (TOB, total 12 cigarettes per day), ethanol (ethanol, 2 g/kg), and cigarette smoke plus ethanol (TOB plus ethanol, total 12 cigarettes per day plus ethanol 2 g/kg) for 54 days. The groups were submitted to tail-flick, open-field, and inhibitory avoidance tasks. The results showed that ethanol per se worsened the short-term memory. The association between TOB and ethanol increased the immunoreactivity of cleaved caspase-3 in the CA3 and DG regions. The TOB plus ethanol group showed a lower immunoreactivity to GFAP in all regions of the hippocampus. In addition, ethanol and TOB per se also reduced the immunoreactivity for GFAP in the DG. Ethanol increased S100β immunoreactivity only in the DG. In conclusion, this study showed that only ethanol worsened short-term memory, and the DG became more susceptible to changes in the markers investigated. This evidence suggests that DG is more sensitive to neurotoxicity induced by cigarette smoke and ethanol.
Collapse
Affiliation(s)
- Fernanda Huf
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Solange Bandiera
- Postgraduate Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina B Müller
- Department of Biochemistry, ICBS/Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Gea
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fabiano B Carvalho
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Francine L Rahmeier
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Keli C Reiter
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Lucas S Tortorelli
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Rosane Gomez
- Postgraduate Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilda da Cruz Fernandes
- Postgraduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
34
|
Spindler C, Segabinazi E, de Meireles ALF, Piazza FV, Mega F, dos Santos Salvalaggio G, Achaval M, Elsner VR, Marcuzzo S. Paternal physical exercise modulates global DNA methylation status in the hippocampus of male rat offspring. Neural Regen Res 2019; 14:491-500. [PMID: 30539818 PMCID: PMC6334599 DOI: 10.4103/1673-5374.245473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022] Open
Abstract
It is widely known that maternal physical exercise is able to induce beneficial improvements in offspring cognition; however, the effects of paternal exercise have not been explored in detail. The present study was designed to evaluate the impact of paternal physical exercise on memory and learning, neuroplasticity and DNA methylation levels in the hippocampus of male offspring. Adult male Wistar rats were divided into two groups: sedentary or exercised fathers. The paternal preconception exercise protocol consisted of treadmill running, 20 minutes daily, 5 consecutive days per week for 22 days, while the mothers were not trained. After mating, paternal sperm was collected for global DNA methylation analysis. At postnatal day 53, the offspring were euthanized, and the hippocampus was dissected to measure cell survival by 5-bromo-2'-deoxiuridine and to determine the expression of synaptophysin, reelin, brain-derived neurotrophic factor and global DNA methylation levels. To measure spatial memory and learning changes in offspring, the Morris water maze paradigm was used. There was an improvement in spatial learning, as well as a significant decrease in hippocampal global DNA methylation levels in the offspring from exercised fathers compared with those from sedentary ones; however, no changes were observed in neuroplasticity biomarkers brain-derived neurotrophic factor, reelin and 5-bromo-2'-deoxiuridine. Finally, the global DNA methylation of paternal sperm was not significantly changed by physical exercise. These results suggest a link between paternal preconception physical activity and cognitive benefit, which may be associated with hippocampal epigenetic programming in male offspring. However, the biological mechanisms of this modulation remain unclear.
Collapse
Affiliation(s)
- Christiano Spindler
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Luís Ferreira de Meireles
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francele Valente Piazza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Filipe Mega
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela dos Santos Salvalaggio
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matilde Achaval
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Biociências e Reabilitação, Centro Universitário Metodista-IPA, Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
35
|
Wang X, Lv C, Ji X, Wang B, Qiu L, Yang Z. Ivermectin treatment inhibits the replication of Porcine circovirus 2 (PCV2) in vitro and mitigates the impact of viral infection in piglets. Virus Res 2019; 263:80-86. [PMID: 30658073 DOI: 10.1016/j.virusres.2019.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
Porcine circovirus 2 (PCV2) capsid protein (Cap) has a nuclear localization signal (NLS) and can enter the nucleus. In this study, ivermectin, a small-molecule nuclear import inhibitor of proteins was used to determine the role of nuclear localization of Cap on PCV2 replication. Observation by fluorescence microscopy of the intracellular localization of Cap and Cap NLS in cells cultured with ivermectin (50 μg/mL) determined that Cap and Cap NLS were located in the cytoplasm; in contrast, for cells cultured without ivermectin, they accumulated in the cell nucleus. Ivermectin treatment also reduced nuclear transport of Cap derived from PCV2 infection as well as PCV2 replication in PK-15 cells. In addition, lower levels of PCV2 in tissues and sera of piglets treated with ivermectin were detected by qPCR. These results established for the first time that ivermectin has potent antiviral activity towards PCV2 both in vitro and vivo.
Collapse
Affiliation(s)
- Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Changjie Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaojuan Ji
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Bin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Li Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
36
|
Li X, Tsauo J, Geng C, Zhao H, Lei X, Li X. Ginsenoside Rg3 Decreases NHE1 Expression via Inhibiting EGF-EGFR-ERK1/2-HIF-1 α Pathway in Hepatocellular Carcinoma: A Novel Antitumor Mechanism. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1915-1931. [PMID: 30525897 DOI: 10.1142/s0192415x18500969] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Na + /H + exchanger 1 (NHE1) plays a vital role in the oncogenesis and development of hepatocellular carcinoma (HCC) and has been regarded as a promising target for the treatment of HCC. Ginsenoside Rg3 (Rg3), a bioactive ginseng compound, is suggested to possess pleiotropic antitumor effects on HCC. However, the underlying mechanisms of Rg3 suppressing HCC remain unclear. In the present study, we uncovered a novel antitumor mechanism of Rg3 on HCC by decreasing NHE1 expression through in vivo and in vitro studies. Mechanistically, we demonstrated that epidermal growth factor (EGF) could dramatically upregulate NHE1 expression, while increasing the phosphorylated extracellular signal-regulated protein kinase (ERK1/2) level and hypoxia-inducible factor 1 alpha (HIF-1 α ) expression. In the presence of ERK1/2-specific inhibitor PD98059, EGF stimulated HIF-1 α and NHE1 expression was obviously blocked in addition, the presence of HIF-1 α -specific inhibitor 2-methoxyestradiol (2-MeOE2) blocked EGF stimulated NHE1 expression. Moreover, results from in vivo and in vitro studies indicate that Rg3 treatment markedly decreased the expression of EGF, EGF receptor (EGFR), phosphorylated ERK1/2 and HIF-1 α . Conclusively, these findings suggested that NHE1 was stimulated by EGF, and Rg3 could decrease NHE1 expression by integrally inhibiting EGF-EGFR-ERK1/2-HIF- α signal axis in HCC. Together, our evidence indicated that Rg3 was an effective multi-targets antitumor agent for the treatment of HCC.
Collapse
Affiliation(s)
- Xiao Li
- * Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Jiaywei Tsauo
- ‡ Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Chong Geng
- * Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - He Zhao
- ‡ Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Xuelian Lei
- * Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Xiao Li
- † Institute of Interventional Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
- ‡ Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| |
Collapse
|
37
|
Yu J, Wang W, Wang J, Wang C, Li C. Short-term toxicity of dibutyl phthalate to mice intestinal tissue. Toxicol Ind Health 2018; 35:20-31. [PMID: 30453839 DOI: 10.1177/0748233718807303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of this study was to investigate changes in intestinal histopathology and expression of heat-shock proteins (HSPs) in the small intestinal tissue of mouse after acute exposure to dibutyl phthalate (DBP). Forty-eight 60-day-old Institute of Cancer Research (ICR) mice were administered DBP by gavage once a day for 10 days. The mice were divided into three groups of 16 mice each: the high-dose group was administered 500 mg/kg body weight (BW) DBP; the low-dose group was administered 50 mg/kg BW; and the control group was not administered DBP. Significant increases in the uterine index, ovary index, and testicular index were observed in the DBP-exposed groups compared to those in the control group. Villus height and V/ C ratio significantly increased ( p < 0.05) in the duodenum and decreased ( p < 0.05) in the jejunum after the administration of DBP. The goblet cell number decreased in both the duodenum and the jejunum of mice exposed to DBP ( p < 0.05) compared to the number in the control group mice. Damage to the structure of the small intestine was accompanied by a marked increase in HSP27 expression and a decrease in the expression of HSP70 and HSP90 in both high-dose and low-dose groups. These results indicate that elevated HSP27 levels in the duodenum and jejunum may be important markers for acute DBP exposure and that HSP27 may act as a protective protein involved in intestinal mucosa repair.
Collapse
Affiliation(s)
- Jimian Yu
- 1 Ningbo College of Health Sciences, Ningbo, China
| | - Wei Wang
- 2 College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jianfeng Wang
- 3 Ningbo Academy of Inspection and Quarantine, Ningbo, China
| | - Chun Wang
- 3 Ningbo Academy of Inspection and Quarantine, Ningbo, China
| | - Caiyan Li
- 2 College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
38
|
Urinary angiotensinogen predicts progressive chronic kidney disease after an episode of experimental acute kidney injury. Clin Sci (Lond) 2018; 132:2121-2133. [PMID: 30224346 DOI: 10.1042/cs20180758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/23/2022]
Abstract
One of the major obstacles to prevent AKI-CKD transition is the lack of effective methods to follow and predict the ongoing kidney injury after an AKI episode. In the present study, we test the utility of urinary angiotensinogen (UAGT) for dynamically evaluating renal structural changes and predicting AKI-CKD progression by using both mild and severe bilateral renal ischemia/reperfusion injury mice. UAGT returns to pre-ischemic levels 14 days after mild AKI followed by kidney architecture restoration, whereas sustained increase in UAGT accompanies by ongoing renal fibrosis after severe AKI. UAGT at day 14-42 correlates with renal fibrosis 84 days after AKI. For predicting fibrosis at day 84, the area under receiver operating characteristics curve of UAGT at day 14 is 0.81. Persistent elevation in UAGT correlates with sustained activation of intrarenal renin-angiotensin system (RAS) during AKI-CKD transition. Abrogating RAS activation post AKI markedly reduced renal fibrosis, with early RAS intervention (from 14 days after IRI) more beneficial than late intervention (from 42 days after IRI) in alleviating fibrosis. Importantly, UAGT decreases after RAS intervention, and its level at day 14-28 correlates with the extent of renal fibrosis at day 42 post RAS blockade. A pilot study conducted in patients with acute tubular necrosis finds that compared with those recovered, patients with AKI-CKD progression exhibits elevated UAGT during the 3-month follow-up after biopsy. Our study suggests that UAGT enables the dynamical monitoring of renal structural recovery after an AKI episode and may serve as an early predictor for AKI-CKD progression and treatment response.
Collapse
|
39
|
Gabbi P, Nogueira V, Haupental F, Rodrigues FS, do Nascimento PS, Barbosa S, Arend J, Furian AF, Oliveira MS, Dos Santos ARS, Royes LFF, Fighera MR. Ammonia role in glial dysfunction in methylmalonic acidemia. Toxicol Lett 2018; 295:237-248. [PMID: 30008432 DOI: 10.1016/j.toxlet.2018.06.1070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 11/26/2022]
Abstract
Hyperammonemia is a common finding in patients with methylmalonic acidemia. However, its contribution to methylmalonate (MMA)-induced neurotoxicity is poorly understood. The aim of this study was evaluate whether an acute metabolic damage to brain during the neonatal period may disrupt cerebral development, leading to neurodevelopmental disorders, as memory deficit. Mice received a single intracerebroventricular dose of MMA and/or NH4Cl, administered 12 hs after birth. The maze tests showed that MMA and NH4Cl injected animals (21 and 40 days old) exhibited deficit in the working memory test, but not in the reference memory test. Furthermore, MMA and NH4Cl increased the levels of 2',7'-dichlorofluorescein-diacetate (DCF), TNF-α, IL-1β in the cortex, hippocampus and striatum of mice. MMA and NH4Cl also increased glial proliferation in all structures. Since the treatment of MMA and ammonia increased cytokines levels, we suggested that it might be a consequence of the glial activation induced by the acid and ammonia, leading to delay in the developing brain and contributing to behavioral alterations. However, this hypothesis is speculative in nature and more studies are needed to clarify this possibility.
Collapse
Affiliation(s)
- Patricia Gabbi
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Viviane Nogueira
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Fernanda Haupental
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Fernanda Silva Rodrigues
- Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Patricia Severo do Nascimento
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Departamento de Ciências Morfológicas, Laboratório de Histofisiologia Comparada, UFRGS, Brazil
| | - Sílvia Barbosa
- Departamento de Ciências Morfológicas, Laboratório de Histofisiologia Comparada, UFRGS, Brazil
| | - Josi Arend
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil
| | - Adair Roberto Soares Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Brazil; Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, UFSM, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Brazil; Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, UFSM, Brazil.
| |
Collapse
|
40
|
Stigger F, Barbosa S, Marques MR, Segabinazi E, Augustin OA, Achaval M, Marcuzzo S. Synaptophysin and caspase-3 expression on lumbar segments of spinal cord after sensorimotor restriction during early postnatal period and treadmill training. J Exerc Rehabil 2018; 14:489-496. [PMID: 30018938 PMCID: PMC6028203 DOI: 10.12965/jer.1836086.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/22/2018] [Indexed: 12/15/2022] Open
Abstract
The purpose of the current study was to investigate whether locomotor stimulation training could have beneficial effects on spinal cord plasticity consequent to sensorimotor restriction (SR). Male Wistar rats were exposed to SR from postnatal day 2 (P2) to P28. Control and experimental rats underwent locomotor stimulation training in a treadmill from P31 to P52. The intensity of the synaptophysin and caspase-3 immunoreaction was determined on ventral horn of spinal cord. The synaptophysin immunoreactivity was lower in the ventral horn of sensorimotor restricted rats compared to controls animals and was accompanied by an increased caspase-3 immunoreactivity. Those alterations were reversed at the end of the training period. Our results suggest that immobility affects the normal developmental process that spinal cord undergoes in early postnatal life influencing both pro-apoptotic and synapse markers. Also, we demonstrated that this phenomenon was reversed by 3 weeks of treadmill training.
Collapse
Affiliation(s)
- Felipe Stigger
- Department of Physiotherapy, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Silvia Barbosa
- Laboratory of Comparative Histophysiology, Department of Morphological Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marília Rossato Marques
- Postgraduation Program of Neurosciences, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ethiane Segabinazi
- Postgraduation Program of Neurosciences, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Otávio Américo Augustin
- Laboratory of Comparative Histophysiology, Department of Morphological Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Matilde Achaval
- Postgraduation Program of Neurosciences, Department of Morphological Sciences, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone Marcuzzo
- Postgraduation Program of Neurosciences, Department of Morphological Sciences, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
41
|
Zhou J, Gao X, Huang S, Ma L, Cui Y, Wang H, Qiu J, Wang L, Dong Q, Chen Z, Wang X, Zhang D. Simvastatin Improves the Jaw Bone Microstructural Defect Induced by High Cholesterol Diet in Rats by Regulating Autophagic Flux. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4147932. [PMID: 30050930 PMCID: PMC6040281 DOI: 10.1155/2018/4147932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The objective of this study is to evaluate the effect of simvastatin on the jaw bone microstructural defect and autophagy in rats with high cholesterol diet (HCD). METHODS Male Sprague-Dawley rats were fed a standard rodent chow (NC group) or a high cholesterol diet for 32 weeks and the HCD-fed rats were treated with vehicle (HC group) or simvastatin (5 mg/kg orally daily for 8 weeks, HC + SIM group, and n = 10/group). The static histomorphometric changes in the jaw bone tissues in individual rats were evaluated. The relative levels of OPG, RANKL, NF-κB, LC3, and p62 in the jaw bone tissues were determined by quantitative RT-PCR and/or immunohistochemistry. RESULTS Compared with the NC group, the HC groups had lower trabecular bone volume, trabecular thickness and trabecular number, and increased ratios of RANKL/OPG in the jaw bone, accompanied by enhanced NF-κB activation and autophagy. Simvastatin treatment inhabited these changes, including the decreased levels of serum proinflammatory cytokines and increased autophagy. CONCLUSION Simvastatin treatment could inhibit the hyperlipidemia-induced jaw bone microstructural defect in rats by increasing autophagic flux.
Collapse
Affiliation(s)
- Jianhua Zhou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, China
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Xiaoli Gao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Li Ma
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Yanjun Cui
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Hengkun Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Jianzhong Qiu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Lili Wang
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Quanjiang Dong
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
42
|
Ding Y, Zhou J, Wang S, Li Y, Mi Y, Gao S, Xu Y, Chen Y, Yan J. Anti-neuropilin-1 monoclonal antibody suppresses the migration and invasion of human gastric cancer cells via Akt dephosphorylation. Exp Ther Med 2018; 16:537-546. [PMID: 30116312 PMCID: PMC6090285 DOI: 10.3892/etm.2018.6234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/24/2017] [Indexed: 01/06/2023] Open
Abstract
Neuropilin-1 (NRP-1) is involved in a range of physiological and pathological processes, including neuronal cell guidance, cardiovascular development, immunity, angiogenesis and the pathogenesis of cancer. Targeting of NRP-1 is considered to be a potential cancer therapy and a number of approaches have been investigated, including the use of small interfering RNA, peptides, soluble NRP antagonists and monoclonal antibodies. The present study used a novel anti-neuropilin-1 monoclonal antibody (anti-NRP-1 mAb) to investigate its potential anti-tumor effects on human gastric cancer cells in vitro and in vivo, as well as its underlying mechanisms of action. Using an MTT assay, it was observed that anti-NRP-1 mAb (<150 µg/ml) had no effects on the viability of gastric cancer cell line BGC-823, while a Boyden chamber assay indicated that treatment with anti-NRP-1 mAb suppressed the migration and invasion of BGC-823 cells. Western blot analysis also demonstrated that phosphorylation of Akt was reduced in BGC-823 cells treated with anti-NRP-1 mAb. Furthermore, anti-NRP-1 mAb suppressed the growth of gastric cancer xenograft tumors and downregulated the expression of vascular endothelial growth factor proteins within tumors in nude mice. These data indicate the potential effects of anti-NRP-1 mAb on malignant tumors and suggest that inhibition of NRP-1 function with anti-NRP-1 mAb may be a novel therapeutic approach in the treatment of cancer.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Juan Zhou
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shengyu Wang
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yue Li
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yanjun Mi
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shihua Gao
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yun Xu
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yuqiang Chen
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Jianghua Yan
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
43
|
Cohen H, Zohar J, Kaplan Z, Arnt J. Adjunctive treatment with brexpiprazole and escitalopram reduces behavioral stress responses and increase hypothalamic NPY immunoreactivity in a rat model of PTSD-like symptoms. Eur Neuropsychopharmacol 2018; 28:63-74. [PMID: 29224968 DOI: 10.1016/j.euroneuro.2017.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 10/19/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
The study explored effects of brexpiprazole (partial D2/5-HT1A agonist, 5-HT2A and α1B/2C-adrenoceptor antagonist) in rats exposed to predator scent stress (PSS), a proposed model of PTSD-like phenotype. Brexpiprazole (3.0mg/kg, PO), escitalopram (5.0mg/kg, IP) and their combination were administered twice daily for 14 days, starting 14 days after exposure to PSS or sham-PSS, shortly after a situational stress reminder. One day after last treatment behavioral responsivity was assessed. Brexpiprazole+escitalopram-treated rats spent more time in open arms, entered open arms more often and exhibited a lower anxiety index in the elevated plus maze than vehicle-treated, PSS-exposed rats. Adjunct brexpiprazole+escitalopram treatment reduced startle amplitude, compared with vehicle-treated, PSS-exposed rats. Treatment with either drug alone did not attenuate anxiety-like behaviors following PSS exposure. Use of cut-off behavioral criteria confirmed that adjunct treatment shifted prevalence of PSS-exposed rats from extreme towards minimal behavioral responders. One day following behavioral tests, brains were prepared for immunohistochemical analysis of number of BDNF-positive cells and of NPY-positive cells/fibers. PSS exposure decreased BDNF levels in hippocampus, but this was not affected by drug treatments. PSS exposure decreased number of NPY positive cells/fibers in paraventricular and arcuate nuclei of hypothalamus. Adjunct treatment with brexpiprazole+escitalopram increased NPY in PSS- and sham-exposed rats. Treatment with brexpiprazole alone had no effects, while treatment with escitalopram alone increased NPY in the arcuate nucleus of PSS-exposed rats. In conclusion, treatment with brexpiprazole+escitalopram may be an effective intervention for the attenuation of PTSD-like stress responses, which in part may be mediated by activating NPY function.
Collapse
Affiliation(s)
- Hagit Cohen
- Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Zohar
- The Chaim Sheba Medical Center, Sackler Medical School, Tel-Aviv University, Tel Hashomer, Israel
| | - Zeev Kaplan
- Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jørn Arnt
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; Sunred Pharma Consulting ApS, Svend Gonges Vej 11A, DK-2680 Solrod Strand, Denmark.
| |
Collapse
|
44
|
Octyl gallate reduces ATP levels and Ki67 expression leading HepG2 cells to cell cycle arrest and mitochondria-mediated apoptosis. Toxicol In Vitro 2017; 48:11-25. [PMID: 29288082 DOI: 10.1016/j.tiv.2017.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
Octyl gallate (OG) is an antioxidant that has shown anti-tumor, anti-diabetic and anti-amyloidogenic activities. Mitochondria play an important role in hepatocellular carcinoma, mainly by maintaining accelerated cellular proliferation through the production of ATP. Thus, the mitochondria may be a target for antitumor therapies. Here, we investigated the effects of OG in the hepatocarcinoma cell line (HepG2) and the mechanisms involved. We report, for the first time, that treatment with OG for 24h inhibited HepG2 cell growth by decreasing mitochondrial activity and mass, which led to the reduction of ATP levels. This reduction in the energy supply triggered a decrease in Ki67 protein expression, leading cells to cycle arrest. In addition, treatment with two doses of OG for 48h induced loss of mitochondrial functionality, mitochondrial swelling and apoptosis. Finally, we report that HepG2 cells had no resistance to treatment after multiple doses. Collectively, our findings indicate that metabolic dysregulation and Ki67 protein reduction are key events in the initial anti-proliferative action of OG, whereas mitochondrial swelling and apoptosis induction are involved in the action mechanism of OG after prolonged exposure. This suggests that OG targets mitochondria, thus representing a candidate for further research on therapies for hepatocarcinoma.
Collapse
|
45
|
Gabapentin regulates expression of FGF2 and FGFR1 in dorsal root ganglia via microRNA-15a in the arthritis rat model. J Orthop Sci 2017; 22:1112-1119. [PMID: 28877850 DOI: 10.1016/j.jos.2017.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND Arthritis is an inflammatory disease with a prevalence rate of approximately 10% in China, which commonly manifests as pain. The aim of the current study was to investigate the function of gabapentin in the dorsal root ganglion in an arthritis rat model, and assess the effect of gabapentin on the expression of fibroblast growth factor 2 (FGF2) and FGF receptor 1 (FGFR1). METHODS A total of 30 healthy male Sprague-Dawley rats were randomly divided into the following three groups: Untreated group, control group and gabapentin group. Rats in the control and the gabapentin groups were injected with Freund's complete adjuvant to induce arthritis. A total of 7 days subsequent to model establishment, the gabapentin group was administered intraperitoneally gabapentin for 8 days. The alterations in thickness of paw pad and paw withdrawal mechanical threshold (PWMT) were detected, which indicated that the rats in the control and gabapentin groups presented with the symptoms of arthritis. RESULTS In the control group, the PWMT value was significantly reduced (P < 0.05), whereas the PWMT value was significantly increased in the gabapentin group. Immunohistochemistry demonstrated that the expression levels of FGF2 and FGFR1 were increased in the control group compared with the untreated group, while the expression levels of FGF2 and FGFR1 were reduced in the gabapentin group. Moreover, the FGF2 antagonist PD173074 partially improved the plantar thickness and PWMT of the arthritic rats. Bioinformatics analysis predicted microRNA-15a binding sites in the 3'untranslated regions (UTR) of FGF2 and FGFR1. Furthermore, the expression of microRNA-15a was reduced in the control group compared with untreated rats, whereas microRNA-15a in the gabapentin group was upregulated compared with the control. Additionally, the luciferase reporter assay confirmed that microRNA-15a could inhibit the protein expression through pairing with the 3'UTR of FGF2 and FGFR1 mRNAs. CONCLUSION Gabapentin may relieve arthritis pain and reduce the expression of FGF2 and FGFR1 in dorsal root ganglia. Furthermore, microRNA-15a may be involved in the regulatory process.
Collapse
|
46
|
Cao W, Li A, Li J, Wu C, Cui S, Zhou Z, Liu Y, Wilcox CS, Hou FF. Reno-Cerebral Reflex Activates the Renin-Angiotensin System, Promoting Oxidative Stress and Renal Damage After Ischemia-Reperfusion Injury. Antioxid Redox Signal 2017; 27:415-432. [PMID: 28030955 PMCID: PMC5549812 DOI: 10.1089/ars.2016.6827] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023]
Abstract
AIMS A kidney-brain interaction has been described in acute kidney injury, but the mechanisms are uncertain. Since we recently described a reno-cerebral reflex, we tested the hypothesis that renal ischemia-reperfusion injury (IRI) activates a sympathetic reflex that interlinks the renal and cerebral renin-angiotensin axis to promote oxidative stress and progression of the injury. RESULTS Bilateral ischemia-reperfusion activated the intrarenal and cerebral, but not the circulating, renin-angiotensin system (RAS), increased sympathetic activity in the kidney and the cerebral sympathetic regulatory regions, and induced brain inflammation and kidney injury. Selective renal afferent denervation with capsaicin or renal denervation significantly attenuated IRI-induced activation of central RAS and brain inflammation. Central blockade of RAS or oxidative stress by intracerebroventricular (ICV) losartan or tempol reduced the renal ischemic injury score by 65% or 58%, respectively, and selective renal afferent denervation or reduction of sympathetic tone by ICV clonidine decreased the score by 42% or 52%, respectively (all p < 0.05). Ischemia-reperfusion-induced renal damage and dysfunction persisted after controlling blood pressure with hydralazine. INNOVATION This study uncovered a novel reflex pathway between ischemic kidney and the brain that sustains renal oxidative stress and local RAS activation to promote ongoing renal damage. CONCLUSIONS These data suggest that the renal and cerebral renin-angiotensin axes are interlinked by a reno-cerebral sympathetic reflex that is activated by ischemia-reperfusion, which contributes to ischemia-reperfusion-induced brain inflammation and worsening of the acute renal injury. Antioxid. Redox Signal. 27, 415-432.
Collapse
Affiliation(s)
- Wei Cao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Aiqing Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Jiawen Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Chunyi Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Shuang Cui
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Zhanmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Christopher S. Wilcox
- Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| |
Collapse
|
47
|
Dynamic distribution and tissue tropism of avian encephalomyelitis virus isolate XY/Q-1410 in experimentally infected Korean quail. Arch Virol 2017; 162:3447-3458. [PMID: 28795263 DOI: 10.1007/s00705-017-3504-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/20/2017] [Indexed: 02/05/2023]
Abstract
Avian encephalomyelitis (AE) is an important infectious poultry disease worldwide that is caused by avian encephalomyelitis virus (AEV). However, to date, the dynamic distribution of AEV in quails has not been well described. Quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) assays were used to investigate the dynamic distribution and tissue tropism of AEV in experimentally infected Korean quail. AEV was detected in the cerebrum, cerebellum, proventriculus, intestine, liver, pancreas, spleen, bursa, lung and kidney as early as 3 days post-infection (dpi). The viral loads in the proventriculus, intestine, spleen and bursa were relatively higher than in other tissues. According to the qPCR results, AEV XY/Q-1410 infection lasted for at least 60 days in infected Korean quail. Immunohistochemistry-positive staining signals of AEV antigen were analysed by Image-Pro Plus software. A positive correlation between qPCR and IHC results was identified in most tissues. Our results provide an insight into the dynamic distribution of AEV in various tissues after infection. The distinct dynamic distribution of the viral genome in Korean quail in the early and late stages of infection suggests that AEV replication is affected by antibody levels and the maturity of the immune system of the host.
Collapse
|
48
|
Zhu L, Baczyk D, Lye SJ, Zhang Z. Preeclampsia is associated with low placental transthyretin levels. Taiwan J Obstet Gynecol 2017; 55:385-9. [PMID: 27343320 DOI: 10.1016/j.tjog.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To investigate the relationship between placental transthyretin (TTR) level and preeclampsia. MATERIALS AND METHODS Placental tissues from uncomplicated and preeclamptic pregnancies were analyzed using immunohistochemistry and image analysis. We measured the mean optical density (OD) of immunohistochemical staining of TTR across multiple sections using Image Pro Plus 6.0. To avoid bias, we used placental tissue array, which contained preeclamptic placentas (n=8) and the control placentas (n=6) on the same slide. RESULTS The mean TTR OD of the syncytiotrophoblast layer of placentas (95% confidence interval) from the first trimester was higher than those from the second/third trimester, and term placentas [0.149 (0.014-0.285) for the 1(st) trimester, 0.037 (0.000-0.073) for the 2(nd)/3(rd) trimester, and 0.011 (0.035-0.056) for term; p<0.01]. Although the OD of the second/third trimester placentas appeared greater than that of term placentas, this was not statistically significant. The mean TTR OD of the syncytiotrophoblast layer of the severe preeclampsia group was lower than that of controls [0.010 (0.005-0.016) vs. 0.027 (0.013-0.041), p<0.05]. CONCLUSION The immunohistochemical expression of TTR in the syncytiotrophoblast layer of the placenta decreased significantly after 12 weeks of gestation, paralleling the changing demands of thyroid hormone uptake into the placenta. The reduced TTR expression in the syncytiotrophoblast layer of the preeclamptic placenta might impair thyroid hormone uptake and contribute to the pathophysiology of the disease.
Collapse
Affiliation(s)
- Lei Zhu
- Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing, China
| | - Dora Baczyk
- Research Centre for Women's and Infants' Health at the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health at the Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | - Zhenyu Zhang
- Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing, China.
| |
Collapse
|
49
|
Sela H, Cohen H, Karpas Z, Zeiri Y. Distinctive hippocampal zinc distribution patterns following stress exposure in an animal model of PTSD. Metallomics 2017; 9:323-333. [PMID: 28252129 DOI: 10.1039/c6mt00207b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emerging evidence suggests that zinc (Zn) deficiency is associated with depression and anxiety in both human and animal studies. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of Zn distribution. The work has focused on one case study, the association between an animal model of posttraumatic stress disorder (PTSD) and the Zn distribution in the rat hippocampus. Behaviors were assessed with the elevated plus-maze and acoustic startle response tests 7 days later. Preset cut-off criteria classified exposed animals according to their individual behavioral responses. To further characterize the distribution of Zn that occurs in the hippocampus 8 days after the exposure, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging was used. It has been found that Zn distribution in the dentate gyrus (DG) sub-region in the hippocampus is clearly more widely spread for rats that belong to the extreme behavioral response (EBR) group as compared to the control group. Comparison of the Zn concentration changes in the cornu ammonis 1 (CA1) and the DG sub-regions of the hippocampus shows that the concentration changes are statistically significantly higher in the EBR rats compared to the rats in the control and minimal behavioral response (MBR) groups. In order to understand the mechanism of stress-induced hippocampal Zn dyshomeostasis, relative quantitative analyses of metallothionein (MT), B-cell lymphoma 2 (Bcl-2) and caspase 3 immunoreactivity were performed. Significant differences in the number of caspase-ir and Bcl-2 cells were found in the hippocampal DG sub-region between the EBR group and the control and MBR groups. The results of this study demonstrate a statistically significant association between the degree of behavioral disruption resulting from stress exposure and the patterns of Zn distribution and concentration changes in the various hippocampal regions. Taken together, these findings indicate that Zn distribution patterns play an active role in the neurobiological response to predator scent stress.
Collapse
Affiliation(s)
- Hagit Sela
- Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. and Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 8419001, Israel.
| | - Hagit Cohen
- Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Zeev Karpas
- Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 8419001, Israel.
| | - Yehuda Zeiri
- Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. and Department of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 8419001, Israel.
| |
Collapse
|
50
|
Xu J, Liu D, Niu H, Zhu G, Xu Y, Ye D, Li J, Zhang Q. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:19. [PMID: 28126034 PMCID: PMC5270306 DOI: 10.1186/s13046-016-0487-8] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/30/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Gastric cancer is one of the major causes of cancer-related mortality worldwide. Most of patients presenting with inoperable gastric cancers rely on systemic chemotherapy for prolongation of survival. Doxorubicin (DOX) is one of the important agents against gastric cancer. Acquired DOX-resistance severely impedes the chemotherapeutic effect, invariably leading to poor prognosis. Resveratrol (RES) as a kind of phytoalexin has demonstrated anti-tumor functions in breast cancer and myeloid leukemia, but its function and mechanism are still unknown in gastric cancer treatment. METHODS CCK8 assay was used to detect the cytotoxicity of DOX and RES to gastric cancer cells. DOX-resistant subclone cell line (SGC7901/DOX) was derived from SGC7901 cells exposed to stepwise increasing concentrations of DOX treatment. We measured the migratory capabilities of SGC7901/DOX cells by Cell scratch test and Transwell assay. SGC7901/DOX cells were treated with DOX, RES, neither or both. Then we analyzed cell survival by CCK8 assay, colony formation by Colony-forming assay, cell apoptosis by Annexin-V-FITC and PI dual staining assay and cell migration by Cell scratch test and Transwell assay. Western blotting was conducted to detect the protein expressions of PTEN/Akt signaling pathway and EMT-related markers. Immunofluorescence was performed to confirm the EMT-related markers expressions. The xenograft model was used to assess the effect of DOX and RES in vivo. The key molecules associated with proliferation, apoptosis and EMT were evaluated by immunohistochemistry in tumor specimens. RESULTS SGC7901/DOX cells acquired drug resistance and enhancive migratory capability. RES enabled SGC7901/DOX cells to regain DOX sensitivity, mitigated the aggressive biological features, promoted cell apoptosis in vitro and inhibited tumor growth in vivo. Mechanistic studies revealed that SGC7901/DOX cells underwent epithelial-mesenchymal transition (EMT) which was induced by Akt activation, and through activating PTEN, RES inhibited the Akt pathway, and then achieved the reversion of EMT. CONCLUSION RES serves as a novel solution to reverse the DOX-resistance of gastric cancer via preventing EMT by modulating PTEN/Akt signaling pathway. DOX-RES combined treatment provides a promising future for gastric cancer patients to postpone drug resistance and prolong survival.
Collapse
Affiliation(s)
- Jiahui Xu
- 0000 0000 8877 7471grid.284723.8Nanfang Hospital/First Clinical Medical School, Southern Medical University, Guangzhou, 510515 China
| | - Deying Liu
- 0000 0000 8877 7471grid.284723.8Nanfang Hospital/First Clinical Medical School, Southern Medical University, Guangzhou, 510515 China
| | - Huilin Niu
- 0000 0000 8877 7471grid.284723.8Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Guifang Zhu
- 0000 0000 8877 7471grid.284723.8Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Yangwei Xu
- 0000 0000 8877 7471grid.284723.8Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Danli Ye
- 0000 0000 8877 7471grid.284723.8Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Jian Li
- 0000 0000 8877 7471grid.284723.8Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Qingling Zhang
- 0000 0000 8877 7471grid.284723.8Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,0000 0000 8877 7471grid.284723.8Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|