1
|
Rajendran D, Oon CE. Navigating therapeutic prospects by modulating autophagy in colorectal cancer. Life Sci 2024; 358:123121. [PMID: 39389340 DOI: 10.1016/j.lfs.2024.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Colorectal cancer (CRC) remains a leading cause of death globally despite the improvements in cancer treatment. Autophagy is an evolutionarily conserved lysosomal-dependent degradation pathway that is critical in maintaining cellular homeostasis. However, in cancer, autophagy may have conflicting functions in preventing early tumour formation versus the maintenance of advanced-stage tumours. Defective autophagy has a broad and dynamic effect not just on cancer cells, but also on the tumour microenvironment which influences tumour progression and response to treatment. To add to the layer of complexity, somatic mutations in CRC including tumour protein p53 (TP53), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), Kirsten rat sarcoma viral oncogene homolog (KRAS), and phosphatase and tensin homolog (PTEN) can render chemoresistance by promoting a pro-survival advantage through autophagy. Recent studies have also reported autophagy-related cell deaths that are distinct from classical autophagy by employing parts of the autophagic machinery, which impacts strategies for autophagy regulation in cancer therapy. This review discusses the molecular processes of autophagy in the evolution of CRC and its role in the tumour microenvironment, as well as prospective therapeutic methods based on autophagy suppression or promotion. It also highlights clinical trials using autophagy modulators for treating CRC, underscoring the importance of autophagy regulation in CRC therapy.
Collapse
Affiliation(s)
- Deepa Rajendran
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Fang X, Zeng J, Li Y, Yu H, Wu Z, Qi X. Hydroxychloroquine loaded hollow apoferritin nanocages for cancer drug repurposing and autophagy inhibition. Eur J Pharm Biopharm 2024; 203:114473. [PMID: 39186959 DOI: 10.1016/j.ejpb.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Hydroxychloroquine sulfate (HCQ) is currently being repurposed for cancer treatment. The antitumor mechanism of HCQ is inhibition of cellular autophagy, but its therapeutic potential is severely limited by poor solubility, lack of tumor targeting and lower cellular uptake. Therefore, utilization of human H-chain apoferritin (HFn) composed only of heavy subunits is an attractive approach for tumor targeting drug delivery. This study focused on pH-triggered encapsulation of HCQ within the inner cavity of HFn to form HFn@HCQ nanoparticles for tumor-targeted drug delivery. Characterization using a range of techniques has been used to confirm the successful establishment of HFn@HCQ. HFn@HCQ exhibited pH-responsive release behavior, with almost no drug release at pH 7.4, but 80% release at pH 5.0. Owing to its intrinsic binding to transferrin receptor 1 (TfR1), HFn@HCQ was significantly internalized through TfR1-mediated endocytosis, with a 4.4-fold difference of internalization amount across cell lines. Additionally, HFn@HCQ enhanced the antitumor effect against four different cancer cell lines when compared against HCQ alone, especially in TfR1 high-expressing cells, where the inhibitory effect was 3-fold higher than free HCQ. The autophagy inhibition of HFn@HCQ has been demonstrated, which is a major pathway to induce cancer cell death. According to current findings, HFn based drug delivery is a promising strategy to target and kill TfR1 overexpressing tumor cells.
Collapse
Affiliation(s)
- Xinning Fang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Zeng
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yitong Li
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Han Yu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; Hangzhou Innovative Institute of Pharmaceutics, China Pharmaceutical University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Duysak T, Kim K, Yun M, Jeong JH, Choy HE. Enhanced anti-cancer efficacy of arginine deaminase expressed by tumor-seeking Salmonella Gallinarum. Oncogene 2024:10.1038/s41388-024-03176-0. [PMID: 39322639 DOI: 10.1038/s41388-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Amino acid deprivation, particularly of nonessential amino acids that can be synthesized by normal cells but not by cancer cells with specific defects in the biosynthesis pathway, has emerged as a potential strategy in cancer therapeutics. In normal cells, arginine is synthesized from citrulline in two steps via two enzymes: argininosuccinate synthetase (ASS1) and argininosuccinate lyase. Several cancer cells exhibit arginine auxotrophy due to the loss or down-regulation of ASS1. These cells undergo starvation-induced cell death in the presence of arginine-degrading enzymes such as arginine deaminase (ADI). Thus, ADI has emerged as a potential therapeutic in cancer therapy. However, the use of ADI has two major disadvantages: ADI of bacterial origin is strongly antigenic in mammals, and ADI has a short circulation half-life (∼5 h). In this study, we engineered tumor-targeting Salmonella Gallinarum to express and secrete ADI and deployed this strain into mice implanted with ASS1-defective mouse colorectal cancer (CT26) through an intravenous route. A notable antitumor effect was observed, suggesting that the disadvantages were overcome as ADI was expressed constitutively by tumor-targeting bacteria. A combination with chloroquine, which inhibits the induction of autophagy, further enhanced the effect. Anti-cancer effect of Salmonella Gallinarum expressing an arginine deiminase (ADI) on arginine-dependent tumors in situ.
Collapse
Affiliation(s)
- Taner Duysak
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Korea
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Korea
| | - Kwangsoo Kim
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Korea
| | - Misun Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Korea.
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Korea.
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Korea.
| |
Collapse
|
4
|
Sun D, Yu L, Wang G, Xu Y, Wang P, Wang N, Wu Z, Zhang G, Zhang J, Zhang Y, Tian G, Wei P. Rationally designed catalytic nanoplatform for enhanced chemoimmunotherapy via deploying endogenous plus exogenous copper and remodeling tumor microenvironment. J Nanobiotechnology 2024; 22:551. [PMID: 39252079 PMCID: PMC11385821 DOI: 10.1186/s12951-024-02696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 09/11/2024] Open
Abstract
Chemodynamic therapy represents a novel tumor therapeutic modality via triggering catalytic reactions in tumors to yield highly toxic reactive oxygen species (ROS). Nevertheless, low efficiency catalytic ability, potential systemic toxicity and inefficient tumor targeting, have hindered the efficacy of chemodynamic therapy. Herein, a rationally designed catalytic nanoplatform, composed of folate acid conjugated liposomes loaded with copper peroxide (CP) and chloroquine (CQ; a clinical drug) (denoted as CC@LPF), could power maximal tumor cytotoxicity, mechanistically via maneuvering endogenous and exogenous copper for a highly efficient catalytic reaction. Despite a massive autophagosome accumulation elicited by CP-powered autophagic initiation and CQ-induced autolysosomal blockage, the robust ROS, but not aberrant autophagy, underlies the synergistic tumor inhibition. Otherwise, this combined mode also elicits an early onset, above all, long-term high-level existence of immunogenic cell death markers, associated with ROS and aberrant autophagy -triggered endoplasmic reticulum stress. Besides, CC@LPF, with tumor targeting capability and selective tumor cytotoxicity, could elicit intratumor dendritic cells (mainly attributed to CQ) and tumor infiltrating CD8+ T cells, upon combining with PD-L1 therapeutic antibody, further induce significant anti-tumor effect. Collectively, the rationally designed nanoplatform, CC@LPF, could enhance tumor chemoimmunotherapy via deploying endogenous plus exogenous copper and remodeling tumor microenvironment.
Collapse
Affiliation(s)
- Daxi Sun
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Liting Yu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Gang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuxue Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Peng Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Ningning Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China.
- University of Science and Technology of China, Hefei, 230026, P.R. China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China
- University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yunjiao Zhang
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China.
| | - Pengfei Wei
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
5
|
Sangamesh VC, Alagundagi DB, Jayaswamy PK, Kuriakose N, Shetty P. Targeting AnxA2-EGFR signaling: hydroxychloroquine as a therapeutic strategy for bleomycin-induced pulmonary fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03417-9. [PMID: 39222243 DOI: 10.1007/s00210-024-03417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease that causes progressive failure of lung function, and its molecular mechanism remains poorly understood. However, the AnnexinA2-epidermal growth factor receptor (EGFR) signaling pathway has been identified as playing a significant role in its development. Hydroxychloroquine, a common anti-malarial drug, has been found to inhibit this pathway and slow down the progression of IPF. To better understand the role of the AnxA2-EGFR signaling pathway in pulmonary fibrosis, an in vivo study was conducted. In this study, mice were induced with pulmonary fibrosis using bleomycin, and HCQ was administered intraperitoneally the next day of bleomycin induction. The study also employed nintedanib as a positive control. After the induction, the lungs showed increased levels of fibronectin and vimentin, along with enhanced expression of AnxA2, EGFR, and Gal-3, indicating pulmonary fibrosis. Additionally, the study also found that HCQ significantly inhibited these effects and showed antifibrotic properties similar to nintedanib. Overall, these findings suggest that HCQ can attenuate bleomycin-induced pulmonary fibrosis by inhibiting the AnxA2-EGFR signaling pathway. These results are promising for developing new treatments for IPF.
Collapse
Affiliation(s)
- Vinay C Sangamesh
- Nitte University Centre for Science Education and Research, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Dhananjay B Alagundagi
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Pavan K Jayaswamy
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Nithin Kuriakose
- Nitte University Centre for Science Education and Research, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
- Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
6
|
Ning F, Wei D, Yu H, Song T, Li Z, Ma H, Sun Y. Construction of a Multifunctional Upconversion Nanoplatform Based on Autophagy Inhibition and Photodynamic Therapy Combined with Chemotherapy for Antitumor Therapy. Mol Pharm 2024; 21:4297-4311. [PMID: 39106330 DOI: 10.1021/acs.molpharmaceut.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Inhibition of autophagy increases the sensitivity of tumor cells to radiotherapy and chemotherapy and improves the therapeutic effect on tumors. Recently, photodynamic therapy (PDT) combined with chemotherapy has been proven to further improve the efficiency of cancer treatment. As such, combining autophagy inhibition with PDT and chemotherapy may represent a potentially effective new strategy for cancer treatment. However, currently widely studied autophagy inhibitors inevitably produce various toxic side effects due to their inherent pharmacological activity. To overcome this constraint, in this study, we designed an ideal multifunctional upconversion nanoplatform, UCNP-Ce6-EPI@mPPA + NIR (MUCEN). Control, UCNP-EPI@mPPA (MUE), UCNP-EPI@mPPA + NIR (MUEN), Ce6-EPI@mPPA (MCE), Ce6-EPI@mPPA + NIR (MCEN), and UCNP-Ce6-EPI@mPPA (MUCE) groups were set up separately as controls. Based on a combination of autophagy inhibition and PDT, the average particle size of MUCEN was 197 nm, which can simultaneously achieve the double encapsulation of chlorine e6 (Ce6) and epirubicin (EPI). In vitro tests revealed that MUCE was efficiently endocytosed by 4T1 cells under near-infrared light irradiation. Further, in vivo tests revealed that MUCE dramatically inhibited tumor growth. Immunohistochemistry results indicated that MUCE efficiently increased the expression of autophagy inhibitors p62 and LC3 in tumor tissues. The synergistic effect of autophagy inhibition and PDT with MUCE exhibited superior tumor suppression, providing an innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Fang Ning
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Tingting Song
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Hongmei Ma
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Güleç Taşkıran AE, Hüsnügil HH, Soltani ZE, Oral G, Menemenli NS, Hampel C, Huebner K, Erlenbach-Wuensch K, Sheraj I, Schneider-Stock R, Akyol A, Liv N, Banerjee S. Post-Transcriptional Regulation of Rab7a in Lysosomal Positioning and Drug Resistance in Nutrient-Limited Cancer Cells. Traffic 2024; 25:e12956. [PMID: 39313937 DOI: 10.1111/tra.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Limited nutrient availability in the tumor microenvironment can cause the rewiring of signaling and metabolic networks to confer cancer cells with survival advantages. We show here that the limitation of glucose, glutamine and serum from the culture medium resulted in the survival of a population of cancer cells with high viability and capacity to form tumors in vivo. These cells also displayed a remarkable increase in the abundance and size of lysosomes. Moreover, lysosomes were located mainly in the perinuclear region in nutrient-limited cells; this translocation was mediated by a rapid post-transcriptional increase in the key endolysosomal trafficking protein Rab7a. The acidic lysosomes in nutrient-limited cells could trap weakly basic drugs such as doxorubicin, mediating resistance of the cells to the drug, which could be partially reversed with the lysosomal inhibitor bafilomycin A1. An in vivo chorioallantoic membrane (CAM) assay indicated a remarkable decrease in microtumor volume when nutrient-limited cells were treated with 5-Fluorouracil (5-FU) and bafilomycin A1 compared to cells treated with either agent alone. Overall, our data indicate the activation of complementary pathways with nutrient limitation that can enable cancer cells to survive, proliferate and acquire drug resistance.
Collapse
Affiliation(s)
- Aliye Ezgi Güleç Taşkıran
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
- Department of Molecular Biology and Genetics, Başkent University, Ankara, Turkiye
| | - Hepşen H Hüsnügil
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Zahra E Soltani
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Göksu Oral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Nazlı S Menemenli
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Chuanpit Hampel
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Huebner
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Erlenbach-Wuensch
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Aytekin Akyol
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkiye
- Cancer Systems Biology Laboratory (CanSyL), Orta Dogu Teknik Universitesi, Ankara, Turkiye
| |
Collapse
|
8
|
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024; 27:333-349. [PMID: 38580870 PMCID: PMC11303583 DOI: 10.1007/s10456-024-09913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Sustained angiogenesis stands as a hallmark of cancer. The intricate vascular tumor microenvironment fuels cancer progression and metastasis, fosters therapy resistance, and facilitates immune evasion. Therapeutic strategies targeting tumor vasculature have emerged as transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and endothelial reprogramming. Growing evidence suggests the dynamic regulation of tumor angiogenesis by infiltrating myeloid cells, such as macrophages, myeloid-derived suppressor cells (MDSCs), and neutrophils. Understanding these regulatory mechanisms is pivotal in paving the way for successful vasculature-targeted cancer treatments. Therapeutic interventions aimed to disrupt myeloid cell-mediated tumor angiogenesis may reshape tumor microenvironment and overcome tumor resistance to radio/chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gloria Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy 2024; 20:1700-1711. [PMID: 38497492 PMCID: PMC11262229 DOI: 10.1080/15548627.2024.2330261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-β: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
10
|
Singh A, Ravendranathan N, Frisbee JC, Singh KK. Complex Interplay between DNA Damage and Autophagy in Disease and Therapy. Biomolecules 2024; 14:922. [PMID: 39199310 PMCID: PMC11352539 DOI: 10.3390/biom14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer, a multifactorial disease characterized by uncontrolled cellular proliferation, remains a global health challenge with significant morbidity and mortality. Genomic and molecular aberrations, coupled with environmental factors, contribute to its heterogeneity and complexity. Chemotherapeutic agents like doxorubicin (Dox) have shown efficacy against various cancers but are hindered by dose-dependent cytotoxicity, particularly on vital organs like the heart and brain. Autophagy, a cellular process involved in self-degradation and recycling, emerges as a promising therapeutic target in cancer therapy and neurodegenerative diseases. Dysregulation of autophagy contributes to cancer progression and drug resistance, while its modulation holds the potential to enhance treatment outcomes and mitigate adverse effects. Additionally, emerging evidence suggests a potential link between autophagy, DNA damage, and caretaker breast cancer genes BRCA1/2, highlighting the interplay between DNA repair mechanisms and cellular homeostasis. This review explores the intricate relationship between cancer, Dox-induced cytotoxicity, autophagy modulation, and the potential implications of autophagy in DNA damage repair pathways, particularly in the context of BRCA1/2 mutations.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
11
|
Liu Y, Meng Y, Zhang J, Gu L, Shen S, Zhu Y, Wang J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int J Nanomedicine 2024; 19:6777-6809. [PMID: 38983131 PMCID: PMC11232884 DOI: 10.2147/ijn.s458910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Department of Pharmacological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| |
Collapse
|
12
|
Wang Y, Hu Z, Jiang M, Zhang Y, Yuan L, Wang Z, Song T, Zhang Z. Yeast Bxi1/Ybh3 mediates conserved mitophagy and apoptosis in yeast and mammalian cells: convergence in Bcl-2 family. Biol Chem 2024; 405:417-426. [PMID: 38465853 DOI: 10.1515/hsz-2023-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
The process of degrading unwanted or damaged mitochondria by autophagy, called mitophagy, is essential for mitochondrial quality control together with mitochondrial apoptosis. In mammalian cells, pan-Bcl-2 family members including conical Bcl-2 members and non-conical ones are involved in and govern the two processes. We have illustrated recently the BH3 receptor Hsp70 interacts with Bim to mediate both apoptosis and mitophagy. However, whether similar pathways exist in lower eukaryotes where conical Bcl-2 members are absent remained unclear. Here, a specific inhibitor of the Hsp70-Bim PPI, S1g-10 and its analogs were used as chemical tools to explore the role of yeast Bxi1/Ybh3 in regulating mitophagy and apoptosis. Using Om45-GFP processing assay, we illustrated that yeast Ybh3 mediates a ubiquitin-related mitophagy pathway in both yeast and mammalian cells through association with Hsp70, which is in the same manner with Bim. Moreover, by using Bax/Bak double knockout MEF cells, Ybh3 was identified to induce apoptosis through forming oligomerization to trigger mitochondrial outer membrane permeabilization (MOMP) like Bax. We not only illustrated a conserved ubiquitin-related mitophagy pathway in yeast but also revealed the multi-function of Ybh3 which combines the function of BH3-only protein and multi-domain Bax protein as one.
Collapse
Affiliation(s)
- Yuying Wang
- School of Life Science and Technology, Cancer Hospital of Dalian University of Technology, 12399 Dalian University of Technology , Dalian 116024, Liaoning, China
| | - Zhiyuan Hu
- School of Life Science and Technology, Cancer Hospital of Dalian University of Technology, 12399 Dalian University of Technology , Dalian 116024, Liaoning, China
| | - Maojun Jiang
- School of Chemistry, 12399 Dalian University of Technology , Dalian 116024, Liaoning, China
| | - Yanxin Zhang
- School of Life Science and Technology, Cancer Hospital of Dalian University of Technology, 12399 Dalian University of Technology , Dalian 116024, Liaoning, China
| | - Linjie Yuan
- School of Chemistry, 12399 Dalian University of Technology , Dalian 116024, Liaoning, China
| | - Ziqian Wang
- School of Chemistry, 12399 Dalian University of Technology , Dalian 116024, Liaoning, China
| | - Ting Song
- School of Chemistry, 12399 Dalian University of Technology , Dalian 116024, Liaoning, China
| | - Zhichao Zhang
- School of Chemistry, 12399 Dalian University of Technology , Dalian 116024, Liaoning, China
| |
Collapse
|
13
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T. Nanomaterials in crossroad of autophagy control in human cancers: Amplification of cell death mechanisms. Cancer Lett 2024; 591:216860. [PMID: 38583650 DOI: 10.1016/j.canlet.2024.216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri, 39039, Türkiye.
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianfeng Wang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Ting Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
15
|
Iglesias-Corral D, García-Valles P, Arroyo-Garrapucho N, Bueno-Martínez E, Ruiz-Robles JM, Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. Chloroquine-induced DNA damage synergizes with DNA repair inhibitors causing cancer cell death. Front Oncol 2024; 14:1390518. [PMID: 38803536 PMCID: PMC11128598 DOI: 10.3389/fonc.2024.1390518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer is a global health problem accounting for nearly one in six deaths worldwide. Conventional treatments together with new therapies have increased survival to this devastating disease. However, the persistent challenges of treatment resistance and the limited therapeutic arsenal available for specific cancer types still make research in new therapeutic strategies an urgent need. Methods Chloroquine was tested in combination with different drugs (Panobinostat, KU-57788 and NU-7026) in 8 human-derived cancer cells lines (colorectal: HCT116 and HT29; breast: MDA-MB-231 and HCC1937; glioblastoma: A-172 and LN-18; head and neck: CAL-33 and 32816). Drug´s effect on proliferation was tested by MTT assays and cell death was assessed by Anexin V-PI apoptosis assays. The presence of DNA double-strand breaks was analyzed by phospho-H2AX fluorescent staining. To measure homologous recombination efficiency the HR-GFP reporter was used, which allows flow cytometry-based detection of HR stimulated by I-SceI endonuclease-induced DSBs. Results The combination of chloroquine with any of the drugs employed displayed potent synergistic effects on apoptosis induction, with particularly pronounced efficacy observed in glioblastoma and head and neck cancer cell lines. We found that chloroquine produced DNA double strand breaks that depended on reactive oxygen species formation, whereas Panobinostat inhibited DNA double-strand breaks repair by homologous recombination. Cell death caused by chloroquine/Panobinostat combination were significantly reduced by N-Acetylcysteine, a reactive oxygen species scavenger, underscoring the pivotal role of DSB generation in CQ/LBH-induced lethality. Based on these data, we also explored the combination of CQ with KU-57788 and NU-7026, two inhibitors of the other main DSB repair pathway, nonhomologous end joining (NHEJ), and again synergistic effects on apoptosis induction were observed. Conclusion Our data provide a rationale for the clinical investigation of CQ in combination with DSB inhibitors for the treatment of different solid tumors.
Collapse
Affiliation(s)
- Diego Iglesias-Corral
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Paula García-Valles
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Nuria Arroyo-Garrapucho
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Elena Bueno-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Juan Manuel Ruiz-Robles
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| |
Collapse
|
16
|
Hu M, Ladowski JM, Xu H. The Role of Autophagy in Vascular Endothelial Cell Health and Physiology. Cells 2024; 13:825. [PMID: 38786047 PMCID: PMC11120581 DOI: 10.3390/cells13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy is a highly conserved cellular recycling process which enables eukaryotes to maintain both cellular and overall homeostasis through the catabolic breakdown of intracellular components or the selective degradation of damaged organelles. In recent years, the importance of autophagy in vascular endothelial cells (ECs) has been increasingly recognized, and numerous studies have linked the dysregulation of autophagy to the development of endothelial dysfunction and vascular disease. Here, we provide an overview of the molecular mechanisms underlying autophagy in ECs and our current understanding of the roles of autophagy in vascular biology and review the implications of dysregulated autophagy for vascular disease. Finally, we summarize the current state of the research on compounds to modulate autophagy in ECs and identify challenges for their translation into clinical use.
Collapse
Affiliation(s)
| | - Joseph M. Ladowski
- Transplant and Immunobiology Research, Department of Surgery, Duke University, Durham, NC 27710, USA;
| | - He Xu
- Transplant and Immunobiology Research, Department of Surgery, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
17
|
Qian C, Zhou Y, Zhang T, Dong G, Song M, Tang Y, Wei Z, Yu S, Shen Q, Chen W, Choi JP, Yan J, Zhong C, Wan L, Li J, Wang A, Lu Y, Zhao Y. Targeting PKM2 signaling cascade with salvianic acid A normalizes tumor blood vessels to facilitate chemotherapeutic drug delivery. Acta Pharm Sin B 2024; 14:2077-2096. [PMID: 38799619 PMCID: PMC11121179 DOI: 10.1016/j.apsb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 05/29/2024] Open
Abstract
Aberrant tumor blood vessels are prone to propel the malignant progression of tumors, and targeting abnormal metabolism of tumor endothelial cells emerges as a promising option to achieve vascular normalization and antagonize tumor progression. Herein, we demonstrated that salvianic acid A (SAA) played a pivotal role in contributing to vascular normalization in the tumor-bearing mice, thereby improving delivery and effectiveness of the chemotherapeutic agent. SAA was capable of inhibiting glycolysis and strengthening endothelial junctions in the human umbilical vein endothelial cells (HUVECs) exposed to hypoxia. Mechanistically, SAA was inclined to directly bind to the glycolytic enzyme PKM2, leading to a dramatic decrease in endothelial glycolysis. More importantly, SAA improved the endothelial integrity via activating the β-Catenin/Claudin-5 signaling axis in a PKM2-dependent manner. Our findings suggest that SAA may serve as a potent agent for inducing tumor vascular normalization.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuhong Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jaesung P. Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney NSW 2050, Australia
| | - Juming Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, China
| | - Chongjin Zhong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wan
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jia Li
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney NSW 2109, Australia
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
18
|
Houbaert D, Nikolakopoulos AP, Jacobs KA, Meçe O, Roels J, Shankar G, Agrawal M, More S, Ganne M, Rillaerts K, Boon L, Swoboda M, Nobis M, Mourao L, Bosisio F, Vandamme N, Bergers G, Scheele CLGJ, Agostinis P. An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade. Cell Rep 2024; 43:114020. [PMID: 38554280 DOI: 10.1016/j.celrep.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
Collapse
Affiliation(s)
- Diede Houbaert
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Apostolos Panagiotis Nikolakopoulos
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kathryn A Jacobs
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Jana Roels
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gautam Shankar
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Kristine Rillaerts
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | | | - Magdalena Swoboda
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Max Nobis
- Intravital Imaging Expertise Center, VIB-CCB, Leuven, Belgium
| | - Larissa Mourao
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Niels Vandamme
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gabriele Bergers
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium.
| |
Collapse
|
19
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
20
|
Akbari A, Noorbakhsh Varnosfaderani SM, Haeri MS, Fathi Z, Aziziyan F, Yousefi Rad A, Zalpoor H, Nabi-Afjadi M, Malekzadegan Y. Autophagy induced by Helicobacter Pylori infection can lead to gastric cancer dormancy, metastasis, and recurrence: new insights. Hum Cell 2024; 37:139-153. [PMID: 37924488 DOI: 10.1007/s13577-023-00996-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
According to the findings of recent research, Helicobacter Pylori (H. pylori) infection is not only the primary cause of gastric cancer (GC), but it is also linked to the spread and invasion of GC through a number of processes and factors that contribute to virulence. In this study, we discussed that H. pylori infection can increase autophagy in GC tumor cells, leading to poor prognosis in such patients. Until now, the main concerns have been focused on H. pylori's role in GC development. According to our hypothesis, however, H. pylori infection may also lead to GC dormancy, metastasis, and recurrence by stimulating autophagy. Therefore, understanding how H. pylori possess these processes through its virulence factors and various microRNAs can open new windows for providing new prevention and/or therapeutic approaches to combat GC dormancy, metastasis, and recurrence which can occur in GC patients with H. pylori infection with targeting autophagy and eradicating H. pylori infection.
Collapse
Affiliation(s)
- Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
21
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
22
|
Buono R, Tucci J, Cutri R, Guidi N, Mangul S, Raucci F, Pellegrini M, Mittelman SD, Longo VD. Fasting-Mimicking Diet Inhibits Autophagy and Synergizes with Chemotherapy to Promote T-Cell-Dependent Leukemia-Free Survival. Cancers (Basel) 2023; 15:5870. [PMID: 38136414 PMCID: PMC10741737 DOI: 10.3390/cancers15245870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fasting mimicking diets (FMDs) are effective in the treatment of many solid tumors in mouse models, but their effect on hematologic malignancies is poorly understood, particularly in combination with standard therapies. Here we show that cycles of a 3-day FMD given to high-fat-diet-fed mice once a week increased the efficacy of vincristine to improve survival from BCR-ABL B acute lymphoblastic leukemia (ALL). In mice fed a standard diet, FMD cycles in combination with vincristine promoted cancer-free survival. RNA seq and protein assays revealed a vincristine-dependent decrease in the expression of multiple autophagy markers, which was exacerbated by the fasting/FMD conditions. The autophagy inhibitor chloroquine could substitute for fasting/FMD to promote cancer-free survival in combination with vincristine. In vitro, targeted inhibition of autophagy genes ULK1 and ATG9a strongly potentiated vincristine's toxicity. Moreover, anti-CD8 antibodies reversed the effects of vincristine plus fasting/FMD in promoting leukemia-free survival in mice, indicating a central role of the immune system in this response. Thus, the inhibition of autophagy and enhancement of immune responses appear to be mediators of the fasting/FMD-dependent cancer-free survival in ALL mice.
Collapse
Affiliation(s)
- Roberta Buono
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Jonathan Tucci
- Center for Endocrinology, Diabetes & Metabolism, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Raffaello Cutri
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Novella Guidi
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Serghei Mangul
- Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, Boyer Hall, 611 Charles Young Drive, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Franca Raucci
- IFOM AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Matteo Pellegrini
- Institute for Quantitative and Computational Biosciences, Boyer Hall, 611 Charles Young Drive, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, 801 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Steven D. Mittelman
- Center for Endocrinology, Diabetes & Metabolism, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
- Division of Pediatric Endocrinology, UCLA Mattel Children’s Hospital, 10833 Le Conte Avenue, MDCC 22-315, Los Angeles, CA 90095, USA
| | - Valter D. Longo
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
- IFOM AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Verhoeven J, Jacobs KA, Rizzollo F, Lodi F, Hua Y, Poźniak J, Narayanan Srinivasan A, Houbaert D, Shankar G, More S, Schaaf MB, Dubroja Lakic N, Ganne M, Lamote J, Van Weyenbergh J, Boon L, Bechter O, Bosisio F, Uchiyama Y, Bertrand MJ, Marine JC, Lambrechts D, Bergers G, Agrawal M, Agostinis P. Tumor endothelial cell autophagy is a key vascular-immune checkpoint in melanoma. EMBO Mol Med 2023; 15:e18028. [PMID: 38009521 DOI: 10.15252/emmm.202318028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Kathryn A Jacobs
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Francesca Lodi
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Yichao Hua
- Laboratory of Tumor Microenvironment and Therapeutic Resistance Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joanna Poźniak
- Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Adhithya Narayanan Srinivasan
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Diede Houbaert
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Gautam Shankar
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
- Department of Pathology, UZLeuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marco B Schaaf
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikolina Dubroja Lakic
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
- Department of Pathology, UZLeuven, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jochen Lamote
- Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
- Department of Pathology, UZLeuven, Leuven, Belgium
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mathieu Jm Bertrand
- VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jean Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Fan P, Zhang N, Candi E, Agostini M, Piacentini M, Shi Y, Huang Y, Melino G. Alleviating hypoxia to improve cancer immunotherapy. Oncogene 2023; 42:3591-3604. [PMID: 37884747 DOI: 10.1038/s41388-023-02869-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Tumor hypoxia resulting from abnormal and dysfunctional tumor vascular network poses a substantial obstacle to immunotherapy. In fact, hypoxia creates an immunosuppressive tumor microenvironment (TME) through promoting angiogenesis, metabolic reprogramming, extracellular matrix remodeling, epithelial-mesenchymal transition (EMT), p53 inactivation, and immune evasion. Vascular normalization, a strategy aimed at restoring the structure and function of tumor blood vessels, has been shown to improve oxygen delivery and reverse hypoxia-induced signaling pathways, thus alleviates hypoxia and potentiates cancer immunotherapy. In this review, we discuss the mechanisms of tumor tissue hypoxia and its impacts on immune cells and cancer immunotherapy, as well as the approaches to induce tumor vascular normalization. We also summarize the evidence supporting the use of vascular normalization in combination with cancer immunotherapy, and highlight the challenges and future directions of this overlooked important field. By targeting the fundamental problem of tumor hypoxia, vascular normalization proposes a promising strategy to enhance the efficacy of cancer immunotherapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Peng Fan
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Naidong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 215123, Suzhou, China.
| | - Yuhui Huang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
25
|
Wu J, Guo Q, Li J, Yuan H, Xiao C, Qiu J, Wu Q, Wang D. Loperamide induces protective autophagy and apoptosis through the ROS/JNK signaling pathway in bladder cancer. Biochem Pharmacol 2023; 218:115870. [PMID: 37863323 DOI: 10.1016/j.bcp.2023.115870] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Bladder cancer is one of the most common carcinomas in the human urinary system worldwide. Loperamide, known as an antidiarrheal drug, exerts anti-tumor activities against various cancers. However, the effect of loperamide on bladder cancer cells remains unclear. Our study aimed to investigate the effect of loperamide on bladder cancer and explore the underlying mechanisms. We found that loperamide suppressed the proliferation of 5637 and T24 cells in a dose-dependent manner. Loperamide treatment showed both pro-apoptotic and pro-autophagic effects on bladder cancer cells. Moreover, it was revealed that loperamide induced reactive oxygen species (ROS) accumulation, leading to the activation of c-Jun N-terminal kinase (JNK) signaling pathway. Notably, ROS scavenger N-acetyl-L-cysteine (NAC) and JNK inhibitor SP600125 effectively attenuated the induction of autophagy and apoptosis triggered by loperamide. Finally, blocking autophagy with CQ could significantly enhance the anti-cancer effect of loperamide both in vitro and in vivo. Overall, these findings demonstrated that loperamide induced autophagy and apoptosis through the ROS-mediated JNK pathway in bladder cancer cells. Our results suggest that the strategy of combining loperamide with autophagy inhibitor CQ may provide a therapeutic option for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Jianjian Wu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qiang Guo
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Juntao Li
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hao Yuan
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Chutian Xiao
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jianguang Qiu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Qiong Wu
- Occupational Health Surveillance Center, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.
| | - Dejuan Wang
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
26
|
Saldarriaga CA, Alatout MH, Khurram OU, Gransee HM, Sieck GC, Mantilla CB. Chloroquine impairs maximal transdiaphragmatic pressure generation in old mice. J Appl Physiol (1985) 2023; 135:1126-1134. [PMID: 37823202 PMCID: PMC10979802 DOI: 10.1152/japplphysiol.00365.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
Aging results in increased neuromuscular transmission failure and denervation of the diaphragm muscle, as well as decreased force generation across a range of motor behaviors. Increased risk for respiratory complications in old age is a major health problem. Aging impairs autophagy, a tightly regulated multistep process responsible for clearing misfolded or aggregated proteins and damaged organelles. In motor neurons, aging-related autophagy impairment may contribute to deficits in neurotransmission, subsequent muscle atrophy, and loss of muscle force. Chloroquine is commonly used to inhibit autophagy. We hypothesized that chloroquine decreases transdiaphragmatic pressure (Pdi) in mice. Old mice (16-28 mo old; n = 26) were randomly allocated to receive intraperitoneal chloroquine (50 mg/kg) or vehicle 4 h before measuring Pdi during eupnea, hypoxia (10% O2)-hypercapnia (5% CO2) exposure, spontaneous deep breaths ("sighs"), and maximal activation elicited by bilateral phrenic nerve stimulation (Pdimax). Pdi amplitude and ventilatory parameters across experimental groups and behaviors were evaluated using a mixed linear model. There were no differences in Pdi amplitude across treatments during eupnea (∼8 cm H2O), hypoxia-hypercapnia (∼10 cm H2O), or sigh (∼36 cm H2O), consistent with prior studies documenting a lack of aging effects on ventilatory behaviors. In vehicle and chloroquine-treated mice, average Pdimax was 61 and 46 cm H2O, respectively. Chloroquine decreased Pdimax by 24% compared to vehicle (P < 0.05). There were no sex or age effects on Pdi in older mice. The observed decrease in Pdimax suggests aging-related susceptibility to impairments in autophagy, consistent with the effects of chloroquine on this important homeostatic process.NEW & NOTEWORTHY Recent findings suggest that autophagy plays a role in the development of aging-related neuromuscular dysfunction; however, the contribution of autophagy impairment to the maintenance of diaphragm force generation in old age is unknown. This study shows that in old mice, chloroquine administration decreases maximal transdiaphragmatic pressure generation. These chloroquine effects suggest a susceptibility to impairments in autophagy in old age.
Collapse
Affiliation(s)
- Carlos A Saldarriaga
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Mayar H Alatout
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| | - Carlos B Mantilla
- Department of Anesthesiology and Perioperative Medicine, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
27
|
Zhong J, Xiao C, Chen Q, Pan X, Xu T, Wang Y, Hou W, Liu L, Cao F, Wang Y, Li X, Zhou L, Yang H, Yang Y, Zhao C. Zebrafish functional xenograft vasculature platform identifies PF-502 as a durable vasculature normalization drug. iScience 2023; 26:107734. [PMID: 37680473 PMCID: PMC10480778 DOI: 10.1016/j.isci.2023.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Tumor vasculature often exhibits disorder and inefficiency. Vascular normalization offers potential for alleviating hypoxia and optimizing drug delivery in tumors. However, identifying effective agents is hindered by a lack of robust screening. We aimed to establish a comprehensive method using the zebrafish functional xenograft vasculature platform (zFXVP) to visualize and quantify tumor vasculature changes. Employing zFXVP, we systematically screened compounds, identifying PF-502 as a robust vascular normalization agent. Mechanistic studies showed PF-502 induces endothelial cell-cycle arrest, streamlines vasculature, and activates Notch1 signaling, enhancing stability and hemodynamics. In murine models, PF-502 exhibited pronounced vascular normalization and improved drug delivery at a sub-maximum tolerated dose. These findings highlight zFXVP's utility and suggest PF-502 as a promising adjunctive for vascular normalization in clinical settings.
Collapse
Affiliation(s)
- Jian Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qin Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Tongtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yiyun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Wanting Hou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Lu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Fujun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yulin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiaoying Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Lin Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yu Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| |
Collapse
|
28
|
Yan H, Huang X, Xu J, Zhang Y, Chen J, Xu Z, Li H, Wang Z, Yang X, Yang B, He Q, Luo P. Chloroquine Intervenes Nephrotoxicity of Nilotinib through Deubiquitinase USP13-Mediated Stabilization of Bcl-XL. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302002. [PMID: 37452432 PMCID: PMC10502815 DOI: 10.1002/advs.202302002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Nephrotoxicity has become prominent due to the increase in the clinical use of nilotinib, a second-generation BCR-ABL1 inhibitor in the first-line treatment of Philadelphia chromosome-positive chronic myeloid leukemia. To date, the mechanism of nilotinib nephrotoxicity is still unknown, leading to a lack of clinical intervention strategies. Here, it is found that nilotinib could induce glomerular atrophy, renal tubular degeneration, and kidney fibrosis in an animal model. Mechanistically, nilotinib induces intrinsic apoptosis by specifically reducing the level of BCL2 like 1 (Bcl-XL) in both vascular endothelial cells and renal tubular epithelial cells, as well as in vivo. It is confirmed that chloroquine (CQ) intervenes with nilotinib-induced apoptosis and improves mitochondrial integrity, reactive oxygen species accumulation, and DNA damage by reversing the decreased Bcl-XL. The intervention effect is dependent on the alleviation of the nilotinib-induced reduction in ubiquitin specific peptidase 13 (USP13) and does not rely on autophagy inhibition. Additionally, it is found that USP13 abrogates cell apoptosis by preventing excessive ubiquitin-proteasome degradation of Bcl-XL. In conclusion, the research reveals the molecular mechanism of nilotinib's nephrotoxicity, highlighting USP13 as an important regulator of Bcl-XL stability in determining cell fate, and provides CQ analogs as a clinical intervention strategy for nilotinib's nephrotoxicity.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Ying Zhang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zeng Wang
- Department of PharmacyZhejiang Cancer HospitalHangzhou310005China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Bo Yang
- Institute of Pharmacology & ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhou310018China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang UniversityCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Department of CardiologySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| |
Collapse
|
29
|
Petrillo S, De Giorgio F, Bertino F, Garello F, Bitonto V, Longo DL, Mercurio S, Ammirata G, Allocco AL, Fiorito V, Chiabrando D, Altruda F, Terreno E, Provero P, Munaron L, Genova T, Nóvoa A, Carlos AR, Cardoso S, Mallo M, Soares MP, Tolosano E. Endothelial cells require functional FLVCR1a during developmental and adult angiogenesis. Angiogenesis 2023; 26:365-384. [PMID: 36631598 PMCID: PMC10328904 DOI: 10.1007/s10456-023-09865-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a transmembrane heme exporter essential for embryonic vascular development. However, the exact role of FLVCR1a during blood vessel development remains largely undefined. Here, we show that FLVCR1a is highly expressed in angiogenic endothelial cells (ECs) compared to quiescent ECs. Consistently, ECs lacking FLVCR1a give rise to structurally and functionally abnormal vascular networks in multiple models of developmental and pathologic angiogenesis. Firstly, zebrafish embryos without FLVCR1a displayed defective intersegmental vessels formation. Furthermore, endothelial-specific Flvcr1a targeting in mice led to a reduced radial expansion of the retinal vasculature associated to decreased EC proliferation. Moreover, Flvcr1a null retinas showed defective vascular organization and loose attachment of pericytes. Finally, adult neo-angiogenesis is severely affected in murine models of tumor angiogenesis. Tumor blood vessels lacking Flvcr1a were disorganized and dysfunctional. Collectively, our results demonstrate the critical role of FLVCR1a as a regulator of developmental and pathological angiogenesis identifying FLVCR1a as a potential therapeutic target in human diseases characterized by aberrant neovascularization.
Collapse
Affiliation(s)
- Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy.
| | - F De Giorgio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - F Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - F Garello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - V Bitonto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - D L Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Via Nizza, 52, 10126, Turin, Italy
| | - S Mercurio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - G Ammirata
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - A L Allocco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - V Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - D Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - F Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - E Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - P Provero
- Department of Molecular Biotechnology and Health Sciences, and GenoBiToUS, Genomics and Bioinformatics Service, University of Torino, Turin, Italy
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - L Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - T Genova
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - A Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - A R Carlos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - S Cardoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - M Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - M P Soares
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - E Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) "Guido Tarone", University of Torino, Via Nizza, 52, 10126, Turin, Italy
| |
Collapse
|
30
|
Chiang CF, Wang ZZ, Hsu YH, Miaw SC, Lin WL. Exercise improves the outcome of anticancer treatment with ultrasound-hyperthermia-enhanced nanochemotherapy and autophagy inhibitor. PLoS One 2023; 18:e0288380. [PMID: 37437011 DOI: 10.1371/journal.pone.0288380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2023] [Indexed: 07/14/2023] Open
Abstract
It has been shown that exercise has a direct impact on tumor growth along with functional improvement. Previous studies have shown that exercise decreases the risk of cancer recurrence across various types of cancer. It was indicated that exercise stimulates the immune system to fight cancer. Previous study demonstrated that pulsed-wave ultrasound hyperthermia (pUH) combined with PEGylated liposomal doxorubicin (PLD) and chloroquine (CQ) inhibits 4T1 tumors growth and delays their recurrence. In this study, we investigated if the combinatorial treatment with high-intensity interval training (HIIT) combined with pUH-enhanced PLD delivery and CQ improved the outcome. The mouse experiment composed of three groups, HIIT+PLD+pUH+CQ group, PLD+pUH+CQ group, and the control group. HIIT+PLD+pUH+CQ group received 6 weeks of HIIT (15 min per day, 5 days per week) before 4T1 tumor implantation. Seven days later, they received therapy with PLD (10 mg/kg) + pUH (3 MHz, 50% duty cycle, 0.65 W/cm2, 15min) + CQ (50 mg/kg daily). Results showed that HIIT+PLD+pUH+CQ significantly reduced the tumor volumes and brought about longer survival of tumor-bearing mice than PLD+pUH+CQ did. Blood cell components were analyzed and showed that neutrophil and reticulocytes decreased while lymphocytes increased after exercise.
Collapse
Affiliation(s)
- Chi-Feng Chiang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Zi-Zong Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Hone Hsu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Win-Li Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan
| |
Collapse
|
31
|
Assi M, Kimmelman AC. Impact of context-dependent autophagy states on tumor progression. NATURE CANCER 2023; 4:596-607. [PMID: 37069394 PMCID: PMC10542907 DOI: 10.1038/s43018-023-00546-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
Macroautophagy is a cellular quality-control process that degrades proteins, protein aggregates and damaged organelles. Autophagy plays a fundamental role in cancer where, in the presence of stressors (for example, nutrient starvation, hypoxia, mechanical pressure), tumor cells activate it to degrade intracellular substrates and provide energy. Cell-autonomous autophagy in tumor cells and cell-nonautonomous autophagy in the tumor microenvironment and in the host converge on mechanisms that modulate metabolic fitness, DNA integrity and immune escape and, consequently, support tumor growth. In this Review, we will discuss insights into the tumor-modulating roles of autophagy in different contexts and reflect on how future studies using physiological culture systems may help to understand the complexity and open new therapeutic avenues.
Collapse
Affiliation(s)
- Mohamad Assi
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA.
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
32
|
Fang M, Liu J, Zhang Z, Li Y, Zhu J, Lin Z. Chloroquine Protects Hypoxia/Ischemia-Induced Neonatal Brain Injury in Rats by Mitigating Blood-Brain Barrier Disruption. ACS Chem Neurosci 2023; 14:1764-1773. [PMID: 37116216 DOI: 10.1021/acschemneuro.2c00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Neonatal hypoxic-ischemic (H/I) brain damage (HIBD) is a devastating condition for which there are presently no effective therapeutic strategies against its severe neurological deficits in neonates and young children. Traditionally, H/I induces the compromise of the blood-brain barrier (BBB), which causes neuronal cell death, eventually resulting in brain secondary injury. In addition to neonatal HIBD, chloroquine (CQ) has been proved to exert a protective effect on BBB disruption in several brain injury models. The main purpose of this research was to study whether CQ protects the BBB from H/I insult and confers beneficial neuroprotection in the neonatal Rice-Vannucci rat model. Herein, we reported that CQ administration significantly reduced brain damage and improved behavioral dysplasia after H/I injury. Moreover, we demonstrated the protective effects of CQ on BBB integrity, evidenced by ameliorating brain edema and Evans blue extravasation, inhibiting the degeneration of the tight junction and adherens junction proteins, and improving pericyte survival in neonatal rats after HIBD. These findings indicated that CQ administration protected the BBB against H/I injury, thereby ameliorating brain damage and promoting neurofunctional recovery. Collectively, our data demonstrated that CQ played a crucial role in BBB integrity after neonatal H/I injury, which sheds light on the development of therapeutic agents to treat HIBD.
Collapse
Affiliation(s)
- Mingchu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325027, China
| | - Jian Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhiwei Zhang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yueqi Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
33
|
Chen Y, Zhang X, Yang H, Liang T, Bai X. The "Self-eating" of cancer-associated fibroblast: A potential target for cancer. Biomed Pharmacother 2023; 163:114762. [PMID: 37100015 DOI: 10.1016/j.biopha.2023.114762] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
Autophagy helps maintain energy homeostasis and protect cells from stress effects by selectively removing misfolded/polyubiquitylated proteins, lipids, and damaged mitochondria. Cancer-associated fibroblasts (CAFs) are cellular components of tumor microenvironment (TME). Autophagy in CAFs inhibits tumor development in the early stages; however, it has a tumor-promoting effect in advanced stages. In this review, we aimed to summarize the modulators responsible for the induction of autophagy in CAFs, such as hypoxia, nutrient deprivation, mitochondrial stress, and endoplasmic reticulum stress. In addition, we aimed to present autophagy-related signaling pathways in CAFs, and role of autophagy in CAF activation, tumor progression, tumor immune microenvironment. Autophagy in CAFs may be an emerging target for tumor therapy. In summary, autophagy in CAFs is regulated by a variety of modulators and can reshape tumor immune microenvironment, affecting tumor progression and treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Zhang Y, Li H, Lv L, Lu K, Li H, Zhang W, Cui T. Autophagy: Dual roles and perspective for clinical treatment of colorectal cancer. Biochimie 2023; 206:49-60. [PMID: 36244578 DOI: 10.1016/j.biochi.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) raises concerns to people because of its high recurrence and metastasis rate, diagnosis challenges, and poor prognosis. Various studies have shown the association of altered autophagy with tumorigenesis, tumor-stroma interactions, and resistance to cancer therapy in CRC. Autophagy is a highly conserved cytosolic catabolic process in eukaryotes that plays distinct roles in CRC occurrence and progression. In early tumorigenesis, autophagy may inhibit tumor growth through diverse mechanisms, whereas it exhibits a tumor promoting function in CRC progression. This different functions of autophagy in CRC occurrence and progression make developing therapies targeting autophagy complicated. In this review, we discuss the classification and process of autophagy as well as its dual roles in CRC, functions in the tumor microenvironment, cross-talk with apoptosis, and potential usefulness as a CRC therapeutic target.
Collapse
Affiliation(s)
- Yabin Zhang
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Haiyan Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liang Lv
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Tao Cui
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
35
|
Ahmadi-Dehlaghi F, Mohammadi P, Valipour E, Pournaghi P, Kiani S, Mansouri K. Autophagy: A challengeable paradox in cancer treatment. Cancer Med 2023. [PMID: 36760166 DOI: 10.1002/cam4.5577] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE Autophagy is an intracellular degradation pathway conserved in all eukaryotes from yeast to humans. This process plays a quality-control role by destroying harmful cellular components under normal conditions, maintaining cell survival, and establishing cellular adaptation under stressful conditions. Hence, there are various studies indicating dysfunctional autophagy as a factor involved in the development and progression of various human diseases, including cancer. In addition, the importance of autophagy in the development of cancer has been highlighted by paradoxical roles, as a cytoprotective and cytotoxic mechanism. Despite extensive research in the field of cancer, there are many questions and challenges about the roles and effects suggested for autophagy in cancer treatment. The aim of this study was to provide an overview of the paradoxical roles of autophagy in different tumors and related cancer treatment options. METHODS In this study, to find articles, a search was made in PubMed and Google scholar databases with the keywords Autophagy, Autophagy in Cancer Management, and Drug Design. RESULTS According to the investigation, some studies suggest that several advanced cancers are dependent on autophagy for cell survival, so when cancer cells are exposed to therapy, autophagy is induced and suppresses the anti-cancer effects of therapeutic agents and also results in cell resistance. However, enhanced autophagy from using anti-cancer drugs causes autophagy-mediated cell death in several cancers. Because autophagy also plays roles in both tumor suppression and promotion further research is needed to determine the precise mechanism of this process in cancer treatment. CONCLUSION We concluded in this article, autophagy manipulation may either promote or hinder the growth and development of cancer according to the origin of the cancer cells, the type of cancer, and the behavior of the cancer cells exposed to treatment. Thus, before starting treatment it is necessary to determine the basal levels of autophagy in various cancers.
Collapse
Affiliation(s)
- Farnaz Ahmadi-Dehlaghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Biology, Payame Noor University, Tehran, Iran
| | - Parisa Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elahe Valipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sarah Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
36
|
Yu Z, Zhao Y, Ding K, He L, Liao C, Li J, Chen S, Shang K, Chen J, Yu C, Zhang C, Li Y, Wang S, Jia Y. Chloroquine Inhibition of Autophagy Enhanced the Anticancer Effects of Listeria monocytogenes in Melanoma. Microorganisms 2023; 11:microorganisms11020408. [PMID: 36838373 PMCID: PMC9958952 DOI: 10.3390/microorganisms11020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Listeria monocytogenes has been shown to exhibit antitumor effects. However, the mechanism remains unclear. Autophagy is a cellular catabolic process that mediates the degradation of unfolded proteins and damaged organelles in the cytosol, which is a double-edged sword in tumorigenesis and treatment outcome. Tumor cells display lower levels of basal autophagic activity than normal cells. This study examined the role and molecular mechanism of autophagy in the antitumor effects induced by LM, as well as the combined antitumor effect of LM and the autophagy inhibitor chloroquine (CQ). We investigated LM-induced autophagy in B16F10 melanoma cells by real-time PCR, immunofluorescence, Western blotting, and transmission electron microscopy and found that autophagic markers were increased following the infection of tumor cells with LM. The autophagy pathway in B16F10 cells was blocked with the pharmacological autophagy inhibitor chloroquine, which led to a significant increase in intracellular bacterial multiplication in tumor cells. The combination of CQ and LM enhanced LM-mediated cancer cell death and apoptosis compared with LM infection alone. Furthermore, the combination of LM and CQ significantly inhibited tumor growth and prolonged the survival time of mice in vivo, which was associated with the increased colonization and accumulation of LM and induced more cell apoptosis in primary tumors. The data indicated that the inhibition of autophagy by CQ enhanced LM-mediated antitumor activity in vitro and in vivo and provided a novel strategy to improving the anticancer efficacy of bacterial treatment.
Collapse
Affiliation(s)
- Zuhua Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yingying Zhao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Ding
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Songbiao Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Shang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jian Chen
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chuan Yu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Chunjie Zhang
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yinju Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Correspondence: (S.W.); (Y.J.)
| | - Yanyan Jia
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471003, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Correspondence: (S.W.); (Y.J.)
| |
Collapse
|
37
|
Yang T, Zhang Y, Chen J, Sun L. Crosstalk between autophagy and immune cell infiltration in the tumor microenvironment. Front Med (Lausanne) 2023; 10:1125692. [PMID: 36814780 PMCID: PMC9939467 DOI: 10.3389/fmed.2023.1125692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Autophagy is a conserved process for self-degradation and provides cells with a rescue mechanism to respond to circumstances such as stress and starvation. The role of autophagy in cancer is extremely complex and often paradoxical. Most of the related published studies on tumors are always focused on cancer cells. However, present studies gradually noticed the significance of autophagy in the tumor microenvironment. These studies demonstrate that autophagy and immunity work synergistically to affect tumor progression, indicating that autophagy could become a potential target for cancer immunotherapy. Therefore, it is crucial to clarify the correlation between autophagy and various tumor-infiltrating immune cells in the tumor microenvironment. The context-dependent role of autophagy is critical in the design of therapeutic strategies for cancer.
Collapse
|
38
|
Overcoming chemoresistance in non-angiogenic colorectal cancer by metformin via inhibiting endothelial apoptosis and vascular immaturity. J Pharm Anal 2023; 13:262-275. [PMID: 37102105 PMCID: PMC10123948 DOI: 10.1016/j.jpha.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The development of chemoresistance which results in a poor prognosis often renders current treatments for colorectal cancer (CRC). In this study, we identified reduced microvessel density (MVD) and vascular immaturity resulting from endothelial apoptosis as therapeutic targets for overcoming chemoresistance. We focused on the effect of metformin on MVD, vascular maturity, and endothelial apoptosis of CRCs with a non-angiogenic phenotype, and further investigated its effect in overcoming chemoresistance. In situ transplanted cancer models were established to compare MVD, endothelial apoptosis and vascular maturity, and function in tumors from metformin- and vehicle-treated mice. An in vitro co-culture system was used to observe the effects of metformin on tumor cell-induced endothelial apoptosis. Transcriptome sequencing was performed for genetic screening. Non-angiogenic CRC developed independently of angiogenesis and was characterized by vascular leakage, immaturity, reduced MVD, and non-hypoxia. This phenomenon had also been observed in human CRC. Furthermore, non-angiogenic CRCs showed a worse response to chemotherapeutic drugs in vivo than in vitro. By suppressing endothelial apoptosis, metformin sensitized non-angiogenic CRCs to chemo-drugs via elevation of MVD and improvement of vascular maturity. Further results showed that endothelial apoptosis was induced by tumor cells via activation of caspase signaling, which was abrogated by metformin administration. These findings provide pre-clinical evidence for the involvement of endothelial apoptosis and subsequent vascular immaturity in the chemoresistance of non-angiogenic CRC. By suppressing endothelial apoptosis, metformin restores vascular maturity and function and sensitizes CRC to chemotherapeutic drugs via a vascular mechanism.
Collapse
|
39
|
Lee E, Lee EA, Kong E, Chon H, Llaiqui-Condori M, Park CH, Park BY, Kang NR, Yoo JS, Lee HS, Kim HS, Park SH, Choi SW, Vestweber D, Lee JH, Kim P, Lee WS, Kim I. An agonistic anti-Tie2 antibody suppresses the normal-to-tumor vascular transition in the glioblastoma invasion zone. Exp Mol Med 2023; 55:470-484. [PMID: 36828931 PMCID: PMC9981882 DOI: 10.1038/s12276-023-00939-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/26/2023] Open
Abstract
Tumor progression is intimately associated with the vasculature, as tumor proliferation induces angiogenesis and tumor cells metastasize to distant organs via blood vessels. However, whether tumor invasion is associated with blood vessels remains unknown. As glioblastoma (GBM) is featured by aggressive invasion and vascular abnormalities, we characterized the onset of vascular remodeling in the diffuse tumor infiltrating zone by establishing new spontaneous GBM models with robust invasion capacity. Normal brain vessels underwent a gradual transition to severely impaired tumor vessels at the GBM periphery over several days. Increasing vasodilation from the tumor periphery to the tumor core was also found in human GBM. The levels of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) showed a spatial correlation with the extent of vascular abnormalities spanning the tumor-invading zone. Blockade of VEGFR2 suppressed vascular remodeling at the tumor periphery, confirming the role of VEGF-VEGFR2 signaling in the invasion-associated vascular transition. As angiopoietin-2 (ANGPT2) was expressed in only a portion of the central tumor vessels, we developed a ligand-independent tunica interna endothelial cell kinase 2 (Tie2)-activating antibody that can result in Tie2 phosphorylation in vivo. This agonistic anti-Tie2 antibody effectively normalized the vasculature in both the tumor periphery and tumor center, similar to the effects of VEGFR2 blockade. Mechanistically, this antibody-based Tie2 activation induced VE-PTP-mediated VEGFR2 dephosphorylation in vivo. Thus, our study reveals that the normal-to-tumor vascular transition is spatiotemporally associated with GBM invasion and may be controlled by Tie2 activation via a novel mechanism of action.
Collapse
Affiliation(s)
- Eunhyeong Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun-Ah Lee
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Haemin Chon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Melissa Llaiqui-Condori
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Cheon Ho Park
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Beom Yong Park
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Nu Ri Kang
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Jin-San Yoo
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Hyun-Soo Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, 61463, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seung-Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,BioMedical Research Center, KAIST, Daejeon, 34141, Republic of Korea.,SoVarGen, Inc., Daejeon, 34051, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Graduate School of Nanoscience and Technology, Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Weon Sup Lee
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea.
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,BioMedical Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
40
|
Feng L, Lu CK, Wu J, Chan LL, Yue J. Identification of Anhydrodebromoaplysiatoxin as a Dichotomic Autophagy Inhibitor. Mar Drugs 2023; 21:46. [PMID: 36662219 PMCID: PMC9862050 DOI: 10.3390/md21010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Dysfunctional autophagy is associated with various human diseases, e.g., cancer. The discovery of small molecules modulating autophagy with therapeutic potential could be significant. To this end, we screened the ability of a series of metabolites isolated from marine microorganisms to modulate autophagy. Anhydrodebromoaplysiatoxin (ADAT), a metabolite yielded by the marine red algae Gracilaria coronopifolia, inhibited autophagosome-lysosome fusion in mammalian cells, thereby inducing the accumulation of autophagosomes. Treatment of cells with ADAT alkalinized lysosomal pH. Interestingly, ADAT also activated the mTOR/p70S6K/FoxO3a signaling pathway, likely leading to the inhibition of autophagy induction. ADAT had little effect on apoptosis. Our results suggest that ADAT is a dichotomic autophagy inhibitor that inhibits both late-stage (autophagosome-lysosome fusion) and early-stage (autophagy induction) autophagy.
Collapse
Affiliation(s)
- Limin Feng
- Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
- Department of Bioscience and Institute of Genomics, National Yang Ming University, Taipei 11221, Taiwan
| | - Jiajun Wu
- Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Leo Lai Chan
- Shenzhen Key Laboratory in Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianbo Yue
- Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Duke Kunshan University, Kunshan 215316, China
| |
Collapse
|
41
|
Verhoeven J, Agostinis P, Agrawal M. Methods for Isolation of Tumor-Associated Endothelial Cells for Surface Protein Analysis and Sorting by Flowcytometry. Methods Mol Biol 2023; 2572:45-54. [PMID: 36161406 DOI: 10.1007/978-1-0716-2703-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polychromatic flowcytometry is increasingly used for simultaneously analyzing multiple intracellular and cell-surface proteins on a given cell population. Here we describe a flowcytometry-based method to analyze various proteins on the surface of endothelial cells (which comprise of less than 0.5% of the tumor microenvironment) and concurrently sort the live endothelial cells for the downstream applications such as gene expression by conventional quantitative PCR or by single-cell RNA sequencing.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- VIB Center for Cancer Biology Research, Leuven, Belgium.
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- VIB Center for Cancer Biology Research, Leuven, Belgium.
| |
Collapse
|
42
|
Dong S, Li W, Li X, Wang Z, Chen Z, Shi H, He R, Chen C, Zhou W. Glucose metabolism and tumour microenvironment in pancreatic cancer: A key link in cancer progression. Front Immunol 2022; 13:1038650. [PMID: 36578477 PMCID: PMC9792100 DOI: 10.3389/fimmu.2022.1038650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Early and accurate diagnosis and treatment of pancreatic cancer (PC) remain challenging endeavors globally. Late diagnosis lag, high invasiveness, chemical resistance, and poor prognosis are unresolved issues of PC. The concept of metabolic reprogramming is a hallmark of cancer cells. Increasing evidence shows that PC cells alter metabolic processes such as glucose, amino acids, and lipids metabolism and require continuous nutrition for survival, proliferation, and invasion. Glucose metabolism, in particular, regulates the tumour microenvironment (TME). Furthermore, the link between glucose metabolism and TME also plays an important role in the targeted therapy, chemoresistance, radiotherapy ineffectiveness, and immunosuppression of PC. Altered metabolism with the TME has emerged as a key mechanism regulating PC progression. This review shed light on the relationship between TME, glucose metabolism, and various aspects of PC. The findings of this study provide a new direction in the development of PC therapy targeting the metabolism of cancer cells.
Collapse
Affiliation(s)
- Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Huaqing Shi
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ru He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chen Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
43
|
Izci M, Maksoudian C, Gonçalves F, Aversa L, Salembier R, Sargsian A, Pérez Gilabert I, Chu T, Rios Luci C, Bolea-Fernandez E, Nittner D, Vanhaecke F, Manshian BB, Soenen SJ. Gold nanoparticle delivery to solid tumors: a multiparametric study on particle size and the tumor microenvironment. J Nanobiotechnology 2022; 20:518. [PMID: 36494816 PMCID: PMC9733103 DOI: 10.1186/s12951-022-01727-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle (NP) delivery to solid tumors remains an actively studied field, where several recent studies have shed new insights into the underlying mechanisms and the still overall poor efficacy. In the present study, Au NPs of different sizes were used as model systems to address this topic, where delivery of the systemically administered NPs to the tumor as a whole or to tumor cells specifically was examined in view of a broad range of tumor-associated parameters. Using non-invasive imaging combined with histology, immunohistochemistry, single-cell spatial RNA expression and image-based single cell cytometry revealed a size-dependent complex interaction of multiple parameters that promoted tumor and tumor-cell specific NP delivery. Interestingly, the data show that most NPs are sequestered by tumor-associated macrophages and cancer-associated fibroblasts, while only few NPs reach the actual tumor cells. While perfusion is important, leaky blood vessels were found not to promote NP delivery, but rather that delivery efficacy correlated with the maturity level of tumor-associated blood vessels. In line with recent studies, we found that the presence of specialized endothelial cells, expressing high levels of CD276 and Plvap promoted both tumor delivery and tumor cell-specific delivery of NPs. This study identifies several parameters that can be used to determine the suitability of NP delivery to the tumor region or to tumor cells specifically, and enables personalized approaches for maximal delivery of nanoformulations to the targeted tumor.
Collapse
Affiliation(s)
- Mukaddes Izci
- grid.5596.f0000 0001 0668 7884NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Christy Maksoudian
- grid.5596.f0000 0001 0668 7884NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Filipa Gonçalves
- grid.5596.f0000 0001 0668 7884NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Lucia Aversa
- grid.5596.f0000 0001 0668 7884NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Robbe Salembier
- grid.5596.f0000 0001 0668 7884NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Ara Sargsian
- grid.5596.f0000 0001 0668 7884Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Irati Pérez Gilabert
- grid.5596.f0000 0001 0668 7884NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Tianjiao Chu
- grid.5596.f0000 0001 0668 7884NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Carla Rios Luci
- grid.5596.f0000 0001 0668 7884NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Eduardo Bolea-Fernandez
- grid.5342.00000 0001 2069 7798Atomic and Mass Spectrometry—A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - David Nittner
- grid.5596.f0000 0001 0668 7884Laboratory for Molecular Cancer Biology, VIB-KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Frank Vanhaecke
- grid.5342.00000 0001 2069 7798Atomic and Mass Spectrometry—A&MS Research Group, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Bella B. Manshian
- grid.5596.f0000 0001 0668 7884Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium ,grid.5596.f0000 0001 0668 7884Faculty of Medical Sciences, Leuven Cancer Research Institute, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| | - Stefaan J. Soenen
- grid.5596.f0000 0001 0668 7884NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Louvain, Belgium ,grid.5596.f0000 0001 0668 7884Faculty of Medical Sciences, Leuven Cancer Research Institute, KU Leuven, Herestraat 49, B3000 Louvain, Belgium
| |
Collapse
|
44
|
Zheng W, Qian C, Tang Y, Yang C, Zhou Y, Shen P, Chen W, Yu S, Wei Z, Wang A, Lu Y, Zhao Y. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade. Front Immunol 2022; 13:1035323. [PMID: 36439137 PMCID: PMC9684196 DOI: 10.3389/fimmu.2022.1035323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Immunotherapy has been recognized as an effective and important therapeutic modality for multiple types of cancer. Nevertheless, it has been increasing recognized that clinical benefits of immunotherapy are less than expected as evidenced by the fact that only a small population of cancer patients respond favorably to immunotherapy. The structurally and functionally abnormal tumor vasculature is a hallmark of most solid tumors and contributes to an immunosuppressive microenvironment, which poses a major challenge to immunotherapy. In turn, multiple immune cell subsets have profound consequences on promoting neovascularization. Vascular normalization, a promising anti-angiogenic strategy, can enhance vascular perfusion and promote the infiltration of immune effector cells into tumors via correcting aberrant tumor blood vessels, resulting in the potentiation of immunotherapy. More interestingly, immunotherapies are prone to boost the efficacy of various anti-angiogenic therapies and/or promote the morphological and functional alterations in tumor vasculature. Therefore, immune reprograming and vascular normalization appear to be reciprocally regulated. In this review, we mainly summarize how tumor vasculature propels an immunosuppressive phenotype and how innate and adaptive immune cells modulate angiogenesis during tumor progression. We further highlight recent advances of anti-angiogenic immunotherapies in preclinical and clinical settings to solidify the concept that targeting both tumor blood vessels and immune suppressive cells provides an efficacious approach for the treatment of cancer.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiliang Shen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
45
|
Xu J, Yang KC, Go NE, Colborne S, Ho CJ, Hosseini-Beheshti E, Lystad AH, Simonsen A, Guns ET, Morin GB, Gorski SM. Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations. Autophagy 2022; 18:2547-2560. [PMID: 35220892 PMCID: PMC9629075 DOI: 10.1080/15548627.2022.2039535] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chloroquine (CQ), a lysosomotropic agent, is commonly used to inhibit lysosomal degradation and macroautophagy/autophagy. Here we investigated the cell-extrinsic effects of CQ on secretion. We showed that lysosomal and autophagy inhibition by CQ altered the secretome, and induced the release of Atg8 orthologs and autophagy receptors. Atg8-family proteins, in particular, were secreted inside small extracellular vesicles (sEVs) in a lipidation-dependent manner. CQ treatment enhanced the release of Atg8-family proteins inside sEVs. Using full-length ATG16L1 and an ATG16L1 mutant that enables Atg8-family protein lipidation on double but not on single membranes, we demonstrated that LC3B is released in two distinct sEV populations: one enriched with SDCBP/Syntenin-1, CD63, and endosomal lipidated LC3B, and another that contains LC3B but is not enriched with SDCBP/Syntenin-1 or CD63, and which our data supports as originating from a double-membrane source. Our findings underscore the context-dependency of sEV heterogeneity and composition, and illustrate the integration of autophagy and sEV composition in response to lysosomal inhibition.Abbreviations: ACTB: actin beta; ANOVA: analysis of variance; ATG4B: autophagy related 4B cysteine peptidase; Atg8: autophagy related 8; ATG16L1: autophagy related 16 like 1; ATP5F1A/ATP5a: ATP synthase F1 subunit alpha; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CASP7: caspase 7; CQ: chloroquine; CD9: CD9 molecule; CD63: CD63 molecule; DAPI: 4',6-diamidino-2-phenylindole; DQ-BSA: dye quenched-bovine serum albumin; ER: endoplasmic reticulum; ERN1/IRE1a: endoplasmic reticulum to nucleus signaling 1; EV: extracellular vesicles; FBS: fetal bovine serum; FDR: false discovery rate; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GO: gene ontology; HCQ: hydroxychloroquine; HSP90AA1: heat shock protein 90 alpha family class A member 1; IP: immunoprecipitation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; LMNA: lamin A/C; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MS: mass spectrometry; NBR1: NBR1 autophagy cargo receptor; NCOA4: nuclear receptor coactivator 4; NTA: nanoparticle tracking analysis; PE: phosphatidylethanolamine; PECA: probe-level expression change averaging; SDCBP/syntenin-1: syndecan binding protein; SD: standard deviation; SE: secreted; sEV: small extracellular vesicles; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TEM: transmission electron microscopy; TMT: tandem-mass tag; TSG101: tumor susceptibility 101; ULK1: unc-51 like autophagy activating kinase 1; WC: whole cell.
Collapse
Affiliation(s)
- Jing Xu
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin C Yang
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Nancy Erro Go
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Shane Colborne
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Cally J Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney NSWAustralia
| | - Alf H Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Emma Tomlinson Guns
- The Vancouver Prostate Centre, Vancouver, BC, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sharon M Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada,CONTACT Sharon M Gorski Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| |
Collapse
|
46
|
Adipokines as Regulators of Autophagy in Obesity-Linked Cancer. Cells 2022; 11:cells11203230. [PMID: 36291097 PMCID: PMC9600294 DOI: 10.3390/cells11203230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Excess body weight and obesity have become significant risk factors for cancer development. During obesity, adipose tissue alters its biological function, deregulating the secretion of bioactive factors such as hormones, cytokines, and adipokines that promote an inflammatory microenvironment conducive to carcinogenesis and tumor progression. Adipokines regulate tumor processes such as apoptosis, proliferation, migration, angiogenesis, and invasion. Additionally, it has been found that they can modulate autophagy, a process implicated in tumor suppression in healthy tissue and cancer progression in established tumors. Since the tumor-promoting role of autophagy has been well described, the process has been suggested as a therapeutic target in cancer. However, the effects of targeting autophagy might depend on the tumor type and microenvironmental conditions, where circulating adipokines could influence the role of autophagy in cancer. Here, we review recent evidence related to the role of adipokines in cancer cell autophagy in an effort to understand the tumor response in the context of obesity under the assumption of an autophagy-targeting treatment.
Collapse
|
47
|
Mills JA, Humphries J, Simpson JD, Sonderegger SE, Thurecht KJ, Fletcher NL. Modulating Macrophage Clearance of Nanoparticles: Comparison of Small-Molecule and Biologic Drugs as Pharmacokinetic Modifiers of Soft Nanomaterials. Mol Pharm 2022; 19:4080-4097. [PMID: 36069540 DOI: 10.1021/acs.molpharmaceut.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanomedicines show benefits in overcoming the limitations of conventional drug delivery systems by reducing side effects, toxicity, and exhibiting enhanced pharmacokinetic (PK) profiles to improve the therapeutic window of small-molecule drugs. However, upon administration, many nanoparticles (NPs) prompt induction of host innate immune responses, which in combination with other clearance pathways such as renal and hepatic, eliminate up to 99% of the administered dose. Here, we explore a drug predosing strategy to transiently suppress the mononuclear phagocyte system (MPS), subsequently improving the PK profile and biological behaviors exhibited by a model NP system [hyperbranched polymers (HBPs)] in an immunocompetent mouse model. In vitro assays allowed the identification of five drug candidates that attenuated cellular association. Predosing of lead compounds chloroquine (CQ) and zoledronic acid (ZA) further showed increased HBP retention within the circulatory system of mice, as shown by both fluorescence imaging and positron emission tomography-computed tomography. Flow cytometric evaluation of spleen and liver tissue cells following intravenous administration further demonstrated that CQ and ZA significantly reduced HBP association with myeloid cells by 23 and 16%, respectively. The results of this study support the use of CQ to pharmacologically suppress the MPS to improve NP PKs.
Collapse
Affiliation(s)
- Jessica A Mills
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - James Humphries
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Joshua D Simpson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stefan E Sonderegger
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
48
|
Jiang B, Zhao X, Chen W, Diao W, Ding M, Qin H, Li B, Cao W, Chen W, Fu Y, He K, Gao J, Chen M, Lin T, Deng Y, Yan C, Guo H. Lysosomal protein transmembrane 5 promotes lung-specific metastasis by regulating BMPR1A lysosomal degradation. Nat Commun 2022; 13:4141. [PMID: 35842443 PMCID: PMC9288479 DOI: 10.1038/s41467-022-31783-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Organotropism during cancer metastasis occurs frequently but the underlying mechanism remains poorly understood. Here, we show that lysosomal protein transmembrane 5 (LAPTM5) promotes lung-specific metastasis in renal cancer. LAPTM5 sustains self-renewal and cancer stem cell-like traits of renal cancer cells by blocking the function of lung-derived bone morphogenetic proteins (BMPs). Mechanistic investigations showed that LAPTM5 recruits WWP2, which binds to the BMP receptor BMPR1A and mediates its lysosomal sorting, ubiquitination and ultimate degradation. BMPR1A expression was restored by the lysosomal inhibitor chloroquine. LAPTM5 expression could also serve as an independent predictor of lung metastasis in renal cancer. Lastly, elevation of LAPTM5 expression in lung metastases is a common phenomenon in multiple cancer types. Our results reveal a molecular mechanism underlying lung-specific metastasis and identify LAPTM5 as a potential therapeutic target for cancers with lung metastasis. The mechanisms that confer lung-specific metastasis in renal cell carcinomas (RCC) remain to be detailed. Here the authors show that LAPTM5 contributes to lung-specific metastasis of RCCs by suppressing BMP signalling and thus, enhancing self-renewal and cancer stem cell-like traits of RCCs.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Haixiang Qin
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Binghua Li
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Kuiqiang He
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Mengxia Chen
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Tingsheng Lin
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yongming Deng
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
49
|
Chloroquine-Induced DNA Damage Synergizes with Nonhomologous End Joining Inhibition to Cause Ovarian Cancer Cell Cytotoxicity. Int J Mol Sci 2022; 23:ijms23147518. [PMID: 35886866 PMCID: PMC9323666 DOI: 10.3390/ijms23147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy; therefore, more effective treatments are urgently needed. We recently reported that chloroquine (CQ) increased reactive oxygen species (ROS) in OC cell lines (OCCLs), causing DNA double-strand breaks (DSBs). Here, we analyzed whether these lesions are repaired by nonhomologous end joining (NHEJ), one of the main pathways involved in DSB repair, and if the combination of CQ with NHEJ inhibitors (NHEJi) could be effective against OC. We found that NHEJ inhibition increased the persistence of γH2AX foci after CQ-induced DNA damage, revealing an essential role of this pathway in the repair of the lesions. NHEJi decreased the proliferation of OCCLs and a strong in vitro synergistic effect on apoptosis induction was observed when combined with CQ. This effect was largely abolished by the antioxidant N-Acetyl-L-cysteine, revealing the critical role of ROS and DSB generation in CQ/NHEJi-induced lethality. We also found that the NHEJ efficiency in OCCLs was not affected by treatment with Panobinostat, a pan-histone deacetylase inhibitor that also synergizes with CQ in OCCLs by impairing homologous recombination. Accordingly, the triple combination of CQ-NHEJi-Panobinostat exerted a stronger in vitro synergistic effect. Altogether, our data suggest that the combination of these drugs could represent new therapeutic strategies against OC.
Collapse
|
50
|
Pharmacological manipulation of Ezh2 with salvianolic acid B results in tumor vascular normalization and synergizes with cisplatin and T cell-mediated immunotherapy. Pharmacol Res 2022; 182:106333. [PMID: 35779815 DOI: 10.1016/j.phrs.2022.106333] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment (TME) through limiting immune cell infiltration into tumors. The defective vascular perfusion in tumors also impairs the delivery and efficacy of chemotherapeutic agents. Targeting abnormal tumor blood vessels has emerged as an effective therapeutic strategy to improve the outcome of chemotherapy and immunotherapy. In this study, we demonstrated that Salvianolic acid B (SalB), one of the major ingredients of Salvia miltiorriza elicited vascular normalization in the mouse models of breast cancer, contributing to improved delivery and response of chemotherapeutic agent cisplatin as well as attenuated metastasis. Moreover, SalB in combination with anti-PD-L1 blockade retarded tumor growth, which was mainly due to elevated infiltration of immune effector cells and boosted delivery of anti-PD-L1 into tumors. Mechanistically, tumor cell enhancer of zeste homolog 2 (Ezh2)-driven cytokines disrupted the endothelial junctions with diminished VE-cadherin expression, which could be rescued in the presence of SalB. The restored vascular integrity by SalB via modulating the interactions between tumor cells and endothelial cells (ECs) offered a principal route for achieving vascular normalization. Taken together, our data elucidated that SalB enhanced sensitivity of tumor cells to chemotherapy and immunotherapy through triggering tumor vascular normalization, providing a potential therapeutic strategy of combining SalB and chemotherapy or immunotherapy for patients with breast cancer.
Collapse
|