1
|
Yadav DK, Srivastava GP, Singh A, Singh M, Yadav N, Tuteja N. Proteome-wide analysis reveals G protein-coupled receptor-like proteins in rice ( Oryza sativa). PLANT SIGNALING & BEHAVIOR 2024; 19:2365572. [PMID: 38904257 PMCID: PMC11195488 DOI: 10.1080/15592324.2024.2365572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of transmembrane proteins in metazoans that mediate the regulation of various physiological responses to discrete ligands through heterotrimeric G protein subunits. The existence of GPCRs in plant is contentious, but their comparable crucial role in various signaling pathways necessitates the identification of novel remote GPCR-like proteins that essentially interact with the plant G protein α subunit and facilitate the transduction of various stimuli. In this study, we identified three putative GPCR-like proteins (OsGPCRLPs) (LOC_Os06g09930.1, LOC_Os04g36630.1, and LOC_Os01g54784.1) in the rice proteome using a stringent bioinformatics workflow. The identified OsGPCRLPs exhibited a canonical GPCR 'type I' 7TM topology, patterns, and biologically significant sites for membrane anchorage and desensitization. Cluster-based interactome mapping revealed that the identified proteins interact with the G protein α subunit which is a characteristic feature of GPCRs. Computational results showing the interaction of identified GPCR-like proteins with G protein α subunit and its further validation by the membrane yeast-two-hybrid assay strongly suggest the presence of GPCR-like 7TM proteins in the rice proteome. The absence of a regulator of G protein signaling (RGS) box in the C- terminal domain, and the presence of signature motifs of canonical GPCR in the identified OsGPCRLPs strongly suggest that the rice proteome contains GPCR-like proteins that might be involved in signal transduction.
Collapse
Affiliation(s)
- Dinesh K. Yadav
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Gyan Prakash Srivastava
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Ananya Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Madhavi Singh
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Neelam Yadav
- Plant Molecular Biology and Genetic Engineering Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Narendra Tuteja
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Zhang X, Zhang Z, Peng H, Wang Z, Li H, Duan Y, Chen S, Chen X, Dong J, Si W, Gu L. GPCR-like Protein ZmCOLD1 Regulate Plant Height in an ABA Manner. Int J Mol Sci 2024; 25:11755. [PMID: 39519308 PMCID: PMC11546568 DOI: 10.3390/ijms252111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are sensors for the G protein complex to sense changes in environmental factors and molecular switches for G protein complex signal transduction. In this study, the homologous gene of GPCR-like proteins was identified from maize and named as ZmCOLD1. Subcellular analysis showed that the ZmCOLD1 protein is localized to the cell membrane and endoplasmic reticulum. A CRISPR/Cas9 knock-out line of ZmCOLD1 was further created and its plant height was significantly lower than the wild-type maize at both the seedling and adult stages. Histological analysis showed that the increased cell number but significantly smaller cell size may result in dwarfing of zmcold1, indicating that the ZmCOLD1 gene could regulate plant height development by affecting the cell division process. Additionally, ZmCOLD1 was verified to interact with the maize Gα subunit, ZmCT2, though the central hydrophilic loop domain by in vivo and in vitro methods. Abscisic acid (ABA) sensitivity analysis by seed germination assays exhibited that zmcold1 were hypersensitive to ABA, indicating its important roles in ABA signaling. Finally, transcriptome analysis was performed to investigate the transcriptional change in zmcold1 mutant. Overall, ZmCOLD1 functions as a GPCR-like protein and an important regulator to plant height.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (Z.Z.); (H.P.); (Z.W.); (H.L.); (Y.D.); (S.C.); (X.C.); (J.D.)
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (Z.Z.); (H.P.); (Z.W.); (H.L.); (Y.D.); (S.C.); (X.C.); (J.D.)
| |
Collapse
|
3
|
Iranmanesh Z, Dehestani M, Esmaeili-Mahani S. Discovering novel targets of abscisic acid using computational approaches. Comput Biol Chem 2024; 112:108157. [PMID: 39047594 DOI: 10.1016/j.compbiolchem.2024.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Abscisic acid (ABA) is a crucial plant hormone that is naturally produced in various mammalian tissues and holds significant potential as a therapeutic molecule in humans. ABA is selected for this study due to its known roles in essential human metabolic processes, such as glucose homeostasis, immune responses, cardiovascular system, and inflammation regulation. Despite its known importance, the molecular mechanism underlying ABA's action remain largely unexplored. This study employed computational techniques to identify potential human ABA receptors. We screened 64 candidate molecules using online servers and performed molecular docking to assess binding affinity and interaction types with ABA. The stability and dynamics of the best complexes were investigated using molecular dynamics simulation over a 100 ns time period. Root mean square fluctuations (RMSF), root mean square deviation (RMSD), solvent-accessible surface area (SASA), radius of gyration (Rg), free energy landscape (FEL), and principal component analysis (PCA) were analyzed. Next, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method was employed to calculate the binding energies of the complexes based on the simulated data. Our study successfully pinpointed four key receptors responsible for ABA signaling (androgen receptor, glucocorticoid receptor, mineralocorticoid receptor, and retinoic acid receptor beta) that have a strong affinity for binding with ABA and remained structurally stable throughout the simulations. The simulations with Hydralazine as an unrelated ligand were conducted to validate the specificity of the identified receptors for ABA. The findings of this study can contribute to further experimental validation and a better understanding of how ABA functions in humans.
Collapse
Affiliation(s)
- Zahra Iranmanesh
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Dehestani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | | |
Collapse
|
4
|
Nemati I, Hamzelou S, Gholizadeh S, Kamath KS, Haynes PA, Sedghi M, Afshari RT, Salekdeh GH. Proteomic analysis during seed development provides insight into the early establishment of seed dormancy in Xanthium strumarium. PHYSIOLOGIA PLANTARUM 2024; 176:e14546. [PMID: 39415749 DOI: 10.1111/ppl.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 10/19/2024]
Abstract
This experiment was carried out to provide a comprehensive insight into the protein activities involved in dormancy establishment in seeds of common cocklebur (Xanthium strumarium), an annual plant with two dimorphic seeds contained in one casing known as a burr. These consist of a smaller dormant seed and a larger non-dormant seed. The proteome profile was compared between developing dormant and non-dormant seeds of Xanthium strumarium at five consecutive stages including three, 10, 20, 30, and 45 days after burr emergence (stages 1 to 5). We identified 6524 proteins in total, and approximately 3.6% of these were differentially abundant proteins (DAPs) between the two seed types. Both seed types showed fundamental changes in developmental programs during the examined stages. More than 38% of all DAPs were observed at the first stage, supporting the importance of the early developmental stage in seed fate determination. The detected DAPs at stage 1 were mainly associated with the cell division phase, which showed a delay in the dormant seeds. Over-representation of proteins responsible for cell wall biosynthesis, cytokinesis, and seed development were detected for non-dormant seeds at the first stage, while dormancy-associated proteins showed less abundance. Stage 3 was the critical stage for switching processes toward seed maturation and abscisic acid (ABA) signaling. Interestingly, higher abundance proteins in the mature non-dormant seed were mainly involved in the facilitation of seed germination. Taken together, the temporal pattern of the accumulated proteins in developing dormant seeds demonstrated a delay in the initiation of active cell division, enriched response to ABA, and defects in seed maturation. Moreover, stored proteins in the mature dormant seed delay germination but not dormancy induction. Finally, our results suggest that dormancy may be established at a stage of seed development earlier than previously thought.
Collapse
Affiliation(s)
- Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sara Hamzelou
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
- CSIRO Health and Biosecurity, Adelaide, SA, Australia
| | - Somayeh Gholizadeh
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Karthik Shantharam Kamath
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mohammad Sedghi
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Reza Tavakkol Afshari
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | | |
Collapse
|
5
|
Zhang A, Shang J, Xiao K, Zhang M, Wang S, Zhu W, Wu X, Zha D. WRKY transcription factor 40 from eggplant (Solanum melongena L.) regulates ABA and salt stress responses. Sci Rep 2024; 14:19289. [PMID: 39164381 PMCID: PMC11335892 DOI: 10.1038/s41598-024-69670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Plants are affected by many environmental factors during their various stages of growth, among which salt stress is a key factor. WRKY transcription factors play important roles in the response to stress in plants. In this study, SmWRKY40 from eggplant (Solanum melongena L.) was found to belong to the subfamily of WRKY transcription factor group II, closely related to the evolution of wild tomato ScWRKY40 (Solanum chilense). The expression of SmWRKY40 could be induced by several abiotic stresses (drought, salt, and high temperature) and ABA to different degrees, with salt stress being the most significant. In Arabidopsis thaliana, the seed germination rate of SmWRKY40 overexpression seedlings was significantly higher than those of the wild type under high concentrations of NaCl and ABA, and root elongation of overexpression lines was also longer than wild type under NaCl treatments. SmWRKY40 overexpression lines were found to enhance Arabidopsis tolerance to salt with lower ROS, MDA, higher soluble protein, proline accumulation, and more active antioxidant enzymes. The expression level of genes related to stress and ABA signaling displayed significant differences in SmWRKY40 overexpression line than that of WT. These results indicate that SmWRKY40 regulates ABA and salt stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Aidong Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jing Shang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Kai Xiao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Min Zhang
- Horticultural Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, 430345, Hubei, China
| | - Shengjie Wang
- Shanghai Qiande Seed Industry Co., Ltd, Shanghai, 200235, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Dingshi Zha
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
6
|
Zhao Z, Tu H, Wang Y, Yang J, Hao G, Wu J. Chemical Driving the Subtype Selectivity of Phytohormone Receptors Is Beneficial for Crop Productivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16583-16593. [PMID: 39013833 DOI: 10.1021/acs.jafc.4c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chemicals that modulate phytohormones serve as a research tool in plant science and as products to improve crop productivity. Subtype selectivity refers to a ligand to selectively bind to specific subtypes of a receptor rather than binding to all possible subtypes indiscriminately. It allows for precise and specific control of cellular functions and is widely used in medicine. However, subtype selectivity is rarely mentioned in the realm of plant science, and it requires integrated knowledge from chemistry and biology, including structural features of small molecules as ligands, the redundancy of target proteins, and the response of signaling factors. Here, we present a comprehensive review and evaluation of phytohormone receptor subtype selectivity, leveraging the chemical characteristics of phytohormones and their analogues as clues. This work endeavors to provide a valuable research strategy that integrates knowledge from chemistry and biology to advance research efforts geared toward enhancing crop productivity.
Collapse
Affiliation(s)
- Zhichao Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Tu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ya Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jianrong Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Singh P, St Clair JB, Lind BM, Cronn R, Wilhelmi NP, Feau N, Lu M, Vidakovic DO, Hamelin RC, Shaw DC, Aitken SN, Yeaman S. Genetic architecture of disease resistance and tolerance in Douglas-fir trees. THE NEW PHYTOLOGIST 2024; 243:705-719. [PMID: 38803110 DOI: 10.1111/nph.19797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Aquatic Ecology & Evolution Division, Institute of Ecology and Evolution, University of Bern, Bern, CH-3012, Switzerland
- Department of Fish Ecology & Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, CH-6047, Switzerland
| | - J Bradley St Clair
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Brandon M Lind
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard Cronn
- USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Nicholas P Wilhelmi
- Forest Health Protection, USDA Forest Service, Arizona Zone, Flagstaff, AZ, 86001, USA
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - David C Shaw
- Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR, 97331, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
8
|
Zou W, Yu Q, Ma Y, Sun G, Feng X, Ge L. Pivotal role of heterotrimeric G protein in the crosstalk between sugar signaling and abiotic stress response in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108567. [PMID: 38554538 DOI: 10.1016/j.plaphy.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Heterotrimeric G-proteins are key modulators of multiple signaling and developmental pathways in plants, in which they act as molecular switches to engage in transmitting various stimuli signals from outside into the cells. Substantial studies have identified G proteins as essential components of the organismal response to abiotic stress, leading to adaptation and survival in plants. Meanwhile, sugars are also well acknowledged key players in stress perception, signaling, and gene expression regulation. Connections between the two significant signaling pathways in stress response are of interest to a general audience in plant biology. In this article, advances unraveling a pivotal role of G proteins in the process of sugar signals outside the cells being translated into the operation of autophagy in cells during stress are reviewed. In addition, we have presented recent findings on G proteins regulating the response to drought, salt, alkali, cold, heat and other abiotic stresses. Perspectives on G-protein research are also provided in the end. Since G protein signaling regulates many agronomic traits, elucidation of detailed mechanism of the related pathways would provide useful insights for the breeding of abiotic stress resistant and high-yield crops.
Collapse
Affiliation(s)
- Wenjiao Zou
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qian Yu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guoning Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Ge
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, 257300, China.
| |
Collapse
|
9
|
Xu D, Tang W, Ma Y, Wang X, Yang Y, Wang X, Xie L, Huang S, Qin T, Tang W, Xu Z, Li L, Tang Y, Chen M, Ma Y. Arabidopsis G-protein β subunit AGB1 represses abscisic acid signaling via attenuation of the MPK3-VIP1 phosphorylation cascade. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1615-1632. [PMID: 37988280 DOI: 10.1093/jxb/erad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gβ (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.
Collapse
Affiliation(s)
- Dongbei Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wensi Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yanan Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Xia Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoting Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Lina Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Suo Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Tengfei Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Weilin Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoshi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
10
|
Zhou Y, Zhang H, Zhang S, Zhang J, Di H, Zhang L, Dong L, Lu Q, Zeng X, Liu X, Zhang N, Wang Z. The G protein-coupled receptor COLD1 promotes chilling tolerance in maize during germination. Int J Biol Macromol 2023; 253:126877. [PMID: 37716664 DOI: 10.1016/j.ijbiomac.2023.126877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The geographic range and yield of the staple crop maize (Zea mays L.) are both strongly limited by low-temperature conditions. One of the most economical and effective measures for improvement of maize production is chilling tolerance enhancement. In this study, a chilling-tolerance gene in maize, ZmCOLD1, was cloned and characterized. This gene encodes a G protein-coupled receptor that is localized to the plasma membrane and the endoplasmic reticulum. A single nucleotide polymorphism (SNP) in ZmCOLD1, SNP2738, was found to confer chilling tolerance and to have promoted maize adaptations during speciation from teosinte. Overexpression of the excellent haplotype ZmCOLD1Hap11 significantly enhanced chilling tolerance, whereas knocking down ZmCOLD1 increased sensitivity to low temperatures during the germination and seedling stages. ZmCOLD1 was associated with an influx of extracellular Ca2+, increases in abscisic acid content, and decreases in gibberellic acid and indole-3-acetic acid content under low temperatures during the germination stage. ZmCOLD1 interacted with the G protein α subunit ZmCT2 at the plasma membrane, and ZmCT2 interacted with ZmLanCL in the nucleus. These proteins are components of the chilling tolerance signaling pathway in maize that are triggered by abscisic acid and photosynthesis. These results offer novel strategies for improvement of chilling tolerance in key crop species.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Hong Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Simeng Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiayue Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hong Di
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lin Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ling Dong
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qing Lu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xing Zeng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xianjun Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Naifu Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhenhua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Engineering Technology Research Center of Maize Germplasm Resources Innovation on Cold land of Heilongjiang Province, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
11
|
Zheng Q, Yu Q, Yao W, Lv K, Zhang N, Xu W. Decoding VaCOLD1 Function in Grapevines: A Membrane Protein Enhancing Cold Stress Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19357-19371. [PMID: 38037352 DOI: 10.1021/acs.jafc.3c05101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In globally cultivated grapevines, low-temperature stress poses a persistent challenge. Although COLD1 is recognized as a cold receptor in rice, its function in grapevine cold signaling is unclear. Here, we identified VaCOLD1, a transmembrane protein from the cold-tolerant Vitis amurensis Rupr, which is primarily located on plasma and endoplasmic reticulum membranes. Broadly expressed across multiple tissues, VaCOLD1 responds to various environmental stresses, particularly to cold. Its promoter contains distinct hormone- and stress-responsive elements, with GUS assays confirming widespread expression in Arabidopsis thaliana. Validation of interaction between VaCOLD1 and VaGPA1, together with their combined expression in yeast and grape calli, notably improved cold endurance. Overexpression of VaCOLD1 enhances cold tolerance in Arabidopsis by strengthening the CBF-COR signaling pathway. This is achieved through shielding against osmotic disturbances and modifying the expression of ABA-mediated genes. These findings emphasize the critical role of the VaCOLD1-VaGPA1 complex in mediating the response to cold stress via the CBF-COR pathway.
Collapse
Affiliation(s)
- Qiaoling Zheng
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Wenkong Yao
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Kai Lv
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Ningbo Zhang
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Weirong Xu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| |
Collapse
|
12
|
McRae AG, Taneja J, Yee K, Shi X, Haridas S, LaButti K, Singan V, Grigoriev IV, Wildermuth MC. Spray-induced gene silencing to identify powdery mildew gene targets and processes for powdery mildew control. MOLECULAR PLANT PATHOLOGY 2023; 24:1168-1183. [PMID: 37340595 PMCID: PMC10423327 DOI: 10.1111/mpp.13361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023]
Abstract
Spray-induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double-stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole-fungicide target cytochrome P450 51 (CYP51) in the Golovinomyces orontii-Arabidopsis thaliana pathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation: apoptosis-antagonizing transcription factor in essential cellular metabolism and stress response; lipid catabolism genes lipase a, lipase 1, and acetyl-CoA oxidase in energy production; and genes involved in manipulation of the plant host via abscisic acid metabolism (9-cis-epoxycarotenoid dioxygenase, xanthoxin dehydrogenase, and a putative abscisic acid G-protein coupled receptor) and secretion of the effector protein, effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for the Erysiphe necator-Vitis vinifera system and tested six successful targets identified using the G. orontii-A. thaliana system. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in the G. orontii-A. thaliana pathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control.
Collapse
Affiliation(s)
- Amanda G. McRae
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jyoti Taneja
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Kathleen Yee
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Xinyi Shi
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sajeet Haridas
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Kurt LaButti
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Vasanth Singan
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Igor V. Grigoriev
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Mary C. Wildermuth
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
13
|
Kitawaki K, Mihara R, Kamimura S, Sato A, Ushiyama M, Ito-Inaba Y, Inaba T. Chemical screening approach using single leaves identifies compounds that affect cold signaling in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:234-245. [PMID: 37177986 PMCID: PMC10469520 DOI: 10.1093/plphys/kiad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
The identification of chemical compounds that affect intracellular processes has greatly contributed to our understanding of plant growth and development. In most cases, these compounds have been identified in germinated seedlings. However, chemical screening using mature plants would benefit and advance our understanding of environmental responses. In this study, we developed a high-throughput screening method using single leaves of mature plants to identify small molecules that affect cold-regulated gene expression. A single excised leaf of Arabidopsis (Arabidopsis thaliana) grown in submerged cultures responded to low temperatures in terms of COLD-REGULATED (COR) gene expression. We used transgenic Arabidopsis harboring a COLD-REGULATED 15A (COR15A) promoter::luciferase (COR15Apro::LUC) construct to screen natural compounds that affect the cold induction of COR15Apro::LUC. This approach allowed us to identify derivatives of 1,4-naphthoquinone as specific inhibitors of COR gene expression. Moreover, 1,4-naphthoquinones appeared to inhibit the rapid induction of upstream C-REPEAT BINDING FACTOR (CBF) transcription factors upon exposure to low temperature, suggesting that 1,4-naphthoquinones alter upstream signaling processes. Our study offers a chemical screening scheme for identifying compounds that affect environmental responses in mature plants. This type of analysis is likely to reveal an unprecedented link between certain compounds and plant environmental responses.
Collapse
Affiliation(s)
- Kohei Kitawaki
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ryota Mihara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Saori Kamimura
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Akito Sato
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Mari Ushiyama
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | |
Collapse
|
14
|
Chakraborty N, Raghuram N. Life, death and resurrection of plant GPCRs. PLANT MOLECULAR BIOLOGY 2023; 111:221-232. [PMID: 36495361 DOI: 10.1007/s11103-022-01323-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
The activation of G-protein coupled receptors (GPCRs) by extracellular ligands constitutes the first step of heterotrimeric G-protein signalling in animals. In plants, canonical GPCRs have been known for over 25 years, often in association with agronomically important functions. But their role in plant G-protein signalling and even their annotation as GPCR was contested in the last decade, only to be revisited in the light of more recent evidences. In this first ever review on plant GPCRs, we catalogue all the plant GPCRs described to date and discuss the evidences for and against their role in plants in general and G-protein signalling in particular. We argue against writing off GPCRs and point to the missing links to be investigated to establish firm conclusions either way.
Collapse
Affiliation(s)
- Navjyoti Chakraborty
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
15
|
The ABA/LANCL Hormone/Receptor System in the Control of Glycemia, of Cardiomyocyte Energy Metabolism, and in Neuroprotection: A New Ally in the Treatment of Diabetes Mellitus? Int J Mol Sci 2023; 24:ijms24021199. [PMID: 36674711 PMCID: PMC9863406 DOI: 10.3390/ijms24021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress hormone allows ABA and its signaling pathway to control cell responses to environmental stimuli in diverse organisms such as marine sponges, higher plants, and humans. Recent advances in our knowledge about the physiological role of ABA and of its mammalian receptors in the control of energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells allow us to foresee therapeutic applications for ABA in the fields of pre-diabetes, diabetes, and cardio- and neuro-protection. Vegetal extracts titrated in their ABA content have shown both efficacy and tolerability in preliminary clinical studies. As the prevalence of glucose intolerance, diabetes, and cardiovascular and neurodegenerative diseases is steadily increasing in both industrialized and rapidly developing countries, new and cost-efficient therapeutics to combat these ailments are much needed to ensure disease-free aging for the current and future working generations.
Collapse
|
16
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Wong A, Bi C, Chi W, Hu N, Gehring C. Amino acid motifs for the identification of novel protein interactants. Comput Struct Biotechnol J 2022; 21:326-334. [PMID: 36582434 PMCID: PMC9791077 DOI: 10.1016/j.csbj.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Biological systems consist of multiple components of different physical and chemical properties that require complex and dynamic regulatory loops to function efficiently. The discovery of ever more novel interacting sites in complex proteins suggests that we are only beginning to understand how cellular and biological functions are integrated and tuned at the molecular and systems levels. Here we review recently discovered interacting sites which have been identified through rationally designed amino acid motifs diagnostic for specific molecular functions, including enzymatic activities and ligand-binding properties. We specifically discuss the nature of the latter using as examples, novel hormone recognition and gas sensing sites that occur in moonlighting protein complexes. Drawing evidence from the current literature, we discuss the potential implications at the cellular, tissue, and/or organismal levels of such non-catalytic interacting sites and provide several promising avenues for the expansion of amino acid motif searches to discover hitherto unknown protein interactants and interaction networks. We believe this knowledge will unearth unexpected functions in both new and well-characterized proteins, thus filling existing conceptual gaps or opening new avenues for applications either as drug targets or tools in pharmacology, cell biology and bio-catalysis. Beyond this, motif searches may also support the design of novel, effective and sustainable approaches to crop improvements and the development of new therapeutics.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Perugia 06121, Italy
| |
Collapse
|
18
|
Smythers AL, Bhatnagar N, Ha C, Majumdar P, McConnell EW, Mohanasundaram B, Hicks LM, Pandey S. Abscisic acid-controlled redox proteome of Arabidopsis and its regulation by heterotrimeric Gβ protein. THE NEW PHYTOLOGIST 2022; 236:447-463. [PMID: 35766993 DOI: 10.1111/nph.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone abscisic acid (ABA) plays crucial roles in regulation of stress responses and growth modulation. Heterotrimeric G-proteins are key mediators of ABA responses. Both ABA and G-proteins have also been implicated in intracellular redox regulation; however, the extent to which reversible protein oxidation manipulates ABA and/or G-protein signaling remains uncharacterized. To probe the role of reversible protein oxidation in plant stress response and its dependence on G-proteins, we determined the ABA-dependent reversible redoxome of wild-type and Gβ-protein null mutant agb1 of Arabidopsis. We quantified 6891 uniquely oxidized cysteine-containing peptides, 923 of which show significant changes in oxidation following ABA treatment. The majority of these changes required the presence of G-proteins. Divergent pathways including primary metabolism, reactive oxygen species response, translation and photosynthesis exhibited both ABA- and G-protein-dependent redox changes, many of which occurred on proteins not previously linked to them. We report the most comprehensive ABA-dependent plant redoxome and uncover a complex network of reversible oxidations that allow ABA and G-proteins to rapidly adjust cellular signaling to adapt to changing environments. Physiological validation of a subset of these observations suggests that functional G-proteins are required to maintain intracellular redox homeostasis and fully execute plant stress responses.
Collapse
Affiliation(s)
- Amanda L Smythers
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Chien Ha
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | | - Evan W McConnell
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Leslie M Hicks
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
19
|
Yu Y, Portolés S, Ren Y, Sun G, Wang XF, Zhang H, Guo S. The key clock component ZEITLUPE (ZTL) negatively regulates ABA signaling by degradation of CHLH in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:995907. [PMID: 36176682 PMCID: PMC9513469 DOI: 10.3389/fpls.2022.995907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Ubiquitination-mediated protein degradation plays important roles in ABA signal transduction and delivering responses to chloroplast stress signals in plants, but additional E3 ligases of protein ubiquitination remain to be identified to understand the complex signaling network. Here we reported that ZEITLUPE (ZTL), an F-box protein, negatively regulates abscisic acid (ABA) signaling during ABA-inhibited early seedling growth and ABA-induced stomatal closure in Arabidopsis thaliana. Using molecular biology and biochemistry approaches, we demonstrated that ZTL interacts with and ubiquitinates its substrate, CHLH/ABAR (Mg-chelatase H subunit/putative ABA receptor), to modulate CHLH stability via the 26S proteasome pathway. CHLH acts genetically downstream of ZTL in ABA and drought stress signaling. Interestingly, ABA conversely induces ZTL phosphorylation, and high levels of ABA also induce CHLH proteasomal degradation, implying that phosphorylated ZTL protein may enhance the affinity to CHLH, leading to the increased degradation of CHLH after ABA treatment. Taken together, our results revealed a possible mechanism of reciprocal regulation between ABA signaling and the circadian clock, which is thought to be essential for plant fitness and survival.
Collapse
Affiliation(s)
- Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Sergi Portolés
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiao-Fang Wang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
20
|
Wang Z, Khan D, Li L, Zhang J, Rengel Z, Zhang B, Chen Q. Stomatal closure induced by hydrogen-rich water is dependent on GPA1 in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:72-75. [PMID: 35569167 DOI: 10.1016/j.plaphy.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen (H2) is a new signaling molecule that regulates stomatal closure via stimulating the generation of reactive oxygen species (ROS) and nitric oxide (NO) in Arabidopsis thaliana. GPA1 is the sole heterotrimeric G protein canonical α subunit found in Arabidopsis genome and functions in stomatal closure. Here, we estimated a possible role of Arabidopsis GPA1 in hydrogen-rich water (HRW)-induced stomatal closure. Our data indicated that HRW induced significant stomatal closure as well as the generation of ROS and NO in the Col-0 guard cells. However, the production of ROS and NO and stomatal closure induced by HRW were absent in the gpa1-4 mutant lacking the expression of AtGPA1. By contrast, overexpression of AtGPA1 in gpa1-4 (AtGPA1-HA/gpa1-4) restored stomatal closure and the generation of NO and ROS in the presence of HRW. Taken together, our results suggest that GPA1 is necessary for HRW-induced stomatal closure in Arabidopsis.
Collapse
Affiliation(s)
- Zirui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Dawood Khan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Leilin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Jing Zhang
- Foshan Institute of Agricultural Science, Foshan, 528145, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, 21000, Split, Croatia
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
21
|
Tong S, Wang Y, Chen N, Wang D, Liu B, Wang W, Chen Y, Liu J, Ma T, Jiang Y. PtoNF-YC9-SRMT-PtoRD26 module regulates the high saline tolerance of a triploid poplar. Genome Biol 2022; 23:148. [PMID: 35799188 PMCID: PMC9264554 DOI: 10.1186/s13059-022-02718-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/25/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Sensing and responding to stresses determine the tolerance of plants to adverse environments. The triploid Chinese white poplar is widely cultivated in North China because of its adaptation to a wide range of habitats including highly saline ones. However, its triploid genome complicates any detailed investigation of the molecular mechanisms underlying its adaptations. RESULTS We report a haplotype-resolved genome of this triploid poplar and characterize, using reverse genetics and biochemical approaches, a MYB gene, SALT RESPONSIVE MYB TRANSCRIPTION FACTOR (SRMT), which combines NUCLEAR FACTOR Y SUBUNIT C 9 (PtoNF-YC9) and RESPONSIVE TO DESICCATION 26 (PtoRD26), to regulate an ABA-dependent salt-stress response signaling. We reveal that the salt-inducible PtoRD26 is dependent on ABA signaling. We demonstrate that ABA or salt drives PtoNF-YC9 shuttling into the nucleus where it interacts with SRMT, resulting in the rapid expression of PtoRD26 which in turn directly regulates SRMT. This positive feedback loop of SRMT-PtoRD26 can rapidly amplify salt-stress signaling. Interference with either component of this regulatory module reduces the salt tolerance of this triploid poplar. CONCLUSION Our findings reveal a novel ABA-dependent salt-responsive mechanism, which is mediated by the PtoNF-YC9-SRMT-PtoRD26 module that confers salt tolerance to this triploid poplar. These genes may therefore also serve as potential and important modification targets in breeding programs.
Collapse
Affiliation(s)
- Shaofei Tong
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yubo Wang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Ningning Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Deyan Wang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Bao Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Weiwei Wang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Yang Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Tao Ma
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Yuanzhong Jiang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| |
Collapse
|
22
|
Integrative Proteome and Phosphoproteome Profiling of Early Cold Response in Maize Seedlings. Int J Mol Sci 2022; 23:ijms23126493. [PMID: 35742945 PMCID: PMC9224472 DOI: 10.3390/ijms23126493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023] Open
Abstract
Cold limits the growth and yield of maize in temperate regions, but the molecular mechanism of cold adaptation remains largely unexplored in maize. To identify early molecular events during cold shock, maize seedlings were treated under 4 °C for 30 min and 2 h, and analyzed at both the proteome and phosphoproteome levels. Over 8500 proteins and 19,300 phosphopeptides were quantified. About 660 and 620 proteins were cold responsive at protein abundance or site-specific phosphorylation levels, but only 65 proteins were shared between them. Functional enrichment analysis of cold-responsive proteins and phosphoproteins revealed that early cold response in maize is associated with photosynthesis light reaction, spliceosome, endocytosis, and defense response, consistent with similar studies in Arabidopsis. Thirty-two photosynthesis proteins were down-regulated at protein levels, and 48 spliceosome proteins were altered at site-specific phosphorylation levels. Thirty-one kinases and 33 transcriptional factors were cold responsive at protein, phosphopeptide, or site-specific phosphorylation levels. Our results showed that maize seedlings respond to cold shock rapidly, at both the proteome and phosphoproteome levels. This study provides a comprehensive landscape at the cold-responsive proteome and phosphoproteome in maize seedlings that can be a significant resource to understand how C4 plants respond to a sudden temperature drop.
Collapse
|
23
|
Sarath NG, Manzil SA, Ali S, Alsahli AA, Puthur JT. Physio-anatomical modifications and elemental allocation pattern in Acanthus ilicifolius L. subjected to zinc stress. PLoS One 2022; 17:e0263753. [PMID: 35580091 PMCID: PMC9113579 DOI: 10.1371/journal.pone.0263753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Physio-anatomical modifications and elemental distribution pattern in Acanthus ilicifolius subjected to Zn stress were analysed in this study. Survival of A. ilicifolius plants under a high concentration of ZnSO4 was compensated by the reduction in the photosynthetic efficacy. Micro and macro-elemental distribution pattern in the root tissues was significantly influenced by heavy metal exposure. Tolerance towards the excess toxic metal ions in the tissue of A. ilicifolius was aided by the modified anatomical features. Moreover, the increased deposition of Zn around the central vasculature of the root confirms the complexation of Zn2+ in the xylem vessels. Metal induced molecular level changes of root and leaf samples indicate the presence of OH, NH2, and CH3 deformation as well as C-O-H and C-O-C stretch. A prominent band corresponding to CH3 deformation, pointing hemicellulose fortification, occurs in the cell walls of the xylem, aiding in Zn localization. The phytostabilisation potential of A. ilicifolius is dependent on the coordinated responses which endow with phenotypic plasticity necessary to cope with Zn toxicity.
Collapse
Affiliation(s)
- Nair G. Sarath
- Department of Botany, Plant Physiology and Biochemistry Division, University of Calicut, Thenhipalam, Kerala, India
| | - Shackira A. Manzil
- Department of Botany, Sir Syed College, Taliparamba, Kannur, Kerala, India
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | | | - Jos T. Puthur
- Department of Botany, Plant Physiology and Biochemistry Division, University of Calicut, Thenhipalam, Kerala, India
| |
Collapse
|
24
|
Díaz E, Febres A, Giammarresi M, Silva A, Vanegas O, Gomes C, Ponte-Sucre A. G Protein-Coupled Receptors as Potential Intercellular Communication Mediators in Trypanosomatidae. Front Cell Infect Microbiol 2022; 12:812848. [PMID: 35651757 PMCID: PMC9149261 DOI: 10.3389/fcimb.2022.812848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Detection and transduction of environmental signals, constitute a prerequisite for successful parasite invasion; i.e., Leishmania transmission, survival, pathogenesis and disease manifestation and dissemination, with diverse molecules functioning as inter-cellular signaling ligands. Receptors [i.e., G protein-coupled receptors (GPCRs)] and their associated transduction mechanisms, well conserved through evolution, specialize in this function. However, canonical GPCR-related signal transduction systems have not been described in Leishmania, although orthologs, with reduced domains and function, have been identified in Trypanosomatidae. These inter-cellular communication means seem to be essential for multicellular and unicellular organism’s survival. GPCRs are flexible in their molecular architecture and may interact with the so-called receptor activity-modifying proteins (RAMPs), which modulate their function, changing GPCRs pharmacology, acting as chaperones and regulating signaling and/or trafficking in a receptor-dependent manner. In the skin, vasoactive- and neuro- peptides released in response to the noxious stimuli represented by the insect bite may trigger parasite physiological responses, for example, chemotaxis. For instance, in Leishmania (V.) braziliensis, sensory [Substance P, SP, chemoattractant] and autonomic [Vasoactive Intestinal Peptide, VIP, and Neuropeptide Y, NPY, chemorepellent] neuropeptides at physiological levels stimulate in vitro effects on parasite taxis. VIP and NPY chemotactic effects are impaired by their corresponding receptor antagonists, suggesting that the stimulated responses might be mediated by putative GPCRs (with essential conserved receptor domains); the effect of SP is blocked by [(D-Pro 2, D-Trp7,9]-Substance P (10-6 M)] suggesting that it might be mediated by neurokinin-1 transmembrane receptors. Additionally, vasoactive molecules like Calcitonin Gene-Related Peptide [CGRP] and Adrenomedullin [AM], exert a chemorepellent effect and increase the expression of a 24 kDa band recognized in western blot analysis by (human-)-RAMP-2 antibodies. In-silico search oriented towards GPCRs-like receptors and signaling cascades detected a RAMP-2-aligned sequence corresponding to Leishmania folylpolyglutamate synthase and a RAMP-3 aligned protein, a hypothetical Leishmania protein with yet unknown function, suggesting that in Leishmania, CGRP and AM activities may be modulated by RAMP- (-2) and (-3) homologs. The possible presence of proteins and molecules potentially involved in GPCRs cascades, i.e., RAMPs, signpost conservation of ancient signaling systems associated with responses, fundamental for cell survival, (i.e., taxis and migration) and may constitute an open field for description of pharmacophores against Leishmania parasites.
Collapse
Affiliation(s)
- Emilia Díaz
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Anthony Febres
- Section of Infectious Diseases, Baylor College of Medicine, TX, United States
| | - Michelle Giammarresi
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Adrian Silva
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oriana Vanegas
- Pediatric Gastroenterology, University of Iowa, Iowa City, IA, United States
| | - Carlos Gomes
- Royal Berkshire NHS, Foundation Trust, Light House Lab, Bracknell, United Kingdom
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
- Medical Mission Institute, Würzburg, Germany
- *Correspondence: Alicia Ponte-Sucre,
| |
Collapse
|
25
|
Li X, Fu Q, Zhao FX, Wu YQ, Zhang TY, Li ZQ, He JM. GCR1 Positively Regulates UV-B- and Ethylene-Induced Stomatal Closure via Activating GPA1-Dependent ROS and NO Production. Int J Mol Sci 2022; 23:ijms23105512. [PMID: 35628324 PMCID: PMC9141438 DOI: 10.3390/ijms23105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Heterotrimeric G proteins function as key players in guard cell signaling to many stimuli, including ultraviolet B (UV-B) and ethylene, but whether guard cell G protein signaling is activated by the only one potential G protein-coupled receptor, GCR1, is still unclear. Here, we found that gcr1 null mutants showed defects in UV-B- and ethylene-induced stomatal closure and production of reactive oxygen species (ROS) and nitric oxide (NO) in guard cells, but these defects could be rescued by the application of a Gα activator or overexpression of a constitutively active form of Gα subunit GPA1 (cGPA1). Moreover, the exogenous application of hydrogen peroxide (H2O2) or NO triggered stomatal closure in gcr1 mutants and cGPA1 transgenic plants in the absence or presence of UV-B or ethylene, but exogenous ethylene could not rescue the defect of gcr1 mutants in UV-B-induced stomatal closure, and gcr1 mutants did not affect UV-B-induced ethylene production in Arabidopsis leaves. These results indicate that GCR1 positively controls UV-B- and ethylene-induced stomatal closure by activating GPA1-dependent ROS and NO production in guard cells and that ethylene acts upstream of GCR1 to transduce UV-B guard cell signaling, which establishes the existence of a classic paradigm of G protein signaling in guard cell signaling to UV-B and ethylene.
Collapse
|
26
|
PYR/PYL/RCAR Receptors Play a Vital Role in the Abscisic-Acid-Dependent Responses of Plants to External or Internal Stimuli. Cells 2022; 11:cells11081352. [PMID: 35456031 PMCID: PMC9028234 DOI: 10.3390/cells11081352] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/17/2023] Open
Abstract
Abscisic acid (ABA) is a phytohormone that plays a key role in regulating several developmental processes as well as in response to stressful conditions such as drought. Activation of the ABA signaling cascade allows the induction of an appropriate physiological response. The basic components of the ABA signaling pathway have been recognized and characterized in recent years. Pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptors (PYR/PYL/RCAR) are the major components responsible for the regulation of the ABA signaling pathway. Here, we review recent findings concerning the PYR/PYL/RCAR receptor structure, function, and interaction with other components of the ABA signaling pathway as well as the termination mechanism of ABA signals in plant cells. Since ABA is one of the basic elements related to abiotic stress, which is increasingly common in the era of climate changes, understanding the perception and transduction of the signal related to this phytohormone is of paramount importance in further increasing crop tolerance to various stress factors.
Collapse
|
27
|
Roy Choudhury S, Pandey S. SymRK-dependent phosphorylation of Gα protein and its role in signaling during soybean (Glycine max) nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:277-291. [PMID: 35048428 DOI: 10.1111/tpj.15672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Heterotrimeric G proteins, comprised of Gα, Gβ and Gγ subunits, influence signaling in most eukaryotes. In metazoans, G proteins are activated by G protein-coupled receptor (GPCR)-mediated GDP to GTP exchange on Gα; however, the role(s) of GPCRs in regulating plant G-protein signaling remains equivocal. Mounting evidence suggests the involvement of receptor-like kinases (RLKs) in regulating plant G-protein signaling, but their mechanistic details remain scarce. We have previously shown that during Glycine max (soybean) nodulation, the nod factor receptor 1 (NFR1) interacts with G-protein components and indirectly affects signaling. We explored the direct regulation of G-protein signaling by RLKs using protein-protein interactions, receptor-mediated in vitro phosphorylations and the effects of such phosphorylations on soybean nodule formation. Results presented in this study demonstrate a direct, phosphorylation-based regulation of Gα by symbiosis receptor kinase (SymRK). SymRKs interact with and phosphorylate Gα at multiple residues in vitro, including two in its active site, which abolishes GTP binding. Additionally, phospho-mimetic Gα fails to interact with Gβγ, potentially allowing for constitutive signaling by the freed Gβγ. These results uncover an unusual mechanism of G-protein cycle regulation in plants where the receptor-mediated phosphorylation of Gα not only affects its activity but also influences the availability of its signaling partners, thereby exerting a two-pronged check on signaling.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
28
|
Gupta K, Wani SH, Razzaq A, Skalicky M, Samantara K, Gupta S, Pandita D, Goel S, Grewal S, Hejnak V, Shiv A, El-Sabrout AM, Elansary HO, Alaklabi A, Brestic M. Abscisic Acid: Role in Fruit Development and Ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:817500. [PMID: 35620694 PMCID: PMC9127668 DOI: 10.3389/fpls.2022.817500] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/07/2022] [Indexed: 05/10/2023]
Abstract
Abscisic acid (ABA) is a plant growth regulator known for its functions, especially in seed maturation, seed dormancy, adaptive responses to biotic and abiotic stresses, and leaf and bud abscission. ABA activity is governed by multiple regulatory pathways that control ABA biosynthesis, signal transduction, and transport. The transport of the ABA signaling molecule occurs from the shoot (site of synthesis) to the fruit (site of action), where ABA receptors decode information as fruit maturation begins and is significantly promoted. The maximum amount of ABA is exported by the phloem from developing fruits during seed formation and initiation of fruit expansion. In the later stages of fruit ripening, ABA export from the phloem decreases significantly, leading to an accumulation of ABA in ripening fruit. Fruit growth, ripening, and senescence are under the control of ABA, and the mechanisms governing these processes are still unfolding. During the fruit ripening phase, interactions between ABA and ethylene are found in both climacteric and non-climacteric fruits. It is clear that ABA regulates ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism controlling the interaction between ABA and ethylene has not yet been discovered. The effects of ABA and ethylene on fruit ripening are synergistic, and the interaction of ABA with other plant hormones is an essential determinant of fruit growth and ripening. Reaction and biosynthetic mechanisms, signal transduction, and recognition of ABA receptors in fruits need to be elucidated by a more thorough study to understand the role of ABA in fruit ripening. Genetic modifications of ABA signaling can be used in commercial applications to increase fruit yield and quality. This review discusses the mechanism of ABA biosynthesis, its translocation, and signaling pathways, as well as the recent findings on ABA function in fruit development and ripening.
Collapse
Affiliation(s)
- Kapil Gupta
- Department of Biotechnology, Siddharth University, Kapilvastu, India
| | - Shabir H. Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Khudwani, India
- *Correspondence: Shabir H. Wani,
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Milan Skalicky,
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Paralakhemundi, India
| | - Shubhra Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
| | - Deepu Pandita
- Government Department of School Education, Jammu, India
| | - Sonia Goel
- Faculty of Agricultural Sciences, SGT University, Haryana, India
| | - Sapna Grewal
- Bio and Nanotechnology Department, Guru Jambheshwar University of Science and Technology, Hisar, Haryana
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aalok Shiv
- Division of Crop Improvement, ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- Floriculture, Ornamental Horticulture, and Garden Design Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, Bisha, Saudi Arabia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institut of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
29
|
Zhao D, Chen Z, Xu L, Zhang L, Zou Q. Genome-Wide Analysis of the MADS-Box Gene Family in Maize: Gene Structure, Evolution, and Relationships. Genes (Basel) 2021; 12:genes12121956. [PMID: 34946905 PMCID: PMC8701013 DOI: 10.3390/genes12121956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
The MADS-box gene family is one of the largest families in plants and plays an important roles in floral development. The MADS-box family includes the SRF-like domain and K-box domain. It is considered that the MADS-box gene family encodes a DNA-binding domain that is generally related to transcription factors, and plays important roles in regulating floral development. Our study identified 211 MADS-box protein sequences in the Zea mays proteome and renamed all the genes based on the gene annotations. All the 211 MADS-box protein sequences were coded by 98 expressed genes. Phylogenetic analysis of the MADS-box genes showed that all the family members were categorized into five subfamilies: MIKC-type, Mα, Mβ, Mγ, and Mδ. Gene duplications are regarded as products of several types of errors during the period of DNA replication and reconstruction; in our study all the 98 MADS-box genes contained 22 pairs of segmentally duplicated events which were distributed on 10 chromosomes. We compared expression data in different tissues from the female spikelet, silk, pericarp aleurone, ear primordium, leaf zone, vegetative meristem, internode, endosperm crown, mature pollen, embryo, root cortex, secondary root, germination kernels, primary root, root elongation zone, and root meristem. According to analysis of gene ontology pathways, we found a total of 41 pathways in which MADS-box genes in maize are involved. All the studies we conducted provided an overview of MADS-box gene family members in maize and showed multiple functions as transcription factors. The related research of MADS-box domains has provided the theoretical basis of MADS-box domains for agricultural applications.
Collapse
Affiliation(s)
- Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China; (D.Z.); (Z.C.); (L.Z.)
| | - Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China; (D.Z.); (Z.C.); (L.Z.)
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
- Correspondence: (L.X.); (Q.Z.)
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China; (D.Z.); (Z.C.); (L.Z.)
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (L.X.); (Q.Z.)
| |
Collapse
|
30
|
Yang Q, Peng Z, Ma W, Zhang S, Hou S, Wei J, Dong S, Yu X, Song Y, Gao W, Rengel Z, Huang L, Cui X, Chen Q. Melatonin functions in priming of stomatal immunity in Panax notoginseng and Arabidopsis thaliana. PLANT PHYSIOLOGY 2021; 187:2837-2851. [PMID: 34618091 PMCID: PMC8644721 DOI: 10.1093/plphys/kiab419] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/30/2021] [Indexed: 05/05/2023]
Abstract
Melatonin (MT) plays important roles in plant disease response, but the mechanisms are largely unknown. Here, we show that MT functions in stomatal immunity in Panax notoginseng and Arabidopsis thaliana. Biochemical analyses showed that MT-induced stomatal closure plays a prominent role in preventing invasion of bacteria Pseudomonas syringe pv. tomato (Pst) DC3000 via activation of mitogen-activated protein kinase (MAPK) and NADPH oxidase-mediated reactive oxygen species production in P. notoginseng. The first putative phytomelatonin receptor 1 (PMTR1) is a plasma membrane protein required for perceiving MT signaling in stomatal closure and activation of MAPK. Biochemical and genetic tests found PMTR1 is essential for flg22- and MT-induced MAPK activation in a heterotrimeric GTP-binding protein Gα subunit GPA1-independent manner. GPA1 functions in the same genetic pathways of FLS2/BAK1 (Flagellin Sensing 2/Brassinosteroid Insensitive 1-associated kinase 1)- as well as PMTR1-mediated flg22 and MT signaling in stomatal closure. The stomata in pmtr1 are insensitive to MT and flg22, but the application of MT induces stomatal closure and reduces the bacterial growth in fls2 and bak1 plants, indicating that PMTR1 might be a downstream signaling component in FLS2- and BAK1-mediated stomatal immunity. In summary, our results (i) demonstrate that phytomelatonin functions in the priming of stomatal immunity and (ii) provide insights into the phytomelatonin signaling transduction pathway.
Collapse
Affiliation(s)
- Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources, Sanqi Research Institute of Yunnan province, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhongping Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenna Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Siqi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Suyin Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuwei Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, Western Australia 6009, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split 21000, Croatia
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources, Sanqi Research Institute of Yunnan province, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources, Sanqi Research Institute of Yunnan province, Kunming University of Science and Technology, Kunming 650500, China
- Author for communication: ;
| |
Collapse
|
31
|
Ramasamy M, Damaj MB, Vargas-Bautista C, Mora V, Liu J, Padilla CS, Irigoyen S, Saini T, Sahoo N, DaSilva JA, Mandadi KK. A Sugarcane G-Protein-Coupled Receptor, ShGPCR1, Confers Tolerance to Multiple Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:745891. [PMID: 35295863 PMCID: PMC8919185 DOI: 10.3389/fpls.2021.745891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Sugarcane (Saccharum spp.) is a prominent source of sugar and serves as bioenergy/biomass feedstock globally. Multiple biotic and abiotic stresses, including drought, salinity, and cold, adversely affect sugarcane yield. G-protein-coupled receptors (GPCRs) are components of G-protein-mediated signaling affecting plant growth, development, and stress responses. Here, we identified a GPCR-like protein (ShGPCR1) from sugarcane and energy cane (Saccharum spp. hybrids) and characterized its function in conferring tolerance to multiple abiotic stresses. ShGPCR1 protein sequence contained nine predicted transmembrane (TM) domains connected by four extracellular and four intracellular loops, which could interact with various ligands and heterotrimeric G proteins in the cells. ShGPCR1 sequence displayed other signature features of a GPCR, such as a putative guanidine triphosphate (GTP)-binding domain, as well as multiple myristoylation and protein phosphorylation sites, presumably important for its biochemical function. Expression of ShGPCR1 was upregulated by drought, salinity, and cold stresses. Subcellular imaging and calcium (Ca2+) measurements revealed that ShGPCR1 predominantly localized to the plasma membrane and enhanced intracellular Ca2+ levels in response to GTP, respectively. Furthermore, constitutive overexpression of ShGPCR1 in sugarcane conferred tolerance to the three stressors. The stress-tolerance phenotype of the transgenic lines corresponded with activation of multiple drought-, salinity-, and cold-stress marker genes, such as Saccharum spp. LATE EMBRYOGENESIS ABUNDANT, DEHYDRIN, DROUGHT RESPONSIVE 4, GALACTINOL SYNTHASE, ETHYLENE RESPONSIVE FACTOR 3, SALT OVERLY SENSITIVE 1, VACUOLAR Na+/H+ ANTIPORTER 1, NAM/ATAF1/2/CUC2, COLD RESPONSIVE FACTOR 2, and ALCOHOL DEHYDROGENASE 3. We suggest that ShGPCR1 plays a key role in conferring tolerance to multiple abiotic stresses, and the engineered lines may be useful to enhance sugarcane production in marginal environments with fewer resources.
Collapse
Affiliation(s)
- Manikandan Ramasamy
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B. Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | | | - Victoria Mora
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Jiaxing Liu
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Carmen S. Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Tripti Saini
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Jorge A. DaSilva
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
32
|
Liang L, Wang Q, Song Z, Wu Y, Liang Q, Wang Q, Yang J, Bi Y, Zhou W, Fan LM. O-fucosylation of CPN20 by SPINDLY Derepresses Abscisic Acid Signaling During Seed Germination and Seedling Development. FRONTIERS IN PLANT SCIENCE 2021; 12:724144. [PMID: 34712252 PMCID: PMC8545988 DOI: 10.3389/fpls.2021.724144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/10/2021] [Indexed: 05/31/2023]
Abstract
SPINDLY is involved in some aspects of plant development. However, the nature of this protein as an O-fucosyltransferase was recently discovered. In this study, we show that SPINDLY (SPY) interacts with CPN20 in yeast two-hybrid and split-luc assays, and the interaction is promoted by ABA. CPN20 is a chloroplast-localized co-chaperonin that negatively regulates ABAR-mediated ABA signaling. By using Electron Transfer Dissociation-MS/MS analysis, two O-fucosylation sites, e.g., 116th and 119th threonines, were detected in ectopically expressed CPN20 in mammalian cells and in Arabidopsis. The O-fucosylation at both threonine residues was confirmed by in vitro peptide O-fucosylation assay. We further show that CPN20 accumulates in the chloroplast of spy mutants, suggesting that SPY negatively regulates CPN20 localization in the chloroplast. In vivo protein degradation assay along with CPN20 localization behavior suggest that import of CPN20 into the chloroplast is negatively regulated by SPY. Genetic analysis shows that ABA insensitive phenotypes of spy-3 in terms of seed germination and early seedling development are partially suppressed by the cpn20 mutation, suggesting that CPN20 acts downstream of SPY in this ABA signaling pathway and that there may exist other pathways in parallel with CPN20. Collectively, the above data support the notion that the O-fucosylation of CPN20 by SPY fine-tunes ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Lin Liang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
- PKU Core Facility of Mass Spectrometry, School of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qi Wang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Zihao Song
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Yaxin Wu
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Qing Liang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Qingsong Wang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Jinli Yang
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Ying Bi
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| | - Wen Zhou
- PKU Core Facility of Mass Spectrometry, School of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Liu-Min Fan
- State Key Laboratory for Plant Gene and Protein Research, School of Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing, China
| |
Collapse
|
33
|
Brunetti SC, Arseneault MKM, Wright JA, Wang Z, Ehdaeivand MR, Lowden MJ, Rivoal J, Khalil HB, Garg G, Gulick PJ. The stress induced caleosin, RD20/CLO3, acts as a negative regulator of GPA1 in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 107:159-175. [PMID: 34599731 DOI: 10.1007/s11103-021-01189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A stress induced calcium-binding protein, RD20/CLO3 interacts with the alpha subunit of the heterotrimeric G-protein complex in Arabidopsis and affects etiolation and leaf morphology. Heterotrimeric G proteins and calcium signaling have both been shown to play a role in the response to environmental abiotic stress in plants; however, the interaction between calcium-binding proteins and G-protein signaling molecules remains elusive. We investigated the interaction between the alpha subunit of the heterotrimeric G-protein complex, GPA1, of Arabidopsis thaliana with the calcium-binding protein, the caleosin RD20/CLO3, a gene strongly induced by drought, salt and abscisic acid. The proteins were found to interact in vivo by bimolecular fluorescent complementation (BiFC); the interaction was localized to the endoplasmic reticulum and to oil bodies within the cell. The constitutively GTP-bound GPA1 (GPA1QL) also interacts with RD20/CLO3 as well as its EF-hand mutant variations and these interactions are localized to the plasma membrane. The N-terminal portion of RD20/CLO3 was found to be responsible for the interaction with GPA1 and GPA1QL using both BiFC and yeast two-hybrid assays. RD20/CLO3 contains a single calcium-binding EF-hand in the N-terminal portion of the protein; disruption of the calcium-binding capacity of the protein obliterates interaction with GPA1 in in vivo assays and decreases the interaction between the caleosin and the constitutively active GPA1QL. Analysis of rd20/clo3 mutants shows that RD20/CLO3 plays a key role in the signaling pathway controlling hypocotyl length in dark grown seedlings and in leaf morphology. Our findings indicate a novel role for RD20/CLO3 as a negative regulator of GPA1.
Collapse
Affiliation(s)
- Sabrina C Brunetti
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | - Michelle K M Arseneault
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | - Justin A Wright
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | - Zhejun Wang
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | | | - Michael J Lowden
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Hala B Khalil
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
- Department of Genetics, Faculty of Agriculture, Ain-Shams University, Shoubra El-khema, Cairo, Egypt
| | - Gajra Garg
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
- Department of Biotechnology & Microbiology, Mahatma Jyoti Rao Phoole University, Jaipur, Rajasthan, India
| | - Patrick J Gulick
- Department of Biology, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|
34
|
Abstract
African trypanosomes are responsible for important diseases of humans and animals in sub-Saharan Africa. The best-studied species is Trypanosoma brucei, which is characterized by development in the mammalian host between morphologically slender and stumpy forms. The latter are adapted for transmission by the parasite's vector, the tsetse fly. The development of stumpy forms is driven by density-dependent quorum-sensing (QS), the molecular basis for which is now coming to light. In this review, I discuss the historical context and biological features of trypanosome QS and how it contributes to the parasite's infection dynamics within its mammalian host. Also, I discuss how QS can be lost in different trypanosome species, such as T. brucei evansi and T. brucei equiperdum, or modulated when parasites find themselves competing with others of different genotypes or of different trypanosome species in the same host. Finally, I consider the potential to exploit trypanosome QS therapeutically. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
35
|
Cannon AE, Chapman KD. Lipid Signaling through G Proteins. TRENDS IN PLANT SCIENCE 2021; 26:720-728. [PMID: 33468433 DOI: 10.1016/j.tplants.2020.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
N-Acylethanolamine (NAE) signaling has received considerable attention in vertebrates as part of the endocannabinoid signaling system, where anandamide acts as a ligand for G protein-coupled cannabinoid receptors. Recent studies indicate that G proteins also are required for some types of NAE signaling in plants. The genetic ablation of the Gβγ dimer or loss of the full set of extra-large G proteins strongly attenuated NAE-induced chloroplast responses in seedlings. Intriguing parallels and distinct differences have emerged between plants and animals in NAE signaling, despite the conserved use of these lipid mediators to modulate cellular processes. Here we compare similarities and differences and identify open questions in a fundamental lipid signaling pathway in eukaryotes with components that are both conserved and diverged in plants.
Collapse
Affiliation(s)
- Ashley E Cannon
- Wheat Health, Genetics, and Quality Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA; Department of Crop and Soil Science, Washington State University, Pullman, WA 99163, USA.
| | - Kent D Chapman
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
36
|
Ruiz-Partida R, Rosario SM, Lozano-Juste J. An Update on Crop ABA Receptors. PLANTS 2021; 10:plants10061087. [PMID: 34071543 PMCID: PMC8229007 DOI: 10.3390/plants10061087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
The hormone abscisic acid (ABA) orchestrates the plant stress response and regulates sophisticated metabolic and physiological mechanisms essential for survival in a changing environment. Plant ABA receptors were described more than 10 years ago, and a considerable amount of information is available for the model plant Arabidopsis thaliana. Unfortunately, this knowledge is still very limited in crops that hold the key to feeding a growing population. In this review, we summarize genomic, genetic and structural data obtained in crop ABA receptors. We also provide an update on ABA perception in major food crops, highlighting specific and common features of crop ABA receptors.
Collapse
Affiliation(s)
- Rafael Ruiz-Partida
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Calle Ingeniero Fausto Elio s/n, Edificio 8E, 46022 Valencia, Spain; (R.R.-P.); (S.M.R.)
| | - Sttefany M. Rosario
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Calle Ingeniero Fausto Elio s/n, Edificio 8E, 46022 Valencia, Spain; (R.R.-P.); (S.M.R.)
- Laboratorio de Biología Molecular, Facultad de Ciencias Agronómicas y Veterinarias, Universidad Autónoma de Santo Domingo (UASD), Camino de Engombe, Santo Domingo 10904, Dominican Republic
| | - Jorge Lozano-Juste
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Calle Ingeniero Fausto Elio s/n, Edificio 8E, 46022 Valencia, Spain; (R.R.-P.); (S.M.R.)
- Correspondence:
| |
Collapse
|
37
|
Dhara A, Raichaudhuri A. ABCG transporter proteins with beneficial activity on plants. PHYTOCHEMISTRY 2021; 184:112663. [PMID: 33550197 DOI: 10.1016/j.phytochem.2021.112663] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 05/20/2023]
Abstract
Among the several subfamilies of ABC transporters the ABC-G subfamily is very significant. In the model plant Arabidopsis thaliana itself, ABCG subfamily houses highest number of transporters with mostly half-size transporters (called WBC) and fewer full-size transporters (called PDR). During drought stress the stress hormone abscisic acid (ABA) is exported from the root xylem and imported by the leaf stomatal cells by ABCG transporter proteins to reduce the transpiration of water from leaves. Moreover, the ABCG transporters play a chief role in export of prime biotic stress induced hormones like jasmonic acid and salicylic acid among other secondary metabolites. In this way they protect the plant as the first line of defense against pathogenic damages. The ABCG transporters help the plant in becoming kanamycin resistant which help in plant growth. ABCG transporters of Nicotiana plumbaginifolia provide resistance to pathogens like Pseudomonas syringae. Furthermore several ABCG transporters of A. thaliana are efficient in transporting cuticular lipids like cutin to help development of cuticle. Pollen exine wall formation is also aided by one ABCG transporter itself. Some important ABCG transporters like ABCG36 and ABCG40 have been suggested to contribute hugely towards heavy metal resistance and cellular detoxification in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Anindita Dhara
- Amity Institute of Biotechnology, Amity University, New Town, Kolkata, 700135, India
| | - Ayan Raichaudhuri
- Amity Institute of Biotechnology, Amity University, New Town, Kolkata, 700135, India.
| |
Collapse
|
38
|
Jin YN, Cui ZH, Ma K, Yao JL, Ruan YY, Guo ZF. Characterization of ZmCOLD1, novel GPCR-Type G Protein genes involved in cold stress from Zea mays L. and the evolution analysis with those from other species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:619-632. [PMID: 33854288 PMCID: PMC7981359 DOI: 10.1007/s12298-021-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Maize is one of the most vital staple crops worldwide. G proteins modulate plentiful signaling pathways, and G protein-coupled receptor-type G proteins (GPCRs) are highly conserved membrane proteins in plants. However, researches on maize G proteins and GPCRs are scarce. In this study, we identified three novel GPCR-Type G Protein (GTG) genes from chromosome 10 (Chr 10) in maize, designated as ZmCOLD1-10A, ZmCOLD1-10B and ZmCOLD1-10C. Their amino acid sequences had high similarity to TaCOLD1 from wheat and OsCOLD1 from rice. They contained the basic characteristics of GTG/COLD1 proteins, including GPCR-like topology, the conserved hydrophilic loop (HL) domain, DUF3735 (domain of unknown function 3735) domain, GTPase-activating domain, and ATP/GTP-binding domain. Subcellular localization analyses of ZmCOLD1 proteins suggested that ZmCOLD1 proteins localized on plasma membrane (PM) and endoplasmic reticulum (ER). Furthermore, amino acid sequence alignment verified the conservation of the key 187th amino acid T in maize and other wild maize-relative species. Evolutionary relationship among plants GTG/COLD1 proteins family displayed strong group-specificity. Expression analysis indicated that ZmCOLD1-10A was cold-induced and inhibited by light. Together, these results suggested that ZmCOLD1 genes had potential value to improve cold tolerance and to contribute crops growth and molecular breeding.
Collapse
Affiliation(s)
- Ya-Nan Jin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
- College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, 028000 China
| | - Zhen-hai Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Ke Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Jia-Lu Yao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Yan-Ye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Zhi-Fu Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
39
|
Jiang Y, Tong S, Chen N, Liu B, Bai Q, Chen Y, Bi H, Zhang Z, Lou S, Tang H, Liu J, Ma T, Liu H. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1258-1273. [PMID: 33264467 DOI: 10.1111/tpj.15109] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
High salinity, one of the most widespread abiotic stresses, inhibits photosynthesis, reduces vegetation growth, blocks respiration and disrupts metabolism in plants. In order to survive their long-term lifecycle, trees, such as Populus species, recruit the abscisic acid (ABA) signaling pathway to adapt to a saline environment. However, the molecular mechanism behind the ABA-mediated salt stress response in woody plants remains elusive. We have isolated a WRKY transcription factor gene, PalWRKY77, from Populus alba var. pyramidalis (poplar), the expression of which is repressed by salt stress. PalWRKY77 decreases salt tolerance in poplar. Furthermore, PalWRKY77 negatively regulated ABA-responsive genes and relieved ABA-mediated growth inhibition, indicating that PalWRKY77 is a repressor of the ABA response. In vivo and in vitro assays revealed that PalWRKY77 targets the ABA- and salt-induced PalNAC002 and PalRD26 genes by binding to the W-boxes in their promoters. In addition, overexpression of both PalNAC002 and PalRD26 could elevate salt tolerance in transgenic poplars. These findings reveal a novel negative regulation mechanism for the ABA signaling pathway mediated by PalWRKY77 that results in more sensitivity to salt stress in poplar. This deepens our understanding of the complex responses of woody species to salt stress.
Collapse
Affiliation(s)
- Yuanzhong Jiang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Shaofei Tong
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Ningning Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Bao Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Qiuxian Bai
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Yang Chen
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Hao Bi
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Zhiyang Zhang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Hu Tang
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
40
|
Liu C, Ye X, Zou L, Xiang D, Wu Q, Wan Y, Wu X, Zhao G. Genome-wide identification of genes involved in heterotrimeric G-protein signaling in Tartary buckwheat (Fagopyrum tataricum) and their potential roles in regulating fruit development. Int J Biol Macromol 2021; 171:435-447. [PMID: 33434548 DOI: 10.1016/j.ijbiomac.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an economical crop with excellent edible, nutritional, and medicinal values. However, the production of Tartary buckwheat is very low and it is urgent to breed high-yield varieties for satisfying the increasing market demand. Heterotrimeric G-protein signaling involves in the regulation of agronomical traits and fruit development in several plant species. In this study, fifteen genes involved in G-protein signaling were characterized in Tartary buckwheat and their potential roles in fruit development were revealed by expression analysis. The exon-intron organization and conserved motif of Tartary buckwheat G-protein signaling genes were similar to those in other dicot plants. All these genes were ubiquitously and differently expressed in five tissues. The expression patterns of Tartary buckwheat G-protein signaling genes in fruit suggested they may play important roles in the fruit at early development stage, which was supported by meta-analysis of G-protein signaling genes' expression in the fruits from different species. Furthermore, we found the expression of G-protein signaling genes in fruit showed high correlation with 178 transcription factors, which indicated a transcriptional regulatory loop moderating G-protein signaling genes' expression during fruit development. This paper provides new insights into the physiological functions of G-protein signaling in fruit.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
41
|
Agarwal S, Rath PP, Anand G, Gourinath S. Uncovering the Cyclic AMP Signaling Pathway of the Protozoan Parasite Entamoeba histolytica and Understanding Its Role in Phagocytosis. Front Cell Infect Microbiol 2020; 10:566726. [PMID: 33102254 PMCID: PMC7546249 DOI: 10.3389/fcimb.2020.566726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023] Open
Abstract
Second messenger signaling controls a surprisingly diverse range of processes in several eukaryotic pathogens. Molecular machinery and pathways involving these messengers thus hold tremendous opportunities for therapeutic interventions. Relative to Ca2+ signaling, the knowledge of a crucial second messenger cyclic AMP (cAMP) and its signaling pathway is very scant in the intestinal parasite Entamoeba histolytica. In the current study, mining the available genomic resources, we have for the first time identified the cAMP signal transduction pathway of E. histolytica. Three heptahelical proteins with variable G-protein-coupled receptor domains, heterotrimeric G-proteins (Gα, Gβ, and Gγ subunits), soluble adenylyl cyclase, cyclase-associated protein, and enzyme carbonic anhydrase were identified in its genome. We could also identify several putative candidate genes for cAMP downstream effectors such as protein kinase A, A-kinase anchoring proteins, and exchange protein directly activated by the cAMP pathway. Using specific inhibitors against key identified targets, we could observe changes in the intracellular cAMP levels as well as defect in the rate of phagocytosis of red blood cells by the parasite E. histolytica. We thus strongly believe that characterization of some of these unexplored crucial signaling determinants will provide a paradigm shift in understanding the pathogenicity of this organism.
Collapse
Affiliation(s)
- Shalini Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Gaurav Anand
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
42
|
Campbell MT, Grondin A, Walia H, Morota G. Leveraging genome-enabled growth models to study shoot growth responses to water deficit in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5669-5679. [PMID: 32526013 PMCID: PMC7501813 DOI: 10.1093/jxb/eraa280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
Elucidating genotype-by-environment interactions and partitioning its contribution to phenotypic variation remains a challenge for plant scientists. We propose a framework that utilizes genome-wide markers to model genotype-specific shoot growth trajectories as a function of time and soil water availability. A rice diversity panel was phenotyped daily for 21 d using an automated, high-throughput image-based, phenotyping platform that enabled estimation of daily shoot biomass and soil water content. Using these data, we modeled shoot growth as a function of time and soil water content, and were able to determine the time point where an inflection in the growth trajectory occurred. We found that larger, more vigorous plants exhibited an earlier repression in growth compared with smaller, slow-growing plants, indicating a trade-off between early vigor and tolerance to prolonged water deficits. Genomic inference for model parameters and time of inflection (TOI) identified several candidate genes. This study is the first to utilize a genome-enabled growth model to study drought responses in rice, and presents a new approach to jointly model dynamic morpho-physiological responses and environmental covariates.
Collapse
Affiliation(s)
- Malachy T Campbell
- Department of Animal and Poultry Sciences Virginia Polytechnic Institute and State University Blacksburg, VA, USA
- Department of Agronomy and Horticulture University of Nebraska-Lincoln, Lincoln, NE, USA
- Correspondence:
| | - Alexandre Grondin
- Department of Agronomy and Horticulture University of Nebraska-Lincoln, Lincoln, NE, USA
- UMR DIADE, Université de Montpellier Institut de Recherche pour le Développement (IRD) Montpellier, France
| | - Harkamal Walia
- Department of Agronomy and Horticulture University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Gota Morota
- Department of Animal and Poultry Sciences Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
43
|
Liu YC, Ma W, Niu JF, Li B, Zhou W, Liu S, Yan YP, Ma J, Wang ZZ. Systematic analysis of SmWD40s, and responding of SmWD40-170 to drought stress by regulation of ABA- and H 2O 2-induced stomal movement in Salvia miltiorrhiza bunge. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:131-140. [PMID: 32502715 DOI: 10.1016/j.plaphy.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
WD40 proteins play crucial roles in response to abiotic stress. By screening the genome sequences of Salvia miltiorrhiza Bunge, 225 SmWD40 genes were identified and divided into 9 subfamilies (I-IX). Physiological, biochemical, gene structure, conserved protein motif and GO annotation analyses were performed on SmWD40 family members. The SmWD40-170 was found in 110 SmWD40 genes that contain drought response elements, SmWD40-170 was one of these genes whose response in terms of expression under drought was significant. The expression of SmWD40-170 was also up-regulated by ABA and H2O2. Through observed the stomatal phenotype of SmWD40-170 transgenic lines, the stomatal closure was abolished under dehydration, ABA and H2O2 treatment in SmWD40-170 knockdown lines. Abscisic acid (ABA), as the key phytohormone, elevates reactive oxygen species (ROS) levels under drought stress. The ABA-ROS interaction mediated the generation of H2O2 and the activation of anion channel in guard cells. The osmolality alteration of guard cells further accelerated the stomatal closure. As a second messenger, nitric oxide (NO) regulated ABA signaling, the NO stimulated protein kinase activity inhibited the K+ influx which result in stomatal closure. These NO-relevant events were essential for ABA-induced stomatal closure. The reduction of NO production was also observed in the guard cells of SmWD40-170 knockdown lines. The abolished of stomatal closure attributed to the SmWD40-170 deficiency induced the reduction of NO content. In general, the SmWD40-170 is a critical drought response gene in SmWD40 gene family and regulates ABA- and H2O2-induced stomatal movement by affecting the synthesis of NO.
Collapse
Affiliation(s)
- Yuan-Chu Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Wen Ma
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Jun-Feng Niu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Bin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Wen Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Shuai Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Ya-Ping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Ji Ma
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
44
|
Hou B, Shen Y. A Clathrin-Related Protein, SCD2/RRP1, Participates in Abscisic Acid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:892. [PMID: 32625229 PMCID: PMC7314967 DOI: 10.3389/fpls.2020.00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid (ABA) plays important roles in many aspects of plant growth and development, and responses to diverse stresses. Although much progress has been made in understanding the molecular mechanisms of ABA homoeostasis and signaling, the mechanism by which plant cells integrate ABA trafficking and signaling to regulate plant developmental processes is poorly understood. In this study, we used Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE 2/RIPENING-REGULATED PROTEIN 1 (SCD2/RRP1) mutants and overexpression plants, in combination with transcriptome and protein-interaction assays, to investigate SCD2/RRP1 involvement in the integration of ABA trafficking and signaling in seed germination and seedling growth. Manipulation of SCD2/RRP1 expression affected ABA sensitivity in seed germination and seedling growth, as well as transcription of several ABA transporter genes and ABA content. RNA-sequencing analysis of Arabidopsis transgenic mutants suggested that SCD2/RRP1 was associated with ABA signaling via a type 2C protein phosphatase (PP2C) protein. The N- and C-terminal regions of SCD2/RRP1 separately interacted with both PYRABACTIN RESISTANCE 1 (PYR1) and ABA INSENSITIVE 1 (ABI1) on the plasma membrane, and SCD2/RRP1 acted genetically upstream of ABI1. Interestingly, ABA inhibited the interaction of SCD2/RRP1 with ABI1, but did not affect the interaction of SCD2/RRP1 with PYR1. These results suggested that in Arabidopsis SCD2/RRP1participates in early seed development and growth potentially through clathrin-mediated endocytosis- and clathrin-coated vesicle-mediated ABA trafficking and signaling. These findings provide insight into the mechanism by which cells regulate plant developmental processes through ABA.
Collapse
Affiliation(s)
- Bingzhu Hou
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
45
|
Liang B, Zheng Y, Wang J, Zhang W, Fu Y, Kai W, Xu Y, Yuan B, Li Q, Leng P. Overexpression of the persimmon abscisic acid β-glucosidase gene (DkBG1) alters fruit ripening in transgenic tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1220-1233. [PMID: 31960511 DOI: 10.1111/tpj.14695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 05/11/2023]
Abstract
β-Glucosidases (BG) are present in many plant tissues. Among these, abscisic acid (ABA) β-glucosidases are thought to take part in the adjustment of cellular ABA levels, however the role of ABA-BG in fruits is still unclear. In this study, through RNA-seq analysis of persimmon fruit, 10 full-length DkBG genes were isolated and were all found to be expressed. In particular, DkBG1 was highly expressed in persimmon fruits with a maximum expression 95 days after full bloom (DAFD). We verified that, in vitro, DkBG1 protein can hydrolyze ABA-glucose ester (ABA-GE) to release free ABA. Compared with wild-type, tomato plants that overexpressed DkBG1 significantly upregulated the expression of ABA receptor PYL3/7 genes and showed typical symptoms of ABA hypersensitivity in fruits. DkBG1 overexpression (DkBG1-OE) accelerated fruit ripening onset by 3-4 days by increasing ABA levels at the pre-breaker stage and induced early ethylene release compared with wild-type fruits. DkBG1-OE altered the expression of ripening regulator NON-RIPENING (NOR) and its target genes; this in turn altered fruit quality traits such as coloration. Our results demonstrated that DkBG1 plays an important role in fruit ripening and quality by adjusting ABA levels via hydrolysis of ABA-GE.
Collapse
Affiliation(s)
- Bin Liang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yu Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Juan Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenbo Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenbin Kai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yandan Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bing Yuan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ping Leng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
46
|
Huang L, Wang X, Dong Y, Long Y, Hao C, Yan L, Shi T. Resequencing 93 accessions of coffee unveils independent and parallel selection during Coffea species divergence. PLANT MOLECULAR BIOLOGY 2020; 103:51-61. [PMID: 32072392 DOI: 10.1007/s11103-020-00974-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Coffea arabica, C. canephora and C. excelsa, with differentiated morphological traits and distinct agro-climatic conditions, compose the majority of the global coffee plantation. To comprehensively understand their genetic diversity and divergence for future genetic improvement requires high-density markers. Here, we sequenced 93 accessions encompassing these three Coffea species, uncovering 15,367,960 single-nucleotide polymorphisms (SNPs). These SNPs are unequally distributed across different genomic regions and gene families, with two disease-resistant gene families showing the highest SNP density, suggesting strong balancing selection. Meanwhile, the allotetraploid C. arabica exhibits greater nucleotide diversity, followed by C. canephora and C. excelsa. Population divergence (FST), population stratification and phylogeny all support strong divergence among species, with C. arabica and its parental species C. canephora being closer genetically. Scanning of genomic islands with elevated FST and structure-disruptive SNPs contributing to species divergence revealed that most of the selected genes in each lineage are independent, with a few being selected in parallel for two or three species, such as genes in root hair cell development, flavonols accumulation and disease-resistant genes. Moreover, some of the SNPs associated with coffee lipids exhibit significantly biased allele frequency among species, being valuable for interspecific breeding. Overall, our study not only uncovers the key population genomic patterns among species but also contributes a substantial genomic resource for coffee breeding.
Collapse
Affiliation(s)
- Lifang Huang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, 571533, China
| | - Xiaoyang Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, 571533, China
| | - Yunping Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, 571533, China
| | - Yuzhou Long
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, 571533, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, 571533, China
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, China.
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, China.
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, 571533, China.
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
47
|
Pandey S. Plant receptor-like kinase signaling through heterotrimeric G-proteins. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1742-1751. [PMID: 31930311 PMCID: PMC7242010 DOI: 10.1093/jxb/eraa016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 05/06/2023]
Abstract
Heterotrimeric G-proteins regulate multiple aspects of plant growth, development, and response to biotic and abiotic stresses. While the core components of heterotrimeric G-proteins and their basic biochemistry are similar in plants and metazoans, key differences exist in their regulatory mechanisms. In particular, the activation mechanisms of plant G-proteins appear diverse and may include both canonical and novel modes. Classical G-protein-coupled receptor-like proteins exist in plants and interact with Gα proteins, but their ability to activate Gα by facilitating GDP to GTP exchange has not been demonstrated. Conversely, there is genetic and functional evidence that plant G-proteins interact with the highly prevalent receptor-like kinases (RLKs) and are phosphorylated by them. This suggests the exciting scenario that in plants the G-proteins integrate RLK-dependent signal perception at the plasma membrane with downstream effectors. Because RLKs are active kinases, it is also likely that the activity of plant G-proteins is regulated via phosphorylation/dephosphorylation rather than GTP-GDP exchange as in metazoans. This review discusses our current knowledge of the possible RLK-dependent regulatory mechanisms of plant G-protein signaling in the context of several biological systems and outlines the diversity that might exist in such regulation.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Correspondence:
| |
Collapse
|
48
|
Lu K, Zhang YD, Zhao CF, Zhou LH, Zhao QY, Chen T, Wang CL. The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. PLANT MOLECULAR BIOLOGY 2020; 102:199-212. [PMID: 31813113 DOI: 10.1007/s11103-019-00941-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/29/2019] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE The kinase-associated protein phosphatase, KAPP, is negatively involved in abscisic acid (ABA) signaling. KAPP interacts physically with SnRK2.2, SnRK2.3 and SnRK2.6, and functionally acts upstream of SnRK2.2 and SnRK2.3. The kinase-associated protein phosphatase (KAPP) has been reported to be involved in the regulation of many developmental and signaling events, but it remains unknown whether KAPP is involved in ABA signaling. Here, we report that KAPP is negatively involved in ABA-mediated seed germination and early seedling growth in Arabidopsis thaliana. The two loss-of-function mutants of KAPP, kapp-1 and kapp-2, exhibit increased ABA sensitivity in ABA-induced seed germination inhibition and post-germination growth arrest. The three closely-related protein kinase, (SNF1)-related protein kinase SnRK2.2, SnRK2.3 and SnRK2.6, which play critical roles in ABA signaling, interact and co-localize with KAPP. Genetic evidence showed that the ABA-hypersensitive phenotypes caused by KAPP mutation were suppressed by the double mutation of SnRK2.2 and SnRK2.3, indicating that KAPP functions upstream of SnRK2.2 and SnRK2.3 in ABA signaling. RNA-sequencing analysis revealed that KAPP mutation affects expression of multiple ABA-responsive genes. These results demonstrated that KAPP is negatively involved in plant response to ABA, which help to understand the complicated ABA signaling mechanism.
Collapse
Affiliation(s)
- Kai Lu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Ya-Dong Zhang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Chun-Fang Zhao
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Li-Hui Zhou
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Qing-Yong Zhao
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Tao Chen
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Cai-Lin Wang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China.
| |
Collapse
|
49
|
Deboever E, Deleu M, Mongrand S, Lins L, Fauconnier ML. Plant-Pathogen Interactions: Underestimated Roles of Phyto-oxylipins. TRENDS IN PLANT SCIENCE 2020; 25:22-34. [PMID: 31668451 DOI: 10.1016/j.tplants.2019.09.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 05/28/2023]
Abstract
Plant (or phyto-) oxylipins (POs) are produced under a wide range of stress conditions and although they are well known to activate stress-related signalling pathways, the nonsignalling roles of POs are poorly understood. We describe oxylipins as direct biocidal agents and propose that structure-function relationships play here a pivotal role. Based on their chemical configuration, POs, such as reactive oxygen and electrophile species, activate defence-related gene expression. We also propose that their ability to interact with pathogen membranes is important, but still misunderstood, and that they are involved in cross-kingdom communication. Taken as a whole, the current literature suggests that POs have a high potential as biocontrol agents. However, the mechanisms underlying these multifaceted compounds remain largely unknown.
Collapse
Affiliation(s)
- Estelle Deboever
- Molecular Biophysics at Interface Laboratory (LBMI), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium; Laboratory of Natural Molecules Chemistry (LCMN), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium.
| | - Magali Deleu
- Molecular Biophysics at Interface Laboratory (LBMI), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Laurence Lins
- Molecular Biophysics at Interface Laboratory (LBMI), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Natural Molecules Chemistry (LCMN), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| |
Collapse
|
50
|
Qin X, Jin X, Zhou K, Li H, Wang Q, Li W, Wang Q. EsGPCR89 regulates cerebral antimicrobial peptides through hemocytes in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:151-162. [PMID: 31605765 DOI: 10.1016/j.fsi.2019.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
G protein-coupled receptors (GPCRs) are important transmembrane receptors that participate in diverse physiological processes including metabolism, cell growth and immune processes by transmitting extracellular signals to intracellular effectors. In this study, a gene belonging to the GPCR family was cloned from Eriocheir sinensis and named EsGPCR89. The full-length gene includes an open reading frame (ORF) of 465 amino acid residues, and bioinformatic analysis confirmed the high conservation between species. EsGPCR89 was detected in various tissues of E. sinensis, and was up-regulated in brain following Staphylococcus aureus infection. Expression levels of cerebral antimicrobial peptides (AMPs) were also up-regulated following bacterial challenge, reflecting their function in cerebral immunity. Additionally, EsGPCR89 silencing in hemocytes by RNA interference, down-regulated AMPs in brain after S. aureus infection. Moreover, through Immunisation assay and Polyacrylamide gel electrophoresis (SDS-PAGE) experiments, we could infer that bacterially infected hemocytes released effectors under the regulation of EsGPCR89, thereby activating transcription of cerebral AMPs. These results demonstrate that EsGPCR89 plays important roles in cerebral antimicrobial function via hemocytes.
Collapse
Affiliation(s)
- Xiang Qin
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Xingkun Jin
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, PR China
| | - Kaimin Zhou
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Hao Li
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Qiying Wang
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Weiwei Li
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China.
| | - Qun Wang
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China.
| |
Collapse
|