1
|
Wang DC, Wu Y, Mehaffy C, Espinoza-Campomanes LA, Luo L. Distinct Neural Representations of Hunger and Thirst in Neonatal Mice before the Emergence of Food- and Water-seeking Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614378. [PMID: 39386432 PMCID: PMC11463676 DOI: 10.1101/2024.09.22.614378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hunger and thirst are two fundamental drives for maintaining homeostasis, and elicit distinct food- and water-seeking behaviors essential for survival. For neonatal mammals, however, both hunger and thirst are sated by consuming milk from their mother. While distinct neural circuits underlying hunger and thirst drives in the adult brain have been characterized, it is unclear when these distinctions emerge in neonates and what processes may affect their development. Here we show that hypothalamic hunger and thirst regions already exhibit specific responses to starvation and dehydration well before a neonatal mouse can seek food and water separately. At this early age, hunger drives feeding behaviors more than does thirst. Within neonatal regions that respond to both hunger and thirst, subpopulations of neurons respond distinctly to one or the other need. Combining food and water into a liquid diet throughout the animal's life does not alter the distinct representations of hunger and thirst in the adult brain. Thus, neural representations of hunger and thirst become distinct before food- and water-seeking behaviors mature and are robust to environmental changes in food and water sources.
Collapse
Affiliation(s)
- David C Wang
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
- Stanford MSTP
| | - Yunming Wu
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
| | | | | | - Liqun Luo
- Howard Hughes Medical Institute
- Department of Biology, Stanford University
| |
Collapse
|
2
|
Wang Q, Sun RY, Hu JX, Sun YH, Li CY, Huang H, Wang H, Li XM. Hypothalamic-hindbrain circuit for consumption-induced fear regulation. Nat Commun 2024; 15:7728. [PMID: 39231981 PMCID: PMC11375128 DOI: 10.1038/s41467-024-51983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
To ensure survival, animals must sometimes suppress fear responses triggered by potential threats during feeding. However, the mechanisms underlying this process remain poorly understood. In the current study, we demonstrated that when fear-conditioned stimuli (CS) were presented during food consumption, a neural projection from lateral hypothalamic (LH) GAD2 neurons to nucleus incertus (NI) relaxin-3 (RLN3)-expressing neurons was activated, leading to a reduction in CS-induced freezing behavior in male mice. LHGAD2 neurons established excitatory connections with the NI. The activity of this neural circuit, including NIRLN3 neurons, attenuated CS-induced freezing responses during food consumption. Additionally, the lateral mammillary nucleus (LM), which received NIRLN3 projections, along with RLN3 signaling in the LM, mediated the decrease in freezing behavior. Collectively, this study identified an LHGAD2-NIRLN3-LM circuit involved in modulating fear responses during feeding, thereby enhancing our understanding of how animals coordinate nutrient intake with threat avoidance.
Collapse
Affiliation(s)
- Qin Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui-Yue Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Xue Hu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hui Sun
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqian Huang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Xiao Z, Zheng N, Chen H, Yang Z, Wang R, Liang Z. Identifying novel proteins underlying bipolar disorder via integrating pQTLs of the plasma, CSF, and brain with GWAS summary data. Transl Psychiatry 2024; 14:344. [PMID: 39191728 DOI: 10.1038/s41398-024-03056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Bipolar disorder (BD) presents a significant challenge due to its chronic and relapsing nature, with its underlying pathogenesis remaining elusive. This study employs Mendelian randomization (MR), a widely recognized genetic approach, to unveil intricate causal associations between proteins and BD, leveraging protein quantitative trait loci (pQTL) as key exposures. We integrate pQTL data from brain, cerebrospinal fluid (CSF), and plasma with genome-wide association study (GWAS) findings of BD within a comprehensive systems analysis framework. Our analyses, including two-sample MR, Steiger filtering, and Bayesian colocalization, reveal noteworthy associations. Elevated levels of AGRP, FRZB, and IL36A in CSF exhibit significant associations with increased BD_ALL risk, while heightened levels of CTSF and LRP8 in CSF, and FLRT3 in plasma, correlate with decreased BD_ALL risk. Specifically for Bipolar I disorder (BD_I), increased CSF AGRP levels are significantly linked to heightened BD_I risk, whereas elevated CSF levels of CTSF and LRP8, and plasma FLRT3, are associated with reduced BD_I risk. Notably, genes linked to BD-related proteins demonstrate substantial enrichment in functional pathways such as "antigen processing and presentation," "metabolic regulation," and "regulation of myeloid cell differentiation." In conclusion, our findings provide beneficial evidence to support the potential causal relationship between IL36A, AGRP, FRZB, LRP8 in cerebrospinal fluid, and FLRT3 in plasma, and BD and BD_I, providing insights for future mechanistic studies and therapeutic development.
Collapse
Affiliation(s)
- Zhehao Xiao
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nan Zheng
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haodong Chen
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhelun Yang
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rui Wang
- Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Zeyan Liang
- Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
4
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Repeated stress triggers seeking of a starvation-like state in anxiety-prone female mice. Neuron 2024; 112:2130-2141.e7. [PMID: 38642553 PMCID: PMC11287784 DOI: 10.1016/j.neuron.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe self-starvation as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether repeated stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress exposure, males but not females showed a mild aversion to AgRP stimulation. Strikingly, following multiple days of stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
Affiliation(s)
- Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Oren Amsalem
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Trent Pottala
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle Lim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leilani Potgieter
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda Hasbrouck
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Dodt S, Widdershooven NV, Dreisow ML, Weiher L, Steuernagel L, Wunderlich FT, Brüning JC, Fenselau H. NPY-mediated synaptic plasticity in the extended amygdala prioritizes feeding during starvation. Nat Commun 2024; 15:5439. [PMID: 38937485 PMCID: PMC11211344 DOI: 10.1038/s41467-024-49766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing 'hunger' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.
Collapse
Affiliation(s)
- Stephan Dodt
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Noah V Widdershooven
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Marie-Luise Dreisow
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
| | - Lisa Weiher
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - F Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany.
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
| |
Collapse
|
6
|
Wang J, Liu Z, Lin H, Jiao H, Zhao J, Ma B, Wang Y, He S, Wang X. Daily feeding frequency affects feed intake and body weight management of growing layers. Poult Sci 2024; 103:103748. [PMID: 38670057 PMCID: PMC11068612 DOI: 10.1016/j.psj.2024.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The objective of this study was to investigate the effect of feeding behavior on feed intake and body weight in growing layers and the underlying mechanisms, thereby providing a scientific foundation for optimal feeding practices in growing layers' management. A total of 144 Hy-line brown growing layers of 10 wk old and similar body weight, were divided into 3 treatment groups with different feeding frequency and equal cumulative daily feeding amount: the once-a-day feeding group (F1) was fed at 9:00 am every day, with feeding amount of 150 g/layer; the twice-a-day feeding group (F2) were fed at 9:00 am and 13:00 pm every day, with each feeding amount of 75 g/layer; the 4 times-a-day feeding group (F4) were fed at 9:00 am, 11:00 am, 13:00 pm, and 15:00 pm every day, with each feeding amount of 37.5 g/layer. Pre-experiment lasted for 1 wk and formal experiment lasted for 8 wk. The results indicated that the daily feed intake and body weight were decreased (P < 0.05) while feed conversion ratio was not affected (P > 0.05) as daily feeding times increased. The glandular stomach proportion was significantly increased in twice-a-day feeding group, while liver proportion and ileum length were significantly increased in 4 times-feeding group (P < 0.05). Additionally, 4 times-feeding daily resulted in a significant elevation of blood glucose levels, which may have suppressed feed intake (P < 0.05). In 4 times-feeding group, the plasma triglyceride levels increased as feeding times, accompanied by a notable up-regulation in the mRNA level of appetite-suppressing gene, hypothalamic pro-opiomelanocortin (POMC) and glandular stomach ghrelin. This modulation effectively suppressed the subsequent feed intake and body weight. Therefore, 4 times feeding daily is recommended in growing layers' management, because it reduced the feed cost without affecting the feed conversion efficiency.
Collapse
Affiliation(s)
- Junjie Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zengmin Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Baishun Ma
- Shandong Hemeihua Nongmu Co. Ltd., Jinan City, Shandong Province, 250102, China
| | - Yao Wang
- Sinochem Yunlong Co. Ltd., Jinsuo Industrial Zone, Xundian County, Kunming City, Yunnan Province, 655204, China
| | - Shuying He
- Sinochem Yunlong Co. Ltd., Jinsuo Industrial Zone, Xundian County, Kunming City, Yunnan Province, 655204, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
7
|
Fujioka Y, Kawai K, Endo K, Ishibashi M, Iwade N, Tuerde D, Kaibuchi K, Yamashita T, Yamanaka A, Katsuno M, Watanabe H, Sobue G, Ishigaki S. Stress-impaired reward pathway promotes distinct feeding behavior patterns. Front Neurosci 2024; 18:1349366. [PMID: 38784098 PMCID: PMC11111882 DOI: 10.3389/fnins.2024.1349366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Although dietary behaviors are affected by neuropsychiatric disorders, various environmental conditions can have strong effects as well. We found that mice under multiple stresses, including social isolation, intermittent high-fat diet, and physical restraint, developed feeding behavior patterns characterized by a deviated bait approach (fixated feeding). All the tested stressors affected dopamine release at the nucleus accumbens (NAcc) shell and dopamine normalization reversed the feeding defects. Moreover, inhibition of dopaminergic activity in the ventral tegmental area that projects into the NAcc shell caused similar feeding pattern aberrations. Given that the deviations were not consistently accompanied by changes in the amount consumed or metabolic factors, the alterations in feeding behaviors likely reflect perturbations to a critical stress-associated pathway in the mesolimbic dopamine system. Thus, deviations in feeding behavior patterns that reflect reward system abnormalities can be sensitive biomarkers of psychosocial and physical stress.
Collapse
Affiliation(s)
- Yusuke Fujioka
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Kawai
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Kuniyuki Endo
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minaka Ishibashi
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuyuki Iwade
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dilina Tuerde
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Research Project for Neural and Tumor Signaling, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takayuki Yamashita
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Akihiro Yamanaka
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing, China
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Gen Sobue
- Aichi Medical University, Nagakute, Japan
| | - Shinsuke Ishigaki
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
Martinez de Morentin PB, Gonzalez JA, Dowsett GKC, Martynova Y, Yeo GSH, Sylantyev S, Heisler LK. A brainstem to hypothalamic arcuate nucleus GABAergic circuit drives feeding. Curr Biol 2024; 34:1646-1656.e4. [PMID: 38518777 DOI: 10.1016/j.cub.2024.02.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.
Collapse
Affiliation(s)
- Pablo B Martinez de Morentin
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse LS2 9JT, UK.
| | - J Antonio Gonzalez
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK
| | - Georgina K C Dowsett
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Yuliia Martynova
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Sergiy Sylantyev
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK; Odesa National Mechnikov University, Biological Department, 2 Shampansky Ln., Odesa 65015, Ukraine.
| | - Lora K Heisler
- The Rowett Institute, University of Aberdeen, Ashgrove Road W, Aberdeen AB25 2ZD, UK
| |
Collapse
|
9
|
Wu S, Wang J, Zhang Z, Jin X, Xu Y, Si Y, Liang Y, Ge Y, Zhan H, Peng L, Bi W, Luo D, Li M, Meng B, Guan Q, Zhao J, Gao L, He Z. Shank3 deficiency elicits autistic-like behaviors by activating p38α in hypothalamic AgRP neurons. Mol Autism 2024; 15:14. [PMID: 38570876 PMCID: PMC10993499 DOI: 10.1186/s13229-024-00595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Zicheng Zhang
- School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210009, China
| | - Xinchen Jin
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Youwen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences,East China Normal University, Shanghai, 200062, China
| | - Yixiao Liang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Li Peng
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dandan Luo
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mengzhu Li
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bo Meng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences,East China Normal University, Shanghai, 200062, China
- Department of Pharmacology and Chemical Biology, Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration, and Practice Center, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, 544 Jingsi Road, Jinan, Shandong, 250021, China.
| |
Collapse
|
10
|
Kuroda KO, Fukumitsu K, Kurachi T, Ohmura N, Shiraishi Y, Yoshihara C. Parental brain through time: The origin and development of the neural circuit of mammalian parenting. Ann N Y Acad Sci 2024; 1534:24-44. [PMID: 38426943 DOI: 10.1111/nyas.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.
Collapse
Affiliation(s)
- Kumi O Kuroda
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kansai Fukumitsu
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Kurachi
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nami Ohmura
- RIKEN Center for Brain Science, Saitama, Japan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Yuko Shiraishi
- RIKEN Center for Brain Science, Saitama, Japan
- Kawamura Gakuen Woman's University, Chiba, Japan
| | - Chihiro Yoshihara
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
11
|
Price NL, Fernández-Tussy P, Varela L, Cardelo MP, Shanabrough M, Aryal B, de Cabo R, Suárez Y, Horvath TL, Fernández-Hernando C. microRNA-33 controls hunger signaling in hypothalamic AgRP neurons. Nat Commun 2024; 15:2131. [PMID: 38459068 PMCID: PMC10923783 DOI: 10.1038/s41467-024-46427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.
Collapse
Affiliation(s)
- Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Pablo Fernández-Tussy
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Glia -Neuron Interactions in the control of Hunger. Achucarro Basque Center for Neuroscience, 48940, Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Vizcaya, Spain
| | - Magdalena P Cardelo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
| | - Marya Shanabrough
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Binod Aryal
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology. Yale University School of Medicine, New Haven, CT, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA.
- Laboratory of Glia -Neuron Interactions in the control of Hunger. Achucarro Basque Center for Neuroscience, 48940, Leioa, Vizcaya, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Vizcaya, Spain.
- Department of Neuroscience. Yale University School of Medicine, New Haven, CT, USA.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism. Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology. Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Ibeas K, Griñán‐Ferré C, del Mar Romero M, Sebastián D, Bastías‐Pérez M, Gómez R, Soler‐Vázquez MC, Zagmutt S, Pallás M, Castell M, Belsham DD, Mera P, Herrero L, Serra D. Cpt1a silencing in AgRP neurons improves cognitive and physical capacity and promotes healthy aging in male mice. Aging Cell 2024; 23:e14047. [PMID: 37994388 PMCID: PMC10861206 DOI: 10.1111/acel.14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
Orexigenic neurons expressing agouti-related protein (AgRP) and neuropeptide Y in the arcuate nucleus (ARC) of the hypothalamus are activated in response to dynamic variations in the metabolic state, including exercise. We previously observed that carnitine palmitoyltransferase 1a (CPT1A), a rate-limiting enzyme of mitochondrial fatty acid oxidation, is a key factor in AgRP neurons, modulating whole-body energy balance and fluid homeostasis. However, the effect of CPT1A in AgRP neurons in aged mice and during exercise has not been explored yet. We have evaluated the physical and cognitive capacity of adult and aged mutant male mice lacking Cpt1a in AgRP neurons (Cpt1a KO). Adult Cpt1a KO male mice exhibited enhanced endurance performance, motor coordination, locomotion, and exploration compared with control mice. No changes were observed in anxiety-related behavior, cognition, and muscle strength. Adult Cpt1a KO mice showed a reduction in gastrocnemius and tibialis anterior muscle mass. The cross-sectional area (CSA) of these muscles were smaller than those of control mice displaying a myofiber remodeling from type II to type I fibers. In aged mice, changes in myofiber remodeling were maintained in Cpt1a KO mice, avoiding loss of physical capacity during aging progression. Additionally, aged Cpt1a KO mice revealed better cognitive skills, reduced inflammation, and oxidative stress in the hypothalamus and hippocampus. In conclusion, CPT1A in AgRP neurons appears to modulate health and protects against aging. Future studies are required to clarify whether CPT1A is a potential antiaging candidate for treating diseases affecting memory and physical activity.
Collapse
Affiliation(s)
- Kevin Ibeas
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos IIIMadridSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNEDInstituto de Salud Carlos IIIMadridSpain
| | - Maria del Mar Romero
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos IIIMadridSpain
| | - David Sebastián
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Marianela Bastías‐Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Present address:
Facultad de Salud y Ciencias SocialesUniversidad de las AméricasSantiago de ChileChile
| | - Roberto Gómez
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
| | - M. Carmen Soler‐Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
| | - Mercè Pallás
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNEDInstituto de Salud Carlos IIIMadridSpain
| | - Margarida Castell
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos IIIMadridSpain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA‐UB), Universitat de BarcelonaSanta Coloma de GramenetSpain
| | - Denise D. Belsham
- Department of Physiology, Obstetrics and Gynaecology and MedicineUniversity of TorontoTorontoOntarioCanada
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos IIIMadridSpain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
13
|
Lai TT, Tsai YH, Liou CW, Fan CH, Hou YT, Yao TH, Chuang HL, Wu WL. The gut microbiota modulate locomotion via vagus-dependent glucagon-like peptide-1 signaling. NPJ Biofilms Microbiomes 2024; 10:2. [PMID: 38228675 DOI: 10.1038/s41522-024-00477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Locomotor activity is an innate behavior that can be triggered by gut-motivated conditions, such as appetite and metabolic condition. Various nutrient-sensing receptors distributed in the vagal terminal in the gut are crucial for signal transduction from the gut to the brain. The levels of gut hormones are closely associated with the colonization status of the gut microbiota, suggesting a complicated interaction among gut bacteria, gut hormones, and the brain. However, the detailed mechanism underlying gut microbiota-mediated endocrine signaling in the modulation of locomotion is still unclear. Herein, we show that broad-spectrum antibiotic cocktail (ABX)-treated mice displayed hypolocomotion and elevated levels of the gut hormone glucagon-like peptide-1 (GLP-1). Blockade of the GLP-1 receptor and subdiaphragmatic vagal transmission rescued the deficient locomotor phenotype in ABX-treated mice. Activation of the GLP-1 receptor and vagal projecting brain regions led to hypolocomotion. Finally, selective antibiotic treatment dramatically increased serum GLP-1 levels and decreased locomotion. Colonizing Lactobacillus reuteri and Bacteroides thetaiotaomicron in microbiota-deficient mice suppressed GLP-1 levels and restored the hypolocomotor phenotype. Our findings identify a mechanism by which specific gut microbes mediate host motor behavior via the enteroendocrine and vagal-dependent neural pathways.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Tian Hou
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115202, Taiwan
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
14
|
So WL, Hu J, Jeffs L, Dempsey H, Lockie SH, Zigman JM, Stark R, Reichenbach A, Andrews ZB. Ghrelin signalling in AgRP neurons links metabolic state to the sensory regulation of AgRP neural activity. Mol Metab 2023; 78:101826. [PMID: 37898450 PMCID: PMC10643323 DOI: 10.1016/j.molmet.2023.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE The sensory detection of food and food cues suppresses Agouti related peptide (AgRP) neuronal activity prior to consumption with greatest suppression occurring in response to highly caloric food or interoceptive energy need. However, the interoceptive mechanisms priming an appropriate AgRP neural response to external sensory information of food availability remain unexplored. Since hunger increases plasma ghrelin, we hypothesized that ghrelin receptor (GHSR) signalling on AgRP neurons is a key interoceptive mechanism integrating energy need with external sensory cues predicting caloric availability. METHODS We used in vivo photometry to measure the effects of ghrelin administration or fasting on AgRP neural activity with GCaMP6s and dopamine release in the nucleus accumbens with GRAB-DA in mice lacking ghrelin receptors in AgRP neurons. RESULTS The deletion of GHSR on AgRP neurons prevented ghrelin-induced food intake, motivation and AgRP activity. The presentation of food (peanut butter pellet) or a wooden dowel suppressed AgRP activity in fasted WT but not mice lacking GHSRs in AgRP neurons. Similarly, peanut butter and a wooden dowel increased dopamine release in the nucleus accumbens after ip ghrelin injection in WT but not mice lacking GHSRs in AgRP neurons. No difference in dopamine release was observed in fasted mice. Finally, ip ghrelin administration did not directly increase dopamine neural activity in the ventral tegmental area. CONCLUSIONS Our results suggest that AgRP GHSRs integrate an interoceptive state of energy need with external sensory information to produce an optimal change in AgRP neural activity. Thus, ghrelin signalling on AgRP neurons is more than just a feedback signal to increase AgRP activity during hunger.
Collapse
Affiliation(s)
- Wang Lok So
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Jiachen Hu
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Lotus Jeffs
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Harry Dempsey
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
15
|
Klima ML, Kruger KA, Goldstein N, Pulido S, Low AYT, Assenmacher CA, Alhadeff AL, Betley JN. Anti-inflammatory effects of hunger are transmitted to the periphery via projection-specific AgRP circuits. Cell Rep 2023; 42:113338. [PMID: 37910501 DOI: 10.1016/j.celrep.2023.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Caloric restriction has anti-inflammatory effects. However, the coordinated physiological actions that lead to reduced inflammation in a state of caloric deficit (hunger) are largely unknown. Using a mouse model of injury-induced peripheral inflammation, we find that food deprivation reduces edema, temperature, and cytokine responses that occur after injury. The magnitude of the anti-inflammatory effect that occurs during hunger is more robust than that of non-steroidal anti-inflammatory drugs. The effects of hunger are recapitulated centrally by activity in nutrient-sensing hypothalamic agouti-related protein (AgRP)-expressing neurons. We find that AgRP neurons projecting to the paraventricular nucleus of the hypothalamus rapidly and robustly reduce inflammation and mediate the majority of hunger's anti-inflammatory effects. Intact vagal efferent signaling is required for the anti-inflammatory action of hunger, revealing a brain-to-periphery pathway for this reduction in inflammation. Taken together, these data begin to unravel a potent anti-inflammatory pathway engaged by hypothalamic AgRP neurons to reduce inflammation.
Collapse
Affiliation(s)
- Michelle L Klima
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kayla A Kruger
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nitsan Goldstein
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Pulido
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aloysius Y T Low
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Amber L Alhadeff
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Reed F, Reichenbach A, Dempsey H, Clarke RE, Mequinion M, Stark R, Rawlinson S, Foldi CJ, Lockie SH, Andrews ZB. Acute inhibition of hunger-sensing AgRP neurons promotes context-specific learning in mice. Mol Metab 2023; 77:101803. [PMID: 37690518 PMCID: PMC10523265 DOI: 10.1016/j.molmet.2023.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE An environmental context, which reliably predicts food availability, can increase the appetitive food drive within the same environment context. However, hunger is required for the development of such a context-induced feeding (CIF) response, suggesting the neural circuits sensitive to hunger link an internal energy state with a particular environment context. Since Agouti related peptide (AgRP) neurons are activated by energy deficit, we hypothesised that AgRP neurons are both necessary and sufficient to drive CIF. METHODS To examine the role of AgRP neurons in the CIF process, we used fibre photometry with GCaMP7f, chemogenetic activation of AgRP neurons, as well as optogenetic control of AgRP neurons to facilitate acute temporal control not permitted with chemogenetics. RESULTS A CIF response at test was only observed when mice were fasted during context training and AgRP population activity at test showed an attenuated inhibitory response to food, suggesting increased food-seeking and/or decreased satiety signalling drives the increased feeding response at test. Intriguingly, chemogenetic activation of AgRP neurons during context training did not increase CIF, suggesting precise temporal firing properties may be required. Indeed, termination of AgRP neuronal photostimulation during context training (ON-OFF in context), in the presence or absence of food, increased CIF. Moreover, photoinhibition of AgRP neurons during context training in fasted mice was sufficient to drive a subsequent CIF in the absence of food. CONCLUSIONS Our results suggest that AgRP neurons regulate the acquisition of CIF when the acute inhibition of AgRP activity is temporally matched to context exposure. These results establish acute AgRP inhibition as a salient neural event underscoring the effect of hunger on associative learning.
Collapse
Affiliation(s)
- Felicia Reed
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Rachel E Clarke
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Sasha Rawlinson
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Claire J Foldi
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
17
|
Ross RA, Kim A, Das P, Li Y, Choi YK, Thompson AT, Douglas E, Subramanian S, Ramos K, Callahan K, Bolshakov VY, Ressler KJ. Prefrontal cortex melanocortin 4 receptors (MC4R) mediate food intake behavior in male mice. Physiol Behav 2023; 269:114280. [PMID: 37369302 PMCID: PMC10528493 DOI: 10.1016/j.physbeh.2023.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Melanocortin 4 receptor (MC4R) activity in the hypothalamus is crucial for regulation of metabolism and food intake. The peptide ligands for the MC4R are associated with feeding, energy expenditure, and also with complex behaviors that orchestrate energy intake and expenditure, but the downstream neuroanatomical and neurochemical targets associated with these behaviors are elusive. In addition to strong expression in the hypothalamus, the MC4R is highly expressed in the medial prefrontal cortex, a region involved in executive function and decision-making. METHODS Using viral techniques in genetically modified male mice combined with molecular techniques, we identify and define the effects on feeding behavior of a novel population of MC4R expressing neurons in the infralimbic (IL) region of the cortex. RESULTS Here, we describe a novel population of MC4R-expressing neurons in the IL of the mouse prefrontal cortex that are glutamatergic, receive input from melanocortinergic neurons, and project to multiple regions that coordinate appetitive responses to food-related stimuli. The neurons are stimulated by application of MC4R-specific peptidergic agonist, THIQ. Deletion of MC4R from the IL neurons causes increased food intake and body weight gain and impaired executive function in simple food-related behavior tasks. CONCLUSION Together, these data suggest that MC4R neurons of the IL play a critical role in the regulation of food intake in male mice.
Collapse
Affiliation(s)
- Rachel A Ross
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry, McLean Hospital, Boston, MA, USA.
| | - Angela Kim
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Priyanka Das
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yan Li
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Kat Ramos
- Northeastern University, Boston, MA, USA
| | - Kathryn Callahan
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Cho D, O'Berry K, Possa-Paranhos IC, Butts J, Palanikumar N, Sweeney P. Paraventricular Thalamic MC3R Circuits Link Energy Homeostasis with Anxiety-Related Behavior. J Neurosci 2023; 43:6280-6296. [PMID: 37591737 PMCID: PMC10490510 DOI: 10.1523/jneurosci.0704-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
The hypothalamic melanocortin system is critically involved in sensing stored energy and communicating this information throughout the brain, including to brain regions controlling motivation and emotion. This system consists of first-order agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons located in the hypothalamic arcuate nucleus and downstream neurons containing the melanocortin-3 (MC3R) and melanocortin-4 receptor (MC4R). Although extensive work has characterized the function of downstream MC4R neurons, the identity and function of MC3R-containing neurons are poorly understood. Here, we used neuroanatomical and circuit manipulation approaches in mice to identify a novel pathway linking hypothalamic melanocortin neurons to melanocortin-3 receptor neurons located in the paraventricular thalamus (PVT) in male and female mice. MC3R neurons in PVT are innervated by hypothalamic AgRP and POMC neurons and are activated by anorexigenic and aversive stimuli. Consistently, chemogenetic activation of PVT MC3R neurons increases anxiety-related behavior and reduces feeding in hungry mice, whereas inhibition of PVT MC3R neurons reduces anxiety-related behavior. These studies position PVT MC3R neurons as important cellular substrates linking energy status with neural circuitry regulating anxiety-related behavior and represent a promising potential target for diseases at the intersection of metabolism and anxiety-related behavior such as anorexia nervosa.SIGNIFICANCE STATEMENT Animals must constantly adapt their behavior to changing internal and external challenges, and impairments in appropriately responding to these challenges are a hallmark of many neuropsychiatric disorders. Here, we demonstrate that paraventricular thalamic neurons containing the melanocortin-3 receptor respond to energy-state-related information and external challenges to regulate anxiety-related behavior in mice. Thus, these neurons represent a potential target for understanding the neurobiology of disorders at the intersection of metabolism and psychiatry such as anorexia nervosa.
Collapse
Affiliation(s)
- Dajin Cho
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Kyle O'Berry
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Ingrid Camila Possa-Paranhos
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Jared Butts
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Naraen Palanikumar
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Patrick Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
19
|
Sweeney P, Gimenez LE, Hernandez CC, Cone RD. Targeting the central melanocortin system for the treatment of metabolic disorders. Nat Rev Endocrinol 2023; 19:507-519. [PMID: 37365323 DOI: 10.1038/s41574-023-00855-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
A large body of preclinical and clinical data shows that the central melanocortin system is a promising therapeutic target for treating various metabolic disorders such as obesity and cachexia, as well as anorexia nervosa. Setmelanotide, which functions by engaging the central melanocortin circuitry, was approved by the FDA in 2020 for use in certain forms of syndromic obesity. Furthermore, the FDA approvals in 2019 of two peptide drugs targeting melanocortin receptors for the treatment of generalized hypoactive sexual desire disorder (bremelanotide) and erythropoietic protoporphyria-associated phototoxicity (afamelanotide) demonstrate the safety of this class of peptides. These approvals have also renewed excitement in the development of therapeutics targeting the melanocortin system. Here, we review the anatomy and function of the melanocortin system, discuss progress and challenges in developing melanocortin receptor-based therapeutics, and outline potential metabolic and behavioural disorders that could be addressed using pharmacological agents targeting these receptors.
Collapse
Affiliation(s)
- Patrick Sweeney
- School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, College of Literature Science and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Miletta MC, Horvath TL. Construction of Activity-based Anorexia Mouse Models. Bio Protoc 2023; 13:e4730. [PMID: 37575391 PMCID: PMC10415190 DOI: 10.21769/bioprotoc.4730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 08/15/2023] Open
Abstract
Anorexia nervosa (AN) is a psychiatric disorder mainly characterized by extreme hypophagia, severe body weight loss, hyperactivity, and hypothermia. Currently, AN has the highest mortality rate among psychiatric illnesses. Despite decades of research, there is no effective cure for AN nor is there a clear understanding of its etiology. Since a complex interaction between genetic, environmental, social, and cultural factors underlines this disorder, the development of a suitable animal model has been difficult so far. Here, we present our protocol that couples a loss-of-function mouse model to the activity-based anorexia model (ABA), which involves self-imposed starvation in response to exposure to food restriction and exercise. We provide insights into a neural circuit that drives survival in AN and, in contrast to previous protocols, propose a model that mimics the conditions that mainly promote AN in humans, such as increased incidence during adolescence, onset preceded by negative energy balance, and increased compulsive exercise. This protocol will be useful for future studies that aim to identify neuronal populations or brain circuits that promote the onset or long-term maintenance of this devastating eating disorder.
Collapse
Affiliation(s)
- Maria Consolata Miletta
- Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth and Nutrition of the Newborn, Department of Neonatology, University of Zurich and University Hospital Zurich, 8006 Zurich, Switzerland
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Oh Y, Yoo ES, Ju SH, Kim E, Lee S, Kim S, Wickman K, Sohn JW. GIRK2 potassium channels expressed by the AgRP neurons decrease adiposity and body weight in mice. PLoS Biol 2023; 21:e3002252. [PMID: 37594983 PMCID: PMC10468093 DOI: 10.1371/journal.pbio.3002252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 08/30/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
It is well known that the neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons increase appetite and decrease thermogenesis. Previous studies demonstrated that optogenetic and/or chemogenetic manipulations of NPY/AgRP neuronal activity alter food intake and/or energy expenditure (EE). However, little is known about intrinsic molecules regulating NPY/AgRP neuronal excitability to affect long-term metabolic function. Here, we found that the G protein-gated inwardly rectifying K+ (GIRK) channels are key to stabilize NPY/AgRP neurons and that NPY/AgRP neuron-selective deletion of the GIRK2 subunit results in a persistently increased excitability of the NPY/AgRP neurons. Interestingly, increased body weight and adiposity observed in the NPY/AgRP neuron-selective GIRK2 knockout mice were due to decreased sympathetic activity and EE, while food intake remained unchanged. The conditional knockout mice also showed compromised adaptation to coldness. In summary, our study identified GIRK2 as a key determinant of NPY/AgRP neuronal excitability and driver of EE in physiological and stress conditions.
Collapse
Affiliation(s)
- Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sang Hyeon Ju
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
22
|
Isibor PO, Onwaeze OO, Kayode-Edwards II, Agbontaen DO, Ifebem-Ezima IAM, Bilewu O, Onuselogu C, Akinniyi AP, Obafemi YD, Oniha MI. Investigating and combatting the key drivers of viral zoonoses in Africa: an analysis of eight epidemics. BRAZ J BIOL 2023; 84:e270857. [PMID: 37531478 DOI: 10.1590/1519-6984.270857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/02/2023] [Indexed: 08/04/2023] Open
Abstract
Investigating the interplay of factors that result in a viral zoonotic outbreak is difficult, though it is increasingly important. As anthropogenic influences shift the delicate balance of ecosystems, new zoonoses emerge in humans. Sub-Saharan Africa is a notable hotspot for zoonotic disease due to abundant competent mammalian reservoir hosts. Furthermore, poverty, corruption, and an overreliance on natural resources play considerable roles in depleting biological resources, exacerbating the population's susceptibility. Unsurprisingly, viral zoonoses have emerged in Africa, including HIV/AIDS, Ebola, Avian influenza, Lassa fever, Zika, and Monkeypox. These diseases are among the principal causes of death in endemic areas. Though typically distinct in their manifestations, viral zoonoses are connected by underlying, definitive factors. This review summarises vital findings on viral zoonoses in Africa using nine notable case studies as a benchmark for future studies. We discuss the importance of ecological recuperation and protection as a central strategy to control zoonotic diseases. Emphasis was made on moderating key drivers of zoonotic diseases to forestall future pandemics. This is in conjunction with attempts to redirect efforts from reactive to pre-emptive through a multidisciplinary "one health" approach.
Collapse
Affiliation(s)
- P O Isibor
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O O Onwaeze
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - I I Kayode-Edwards
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - D O Agbontaen
- University of South Wales, Department of Public Health, Pontypridd, United Kingdom
| | - I-A M Ifebem-Ezima
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O Bilewu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - C Onuselogu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - A P Akinniyi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - Y D Obafemi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - M I Oniha
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| |
Collapse
|
23
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Chronic stress triggers seeking of a starvation-like state in anxiety-prone female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541013. [PMID: 37292650 PMCID: PMC10245771 DOI: 10.1101/2023.05.16.541013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe hunger as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether chronic stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress induction, male but not female mice showed mild aversion to AgRP stimulation. Strikingly, following chronic stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state, and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
|
24
|
Xu Y, Jiang Z, Li H, Cai J, Jiang Y, Otiz-Guzman J, Xu Y, Arenkiel BR, Tong Q. Lateral septum as a melanocortin downstream site in obesity development. Cell Rep 2023; 42:112502. [PMID: 37171957 DOI: 10.1016/j.celrep.2023.112502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 05/14/2023] Open
Abstract
The melanocortin pathway is well established to be critical for body-weight regulation in both rodents and humans. Despite extensive studies focusing on this pathway, the downstream brain sites that mediate its action are not clear. Here, we found that, among the known paraventricular hypothalamic (PVH) neuron groups, those expressing melanocortin receptors 4 (PVHMc4R) preferably project to the ventral part of the lateral septum (LSv), a brain region known to be involved in emotional behaviors. Photostimulation of PVHMc4R neuron terminals in the LSv reduces feeding and causes aversion, whereas deletion of Mc4Rs or disruption of glutamate release from LSv-projecting PVH neurons causes obesity. In addition, disruption of AMPA receptor function in PVH-projected LSv neurons causes obesity. Importantly, chronic inhibition of PVH- or PVHMc4R-projected LSv neurons causes obesity associated with reduced energy expenditure. Thus, the LSv functions as an important node in mediating melanocortin action on body-weight regulation.
Collapse
Affiliation(s)
- Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongli Li
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joshua Otiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Pozo M, Milà-Guasch M, Haddad-Tóvolli R, Boudjadja M, Chivite I, Toledo M, Gómez-Valadés A, Eyre E, Ramírez S, Obri A, Ben-Ami Bartal I, D'Agostino G, Costa-Font J, Claret M. Negative energy balance hinders prosocial helping behavior. Proc Natl Acad Sci U S A 2023; 120:e2218142120. [PMID: 37023123 PMCID: PMC10104524 DOI: 10.1073/pnas.2218142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 04/07/2023] Open
Abstract
The internal state of an animal, including homeostatic requirements, modulates its behavior. Negative energy balance stimulates hunger, thus promoting a range of actions aimed at obtaining food. While these survival actions are well established, the influence of the energy status on prosocial behavior remains unexplored. We developed a paradigm to assess helping behavior in which a free mouse was faced with a conspecific trapped in a restrainer. We measured the willingness of the free mouse to liberate the confined mouse under diverse metabolic conditions. Around 42% of ad libitum-fed mice exhibited a helping behavior, as evidenced by the reduction in the latencies to release the trapped cagemate. This behavior was independent of subsequent social contact reward and was associated with changes in corticosterone indicative of emotional contagion. This decision-making process was coupled with reduced blood glucose excursions and higher Adenosine triphosphate (ATP):Adenosine diphosphate (ADP) ratios in the forebrain of helper mice, suggesting that it was a highly energy-demanding process. Interestingly, chronic (food restriction and type 2 diabetes) and acute (chemogenetic activation of hunger-promoting AgRP neurons) situations mimicking organismal negative energy balance and enhanced appetite attenuated helping behavior toward a distressed conspecific. To investigate similar effects in humans, we estimated the influence of glycated hemoglobin (a surrogate of long-term glycemic control) on prosocial behavior (namely charity donation) using the Understanding Society dataset. Our results evidenced that organismal energy status markedly influences helping behavior and that hypothalamic AgRP neurons are at the interface of metabolism and prosocial behavior.
Collapse
Affiliation(s)
- Macarena Pozo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Iñigo Chivite
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Alicia G. Gómez-Valadés
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Inbal Ben-Ami Bartal
- School of Psychological Sciences, Tel-Aviv University, 6997801Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, 6997801Tel Aviv, Israel
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Joan Costa-Font
- Department of Health Policy, London School of Economics and Political Science, WC2A 2AELondon, United Kingdom
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
- School of Medicine, Universitat de Barcelona, 08036Barcelona, Spain
| |
Collapse
|
26
|
Sutton Hickey AK, Duane SC, Mickelsen LE, Karolczak EO, Shamma AM, Skillings A, Li C, Krashes MJ. AgRP neurons coordinate the mitigation of activity-based anorexia. Mol Psychiatry 2023; 28:1622-1635. [PMID: 36577844 PMCID: PMC10782560 DOI: 10.1038/s41380-022-01932-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Anorexia nervosa (AN) is a debilitating and deadly disease characterized by low body mass index due to diminished food intake, and oftentimes concurrent hyperactivity. A high percentage of AN behavioral and metabolic phenotypes can be replicated in rodents given access to a voluntary running wheel and subject to food restriction, termed activity-based anorexia (ABA). Despite the well-documented bodyweight loss observed in AN human patients and ABA rodents, much less is understood regarding the neurobiological underpinnings of these maladaptive behaviors. Hunger-promoting hypothalamic agouti-related peptide (AgRP) neurons have been well characterized in their ability to regulate appetite, yet much less is known regarding their activity and function in the mediation of food intake during ABA. Here, feeding microstructure analysis revealed ABA mice decreased food intake due to increased interpellet interval retrieval and diminished meal number. Longitudinal activity recordings of AgRP neurons in ABA animals exhibited a maladaptive inhibitory response to food, independent of basal activity changes. We then demonstrated that ABA development or progression can be mitigated by chemogenetic AgRP activation through the reprioritization of food intake (increased meal number) over hyperactivity, but only during periods of food availability. These results elucidate a potential neural target for the amelioration of behavioral maladaptations present in AN patients.
Collapse
Affiliation(s)
- Ames K Sutton Hickey
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
| | - Sean C Duane
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Laura E Mickelsen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Eva O Karolczak
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Ahmed M Shamma
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Anna Skillings
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
27
|
Liu Q, Yang X, Luo M, Su J, Zhong J, Li X, Chan RHM, Wang L. An iterative neural processing sequence orchestrates feeding. Neuron 2023; 111:1651-1665.e5. [PMID: 36924773 DOI: 10.1016/j.neuron.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
Feeding requires sophisticated orchestration of neural processes to satiate appetite in natural, capricious settings. However, the complementary roles of discrete neural populations in orchestrating distinct behaviors and motivations throughout the feeding process are largely unknown. Here, we delineate the behavioral repertoire of mice by developing a machine-learning-assisted behavior tracking system and show that feeding is fragmented and divergent motivations for food consumption or environment exploration compete throughout the feeding process. An iterative activation sequence of agouti-related peptide (AgRP)-expressing neurons in arcuate (ARC) nucleus, GABAergic neurons in the lateral hypothalamus (LH), and in dorsal raphe (DR) orchestrate the preparation, initiation, and maintenance of feeding segments, respectively, via the resolution of motivational conflicts. The iterative neural processing sequence underlying the competition of divergent motivations further suggests a general rule for optimizing goal-directed behaviors.
Collapse
Affiliation(s)
- Qingqing Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xing Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Moxuan Luo
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China; University of Science and Technology of China, Hefei 230026, China
| | - Junying Su
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinling Zhong
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofen Li
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rosa H M Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Science and Technology of China, Hefei 230026, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Petzold A, van den Munkhof HE, Figge-Schlensok R, Korotkova T. Complementary lateral hypothalamic populations resist hunger pressure to balance nutritional and social needs. Cell Metab 2023; 35:456-471.e6. [PMID: 36827985 PMCID: PMC10028225 DOI: 10.1016/j.cmet.2023.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/03/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Animals continuously weigh hunger and thirst against competing needs, such as social contact and mating, according to state and opportunity. Yet neuronal mechanisms of sensing and ranking nutritional needs remain poorly understood. Here, combining calcium imaging in freely behaving mice, optogenetics, and chemogenetics, we show that two neuronal populations of the lateral hypothalamus (LH) guide increasingly hungry animals through behavioral choices between nutritional and social rewards. While increased food consumption was marked by increasing inhibition of a leptin receptor-expressing (LepRLH) subpopulation at a fast timescale, LepRLH neurons limited feeding or drinking and promoted social interaction despite hunger or thirst. Conversely, neurotensin-expressing LH neurons preferentially encoded water despite hunger pressure and promoted water seeking, while relegating social needs. Thus, hunger and thirst gate both LH populations in a complementary manner to enable the flexible fulfillment of multiple essential needs.
Collapse
Affiliation(s)
- Anne Petzold
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Hanna Elin van den Munkhof
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Rebecca Figge-Schlensok
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Tatiana Korotkova
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
29
|
Kuang D, Hanchate NK, Lee CY, Heck A, Ye X, Erdenebileg M, Buck LB. Olfactory and neuropeptide inputs to appetite neurons in the arcuate nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530282. [PMID: 36909633 PMCID: PMC10002664 DOI: 10.1101/2023.02.28.530282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The sense of smell has potent effects on appetite, but the underlying neural mechanisms are largely a mystery. The hypothalamic arcuate nucleus contains two subsets of neurons linked to appetite: AgRP (agouti-related peptide) neurons, which enhance appetite, and POMC (pro-opiomelanocortin) neurons, which suppress appetite. Here, we find that AgRP and POMC neurons receive indirect inputs from partially overlapping areas of the olfactory cortex, thus identifying their sources of odor signals. We also find neurons directly upstream of AgRP or POMC neurons in numerous other areas, identifying potential relays between the olfactory cortex and AgRP or POMC neurons. Transcriptome profiling of individual AgRP neurons reveals differential expression of receptors for multiple neuromodulators. Notably, known ligands of the receptors define subsets of neurons directly upstream of AgRP neurons in specific brain areas. Together, these findings indicate that higher olfactory areas can differentially influence AgRP and POMC appetite neurons, that subsets of AgRP neurons can be regulated by different neuromodulators, and that subsets of neurons upstream of AgRP neurons in specific brain areas use different neuromodulators, together or in distinct combinations to modulate AgRP neurons and thus appetite.
Collapse
|
30
|
Moya NA, Yun S, Fleps SW, Martin MM, Nadel JA, Beutler LR, Zweifel LS, Parker JG. The effect of selective nigrostriatal dopamine excess on behaviors linked to the cognitive and negative symptoms of schizophrenia. Neuropsychopharmacology 2023; 48:690-699. [PMID: 36380221 PMCID: PMC9938164 DOI: 10.1038/s41386-022-01492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Excess dopamine release in the dorsal striatum (DS) is linked to psychosis. Antipsychotics are thought to work by blocking striatal D2 dopamine receptors, but they lack efficacy for the negative and cognitive symptoms of schizophrenia. These observations and the fact that increasing brain-wide dopamine improves cognition have fueled the dogma that excess dopamine is not involved in negative and cognitive symptoms. However, this idea has never been explicitly tested with DS-pathway specificity. To determine if excess DS dopamine is involved in cognitive and negative symptoms, we selectively re-expressed excitatory TRPV1 receptors in DS-projecting dopamine neurons of Trpv1 knockout mice. We treated these mice with capsaicin (TRPV1 agonist) to selectively activate these neurons, validated this approach with fiber photometry, and assessed its effects on social interaction and working memory, behavioral constructs related to negative and cognitive symptoms. We combined this manipulation with antipsychotic treatment (haloperidol) and compared it to brain-wide dopamine release via amphetamine treatment. We found that selectively activating DS-projecting dopamine neurons increased DS (but not cortical) dopamine release and increased locomotor activity. Surprisingly, this manipulation also impaired social interaction and working memory. Haloperidol normalized locomotion, but only partially rescued working memory and had no effect on social interaction. By contrast, amphetamine increased locomotion but did not impair social interaction or working memory. These results suggest that excess dopamine release, when restricted to the DS, causes behavioral deficits linked to negative and cognitive symptoms. Future therapies should address this disregarded role for excess striatal dopamine in the treatment-resistant symptoms of psychosis.
Collapse
Affiliation(s)
- Nicolette A Moya
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Seongsik Yun
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Stefan W Fleps
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Madison M Martin
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Jacob A Nadel
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA
| | - Lisa R Beutler
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, IL, USA
| | - Larry S Zweifel
- Departments of Psychiatry and Behavioral Sciences and Pharmacology, University of Washington, Seattle, WA, USA
| | - Jones G Parker
- Departments of Neuroscience and Pharmacology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
31
|
Huang A, Maier MT, Vagena E, Xu AW. Modulation of foraging-like behaviors by cholesterol-FGF19 axis. Cell Biosci 2023; 13:20. [PMID: 36732847 PMCID: PMC9893607 DOI: 10.1186/s13578-023-00955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Foraging for food precedes food consumption and is an important component of the overall metabolic programming that regulates feeding. Foraging is governed by central nervous system neuronal circuits but how it is influenced by diet and hormonal signals is still not well understood. RESULTS In this study, we show that dietary cholesterol exerted suppressive effects on locomotor activity and that these effects were partially mediated by the neuropeptide Agouti-related protein (AgRP). High dietary cholesterol stimulated intestinal expression of fibroblast growth factor 15 (Fgf15), an ortholog of the human fibroblast growth factor 19 (FGF19). Intracerebroventricular infusion of FGF19 peptide reduced exploratory activity in the open field test paradigm. On the other hand, the lack of dietary cholesterol enhanced exploratory activity in the open field test, but this effect was abolished by central administration of FGF19. CONCLUSIONS Experiments in this study show that dietary cholesterol suppresses locomotor activity and foraging-like behaviors, and this regulation is in part mediated by AgRP neurons. Dietary cholesterol or the central action of FGF19 suppresses exploratory behaviors, and the anxiogenic effects of dietary cholesterol may be mediated by the effect of FGF19 in the mouse brain. This study suggests that dietary cholesterol and intestinal hormone FGF15/19 signal a satiating state to the brain, thereby suppressing foraging-like behaviors.
Collapse
Affiliation(s)
- Alyssa Huang
- Diabetes Center, University of California, San Francisco, CA, 94143, USA
| | - Matthew T Maier
- Diabetes Center, University of California, San Francisco, CA, 94143, USA
| | - Eirini Vagena
- Diabetes Center, University of California, San Francisco, CA, 94143, USA
| | - Allison W Xu
- Diabetes Center, University of California, San Francisco, CA, 94143, USA. .,Department of Anatomy, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
32
|
Growth hormone receptor (GHR) in AgRP neurons regulates thermogenesis in a sex-specific manner. GeroScience 2023:10.1007/s11357-023-00726-4. [PMID: 36633824 PMCID: PMC10400518 DOI: 10.1007/s11357-023-00726-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Evidence for hypothalamic regulation of energy homeostasis and thermoregulation in brown adipose tissue (BAT) during aging has been well recognized, yet the central molecular mediators involved in this process are poorly understood. The arcuate hypothalamus, orexigenic agouti-related peptide (AgRP) neurons control nutrient intake, energy homeostasis, and BAT thermogenesis. To determine the roles of growth hormone receptor (GHR) signaling in the AgRP neurons, we used mice with the AgRP-specific GHR deletion (AgRPΔGHR). We found that female AgRPΔGHR mice were resistant to temperature adaptation, and their body core temperature remained significantly lower when held at 10 °C, 22 °C, or 30 °C, compared to control mice. Low body core temperature in female AgRPΔGHR mice has been associated with significant reductions in Ucp1 and Pgc1α expression in the BAT. Further, neuronal activity in AgRP in response to cold exposure was blunted in AgRPΔGHR female mice, while the number of Fos+ AgRP neurons was increased in female controls exposed to cold. Global transcriptome from BAT identified increased the expression of genes related to immune responses and chemokine activity and decreased the expression of genes involved in triglyceride synthesis and metabolic pathways in AgRPΔGHR female mice. Importantly, these were the same genes that are downregulated by thermoneutrality in control mice but not in the AgRPΔGHR animals. Collectively, these data demonstrate a novel sex-specific role for GHR signaling in AgRP neurons in thermal regulation, which might be particularly relevant during aging.
Collapse
|
33
|
Davide G, Rebecca C, Irene P, Luciano C, Francesco R, Marta N, Miriam O, Natascia B, Pierluigi P. Epigenetics of Autism Spectrum Disorders: A Multi-level Analysis Combining Epi-signature, Age Acceleration, Epigenetic Drift and Rare Epivariations Using Public Datasets. Curr Neuropharmacol 2023; 21:2362-2373. [PMID: 37489793 PMCID: PMC10556384 DOI: 10.2174/1570159x21666230725142338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Epigenetics of Autism Spectrum Disorders (ASD) is still an understudied field. The majority of the studies on the topic used an approach based on mere classification of cases and controls. OBJECTIVE The present study aimed at providing a multi-level approach in which different types of epigenetic analysis (epigenetic drift, age acceleration) are combined. METHODS We used publicly available datasets from blood (n = 3) and brain tissues (n = 3), separately. Firstly, we evaluated for each dataset and meta-analyzed the differential methylation profile between cases and controls. Secondly, we analyzed age acceleration, epigenetic drift and rare epigenetic variations. RESULTS We observed a significant epi-signature of ASD in blood but not in brain specimens. We did not observe significant age acceleration in ASD, while epigenetic drift was significantly higher compared to controls. We reported the presence of significant rare epigenetic variations in 41 genes, 35 of which were never associated with ASD. Almost all genes were involved in pathways linked to ASD etiopathogenesis (i.e., neuronal development, mitochondrial metabolism, lipid biosynthesis and antigen presentation). CONCLUSION Our data support the hypothesis of the use of blood epi-signature as a potential tool for diagnosis and prognosis of ASD. The presence of an enhanced epigenetic drift, especially in brain, which is linked to cellular replication, may suggest that alteration in epigenetics may occur at a very early developmental stage (i.e., fetal) when neuronal replication is still high.
Collapse
Affiliation(s)
- Gentilini Davide
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Cavagnola Rebecca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Possenti Irene
- Department of Statistical Sciences Paolo Fortunati, University of Bologna, Bologna, Italy
| | - Calzari Luciano
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, 20090, Italy
| | - Ranucci Francesco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Nola Marta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Olivola Miriam
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Brondino Natascia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| | - Politi Pierluigi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
34
|
Wasserman-Bartov T, Admati I, Lebenthal-Loinger I, Sharabany J, Lerer-Goldshtein T, Appelbaum L. Tsh Induces Agrp1 Neuron Proliferation in Oatp1c1-Deficient Zebrafish. J Neurosci 2022; 42:8214-8224. [PMID: 36150888 PMCID: PMC9653277 DOI: 10.1523/jneurosci.0002-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormones (THs), thyroxine (T4), and triiodothyronine (T3), regulate growth, metabolism, and neurodevelopment. THs secretion is controlled by the pituitary thyroid-stimulating hormone (TSH) and the hypothalamic-pituitary-thyroid (HPT) axis. The organic anion-transporting polypeptide 1C1 (OATP1C1/SLCO1C1) and the monocarboxylate transporter 8 (MCT8/SLC16A2) actively transport THs, which bind to their nuclear receptors and induce gene expression. A mutation in OATP1C1 is associated with brain hypometabolism, gradual neurodegeneration, and impaired cognitive and motor functioning in adolescent patients. To understand the role of Oatp1c1 and the mechanisms of the disease, we profiled the transcriptome of oatp1c1 mutant (oatp1c1 -/-) and mct8 -/- xoatp1c1 -/- adult male and female zebrafish brains. Among dozens of differentially expressed genes, agouti-related neuropeptide 1 (agrp1) expression increased in oatp1c1 -/- adult brains. Imaging in the hypothalamus revealed enhanced proliferation of Agrp1 neurons in oatp1c1 -/- larvae and adults, and increased food consumption in oatp1c1 -/- larvae. Similarly, feeding and the number of Agrp1 neurons increased in thyroid gland-ablated zebrafish. Pharmacological treatments showed that the T3 analog TRIAC (3,3',5-tri-iodothyroacetic acid), but not T4, normalized the number of Agrp1 neurons in oatp1c1 -/- zebrafish. Since the HPT axis is hyperactive in the oatp1c1 -/- brain, we used the CRISPR-Cas9 system to knockdown tsh in oatp1c1 -/- larvae, and inducibly enhanced the HPT axis in wild-type larvae. These manipulations showed that Tsh promotes proliferation of Agrp1 neurons and increases food consumption in zebrafish. The results revealed upregulation of both the HPT axis-Agrp1 circuitry and feeding in a zebrafish model for OATP1C1 deficiency.SIGNIFICANCE STATEMENT Mutation in the thyroid hormone (TH) transporter OATP1C1 is associated with cognitive and motor functioning disturbances in humans. Here, we used an oatp1c1 -/- zebrafish to understand the role of organic anion-transporting polypeptide 1C1 (Oatp1c1), and the characteristics of OATP1C1 deficiency. Transcriptome profiling identified upregulation of agrp1 expression in the oatp1c1 -/- brain. The oatp1c1 -/- larvae showed increased thyroid-stimulating hormone (tsh) levels, proliferation of Agrp1 neurons and food consumption. Genetic manipulations of the hypothalamic-pituitary-thyroid (HPT) axis showed that Tsh increases the number of Agrp1 neurons and food consumption. The T3 analog TRIAC (3,3',5-tri-iodothyroacetic acid) normalizes the number of Agrp1 neurons and may have potential for the treatment of Oatp1c1 deficiency. The findings demonstrate a functional interaction between the thyroid and feeding systems in the brain of zebrafish and suggest a neuroendocrinological mechanism for OATP1C1 deficiency.
Collapse
Affiliation(s)
- Talya Wasserman-Bartov
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Inbal Admati
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Julia Sharabany
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
35
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Romano A, Gaetani S, Micioni Di Bonaventura MV, Cifani C. Investigating the role of the central melanocortin system in stress and stress-related disorders. Pharmacol Res 2022; 185:106521. [DOI: 10.1016/j.phrs.2022.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
36
|
Xie D, Stutz B, Li F, Chen F, Lv H, Sestan-Pesa M, Catarino J, Gu J, Zhao H, Stoddard CE, Carmichael GG, Shanabrough M, Taylor HS, Liu ZW, Gao XB, Horvath TL, Huang Y. TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons. J Clin Invest 2022; 132:162365. [PMID: 36189793 PMCID: PMC9525119 DOI: 10.1172/jci162365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.
Collapse
Affiliation(s)
- Di Xie
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| | - Bernardo Stutz
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Feng Li
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| | - Fan Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Haining Lv
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| | - Matija Sestan-Pesa
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonatas Catarino
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Marya Shanabrough
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Zhong-Wu Liu
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiao-Bing Gao
- Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tamas L Horvath
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences.,Yale Center for Molecular and Systems Metabolism, and
| |
Collapse
|
37
|
Stutz B, Waterson MJ, Šestan-Peša M, Dietrich MO, Škarica M, Sestan N, Racz B, Magyar A, Sotonyi P, Liu ZW, Gao XB, Matyas F, Stoiljkovic M, Horvath TL. AgRP neurons control structure and function of the medial prefrontal cortex. Mol Psychiatry 2022; 27:3951-3960. [PMID: 35906488 PMCID: PMC9891653 DOI: 10.1038/s41380-022-01691-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
Hypothalamic agouti-related peptide and neuropeptide Y-expressing (AgRP) neurons have a critical role in both feeding and non-feeding behaviors of newborn, adolescent, and adult mice, suggesting their broad modulatory impact on brain functions. Here we show that constitutive impairment of AgRP neurons or their peripubertal chemogenetic inhibition resulted in both a numerical and functional reduction of neurons in the medial prefrontal cortex (mPFC) of mice. These changes were accompanied by alteration of oscillatory network activity in mPFC, impaired sensorimotor gating, and altered ambulatory behavior that could be reversed by the administration of clozapine, a non-selective dopamine receptor antagonist. The observed AgRP effects are transduced to mPFC in part via dopaminergic neurons in the ventral tegmental area and may also be conveyed by medial thalamic neurons. Our results unmasked a previously unsuspected role for hypothalamic AgRP neurons in control of neuronal pathways that regulate higher-order brain functions during development and in adulthood.
Collapse
Affiliation(s)
- Bernardo Stutz
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Michael J Waterson
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Matija Šestan-Peša
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Marcelo O Dietrich
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Škarica
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Bence Racz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Aletta Magyar
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Peter Sotonyi
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Zhong-Wu Liu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Xiao-Bing Gao
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Ferenc Matyas
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Budapest, Hungary
- Institute of Experimental Medicine, Budapest, Hungary
| | - Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
38
|
Boutagouga Boudjadja M, Culotta I, De Paula GC, Harno E, Hunter J, Cavalcanti-de-Albuquerque JP, Luckman SM, Hepworth M, White A, Aviello G, D'Agostino G. Hypothalamic AgRP neurons exert top-down control on systemic TNF-α release during endotoxemia. Curr Biol 2022; 32:4699-4706.e4. [PMID: 36182699 DOI: 10.1016/j.cub.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Loss of appetite and negative energy balance are common features of endotoxemia in all animals and are thought to have protective roles by reducing nutrient availability to host and pathogen metabolism. Accordingly, fasting and caloric restriction have well-established anti-inflammatory properties. However, in response to reduced nutrient availability at the cellular and organ levels, negative energy balance also recruits distinct energy-sensing brain circuits, but it is not known whether these neuronal systems have a role in its anti-inflammatory effects. Here, we report that hypothalamic AgRP neurons-a critical neuronal population for the central representation of negative energy balance-have parallel immunoregulatory functions. We found that when endotoxemia occurs in fasted mice, the activity of AgRP neurons remains sustained, but this activity does not influence feeding behavior and endotoxemic anorexia. Furthermore, we found that endotoxemia acutely desensitizes AgRP neurons, which also become refractory to inhibitory signals. Mimicking this sustained AgRP neuron activity in fed mice by chemogenetic activation-a manipulation known to recapitulate core behavioral features of fasting-results in reduced acute tumor necrosis factor alpha (TNF-α) release during endotoxemia. Mechanistically, we found that endogenous glucocorticoids play an important role: glucocorticoid receptor deletion from AgRP neurons prevents their endotoxemia-induced desensitization, and importantly, it counteracts the fasting-induced suppression of TNF-α release, resulting in prolonged sickness. Together, these findings provide evidence directly linking AgRP neuron activity to the acute response during endotoxemia, suggesting that these neurons are a functional component of the immunoregulatory effects associated with negative energy balance and catabolic metabolism.
Collapse
Affiliation(s)
- Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Isabella Culotta
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Erika Harno
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jenna Hunter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Simon M Luckman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Matthew Hepworth
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anne White
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gabriella Aviello
- The Rowett Institute, University of Aberdeen, Aberdeen, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
39
|
Wang J, Beecher K, Chehrehasa F, Moody H. The limitations of investigating appetite through circuit manipulations: are we biting off more than we can chew? Rev Neurosci 2022; 34:295-311. [PMID: 36054842 DOI: 10.1515/revneuro-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Disordered eating can underpin a number of debilitating and prevalent chronic diseases, such as obesity. Broader advances in psychopharmacology and biology have motivated some neuroscientists to address diet-induced obesity through reductionist, pre-clinical eating investigations on the rodent brain. Specifically, chemogenetic and optogenetic methods developed in the 21st century allow neuroscientists to perform in vivo, region-specific/projection-specific/promoter-specific circuit manipulations and immediately assess the impact of these manipulations on rodent feeding. These studies are able to rigorously conclude whether a specific neuronal population regulates feeding behaviour in the hope of eventually developing a mechanistic neuroanatomical map of appetite regulation. However, an artificially stimulated/inhibited rodent neuronal population that changes feeding behaviour does not necessarily represent a pharmacological target for treating eating disorders in humans. Chemogenetic/optogenetic findings must therefore be triangulated with the array of theories that contribute to our understanding of appetite. The objective of this review is to provide a wide-ranging discussion of the limitations of chemogenetic/optogenetic circuit manipulation experiments in rodents that are used to investigate appetite. Stepping into and outside of medical science epistemologies, this paper draws on philosophy of science, nutrition, addiction biology and neurophilosophy to prompt more integrative, transdisciplinary interpretations of chemogenetic/optogenetic appetite data. Through discussing the various technical and epistemological limitations of these data, we provide both an overview of chemogenetics and optogenetics accessible to non-neuroscientist obesity researchers, as well as a resource for neuroscientists to expand the number of lenses through which they interpret their circuit manipulation findings.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| |
Collapse
|
40
|
Fernandes ACA, de Oliveira FP, Fernandez G, da Guia Vieira L, Rosa CG, do Nascimento T, de Castro França S, Donato J, Vella KR, Antunes-Rodrigues J, Mecawi AS, Perello M, Elias LLK, Rorato R. Arcuate AgRP, but not POMC neurons, modulate paraventricular CRF synthesis and release in response to fasting. Cell Biosci 2022; 12:118. [PMID: 35902915 PMCID: PMC9331576 DOI: 10.1186/s13578-022-00853-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The activation of the hypothalamic-pituitary-adrenal (HPA) axis is essential for metabolic adaptation in response to fasting. However, the neurocircuitry connecting changes in the peripheral energy stores to the activity of hypothalamic paraventricular corticotrophin-releasing factor (CRFPVN) neurons, the master controller of the HPA axis activity, is not completely understood. Our main goal was to determine if hypothalamic arcuate nucleus (ARC) POMC and AgRP neurons can communicate fasting-induced changes in peripheral energy stores, associated to a fall in plasma leptin levels, to CRFPVN neurons to modulate the HPA axis activity in mice. RESULTS We observed increased plasma corticosterone levels associate with increased CRFPVN mRNA expression and increased CRFPVN neuronal activity in 36 h fasted mice. These responses were associated with a fall in plasma leptin levels and changes in the mRNA expression of Agrp and Pomc in the ARC. Fasting-induced decrease in plasma leptin partially modulated these responses through a change in the activity of ARC neurons. The chemogenetic activation of POMCARC by DREADDs did not affect fasting-induced activation of the HPA axis. DREADDs inhibition of AgRPARC neurons reduced the content of CRFPVN and increased its accumulation in the median eminence but had no effect on corticosterone secretion induced by fasting. CONCLUSION Our data indicate that AgRPARC neurons are part of the neurocircuitry involved in the coupling of PVNCRF activity to changes in peripheral energy stores induced by prolonged fasting.
Collapse
Affiliation(s)
| | - Franciane Pereira de Oliveira
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, 403, Buenos Aires, Argentina
| | - Luane da Guia Vieira
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Cristiane Gugelmin Rosa
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Taís do Nascimento
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Suzelei de Castro França
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil
| | - Kristen R Vella
- Department of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Jose Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, SP, 14049-900, Brazil
| | - André Souza Mecawi
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, 403, Buenos Aires, Argentina
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, SP, 14049-900, Brazil
| | - Rodrigo Rorato
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil. .,Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil.
| |
Collapse
|
41
|
Li L, Wyler SC, León-Mercado LA, Xu B, Oh Y, Swati, Chen X, Wan R, Arnold AG, Jia L, Wang G, Nautiyal K, Hen R, Sohn JW, Liu C. Delineating a serotonin 1B receptor circuit for appetite suppression in mice. J Exp Med 2022; 219:213337. [PMID: 35796804 PMCID: PMC9270184 DOI: 10.1084/jem.20212307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
Triptans are a class of commonly prescribed antimigraine drugs. Here, we report a previously unrecognized role for them to suppress appetite in mice. In particular, frovatriptan treatment reduces food intake and body weight in diet-induced obese mice. Moreover, the anorectic effect depends on the serotonin (5-HT) 1B receptor (Htr1b). By ablating Htr1b in four different brain regions, we demonstrate that Htr1b engages in spatiotemporally segregated neural pathways to regulate postnatal growth and food intake. Moreover, Htr1b in AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) contributes to the hypophagic effects of HTR1B agonists. To further study the anorexigenic Htr1b circuit, we generated Htr1b-Cre mice. We find that ARH Htr1b neurons bidirectionally regulate food intake in vivo. Furthermore, single-nucleus RNA sequencing analyses revealed that Htr1b marks a subset of AgRP neurons. Finally, we used an intersectional approach to specifically target these neurons (Htr1bAgRP neurons). We show that they regulate food intake, in part, through a Htr1bAgRP→PVH circuit.
Collapse
Affiliation(s)
- Li Li
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Steven C. Wyler
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Luis A. León-Mercado
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Baijie Xu
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Swati
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Xiameng Chen
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Rong Wan
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Amanda G. Arnold
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX
| | - Guanlin Wang
- Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Katherine Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH
| | - René Hen
- Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY,Department of Neuroscience, Columbia University, New York, NY,Department of Pharmacology, Columbia University, New York, NY
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea,Jong-Woo Sohn:
| | - Chen Liu
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX,Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX,Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX,Correspondence to Chen Liu:
| |
Collapse
|
42
|
Alcantara IC, Tapia APM, Aponte Y, Krashes MJ. Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding. Nat Metab 2022; 4:836-847. [PMID: 35879462 PMCID: PMC10852214 DOI: 10.1038/s42255-022-00611-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/16/2022] [Indexed: 12/11/2022]
Abstract
The overconsumption of highly caloric and palatable foods has caused a surge in obesity rates in the past half century, thereby posing a healthcare challenge due to the array of comorbidities linked to heightened body fat accrual. Developing treatments to manage body weight requires a grasp of the neurobiological basis of appetite. In this Review, we discuss advances in neuroscience that have identified brain regions and neural circuits that coordinate distinct phases of eating: food procurement, food consumption, and meal termination. While pioneering work identified several hypothalamic nuclei to be involved in feeding, more recent studies have explored how neuronal populations beyond the hypothalamus, such as the mesolimbic pathway and nodes in the hindbrain, interconnect to modulate appetite. We also examine how long-term exposure to a calorically dense diet rewires feeding circuits and alters the response of motivational systems to food. Understanding how the nervous system regulates eating behaviour will bolster the development of medical strategies that will help individuals to maintain a healthy body weight.
Collapse
Affiliation(s)
- Ivan C Alcantara
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | - Yeka Aponte
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
43
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
44
|
Endle H, Horta G, Stutz B, Muthuraman M, Tegeder I, Schreiber Y, Snodgrass IF, Gurke R, Liu ZW, Sestan-Pesa M, Radyushkin K, Streu N, Fan W, Baumgart J, Li Y, Kloss F, Groppa S, Opel N, Dannlowski U, Grabe HJ, Zipp F, Rácz B, Horvath TL, Nitsch R, Vogt J. AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids. Nat Metab 2022; 4:683-692. [PMID: 35760867 PMCID: PMC9940119 DOI: 10.1038/s42255-022-00589-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/17/2022] [Indexed: 01/13/2023]
Abstract
Phospholipid levels are influenced by peripheral metabolism. Within the central nervous system, synaptic phospholipids regulate glutamatergic transmission and cortical excitability. Whether changes in peripheral metabolism affect brain lipid levels and cortical excitability remains unknown. Here, we show that levels of lysophosphatidic acid (LPA) species in the blood and cerebrospinal fluid are elevated after overnight fasting and lead to higher cortical excitability. LPA-related cortical excitability increases fasting-induced hyperphagia, and is decreased following inhibition of LPA synthesis. Mice expressing a human mutation (Prg-1R346T) leading to higher synaptic lipid-mediated cortical excitability display increased fasting-induced hyperphagia. Accordingly, human subjects with this mutation have higher body mass index and prevalence of type 2 diabetes. We further show that the effects of LPA following fasting are under the control of hypothalamic agouti-related peptide (AgRP) neurons. Depletion of AgRP-expressing cells in adult mice decreases fasting-induced elevation of circulating LPAs, as well as cortical excitability, while blunting hyperphagia. These findings reveal a direct influence of circulating LPAs under the control of hypothalamic AgRP neurons on cortical excitability, unmasking an alternative non-neuronal route by which the hypothalamus can exert a robust impact on the cortex and thereby affect food intake.
Collapse
Affiliation(s)
- Heiko Endle
- Department of Molecular and Translational Neuroscience of Anatomy II, University of Cologne, Cologne, Germany
- Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Guilherme Horta
- Focus Program Translational Neuroscience, Johannes Gutenberg-University, Mainz, Germany
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University, Mainz, Germany
| | - Bernardo Stutz
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main, Germany
| | - Isabel Faria Snodgrass
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main, Germany
| | - Zhong-Wu Liu
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matija Sestan-Pesa
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Konstantin Radyushkin
- Focus Program Translational Neuroscience, Johannes Gutenberg-University, Mainz, Germany
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nora Streu
- Focus Program Translational Neuroscience, Johannes Gutenberg-University, Mainz, Germany
| | - Wei Fan
- Focus Program Translational Neuroscience, Johannes Gutenberg-University, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Yan Li
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Florian Kloss
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nils Opel
- Institute of Translational Psychiatry, Westfälische Wilhelms University, Münster, Germany
| | - Udo Dannlowski
- Institute of Translational Psychiatry, Westfälische Wilhelms University, Münster, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Tamas L Horvath
- Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary.
| | - Robert Nitsch
- Institute for Translational Neuroscience, Westfälische Wilhelms University, Münster, Germany.
| | - Johannes Vogt
- Department of Molecular and Translational Neuroscience of Anatomy II, University of Cologne, Cologne, Germany.
- Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
45
|
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2022; 13:394-421. [PMID: 33826123 PMCID: PMC9095790 DOI: 10.1007/s13238-021-00834-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Collapse
Affiliation(s)
- Tiemin Liu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong Xu
- grid.39382.330000 0001 2160 926XChildren’s Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Chun-Xia Yi
- grid.7177.60000000084992262Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Qingchun Tong
- grid.453726.10000 0004 5906 7293Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Graduate Program in Neuroscience of MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Dongsheng Cai
- grid.251993.50000000121791997Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 USA
| |
Collapse
|
46
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
47
|
Azevedo EP, Ivan VJ, Friedman JM, Stern SA. Higher-Order Inputs Involved in Appetite Control. Biol Psychiatry 2022; 91:869-878. [PMID: 34593204 PMCID: PMC9704062 DOI: 10.1016/j.biopsych.2021.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/01/2023]
Abstract
The understanding of the neural control of appetite sheds light on the pathogenesis of eating disorders such as anorexia nervosa and obesity. Both diseases are a result of maladaptive eating behaviors (overeating or undereating) and are associated with life-threatening health problems. The fine regulation of appetite involves genetic, physiological, and environmental factors, which are detected and integrated in the brain by specific neuronal populations. For centuries, the hypothalamus has been the center of attention in the scientific community as a key regulator of appetite. The hypothalamus receives and sends axonal projections to several other brain regions that are important for the integration of sensory and emotional information. These connections ensure that appropriate behavioral decisions are made depending on the individual's emotional state and environment. Thus, the mechanisms by which higher-order brain regions integrate exteroceptive information to coordinate feeding is of great importance. In this review, we will focus on the functional and anatomical projections connecting the hypothalamus to the limbic system and higher-order brain centers in the cortex. We will also address the mechanisms by which specific neuronal populations located in higher-order centers regulate appetite and how maladaptive eating behaviors might arise from altered connections among cortical and subcortical areas with the hypothalamus.
Collapse
Affiliation(s)
- Estefania P Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York.
| | - Violet J Ivan
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York; Howard Hughes Medical Institute, New York, New York
| | - Sarah A Stern
- Integrative Neural Circuits and Behavior Research Group, Max Planck Florida Institute for Neuroscience, Jupiter, Florida.
| |
Collapse
|
48
|
Development of "Hunger Neurons" and the Unanticipated Relationship Between Energy Metabolism and Mother-Infant Interactions. Biol Psychiatry 2022; 91:907-914. [PMID: 35397878 PMCID: PMC10184517 DOI: 10.1016/j.biopsych.2022.02.962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 12/22/2022]
Abstract
Over the course of a lifetime, the perinatal period plays an outsized role in the function of physiological systems. Here, we discuss how neurons that regulate energy metabolism contribute to the infant's relationship with the mother. We focus our discussion on Agrp neurons, which are located in the arcuate nucleus of the hypothalamus. These neurons heavily regulate energy metabolism. Because offspring transition from a period of dependence on the caregiver to independence, we discuss the importance of the caregiver-offspring relationship for the function of Agrp neurons. We present evidence that in the adult, Agrp neurons motivate the animal to eat, while in the neonate, they motivate the offspring to seek the proximity of the caregiver. We specifically highlight the peculiarities in the development of Agrp neurons and how they relate to the regulation of metabolism and behavior over the course of a lifetime. In sum, this review considers the unique insights that ontogenetic studies can offer toward our understanding of complex biological systems, such as the regulation of energy metabolism and mother-infant attachment.
Collapse
|
49
|
Cui X, Gruzdeva A, Kim H, Yapici N. Of flies, mice and neural control of food intake: lessons to learn from both models. Curr Opin Neurobiol 2022; 73:102531. [PMID: 35390643 PMCID: PMC9167741 DOI: 10.1016/j.conb.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
In her book, A Room of One's Own, the famous author Virginia Woolf writes "One cannot think well, love well, sleep well if one has not dined well". This is true. All animals need to forage for food and consume specific nutrients to maintain their physiological homeostasis, maximize their fitness and their reproduction. After decades of research in humans and many model organisms, we now know that our brain is one of the key players that control what, when, and how much we eat. In this review, we discuss the recent literature on neural control of food intake behaviors in mice and flies with the view that these two model organisms complement one another in efforts to uncover conserved principles brains use to regulate energy metabolism and food ingestion.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Anna Gruzdeva
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
50
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|