1
|
Ji LL. Nuclear factor κB signaling revisited: Its role in skeletal muscle and exercise. Free Radic Biol Med 2025; 232:158-170. [PMID: 40010515 DOI: 10.1016/j.freeradbiomed.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Nuclear factor (NF) κB as a redox sensitive, anti-apoptotic and pro-inflammatory signaling molecule has been studied extensively for more than three decades. Its role in inducing antioxidant enzymes, defending against extracellular and intracellular stress and maintaining redox homeostasis in skeletal muscle has also been recognized. New research continues to explore the polytropic nature of NFκB in cellular function, especially its crosstalk with other important signaling pathways. Understanding of the broad impact of these functions has significant implications in health and disease of skeletal muscle as an organ designed for contraction and mobility. Two important aspects of muscle wellbeing, i.e., disease and aging, are not discussed in this review. This review will provide an update on the new findings related to NFκB involvement in multiple signaling pathways and refresh our knowledge of its activation in skeletal muscle with a special reference to physical exercise.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, USA.
| |
Collapse
|
2
|
Lee CM, Nguyen J, Pope B, Imami AS, Ryan VWG, Sahay S, Mathis V, Pulvender P, Eby HM, Arvay T, Alganem K, Wegman-Points L, McCullunsmith R, Yuan LL. Functional kinome profiling reveals brain protein kinase signaling pathways and gene networks altered by acute voluntary exercise in rats. PLoS One 2025; 20:e0321596. [PMID: 40233052 DOI: 10.1371/journal.pone.0321596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Regular exercise confers numerous physical and mental health benefits, yet individual variability in exercise participation and outcomes is still poorly understood. Uncovering the neurobiological mechanisms governing exercise behavior is essential for promoting physical activity and developing targeted interventions for related disorders. While genetic studies have provided insights, they often cannot account for protein-level alterations, such as changes in kinase activity. Here, we employ protein kinase activity profiling to delineate brain protein kinase activity and signaling networks modulated by acute voluntary exercise in rats. Focusing on the dorsal striatum, which governs voluntary exercise, as well as the hippocampus, which is susceptible to modulation by physical activity, we aim to understand the molecular basis of exercise behavior. Utilizing high throughput kinome array profiling and advanced pathway analyses, we identified protein kinase signaling pathways implicated in regulating voluntary exercise. Pathway analysis using Gene Ontology (GO) revealed significant alterations in 155 GO terms in the dorsal striatum and 206 GO terms in the hippocampus. Changes in kinase activity were observed in the striatum and hippocampus between the exercise (voluntary wheel running, VWR) and sedentary control rats. In both regions, global serine-threonine kinase (STK) activity was decreased, while global phospho-tyrosine kinase (PTK) activity was increased in VWR rats compared to control rats. We also identified specific kinases altered in VWR rats, including the IKappaB Kinase (IKK) and protein kinase delta (PKD) families. C-terminal src Kinase (CSK), epidermal growth factor (EGFR), and vascular endothelial growth factor receptor (VEGFR) tyrosine kinase were also enriched. These findings suggest regional heterogeneity of kinase activity following voluntary exercise, emphasizing potential molecular mechanisms underlying exercise behavior. This exploratory study lays the groundwork for future investigations into the causality of variations in exercise outcomes among individuals and different sexes, as well as the development of targeted interventions to promote physical activity and combat associated chronic diseases.
Collapse
Affiliation(s)
- Chia-Ming Lee
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Jennifer Nguyen
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Brock Pope
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Ali Sajid Imami
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - V William George Ryan
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Smita Sahay
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Victoria Mathis
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Priyanka Pulvender
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Hunter Michael Eby
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Taylen Arvay
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Khaled Alganem
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Lauren Wegman-Points
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| | - Robert McCullunsmith
- Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
- ProMedica, Neurosciences Institute, Toledo, Ohio, United States of America
| | - Li-Lian Yuan
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States of America
| |
Collapse
|
3
|
Yu Y, Zhu B, Huo J, You L, Hileuskaya K, Cheung PCK. Degradation of Sargassum fusiforme polysaccharides by dielectric barrier discharge plasma and their physicochemical and immunomodulatory properties. Int J Biol Macromol 2025:143079. [PMID: 40222516 DOI: 10.1016/j.ijbiomac.2025.143079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/23/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
In this study, the effects of dielectric barrier discharge (DBD) plasma on the physicochemical properties and immunomodulatory activities of Sargassum fusiforme polysaccharides (SFP) were investigated. Results showed that the average molecular weight of SFP was reduced from 238 to 20 kDa within 90 min using DBD plasma. The contents of total sugar, reducing sugar and sulfate in the degraded polysaccharides after DBD plasma treatment for 90 min increased by 15.41 %, 150.35 % and 146.33 %, respectively, in comparison to the original SFP. Their protein and uronic acid contents decreased by 70.06 % and 18.75 %, respectively. DBD plasma treatment did not change the monosaccharide type of SFP, but it changed their monosaccharide composition, type of functional group and surface morphology. Furthermore, the treatment significantly improved the immunomodulatory activities of degraded polysaccharides. The polysaccharides with the best activity were obtained after treatment for 60 min (named DSFP-T60). Both SFP and DSFP-T60 significantly promoted the pinocytic capacity of RAW264.7 cells and inhibited the expression and production of nitric oxide, interleukin-6, tumor necrosis factor-α and interleukin-10. Moreover, the degraded polysaccharides showed stronger immunomodulatory activity than SFP. This study will lay a theoretical foundation for exploring a novel and efficient way to degrade polysaccharide with enhanced immunomodulatory activity.
Collapse
Affiliation(s)
- Yongyi Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Guangdong Institute of Food Inspection, Guangzhou, Guangdong 510435, China
| | - Biyang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Junhui Huo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China.
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36F. Skaryna str., Minsk 220141, Belarus
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
4
|
Wang G, Yang Q, Han Y, Zhang Y, Pan W, Ma Z, Tian H, Qu X. miR-32-5p suppresses the progression of hepatocellular carcinoma by regulating the GSK3β/NF-κB signaling. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40170617 DOI: 10.3724/abbs.2025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal form of malignancy that seriously threatens patient survival. The global 5-year survival rate for HCC patients ranges from 15% to 19%, and nearly 80% of patients are diagnosed at an advanced stage. Therefore, exploring the mechanism of HCC development and identifying biomarkers and therapeutic targets for HCC are vital. MicroRNAs (miRNAs), a class of noncoding single-stranded RNAs, are 20-24 nucleotides (nt) long. They play pivotal roles in modulating the progression of diverse diseases. The specific role of miR-32-5p in the development of HCC remains unclear. In this study, qRT-PCR is utilized to precisely determine the downregulated expression levels of miR-32-5p in HCC. Subsequently, functional analysis reveals the suppressive role of miR-32-5p in modulating the proliferative and migratory capabilities of HCC cells. Glycogen synthase kinase 3β (GSK3β) has emerged as a potential target of miR-32-5p, which is confirmed through a dual-luciferase reporter assay. Notably, the expression of GSK3β in HCC tissue specimens is negatively correlated with the abundance of miR-32-5p, and patients with high GSK3β expression have shorter survival time. Furthermore, the targeted downregulation of GSK3β remarkably impedes the proliferation and migration of tumor cells. This study suggests that miR-32-5p inhibits the proliferation and migration of HCC through regulating the GSK3β/NF-κB signaling pathway. Therefore, this study reveals that miR-32-5p exerts its suppressive effect on HCC progression, suggesting that it is a promising target for both diagnostic and targeted therapeutic interventions against HCC.
Collapse
Affiliation(s)
- Guangzhi Wang
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qianqian Yang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yaqi Han
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yunlong Zhang
- School of Medical Imaging, Shandong Second Medical University, Weifang 261053, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Tian
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xudong Qu
- Department of Intervention Radiology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
5
|
Peng Y, Xiong RP, Wang B, Chen X, Ning YL, Zhao Y, Yang N, Zhang J, Li CH, Zhou YG, Li P. c-Ski is a novel repressor of NF-κB through interaction with p65 and HDAC1 in U937 cells. Cell Commun Signal 2025; 23:165. [PMID: 40176138 PMCID: PMC11967118 DOI: 10.1186/s12964-025-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/26/2025] [Indexed: 04/04/2025] Open
Abstract
The nuclear factor kappa B (NF-κB) signalling pathway plays a crucial role in the regulation of inflammation, and previous research from our lab and others suggests that c-Ski has potential anti-inflammatory effects. However, the role and mechanism of c-Ski, which are related to the regulation of the NF-κB pathway, are still unclear. Here, U937 cells were used, and increasing c-Ski protein levels inhibited inflammatory factor production, invasion, and phagocytosis. The anti-inflammatory effect of c-Ski was similar to that of hormones. Subsequently, immunoprecipitation (IP), Western blot (WB), electrophoretic mobility shift assays (EMSAs), and dual-luciferase reporter assays were used to determine whether increasing c-Ski protein levels could increase c-Ski binding to NF-κB p65 (p65), leading to a decrease in the acetylation level and transcriptional activity of p65. Conversely, decreased p65 expression through targeted small interfering RNA (siRNA) caused the loss of the anti-inflammatory effects of c-Ski. Furthermore, immunoprecipitation confirmed the mutual interaction of c-Ski with HDAC1 and p65, and WB revealed that the anti-inflammatory effect of c-Ski was achieved through the deacetylation of p65 by HDAC1 combined with HDAC1 siRNA and inhibitors. Additionally, through quantitative proteomic analysis, we determined that increasing c-Ski levels had inhibitory effects on the NF-κB pathway. Finally, similar results were also obtained using primary bone marrow-derived macrophages (BMDMs). These findings not only confirm the anti-inflammatory effect of c-Ski but also reveal novel molecular pathways and regulatory molecules of c-Ski, which may be promising targets for direct intervention in the inflammatory response through regulation of c-Ski.
Collapse
Affiliation(s)
- Yan Peng
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Ren-Ping Xiong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Bo Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Xing Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Ya-Lie Ning
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Nan Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Chang-Hong Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Yuan-Guo Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Ping Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Army Occupational Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Ding Y, Yu Y. Therapeutic potential of flavonoids in gastrointestinal cancer: Focus on signaling pathways and improvement strategies (Review). Mol Med Rep 2025; 31:109. [PMID: 40017144 PMCID: PMC11884236 DOI: 10.3892/mmr.2025.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
Flavonoids are a group of polyphenolic compounds distributed in vegetables, fruits and other plants, which have considerable antioxidant, anti‑tumor and anti‑inflammatory activities. Several types of gastrointestinal (GI) cancer are the most common malignant tumors in the world. A large number of studies have shown that flavonoids have inhibitory effects on cancer, and they are recognized as a class of potential anti‑tumor drugs. Therefore, the present review investigated the molecular mechanisms of flavonoids in the treatment of different types of GI cancer and summarized the drug delivery systems commonly used to improve their bioavailability. First, the classification of flavonoids and the therapeutic effects of various flavonoids on human diseases were briefly introduced. Then, to clarify the mechanism of action of flavonoids on different types of GI cancer in the human body, the metabolic process of flavonoids in the human body and the associated signaling pathways causing five common types of GI cancer were discussed, as well as the corresponding therapeutic targets of flavonoids. Finally, in clinical settings, flavonoids have poor water solubility, low permeability and inferior stability, which lead to low absorption efficiency in vivo. Therefore, the three most widely used drug delivery systems were summarized. Suggestions for improving the bioavailability of flavonoids and the focus of the next stage of research were also put forward.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
7
|
Wu C, Wang X, Li X, Li H, Peng Q, Niu X, Wu Y, Wang Z, Zhou Z. TRIM21 interacts with IκBα and negatively regulates NF-κB activation in Corynebacterium pseudotuberculosis-infected macrophages. Vet Immunol Immunopathol 2025; 282:110910. [PMID: 40020570 DOI: 10.1016/j.vetimm.2025.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Corynebacterium pseudotuberculosis, a zoonotic intracellular bacteria, is responsible for abscesses and pyogranuloma formation of the infected host, which is essentially a chronic inflammatory response. Tripartite motif-containing protein 21 (TRIM21) negatively regulates pro-inflammatory cytokines production during C. pseudotuberculosis infection, the mechanism of which remains unclear. This study found that C. pseudotuberculosis infection in macrophages induced phosphorylation of IκB and p65. TRIM21 interacted with IκBα by PRY/SPRY domain, stabilizes IκBα and negatively regulates IκBα phosphorylation in macrophages during C. pseudotuberculosis infection. In addition, TRIM21 positively regulates the ubiquitination of IκBα via K48 linkage rather than K63 linkage in C. pseudotuberculosis-infected macrophages. In brief, our research confirmed that TRIM21 negatively regulates canonical NF-κB activation by interacting with IκBα and decreasing IκBα phosphorylation in macrophages during C. pseudotuberculosis infection. Preventing inflammation induced by C. pseudotuberculosis infection through regulation of the NF-κB pathway is a potential way to control this pathogen.
Collapse
Affiliation(s)
- Chanyu Wu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xiaohan Wang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xincan Li
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiuyue Peng
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xiaoxin Niu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Yutong Wu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, No. 1 Laolipo Nanming District, Guiyang 550025, China.
| | - Zhiying Wang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Zuoyong Zhou
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| |
Collapse
|
8
|
Hiti L, Markovič T, Lainscak M, Farkaš Lainščak J, Pal E, Mlinarič-Raščan I. The immunopathogenesis of a cytokine storm: The key mechanisms underlying severe COVID-19. Cytokine Growth Factor Rev 2025; 82:1-17. [PMID: 39884914 DOI: 10.1016/j.cytogfr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation. Some patients' immune systems then fail to shift from innate to adaptive immunity, suppressing interferon responses and leading to excessive pyroptosis and neutrophil activation. This amplifies tissue damage and inflammation, creating a pro-inflammatory loop. The result is the disruption of Th1/Th2 and Th17/Treg balances, lymphocyte exhaustion, and extensive blood clotting. Cytokine storm treatments include glucocorticoids to suppress the immune system, monoclonal antibodies to neutralize specific cytokines, and JAK inhibitors to block cytokine receptor signalling. However, the most effective treatment options for mitigating SARS-CoV-2 infection remain vaccines as a preventive measure and antiviral drugs for the early stages of infection. This article synthesizes insights into immune dysregulation in COVID-19, offering a framework to better understand cytokine storms and to improve monitoring, biomarker discovery, and treatment strategies for COVID-19 and other conditions involving cytokine storms.
Collapse
Affiliation(s)
- Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | | | - Mitja Lainscak
- General Hospital Murska Sobota, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Emil Pal
- General Hospital Murska Sobota, Slovenia
| | | |
Collapse
|
9
|
Kim MY, Bang EJ, Choi YH, Hong SH. Bupleuri Radix Ameliorates Vascular Inflammation in Human Umbilical Vein Endothelial Cells via Modulation of Tight Junction Protein Expression and Inhibition of Nuclear Factor-κB Activation. J Pharmacopuncture 2025; 28:57-68. [PMID: 40165875 PMCID: PMC11933917 DOI: 10.3831/kpi.2025.28.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/19/2025] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Objectives The vascular endothelium plays a central role in the maintenance of vascular homeostasis. Inflammation of vascular endothelial cells has been closely related to the development of a wide range of cardiovascular diseases, including atherosclerosis. Bupleuri Radix (BR) possesses several biological properties, including anticancer, antimicrobial, antiviral, immunomodulatory, and anti-inflammatory properties. Furthermore, it can prevent and cure several diseases, such as the common cold, hepatitis, menoxenia, and hyperlipidemia. However, it is unclear whether BR can regulate vascular endothelial function under inflammatory conditions induced by interleukin-1β (IL-1β), a key proinflammatory cytokine. Therefore, in this study, we aimed to investigate the effect of BR on endothelial cell function using human umbilical vein endothelial cells (HUVECs) with IL-1β-induced inflammation. Methods The effects of BR on cell migration, angiogenesis, and monocyte adhesion were determined using scratch wound-healing assay, tube-formation assay, cell adhesion assay, fluorescein isothiocyanate-dextran Transwell assay, and transepithelial electrical resistance assay. The expression of tight junction (TJ) protein and adhesion molecules was estimated using western blotting and immunofluorescence assay. The generation of reactive oxygen species was assessed using flow cytometry. Results BR significantly suppressed the proliferation, migration, and tube-formation ability of IL-1β-stimulated HUVECs, and the expression of adhesion molecules, especially intracellular adhesion molecule-1. BR also regulated TJ protein expression, thereby restoring the transepithelial electrical resistance value to a level comparable to that of IL-1β-treated HUVECs. Moreover, BR decreased the production of intracellular reactive oxygen species and the nuclear translocation of the nuclear factor-kappa-B p65 subunit. Conclusion These findings revealed for the first time that BR prevents IL-1β-induced inflammation of blood vessel. Therefore, BR has the potential to protect the damage of vascular endothelial cells and prevent the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan, Republic of Korea
| | - Eun Jin Bang
- Anti-Aging Research Center, Dong-Eui University, Busan, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-Eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, Republic of Korea
| |
Collapse
|
10
|
Liu X, Li Y, He M, Zhao Y, Li C, Wang Y, Zhou Q, Peng Y, Zhan L. Multi-bioluminescence based dynamic imaging of Pseudomonas aeruginosa-induced hepatic inflammation process. Microb Pathog 2025; 204:107521. [PMID: 40169074 DOI: 10.1016/j.micpath.2025.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Bacterial infections are a major cause of death worldwide. However, it is difficult to track the in vivo dynamics of pathogenic bacteria and the expression of inflammatory factors in infected animals throughout the infection process. This work used Pseudomonas aeruginosa as an infection model and utilised genetically bioluminescence-labeled P. aeruginosa and hydrodynamic transfection technology to construct a liver-visual NF-κB, IL-6, TNF-α inflammation model, thereby enabling the tracking of the dynamic spread of P. aeruginosa in infected animals and the transient activation of the liver inflammation response. The results showed that P. aeruginosa introduced via the tail vein initially accumulates in the liver and gradually activates NF-κB, IL-6, and TNF-α. Subsequently, the P. aeruginosa infection gradually spreads to the lungs and small intestine, and final proliferation leads to septic death in mice. During the infection process, we observed a strictly negative correlation between platelet activation and bacterial proliferation; the higher the degree of platelet activation, the stronger the inhibitory effect on bacterial proliferation and liver inflammation. In conclusion, this bioluminescence-based in vivo imaging technique offers new opportunities to investigate the innate immune response in controlling pathogenic infections.
Collapse
Affiliation(s)
- Xingzhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Yipu Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Minwei He
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Yan Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Chenyan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Yi Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China
| | - Qianqian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China.
| | - Ying Peng
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
11
|
Gong X, Xu L, Cai P. Friend or foe of tripartite motif-containing protein 21 in cardiovascular disease: A review. Int J Biol Macromol 2025; 308:142682. [PMID: 40164260 DOI: 10.1016/j.ijbiomac.2025.142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
As an E3 ubiquitin ligase and an Fc receptor, tripartite motif-containing protein 21 (TRIM21) plays a crucial role in immune defense, signal transduction, and cellular regulation. TRIM21 is widely expressed in various tissues, but it is particularly abundant in cardiovascular tissues and is involved in the pathogenesis of various cardiovascular diseases (CVDs). However, although TRIM21 is involved in the regulation of several key molecular pathways in the immune system, its specific role in CVD remains unclear. In this review, we comprehensively summarize the regulatory role of TRIM21 in signaling pathways and discuss the function of TRIM21 in CVD, to provide a systematic understanding of this important protein in CVD and offer insights for further research into the pathogenesis of CVD and its potential applications.
Collapse
Affiliation(s)
- Xiangmei Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Khan IM, Gul H, Khan S, Nassar N, Khalid A, Swelum AA, Wang Z. Green tea polyphenol epigallocatechin-3-gallate mediates an antioxidant response via Nrf2 pathway in heat-stressed poultry: A review. Poult Sci 2025; 104:105071. [PMID: 40157268 PMCID: PMC11995091 DOI: 10.1016/j.psj.2025.105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Heat stress is a critical challenge in the poultry industry. It arises when birds are exposed to elevated ambient temperatures beyond their thermoneutral zone, often exacerbated by high humidity and inadequate ventilation. This condition disrupts the birds' ability to maintain thermal homeostasis, leading to physiological and behavioral changes such as increased panting, reduced feed intake, and elevated water consumption. These responses aim to dissipate heat but often result in energy imbalances, oxidative stress, and impaired immune function. Green tea polyphenols (GTPs) mitigate heat stress in poultry birds by modulating oxidative stress pathways, primarily by scavenging reactive oxygen species (ROS) and enhancing antioxidant defense mechanisms. These pathways play a pivotal role in neutralizing ROS generated during oxidative stress, inflammation, and exposure to electrophilic compounds. This action helps restore cellular balance and enhances overall antioxidant defense mechanisms by converting harmful free radicals into less reactive molecules, such as water and oxygen. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a significant character in the activation of the enzymatic antioxidants network. It translocates to the nucleus upon activation, binds to antioxidant response elements (AREs) in the promoter regions of target genes, and upregulates the expression of key antioxidant enzymes. Therefore, the regulation of Nrf2 is considered a critical molecular marker in mitigating the effects of heat stress, as its activation enhances the expression of antioxidant and detoxification enzymes, protecting against oxidative damage and inflammation induced by elevated temperatures. This exploratory review summarizes the antioxidant mechanisms and anti-oxidative stress effects of GTPs in mitigating heat stress in poultry. It highlights the cytoprotective molecular basis of epigallocatechin-3-gallate (EGCG), particularly its role in modulating Nrf2-mediated cellular pathways, which enhance antioxidant defense systems and protect against oxidative damage.
Collapse
Affiliation(s)
| | - Haji Gul
- District Livestock Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China; Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
13
|
Zhang S, Li S, Cui L, Xie S, Wang Y. Astragaloside IV Attenuates Angiotensin II-Induced Inflammatory Responses in Endothelial Cells: Involvement of Mitochondria. J Inflamm Res 2025; 18:3951-3967. [PMID: 40125084 PMCID: PMC11927501 DOI: 10.2147/jir.s504427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Background Angiotensin II (Ang II)-triggered endothelial inflammation is a critical mechanism contributing to Ang II-related cardiovascular diseases. The inflammation is highly correlated with mitochondrial function. Although astragaloside IV (AS-IV), a primary bioactive ingredient extracted from the traditional Chinese medicine Astragalus membranaceus Bunge that can effectively treat numerous cardiovascular diseases, posses the actions of antiinflammation and antioxidation in vivo, limited data are made available on the impacts of AS-IV on mitochondrial function in endothelial inflammation triggered by Ang II. This study was performed to evaluate the in vitro actions of AS-IV on Ang II-triggered inflammatory responses in endothelial cells, and to further clarify the potential role of mitochondria in the actions. Methods Human umbilical vein endothelial cells (HUVECs) were preincubated with AS-IV and then exposed to Ang II for 12 h. Results The exposure of HUVECs to Ang II triggered cytokine and chemokine production, the upregulation of adhesive molecules, monocyte attachment, and nuclear factor-kappa B activation. Additionally, our results showed that the inflammatory responses triggered by Ang II were associated with the impairment of mitochondrial function, as evidenced by the reductions of mitochondrial membrane potential, ATP synthesis, and mitochondrial complexes I and III activities. Moreover, the concentrations of malondialdehyde, cellular reactive oxygen species, and mitochondrial superoxide enhanced after HUVECs challenged with Ang II, which were concurrent with the decreases in total superoxide dismutase (SOD) and its isoenzyme activities such as Mn-SOD. These Ang II-induced alterations were reversed by preincubation with AS-IV. Conclusion Our data indicate that AS-IV attenuates Ang II-triggered endothelial inflammation possibly via ameliorating mitochondrial function.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Shiyang Xie
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| |
Collapse
|
14
|
Li Z, Chu T, Sun X, Zhuang S, Hou D, Zhang Z, Sun J, Liu Y, Li J, Bian Y. Polyphenols-rich Portulaca oleracea L. (purslane) alleviates ulcerative colitis through restiring the intestinal barrier, gut microbiota and metabolites. Food Chem 2025; 468:142391. [PMID: 39675274 DOI: 10.1016/j.foodchem.2024.142391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Ulcerative colitis (UC) is a recurrent intestinal disease caused by a complex of factors, and there are serious adverse effects and tolerance problems associated with the current long-term use of therapeutic drugs. The development of natural food sources and multi-targeted drugs for the treatment of UC is imminent. Portulaca oleracea L. (PO), as a vegetable, has been shown in studies to have an anti-UC effects. However, the relationship between the abundant active ingredients contained in Portulaca oleracea L. and the improvement of intestinal barrier, gut microbiota and metabolites is unclear. In the present study, Portulaca oleracea L. which was found to be rich in phenolic acid-based active ingredients, were effective in alleviating dextran sulfate sodium (DSS)-induced body weight loss, disease activity index (DAI) score and colon length in mice. It also decreased C-reactive protein (CRP) and myeloperoxidase (MPO) responses, reduced the permeation of fluorescein isothiocyanate (FITC)-dextran, lipopolysaccharide (LPS) and evans blue (EB), and improved histopathological scores. Meanwhile, in vitro and in vivo validation revealed the protective effects of purslane on the intestinal barrier indicators ZO-1, Occludin and Claudin-1, and inhibited the expression of inflammation-associated iNOS and NLRP3 proteins through the NF-κB signaling pathway. In addition, purslane increased the diversity of the intestinal flora, enhancing the proportion of the genera Butyricoccus, Dorea and Bifidobacterium and decreasing the percentage of Bacteroides, Turicibacter and Parabacteroides. Serum metabolomics analysis showed that the imbalance of 39 metabolites was significantly reversed after PO deployment. Enrichment analysis showed that Pentose phosphate pathway and Pyruvate metabolism pathway were the key pathways of PO against UC. Overall, purslane effectively improved the intestinal barrier disruption and intestinal inflammation by inhibiting the NF-κB signaling pathway, and adjusted the disorder of gut microbiota and metabolites to exert anti-UC effects.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Sun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shen Zhuang
- College of Veterinary Medicine & Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dianbo Hou
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaohan Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jialu Sun
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yifei Bian
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
15
|
Chen Y, Yue S, Yu L, Cao J, Liu Y, Deng A, Lu Y, Yang J, Li H, Du J, Xia J, Li Y, Xia Y. Regulation and Function of the cGAS-STING Pathway: Mechanisms, Post-Translational Modifications, and Therapeutic Potential in Immunotherapy. Drug Des Devel Ther 2025; 19:1721-1739. [PMID: 40098909 PMCID: PMC11911240 DOI: 10.2147/dddt.s501773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune diseases arise when the immune system attacks healthy tissues, losing tolerance for self-tissues. Normally, the immune system recognizes and defends against pathogens like bacteria and viruses. The cGAS-STING pathway, activated by pattern-recognition receptors (PRRs), plays a key role in autoimmune responses. The cGAS protein senses pathogenic DNA and synthesizes cGAMP, which induces conformational changes in STING, activating kinases IKK and TBK1 and leading to the expression of interferon genes or inflammatory mediators. This pathway is crucial in immunotherapy, activating innate immunity, enhancing antigen presentation, modulating the tumor microenvironment, and integrating into therapeutic strategies. Modulation strategies include small molecule inhibitors, oligonucleotide therapies, protein and antibody therapies, genetic and epigenetic regulation, cytokine and metabolite modulation, and nanoscale delivery systems. Post-translational modifications (PTMs) of the cGAS-STING pathway, such as phosphorylation, acetylation, ubiquitination, methylation, palmitoylation, and glycosylation, fine-tune immune responses by regulating protein activity, stability, localization, and interactions. These modifications are interconnected and collectively influence pathway functionality. We summarize the functions of cGAS-STING and its PTMs in immune and non-immune cells across various diseases, and explore potential clinical applications.
Collapse
Affiliation(s)
- Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Si Yue
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongming Xia
- Department of Hematology, Yuyao People’s Hospital, Yuyao, Zhejiang, People’s Republic of China
| |
Collapse
|
16
|
Doğan S, Tuncer MC, Özdemir İ. Inhibition of Retinoblastoma Cell Growth by Boswellic Acid Through Activation of the Suppressing Nuclear Factor-κB Activation. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:480. [PMID: 40142291 PMCID: PMC11944177 DOI: 10.3390/medicina61030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Despite the development of treatment methods and the emergence of alternative new approaches in recent years, the visual prognosis of retinoblastoma contains deficiencies and this situation increases the need for the development of new treatment approaches. The cytotoxic and apoptosis-inducing effects of the combination of boswellic acid (BA), which has been determined to have significant potential in preclinical and clinical studies of various diseases, and Cisplatin (Cis), a potent chemotherapy agent, were investigated on the human retinoblastoma cell line (Y79). Materials and Methods: The cytotoxic effect of BA and Cis on Y79 cells was determined by the water soluble tetrazolium-1 (WST-1) test, the apoptotic rate of the cells was determined by annexin V staining, and the gene expressions of Protein53 (p53), Caspase-3 and Nuclear factor kappa B (NF-κB), which play an important role in apoptosis, were determined by RT-qPCR analysis. Interleukin 1-beta (IL1-β), tumor necrosis factor-α (TNF-α) and interferon γ (IFN-γ) levels were analyzed in cell lysates obtained from the experimental groups. Results: The combination of BA and Cis selectively inhibited the growth of Y79 cells and modulated NF-κB signaling, potentially through post-translational regulatory mechanisms. Moreover, it induced apoptosis by increasing p53 and Caspase-3 expressions, confirming its pro-apoptotic effects. Additionally, the combination treatment was associated with a reduction in inflammatory cytokine levels (TNF-α, IL1-β), suggesting a potential regulatory effect on inflammation-related pathways rather than direct inhibition of NF-κB activation. Conclusions: These findings suggest that BA combined with Cis inhibits Y79 retinoblastoma cell growth by inducing apoptosis and modulating NF-κB signaling. While NF-κB mRNA levels increased, reduced inflammatory cytokines and enhanced apoptosis suggest potential post-translational regulation. Further studies are needed to confirm NF-κB protein-level effects and in vivo efficacy.
Collapse
Affiliation(s)
- Semih Doğan
- Department of Ophthalmology, Faculty of Medicine, Beykent University, İstanbul 34398, Turkey;
| | - Mehmet Cudi Tuncer
- Department of Anatomy, Faculty of Medicine, Dicle University, Diyarbakır 21280, Turkey
| | - İlhan Özdemir
- Department of Gynecology and Obstetrics, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| |
Collapse
|
17
|
Peng Y, Lin C, Zhang B, Yan L, Zhang B, Zhao C, Qiu L. Characteristics and preliminary immune function of SRA5 in Lateolabrax maculatus. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110266. [PMID: 40064212 DOI: 10.1016/j.fsi.2025.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
Scavenger receptors (SRs) are crucial for pattern recognition in the innate immune system. However, the role of Scavenger Receptors class A member 5 (SRA5) in the immunological response of bony fish to pathogen invasion remains unclear. This study identified and characterized the SRA5 of Lateolabrax maculatus (LmSRA5) from its transcriptome database. LmSRA5 has a 1494 bp open reading frame, encodes 497 amino acids, has a molecular weight of 55.01 kDa, and contains a collagen domain and a conserved Scavenger Receptor Cysteine-Rich domain. LmSRA5 exhibited high sequence similarity to previously reported SRA5 genes. LmSRA5 exhibited high sequence similarity to previously reported SRA5 genes. LmSRA5 is primarily localized in the cytoplasm, with its encoded proteins distributed in both the cytoplasm and the cell membrane. LmSRA5 was expressed in all tissues. The highest expression was observed in the pituitary gland, with significant levels in the stomach, intestines, liver, and kidney. LmSRA5 expression in the head kidney, spleen, blood, and intestines initially increased, then decreased following infection with Aeromonas veronii. The binding affinity of LmSRA5 for A. veronii was enhanced by increasing concentrations of the extracellular domain recombinant LmSRA5. Knockdown and overexpression experiments in liver cells demonstrated that LmSRA5 significantly regulates the expression of IL-8 and c-Jun. LmSRA5 participates in the immune response by recognizing pathogen-associated molecular patterns (PAMPs) and contributes to immune regulation through modulation IL-8 and c-Jun. This study offers valuable insights into the role of SRA5 in pathogen resistance and immune regulation in bony fish, thereby contributing to the advancement of aquaculture under escalating disease pressures.
Collapse
Affiliation(s)
- Yangtao Peng
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Changhong Lin
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China.
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China.
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, PR China.
| |
Collapse
|
18
|
Zheng Y, Wang Y, Li J, Zheng S, Zhang L, Li Q, Ling F, Nie Q, Feng Q, Wang J, Jin C. PGAM5 Modulates Macrophage Polarization, Aggravating Inflammation in COPD via the NF-κB Pathway. Int J Chron Obstruct Pulmon Dis 2025; 20:551-564. [PMID: 40078929 PMCID: PMC11897911 DOI: 10.2147/copd.s492627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has emerged as a very consequential issue threatening human life and health; therefore, research on its pathogenesis is urgently needed. A prior investigation discovered a significant elevation in the phosphoglycerate mutase 5 (PGAM5) expression in the lung tissue of COPD smoking patients. This rise in expression is closely associated with COPD severity. Nevertheless, the precise molecular processes by which PGAM5 influences the COPD initiation and advancement remain unknown. Materials and Methods A COPD model was created using murine alveolar macrophages (MH-S). Flow cytometry, enzyme-linked immunosorbent assay, Western blotting, and other methods were used to detect macrophage polarization, inflammatory factor secretion levels, and changes in PGAM5 and the nuclear factor-κB (NF-κB) pathway. Results PGAM5 stimulated macrophage M1 polarization and secretion of the proinflammatory factors interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). PGAM5 bound and activated apoptotic signaling-regulated kinase 1 (ASK1), further activating the NF-κB pathway. These implications were reversed when PGAM5 expression was silenced. Conclusion PGAM5 can cause an increase in p-ASK1T838, trigger the NF-κB pathway activation, and stimulate the M1 macrophage polarization and production of proinflammatory factors. This finding has significant implications for preventing and treating COPD.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Yujie Wang
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Jia Li
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Lipeng Zhang
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Qiaoyu Li
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Fayu Ling
- Department of Thoracic Surgery, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Qiuli Nie
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Qiong Feng
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| | - Jing Wang
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Chengji Jin
- Department of Respiratory Medicine, The second Affiliated Hospital, Hainan Medical University, Haikou, 570100, People’s Republic of China
| |
Collapse
|
19
|
Alatawi FS, Omran AME, Rashad E, Abdel-Rahman ON, Soliman AF. Rutin attenuates bleomycin-induced acute lung injury via miR-9-5p mediated NF-κB signaling inhibition: network pharmacology analysis and experimental evidence. Front Pharmacol 2025; 16:1522690. [PMID: 40110126 PMCID: PMC11920148 DOI: 10.3389/fphar.2025.1522690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Although successfully used as a chemotherapeutic agent in various malignant diseases, acute lung injury (ALI) is one of the major limitations of bleomycin (BLM). Seeking reliable natural remedies, this study aimed to explore the potential effect of rutin on BLM-induced ALI. Methods Targets of rutin and ALI were collected using various databases. Enrichment analyses of common targets were conducted, a protein-protein interaction (PPI) network was constructed, the hub genes were identified, and the upstream miRNA interacting with the top hub gene was later predicted. A BLM-induced ALI rat model was established to verify rutin potential effects, and the selected hub gene expression with its upstream regulatory miRNA and a downstream set of targets were examined to elucidate the action mechanism. Results A total of 147 genes have been identified as potential therapeutic targets of rutin to treat BLM-induced ALI. Data from the enrichment and PPI analyses and the prediction of the upstream miRNAs indicated that the most worthwhile pair to study was miR-9a-5p/Nfkb1. In vivo findings showed that rutin administration significantly ameliorated pulmonary vascular permeability, inflammatory cells alveolar infiltration, induction of proinflammatory cytokines in the bronchoalveolar lavage fluid, and lung histology. Mechanistically, rutin downregulated the gene expression level of Nfkb1, Ptgs2, Il18, and Ifng, alongside their protein products, NF-κB p50, COX-2, IL-18, and IFN-γ, accompanied by an upregulation of rno-miR-9a-5p, Il10, and IL-10 expression in lung tissues. Conclusion Combining network pharmacology and an in vivo study revealed that miR-9-5p/Nfkb1 axis could mediate the meliorative effect of rutin against BLM-induced ALI.
Collapse
Affiliation(s)
- Fatema S Alatawi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Awatif M E Omran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omnia N Abdel-Rahman
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
20
|
Martinez-Meza S, Premeaux TA, Cirigliano SM, Friday CM, Michael S, Mediouni S, Valente ST, Ndhlovu LC, Fine HA, Furler O'Brien RL, Nixon DF. Antiretroviral drug therapy does not reduce neuroinflammation in an HIV-1 infection brain organoid model. J Neuroinflammation 2025; 22:66. [PMID: 40045391 PMCID: PMC11881274 DOI: 10.1186/s12974-025-03375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND HIV-1-associated neurocognitive impairment (HIV-1-NCI) is marked by ongoing and chronic neuroinflammation with loss and decline in neuronal function even when antiretroviral drug therapy (ART) successfully suppresses viral replication. Microglia, the primary reservoirs of HIV-1 in the central nervous system (CNS), play a significant role in maintaining this neuroinflammatory state. However, understanding how chronic neuroinflammation is generated and sustained by HIV-1, or impacted by ART, is difficult due to limited access to human CNS tissue. METHODS We generated an in vitro model of admixed hematopoietic progenitor cell (HPC) derived microglia embedded into embryonic stem cell (ESC) derived Brain Organoids (BO). Microglia were infected with HIV-1 prior to co-culture. Infected microglia were co-cultured with brain organoids BOs to infiltrate the BOs and establish a model for HIV-1 infection, "HIV-1 M-BO". HIV-1 M-BOs were treated with ART for variable directions. HIV-1 infection was monitored with p24 ELISA and by digital droplet PCR (ddPCR). Inflammation was measured by cytokine or p-NF-kB levels using multiplex ELISA, flow cytometry and confocal microscopy. RESULTS HIV-1 infected microglia could be co-cultured with BOs to create a model for "brain" HIV-1 infection. Although HIV-1 infected microglia were the initial source of pro-inflammatory cytokines, astrocytes, neurons and neural stem cells also had increased p-NF-kB levels, along with elevated CCL2 levels in the supernatant of HIV-1 M-BOs compared to Uninfected M-BOs. ART suppressed the virus to levels below the limit of detection but did not decrease neuroinflammation. CONCLUSIONS These findings indicate that HIV-1 infected microglia are pro-inflammatory. Although ART significantly suppressed HIV-1 levels, neuronal inflammation persisted in ART-treated HIV-1 M-BOs. Together, these findings indicate that HIV-1 infection of microglia infiltrated into BOs provides a robust in vitro model to understand the impact of HIV-1 and ART on neuroinflammation.
Collapse
Affiliation(s)
- Samuel Martinez-Meza
- Institute of Translational Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| | - Thomas A Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Stefano M Cirigliano
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Courtney M Friday
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Stephanie Michael
- Institute of Translational Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sonia Mediouni
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Howard A Fine
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Robert L Furler O'Brien
- Institute of Translational Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Douglas F Nixon
- Institute of Translational Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| |
Collapse
|
21
|
Schaible P, Henschel J, Erny D. How the gut microbiota impacts neurodegenerative diseases by modulating CNS immune cells. J Neuroinflammation 2025; 22:60. [PMID: 40033338 DOI: 10.1186/s12974-025-03371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Amyloid-β (Aβ) accumulation and neurofibrillary tangles are two key histological features resulting in progressive and irreversible neuronal loss and cognitive decline. The macrophages of the central nervous system (CNS) belong to the innate immune system and comprise parenchymal microglia and CNS-associated macrophages (CAMs) at the CNS interfaces (leptomeninges, perivascular space and choroid plexus). Microglia and CAMs have received attention as they may play a key role in disease onset and progression e. g., by clearing amyloid beta (Aβ) through phagocytosis. Genome-wide association studies (GWAS) have revealed that human microglia and CAMs express numerous risk genes for AD, further highlighting their potentially critical role in AD pathogenesis. Microglia and CAMs are tightly controlled by environmental factors, such as the host microbiota. Notably, it was further reported that the composition of the gut microbiota differed between AD patients and healthy individuals. Hence, emerging studies have analyzed the impact of gut bacteria in different preclinical mouse models for AD as well as in clinical studies, potentially enabling promising new therapeutic options.
Collapse
Affiliation(s)
- Philipp Schaible
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Henschel
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
22
|
Yang X, Ren Y, Li X, Xia L, Wan J. MiR-146a Reduces Inflammation in Experimental Pancreatitis via the TRAF6-NF-κB Signaling Pathway in Mice. Immun Inflamm Dis 2025; 13:e70163. [PMID: 40018991 PMCID: PMC11868994 DOI: 10.1002/iid3.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND The initial inflammatory response plays a pivotal role in the development of acute pancreatitis. MiR-146a is believed to play a key role in negatively regulating inflammation and potentially contributes to anti-inflammatory activity in acute pancreatitis, though its mechanism remains largely unexplored. OBJECTIVES This study aimed to explore the effects of miR-146a on AP in mice and clarify its regulatory mechanisms in pancreatic inflammation and damage. METHODS Adult male BALB/C mice were used. Adeno-associated virus (AAV) vectors were used to modulate miR-146a expression in mice via tail vein injection. AP was induced by intraperitoneal injection of caerulein, caerulein + LPS, or l-arginine. Histological analysis, immunohistochemistry staining, immunofluorescence staining, measurements of amylase and lipase activities, and qRT-PCR were performed. RESULTS Overexpression of miR-146a reduced pancreatic damage and inflammation in caerulein-induced AP. It decreased serum amylase and lipase levels, mitigated pathological features such as interstitial edema and inflammatory cell infiltration in the pancreas and lung, and reduced neutrophil infiltration and proinflammatory cytokine expression. MiR-146a attenuated the activation of the NF-κB signaling pathway by inhibiting the degradation of IκBα and the expression of phosphorylated-p65 and reducing the nuclear translocation of NF-κB p65. Similar protective effects of miR-146a were observed in AP models induced by l-arginine and caerulein combined with LPS. CONCLUSIONS MiR-146a alleviates acute pancreatitis in mice by targeting TRAF6 and suppressing the activation of the NF-κB signaling pathway. These findings suggest that miR-146a could be a potential therapeutic target for AP.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yuping Ren
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xueyang Li
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Liang Xia
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jianhua Wan
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
23
|
Wu X, Wang K, Wang J, Wei P, Zhang H, Yang Y, Huang Y, Wang Y, Shi W, Shan Y, Zhao G. The Interplay Between Epilepsy and Parkinson's Disease: Gene Expression Profiling and Functional Analysis. Mol Biotechnol 2025; 67:1035-1053. [PMID: 38453824 DOI: 10.1007/s12033-024-01103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The results of many epidemiological studies suggest a bidirectional causality may exist between epilepsy and Parkinson's disease (PD). However, the underlying molecular landscape linking these two diseases remains largely unknown. This study aimed to explore this possible bidirectional causality by identifying differentially expressed genes (DEGs) in each disease as well as their intersection based on two respective disease-related datasets. We performed enrichment analyses and explored immune cell infiltration based on an intersection of the DEGs. Identifying a protein-protein interaction (PPI) network between epilepsy and PD, and this network was visualised using Cytoscape software to screen key modules and hub genes. Finally, exploring the diagnostic values of the identified hub genes. NetworkAnalyst 3.0 and Cytoscape software were also used to construct and visualise the transcription factor-micro-RNA regulatory and co-regulatory networks, the gene-microRNA interaction network, as well as gene-disease association. Based on the enrichment results, the intersection of the DEGs mainly revealed enrichment in immunity-, phosphorylation-, metabolism-, and inflammation-related pathways. The boxplots revealed similar trends in infiltration of many immune cells in epilepsy and Parkinson's disease, with greater infiltration in patients than in controls. A complex PPI network comprising 186 nodes and 512 edges were constructed. According to node connection degree, top 15 hub genes were considered the kernel targets of epilepsy and PD. The area under curve values of hub gene expression profiles confirmed their excellent diagnostic values. This study is the first to analyse the molecular landscape underlying the epidemiological link between epilepsy and Parkinson's disease. The two diseases are closely linked through immunity-, inflammation-, and metabolism-related pathways. This information was of great help in understanding the pathogenesis, diagnosis, and treatment of the diseases. The present results may provide guidance for further in-depth analysis about molecular mechanisms of epilepsy and PD and novel potential targets.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Kailiang Wang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Jingjing Wang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Huaqiang Zhang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Yinchun Huang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Yihe Wang
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Wenli Shi
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuan Wu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, China.
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
| |
Collapse
|
24
|
Mohammed OA, Alghamdi M, Bahashwan E, Al Jarallah AlQahtani A, Alfaifi A, Hassan RH, Alfaifi J, Alamri MMS, Alhalafi AH, Adam MIE, BinAfif WF, Abdel-Reheim MA, Mageed SSA, S Doghish A. Emerging insights into the role of natural products and miRNAs in psoriasis: from pathophysiology to precision medicine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2487-2509. [PMID: 39466441 DOI: 10.1007/s00210-024-03528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Psoriasis is a sustainable skin disease characterized by inflammation resulting from the interaction between immune cells and keratinocytes. Significant advancements have been achieved in studying the molecular process behind noncoding and coding genes, leading to valuable insights for clinical therapy. Nevertheless, our comprehension of this intricate ailment remains ambiguous. Natural products such as curcumin, vitamin D, omega-3, vitamin E, psoralen, gallic acid (GA), and resveratrol offer a promising alternative or adjunct therapy for psoriasis by modulating multiple pathways and exhibiting fewer side effects compared to conventional treatments. MicroRNAs (miRNAs) are short RNAs that are involved in regulating gene expression after transcription, namely by suppressing gene activity. Recent research on miRNAs has uncovered their significant significance in the development of psoriasis. In this review, we examined the latest developments in the investigation of miRNAs in psoriasis. Previous studies have revealed that imbalanced miRNAs in psoriasis have a significant impact on the processes of keratinocyte differentiation, proliferation, and the progression of inflammation. Furthermore, miRNAs exert an impact on the activity of immune cells involved in psoriasis, such as Langerhans cells, dendritic cells, and CD4+ T cells. Furthermore, we explore potential miRNA-focused treatment options for psoriasis, including the localized administration of external miRNA mimics, and miRNA inhibitors. The effectiveness of natural products and miRNAs in treating psoriasis, as well as the signaling pathways that may be involved, are summarized in this article.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Adel Alfaifi
- Department of Dermatology, Armed Forces Hospital - Southern Region, 62413, Khamis Mushait, Saudi Arabia
| | - Rania H Hassan
- Dermatology Clinic, Abbasseya Psychiatric Hospital, Abbasseya, Cairo, 11517, Egypt
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Badr City, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Badr City, , 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Nasr City, 11231, Egypt.
| |
Collapse
|
25
|
Bouwman W, Raymakers R, van der Poll T, van de Stolpe A. Comparison Between Signal Transduction Pathway Activity in Blood Cells of Sepsis Patients and Laboratory Models. Cells 2025; 14:311. [PMID: 39996782 PMCID: PMC11854017 DOI: 10.3390/cells14040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Sepsis represents a serious disease burden that lacks effective treatment. Drug development for sepsis requires laboratory models that adequately represent sepsis patients. Simultaneous Transcriptome-based Activity Profiling of Signal Transduction Pathway (STAP-STP) technology quantitatively infers STP activity from mRNA levels of target genes of the STP-associated transcription factor. Here, we used STAP-STP technology to compare STP activities between sepsis patients and lipopolysaccharide (LPS)-based models. Activity scores of Androgen Receptor (AR), TGFβ, NFκB, JAK-STAT1/2, and JAK-STAT3 STPs were calculated based on publicly available transcriptome data. Peripheral blood mononuclear cells (PBMCs) from patients with Gram-negative sepsis, nor PBMCs stimulated with LPS in vitro, showed altered STP activity. Increased NFκB, JAK-STAT1/2, and JAK-STAT3 STP activity was found in whole blood stimulated with LPS in vitro, and in whole blood obtained after intravenous injection of LPS in humans in vivo; AR and TGFβ STP activity only increased in the in vivo LPS model. These results resembled previously reported STP activity in whole blood of sepsis patients. We provide the first comparison of STP activity between patients with sepsis and laboratory model systems. Results are of use for the refinement of sepsis model systems for rational drug development.
Collapse
Affiliation(s)
- Wilbert Bouwman
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Tom van der Poll
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
26
|
Silva DKC, Novo LBDC, Ribeiro IM, Barreto BC, Opretzka LCF, Meira CS, Soares MBP. Physalin F, a Potent Inhibitor of Lymphocyte Function, Is a Calcineurin Inhibitor and Has Synergistic Effect with Dexamethasone. Molecules 2025; 30:916. [PMID: 40005226 PMCID: PMC11858416 DOI: 10.3390/molecules30040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The dysregulation of immune responses are responsible for the development of several diseases, such as allergic and autoimmune diseases. The medications used to treat these conditions have numerous side effects, creating the need for new drugs. Physalins are natural compounds with various pharmacological activities already described. Here, we aimed to investigate the immunomodulatory effects of physalin F in mouse splenocytes and in a delayed-type hypersensitivity (DTH) model. In a cytotoxicity assay, physalin F had low cytotoxicity to mouse splenocytes in concentrations equal to or below 2 µM. It significantly inhibited lymphocyte proliferation in a concentration-dependent manner and reduced the production of cytokines, including IL-2, IL-4, IL-10, and IFN-γ, in activated splenocytes. The combined therapy of physalin F with dexamethasone was investigated in vitro, showing a synergistic action of the two compounds. Mechanistically, physalin F reduced calcineurin activity in concanavalin A-stimulated splenocyte cultures. Finally, in vivo, the intraperitoneal administration of physalin F in a DTH model reduced paw edema induced by bovine serum albumin immunization. Our results demonstrate the potential of physalin F as an immunosuppressive agent, to be used alone or in combination with glucocorticoids.
Collapse
Affiliation(s)
- Dahara Keyse Carvalho Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil; (D.K.C.S.); (L.B.d.C.N.); (C.S.M.)
| | - Laura Beatriz da Cruz Novo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil; (D.K.C.S.); (L.B.d.C.N.); (C.S.M.)
| | - Ivone Maria Ribeiro
- Laboratory of Natural Products Chemistry—PN2, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 22775-903, RJ, Brazil;
| | - Breno Cardim Barreto
- Institute for Innovation in Advanced Health Systems, National Service for Industrial Learning—Integrated Center for Manufacturing and Technology (SENAI CIMATEC), Salvador 41650-010, BA, Brazil; (B.C.B.); (L.C.F.O.)
| | - Luiza Carolina França Opretzka
- Institute for Innovation in Advanced Health Systems, National Service for Industrial Learning—Integrated Center for Manufacturing and Technology (SENAI CIMATEC), Salvador 41650-010, BA, Brazil; (B.C.B.); (L.C.F.O.)
| | - Cássio Santana Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil; (D.K.C.S.); (L.B.d.C.N.); (C.S.M.)
- Institute for Innovation in Advanced Health Systems, National Service for Industrial Learning—Integrated Center for Manufacturing and Technology (SENAI CIMATEC), Salvador 41650-010, BA, Brazil; (B.C.B.); (L.C.F.O.)
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, BA, Brazil; (D.K.C.S.); (L.B.d.C.N.); (C.S.M.)
- Institute for Innovation in Advanced Health Systems, National Service for Industrial Learning—Integrated Center for Manufacturing and Technology (SENAI CIMATEC), Salvador 41650-010, BA, Brazil; (B.C.B.); (L.C.F.O.)
| |
Collapse
|
27
|
Taylor O, Kelly L, El-Hodiri H, Fischer AJ. Sphingosine-1-phosphate signaling through Müller glia regulates neuroprotection and the accumulation of immune cells in the rodent retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636254. [PMID: 39975061 PMCID: PMC11838470 DOI: 10.1101/2025.02.03.636254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The purpose of this study was to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, neuroprotection, and reprogramming of Müller glia (MG) into neurogenic MG-derived progenitor cells (MGPCs) in the adult mouse retina. We found that S1P-related genes were dynamically regulated following retinal damage. S1pr1 (encoding S1P receptor 1) and Sphk1 (encoding sphingosine kinase 1) are expressed at low levels by resting MG and are rapidly upregulated following acute damage. Overexpression of the neurogenic bHLH transcription factor Ascl1 in MG downregulates S1pr1, and inhibition of Sphk1 and S1pr1/3 enhances Ascl1-driven differentiation of bipolar-like cells and suppresses glial differentiation. Treatments that activate S1pr1 or increase retinal levels of S1P initiate pro-inflammatory NFκB-signaling in MG, whereas treatments that inhibit S1pr1 or decreased levels of S1P suppress NFκB-signaling in MG in damaged retinas. Conditional knock-out of NFκB-signaling in MG increases glial expression of S1pr1 but decreases levels of S1pr3 and Sphk1. Conditional knock-out (cKO) of S1pr1 in MG, but not Sphk1, enhances the accumulation of immune cells in acutely damaged retinas. cKO of S1pr1 is neuroprotective to ganglion cells, whereas cKO of Sphk1 is neuroprotective to amacrine cells in NMDA-damaged retinas. Consistent with these findings, pharmacological treatments that inhibit S1P receptors or inhibit Sphk1 had protective effects upon inner retinal neurons. We conclude that the S1P-signaling pathway is activated in MG after damage and this pathway acts secondarily to restrict the accumulation of immune cells, impairs neuron survival and suppresses the reprogramming of MG into neurogenic progenitors in the adult mouse retina.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Lisa Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Sivan S, Vijayakumar G, Pillai IC. Non-coding RNAs mediating the regulation of genes and signaling pathways in aortic valve calcification. Gene 2025; 936:149117. [PMID: 39580125 DOI: 10.1016/j.gene.2024.149117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Silpa Sivan
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India
| | - Gayathri Vijayakumar
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India
| | - Indulekha Cl Pillai
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India.
| |
Collapse
|
29
|
Yao Y, Zhang J, Huang K, Peng Y, Cheng S, Liu S, Zhou T, Chen J, Li H, Zhao Y, Wang H. Engineered CAF-cancer cell hybrid membrane biomimetic dual-targeted integrated platform for multi-dimensional treatment of ovarian cancer. J Nanobiotechnology 2025; 23:83. [PMID: 39910555 PMCID: PMC11796236 DOI: 10.1186/s12951-025-03165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The efficacy of current therapies for ovarian cancer is limited due to the multilevel and complex tumor microenvironment (TME), which induces drug resistance and tumor progression in a single treatment regimen. Additionally, poor targeting and insufficient tissue penetration are important constraints in ovarian cancer treatment. RESULT We constructed PH20-overexpressing cancer-associated fibroblast (CAF)-cancer hybrid-cell membrane vesicles (PH20/CCM) for the dual-targeted delivery of carboplatin (CBP) and siRNA targeting p65 (sip65) loaded on the poly (dimethyl diallyl ammonium chloride) (PDDA)-modified MXene (PMXene), named PMXene@CBP-sip65 (PMCS). The nanoparticle PH20/CCM@PMCS could penetrate the extracellular matrix of tumor tissues and target both cancer cells and CAFs. After tumor cell internalization, these nanoparticles significantly inhibited cancer cell proliferation, generated reactive oxygen species, induced endoplasmic reticulum stress, and triggered immunogenic cell death. After CAF internalization, they inhibited pro-tumor factor release and activated immune effects, promoting immune system infiltration. In an experiment with ID8 homograft-carrying mice, PH20/CCM@PMCS significantly improved tumor inhibition and enhanced immune infiltration in tumor tissues. CONCLUSION These new therapeutic nanoparticles can simultaneously target tumor cells, CAFs, immune cells, and the extracellular matrix, thereby increasing treatment sensitivity and improving the TME. Therefore, these TME-regulating nanoparticles, combining specificity, efficiency, and effectiveness, provide new insights into ovarian cancer treatment.
Collapse
Affiliation(s)
- Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jiarui Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Kexin Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yingying Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shuangge Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jinhua Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, 430022, China.
| |
Collapse
|
30
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Le Voyer T, Debray JC, Stolzenberg MC, Schmutz M, Pellé O, Becquard T, Rodrigo Riestra M, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Bretot C, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Mutations disrupting the kinase domain of IKKα lead to immunodeficiency and immune dysregulation in humans. J Exp Med 2025; 222:e20240843. [PMID: 39812688 PMCID: PMC11734625 DOI: 10.1084/jem.20240843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was unexpectedly partially impaired. Reintroducing wt CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of biallelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding, and suggesting IKKα's role in canonical NF-κB target gene expression in humans.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Boris Sorin
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charline Courteille
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Duong Ho-Nhat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Jean-Christophe Debray
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Olivier Pellé
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Thomas Becquard
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - María Rodrigo Riestra
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Laureline Berteloot
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Laure Delage
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Marie Jeanpierre
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charlotte Boussard
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Camille Brunaud
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Aude Magérus
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charles Bretot
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - Victor Michel
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Camille Roux
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hopitaux de Paris (AP-HP), University Paris Cité, Paris, France
| | - Cécile Masson
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Aurélien Corneau
- UMS037, PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière CyPS, Sorbonne Université, Paris, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Véronique Baud
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Alain Fischer
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Collège de France, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Cécile Boulanger
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| |
Collapse
|
31
|
Leib L, Juli J, Jurida L, Mayr-Buro C, Priester J, Weiser H, Wirth S, Hanel S, Heylmann D, Weber A, Schmitz ML, Papantonis A, Bartkuhn M, Wilhelm J, Linne U, Meier-Soelch J, Kracht M. The proximity-based protein interactome and regulatory logics of the transcription factor p65 NF-κB/RELA. EMBO Rep 2025; 26:1144-1183. [PMID: 39753783 PMCID: PMC11850942 DOI: 10.1038/s44319-024-00339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 02/26/2025] Open
Abstract
The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties. A targeted RNAi screen for 38 interactors and subsequent functional transcriptome and bioinformatics studies identify gene regulatory (sub)networks, each controlled by RELA in combination with one of the TFs ZBTB5, GLIS2, TFE3/TFEB, or S100A8/A9. The large, dynamic and versatile high-resolution interactome of RELA and its gene regulatory logics provides a rich resource and a new framework for explaining how RELA cooperativity determines gene expression patterns.
Collapse
Affiliation(s)
- Lisa Leib
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Jana Juli
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Liane Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Christin Mayr-Buro
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Jasmin Priester
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Hendrik Weiser
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Stefanie Wirth
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Simon Hanel
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | | | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Jochen Wilhelm
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- German Center for Lung Research (DZL) and Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Uwe Linne
- Mass Spectrometry Facility of the Department of Chemistry, Philipps University, Marburg, Germany
| | - Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
- Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.
- German Center for Lung Research (DZL) and Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
| |
Collapse
|
32
|
Yang Z, Guo H, Zhang P, Liu K, Ba J, Bai X, Shama S, Zhang B, Gao X, Kang J. Capsaicin (CAP) exerts a protective effect against ethanol-induced oxidative gastric mucosal injury by modulating the chemokine receptor 4 (CCR4)/Src/p47phox signaling pathway both in vitro and in vivo. Chin J Nat Med 2025; 23:191-202. [PMID: 39986695 DOI: 10.1016/s1875-5364(25)60823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 02/24/2025]
Abstract
Ethanol (EtOH) is a common trigger for gastric mucosal diseases, and mitigating oxidative stress is essential for attenuating gastric mucosal damage. Capsaicin (CAP) has been identified as a potential agent to counteract oxidative damage in the gastric mucosa; however, its precise mechanism remains unclear. This study demonstrates that CAP alleviates EtOH-induced gastric mucosal injuries through two primary pathways: by suppressing the chemokine receptor 4 (CCR4)/Src/p47phox axis, thereby reducing oxidative stress, and by inhibiting the phosphorylation and nuclear translocation of nuclear factor-κB p65 (NF-κB) p65, resulting in diminished inflammatory responses. These findings elucidate the mechanistic pathways of CAP and provide a theoretical foundation for its potential therapeutic application in the treatment of gastric mucosal injuries.
Collapse
Affiliation(s)
- Zhiru Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Haolin Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102499, China
| | - Pengfei Zhang
- Tianjin Pharmaceutical and Cosmetic Evaluation and Inspection Center, Tianjin 300191, China
| | - Kairui Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Junli Ba
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xue Bai
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shiti Shama
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Bo Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China; Institute of Biomedical Research, Henan Academy of Sciences, Zhengzhou 450046, China.
| | - Xiaoning Gao
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Jun Kang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
33
|
Bakırdöğen D, Görgülü K, Xin J, Alcalá S, Ruiz-Cañas L, Frank K, Wu N, Diakopoulos KN, Dai C, Öztürk H, Demircioğlu D, Peschke K, Ranjan R, Fusco F, Martinez-Useros J, Fernandez-Aceñero MJ, Chhabra NF, López-Gil JC, Ai J, Ruess DA, Kaya-Aksoy E, Steiger K, Schmidt F, Kohlmann L, Berninger A, Schmid RM, Reichert M, Adli M, Lesina M, Sainz B, Algül H. c-Rel drives pancreatic cancer metastasis through Fibronectin-Integrin signaling-induced isolation stress resistance and EMT activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635445. [PMID: 39975057 PMCID: PMC11838362 DOI: 10.1101/2025.01.29.635445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Pancreatic ductal adenocarcinoma remains one of the deadliest malignancies, with limited treatment options and a high recurrence rate. Recurrence happens often with metastasis, for which cancer cells must adapt to isolation stress to successfully colonize distant organs. While the fibronectin-integrin axis has been implicated in this adaptation, its regulatory mechanisms require further elaboration. Here, we identify c-Rel as an oncogenic driver in PDAC, promoting epithelial-to-mesenchymal transition (EMT) plasticity, extracellular matrix (ECM) remodeling, and resistance to isolation stress. Mechanistically, c-Rel directly regulates fibronectin (Fn1) and CD61 (itgb3) transcription, enhancing cellular plasticity and survival under anchorage-independent conditions. Fibronectin is not essential for EMT, but its absence significantly impairs metastatic colonization, highlighting a tumor-autonomous role for FN1 in isolation stress adaptation. These findings establish c-Rel as a key regulator of PDAC metastasis by controlling circulating tumor cell (CTC) niche and survival, suggesting that targeting the c-Rel-fibronectin-integrin axis could provide new therapeutic strategies to mitigate disease progression and recurrence.
Collapse
Affiliation(s)
- D Bakırdöğen
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - K Görgülü
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - J Xin
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - S Alcalá
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28049, Madrid, Spain
| | - L Ruiz-Cañas
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28049, Madrid, Spain
| | - K Frank
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - N Wu
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - K N Diakopoulos
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - C Dai
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - H Öztürk
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - D Demircioğlu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - K Peschke
- Translational Pancreatic Cancer Research Center, TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich
- Center for Protein Assemblies (CPA), Technical University of Munich, Germany
- Center for Organoid Systems (COS), Technische Universität München, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - R Ranjan
- Translational Pancreatic Cancer Research Center, TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich
- Center for Protein Assemblies (CPA), Technical University of Munich, Germany
- Center for Organoid Systems (COS), Technische Universität München, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - F Fusco
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - J Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | | | - N F Chhabra
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich
| | - J C López-Gil
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28049, Madrid, Spain
| | - J Ai
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, China
| | - D A Ruess
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - E Kaya-Aksoy
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - K Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - F Schmidt
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - L Kohlmann
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - A Berninger
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - R M Schmid
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich
| | - M Reichert
- Translational Pancreatic Cancer Research Center, TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Center, Technical University of Munich
- Center for Protein Assemblies (CPA), Technical University of Munich, Germany
- Center for Organoid Systems (COS), Technische Universität München, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - M Adli
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - M Lesina
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| | - B Sainz
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Cancer Department, Instituto de Investigaciones Biomédicas (IIBM) Sols-Morreale CSIC-UAM, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain
| | - H Algül
- Comprehensive Cancer Center Munich CCCM, Technische Universität München, Munich, Germany
| |
Collapse
|
34
|
Bahriz HA, Abdelaziz RR, El-Kashef DH. Desloratadine mitigates hepatocellular carcinoma in rats: Possible contribution of TLR4/MYD88/NF-κB pathway. Toxicol Appl Pharmacol 2025; 495:117202. [PMID: 39672344 DOI: 10.1016/j.taap.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/03/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Chemotherapeutic medication-induced systemic toxicity makes cancer treatment less effective. Thus, the need for drug repurposing, which aids in the development of safe and efficient cancer therapies, is urgent. The primary goal of this research was to assess desloratadine hepatoprotective abilities and its capacity to attenuate TLR4/MyD88/NF-κB inflammatory pathway in hepatocellular carcinoma (HCC) induced by thioacetamide (TAA). Male Sprague Dawely rats received TAA injections (200 mg/kg, i.p., 2 times/week) for 16 weeks. To confirm the development of HCC, liver function biomarkers and histopathological analysis were evaluated. Desloratadine (5 mg/kg, p.o.) was administered to rats in 2 treatment groups; HCC + DES 1 group received desloratadine with TAA for 1 month from week 13-16, HCC + DES 2 group received desloratadine with TAA for 2 months from week 9-16. Chronic TAA administration resulted in considerable overexpression of the profibrogenic cytokine TGF-β and elevation in protein expression of NF-κB besides levels of TLR4, MyD88, TRAF6, TAK1 and IL-1β. Desloratadine administration showed a significant improvement in liver function tests, as well as an increase in tissue antioxidant enzymes and an improvement in the liver's histopathological features. Collectively, desloratadine through modulating TLR4/MyD88/TRAF6/TAK1/NF-κB and acting as an antioxidant, is a promising treatment for HCC induced by TAA.
Collapse
Affiliation(s)
- Heba A Bahriz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
35
|
Alruhaimi RS, Hussein OE, Alnasser SM, Elbagory I, Alzoghaibi MA, Kamel EM, El Mohtadi M, Mahmoud AM. Haloxylon salicornicum Phytochemicals Suppress NF-κB, iNOS and Pro-Inflammatory Cytokines in Lipopolysaccharide-Induced Macrophages. Chem Biodivers 2025; 22:e202401623. [PMID: 39355861 DOI: 10.1002/cbdv.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Haloxylon salicornicum is traditionally used for the treatment of several disorders associated with inflammation. Despite it is a defense response against tissue injury and infections, inflammation can become a chronic condition that can negatively impact the body. This study investigated the effect of H. salicornicum phytochemicals nuclear factor-kappaB (NF-κB), inducible nitric oxide synthase (iNOS) and cytokines release by lipopolysaccharide (LPS)-challenged macrophages in vitro. The binding affinity of the tested phytochemical towards NF-κB and iNOS was investigated using molecular docking. Ten compounds (four coumarins, three sterols and three flavonoids) were isolated from the ethanolic extract of H. salicornicum. Treatment of LPS-challenged macrophages with the compounds resulted in remarkable decrease in NF-κB p65 and iNOS mRNA abundance. All compounds suppressed the production of nitric oxide (NO) and the pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-6) from macrophages challenged with LPS. Molecular docking revealed the ability of the isolated phytochemicals to bind NF-κB p65 and iNOS. In conclusion, H. salicornicum is a rich source of phytochemicals with anti-inflammatory properties. The anti-inflammatory efficacy of H. salicornicum phytoconstituents is mediated via their ability to modulate NF-κB and iNOS, and suppress the release of NO, TNF-α, and IL-6 from macrophages.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Omnia E Hussein
- Higher Technological Institute for Applied Health Sciences, Beni-Suef, Egypt
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Ibrahim Elbagory
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Emadeldin M Kamel
- Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
36
|
Wang T, Lin P, Wang Y, Chen Y, Zhang Z, Li F, Feng J. FADD cooperates with Caspase-8 to positively regulate the innate immune response and promote apoptosis following bacterial infection in Japanese eel. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110110. [PMID: 39755288 DOI: 10.1016/j.fsi.2024.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Fas-associated protein with Death Domain (FADD) is a crucial signaling component of apoptosis and a vital immunomodulator on inflammatory signaling pathways. However, information on FADD-mediated apoptosis and immune regulation is limited in teleost. We herein cloned a FADD homolog, AjFADD, from Japanese eel (Anguilla japonica). Expression analysis revealed that AjFADD was significantly induced by LPS, poly I:C, and Aeromonas hydrophila infection in vivo and in vitro. The expression of IFNs and IRFs, c-Rel and c-Fos, IL1 and TNF-α, and the essential antimicrobial peptide LEAP-2 in Japanese eel liver cells was enhanced by overexpressing AjFADD, with a significant decrease of those genes following knockdown AjFADD. Luciferase activity assay, flow cytometry, and wound healing results showed that AjFADD cooperated with AjCaspase-8 to promote apoptosis of HEK293 cells and Japanese eel liver cells infected with A. hydrophila. Furthermore, AjFADD and AjCaspase-8 co-localized in the cytoplasm and displayed a direct protein-protein interaction by immunoprecipitation. Our results collectively showed that FADD cooperated with Caspase-8 to positively regulate the innate immune response and promote apoptosis in response to the A. hydrophila challenge in Japanese eel.
Collapse
Affiliation(s)
- Tianyu Wang
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Peng Lin
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Yilei Wang
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Yun Chen
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fuyan Li
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China
| | - Jianjun Feng
- Jimei University, College of Fisheries, Key Laboratory of Healthy Mariculture for the East China Sea, Xiamen, 361021, China; Jimei University, College of Fisheries, Engineering Research Center of the Modern Technology for Eel Industry, Xiamen, 361021, China.
| |
Collapse
|
37
|
He H, Xu X, Yu Z, Xu F, Chen H. Regulation of Ferroptosis in Intestinal Epithelial Cells by Formononetin via the RXRA/PPARG Pathway. J Interferon Cytokine Res 2025; 45:68-75. [PMID: 39834185 DOI: 10.1089/jir.2024.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Recent studies have revealed that formononetin, a naturally occurring isoflavone found in kudzu root and licorice, has the potential to inhibit ferroptosis in intestinal epithelial cells. Inflammatory bowel disease (IBD) often involves oxidative stress-related pathways, making the modulation of ferroptosis a promising therapeutic avenue. We employed a combination of several techniques to explore how formononetin regulates the retinoid X receptor alpha/peroxisome proliferator activated receptor gamma (RXRA/PPARG) pathway to inhibit ferroptosis in Fetal Human Colonic Epithelial Cells (FHC) induced by RSL3. These techniques included propidium iodide staining, the levels of reactive oxygen species (ROS), Fe2+, malondialdehyde (MDA), and ferroptosis-inhibitory proteins glutathione peroxidase 4 (GPX4) and FTH analysis, Western blot analysis, and gene silencing. Our results demonstrate that formononetin significantly mitigated RSL3-induced ferroptosis as evidenced by reduced cellular levels of ROS, Fe2+, and MDA, alongside an increased expression of GPX4 and FTH. Silencing the RXRA gene reverses the protective effects of formononetin, highlighting that formononetin inhibits ferroptosis in FHC by upregulating the levels of RXRA. These findings provide new molecular targets for potential therapeutic intervention in IBD, suggesting that upregulating RXRA and PPARG expression via formononetin could be a viable strategy to mitigate ferroptosis-associated cellular damage. This could potentially lead to novel treatments for patients suffering from IBD.
Collapse
Affiliation(s)
- Huijuan He
- Department of Anorectal Surgery, the First People's Hospital of Chun'an County, Zhejiang, China
| | - Xiaobo Xu
- Department of Anorectal Surgery, the First People's Hospital of Chun'an County, Zhejiang, China
| | - Zhengyao Yu
- Department of Anorectal Surgery, the First People's Hospital of Chun'an County, Zhejiang, China
| | - Fenfen Xu
- Department of Anorectal Surgery, the First People's Hospital of Chun'an County, Zhejiang, China
| | - Huazhen Chen
- Department of Emergency, Traditional Chinese Hospital of Chun'an County, Hangzhou City, China
| |
Collapse
|
38
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2025; 155:255-274. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
39
|
Zhao Q, Wang Q, Yao Q, Yang Z, Li W, Cheng X, Wen Y, Chen R, Xu J, Wang X, Qin D, Zhu S, He L, Li N, Wu Y, Yu Y, Cao X, Wang P. Nonenzymatic lysine D-lactylation induced by glyoxalase II substrate SLG dampens inflammatory immune responses. Cell Res 2025; 35:97-116. [PMID: 39757301 PMCID: PMC11770101 DOI: 10.1038/s41422-024-01060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Immunometabolism is critical in the regulation of immunity and inflammation; however, the mechanism of preventing aberrant activation-induced immunopathology remains largely unclear. Here, we report that glyoxalase II (GLO2) in the glycolysis branching pathway is specifically downregulated by NF-κB signaling during innate immune activation via tristetraprolin (TTP)-mediated mRNA decay. As a result, its substrate S-D-lactoylglutathione (SLG) accumulates in the cytosol and directly induces D-lactyllysine modification of proteins. This nonenzymatic lactylation by SLG is greatly facilitated by a nearby cysteine residue, as it initially reacts with SLG to form a reversible S-lactylated thiol intermediate, followed by SN-transfer of the lactyl moiety to a proximal lysine. Lactylome profiling identifies 2255 lactylation sites mostly in cytosolic proteins of activated macrophages, and global protein structure analysis suggests that proximity to a cysteine residue determines the susceptibility of lysine to SLG-mediated D-lactylation. Furthermore, lactylation is preferentially enriched in proteins involved in immune activation and inflammatory pathways, and D-lactylation at lysine 310 (K310) of RelA attenuates inflammatory signaling and NF-κB transcriptional activity to restore immune homeostasis. Accordingly, TTP-binding site mutation or overexpression of GLO2 in vivo blocks this feedback lactylation in innate immune cells and promotes inflammation, whereas genetic deficiency or pharmacological inhibition of GLO2 restricts immune activation and attenuates inflammatory immunopathology both in vitro and in vivo. Importantly, dysregulation of the GLO2/SLG/D-lactylation regulatory axis is closely associated with human inflammatory phenotypes. Overall, our findings uncover an immunometabolic feedback loop of SLG-induced nonenzymatic D-lactylation and implicate GLO2 as a promising target for combating clinical inflammatory disorders.
Collapse
Affiliation(s)
- Qihang Zhao
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China
| | - Qiang Wang
- Department of Urology, People's Hospital, Peking University, Beijing, China
| | - Qinghua Yao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Zhejiang, China
| | - Zhengdong Yang
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China
| | - Wenfang Li
- Department of Emergency and Intensive Care Unit, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaojie Cheng
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China
| | - Yingling Wen
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China
| | - Rong Chen
- Department of Urology, People's Hospital, Peking University, Beijing, China
| | - Junfang Xu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuanying Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Zhejiang, China
| | - Dexiang Qin
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China
| | - Shuyang Zhu
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China
| | - Liujie He
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China
| | - Nan Li
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China
| | - Yanfeng Wu
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China.
| | - Xuetao Cao
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China.
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Pin Wang
- National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China.
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China.
| |
Collapse
|
40
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Hashim A, Wilson DA, Weiss LM, Shukla S, Chokkalingam P, Das S, Das BC, Saito M. Methionine Aminopeptidase 2 (MetAP2) Inhibitor BL6 Attenuates Inflammation in Cultured Microglia and in a Mouse Model of Alzheimer's Disease. Molecules 2025; 30:620. [PMID: 39942725 PMCID: PMC11820257 DOI: 10.3390/molecules30030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) plays an important role in the regulation of protein synthesis and post-translational processing. Preclinical/clinical applications of MetAP2 inhibitors for the treatment of various diseases have been explored because of their antiangiogenic, anticancer, antiobesity, antidiabetic, and immunosuppressive properties. However, the effects of MetAP2 inhibitors on CNS diseases are rarely examined despite the abundant presence of MetAP2 in the brain. Previously, we synthesized a novel boron-containing MetAP2 inhibitor, BL6, and found that it suppressed angiogenesis and adipogenesis yet improved glucose uptake. Here, we studied the anti-inflammatory effects of BL6 in SIM-A9 microglia and in a mouse model of Alzheimer's disease generated by the intracerebroventricular (icv) injection of streptozotocin (STZ). We found that BL6 reduced proinflammatory molecules, such as nitric oxide, iNOS, IL-1β, and IL-6, together with phospho-Akt and phospho-NF-κB p65, which were elevated in lipopolysaccharide (LPS)-activated microglial SIM-A9 cells. However, the LPS-induced reduction in Arg-1 and CD206 was attenuated by BL6, suggesting that BL6 promotes microglial M1 to M2 polarization. BL6 also decreased glial activation along with a reduction in phospho-tau and an elevation in synaptophysin in the icv-STZ mouse model. Thus, our experiments demonstrate an anti-neuroinflammatory action of BL6, suggesting possible clinical applications of MetAP2 inhibitors for brain disorders in which neuroinflammation is involved.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Audrey Hashim
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY 10016, USA
| | - Louis M. Weiss
- Department of Pathology/Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Srushti Shukla
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Parthiban Chokkalingam
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Sasmita Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Bhaskar C. Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
41
|
Cui G, Wang M, Liu Z, Chang C, Wu Y, Li X, Sun Z. Investigating the therapeutic effects and potential mechanisms of Zuojin Pill in the treatment of gastroesophageal reflux disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119230. [PMID: 39662861 DOI: 10.1016/j.jep.2024.119230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP), a traditional Chinese medicinal formula, is widely recognized for its diverse pharmacological properties in the management of gastrointestinal disorders. However, the precise mechanisms underlying its therapeutic effects in gastroesophageal reflux disease (GERD) remain inadequately understood. AIM OF THE STUDY This study aims to investigate the therapeutic effects of ZJP in GERD and to elucidate the molecular mechanisms involved. MATERIALS AND METHODS The chemical composition of ZJP was characterized using HPLC-Q-Exactive-MS. A rat model of GERD was established through esophagogastric anastomosis, and three different doses of ZJP were administered. Histological changes were assessed via hematoxylin-eosin (H&E) staining, while pro-inflammatory cytokines were quantified to evaluate the anti-inflammatory effects of ZJP. Network pharmacology combined with bioinformatics analysis was employed to predict potential therapeutic targets and signaling pathways of ZJP in GERD. Validation of the mechanisms was conducted through Western blotting, immunofluorescence (IF), transmission electron microscopy (TEM), and immunohistochemistry (IHC). RESULTS The results demonstrated that ZJP effectively alleviated pathological alterations and reduced pro-inflammatory cytokine levels in esophageal tissues of GERD rats. Western blotting and IF analysis of E-cadherin and claudin-1 confirmed that ZJP enhanced the integrity of the esophageal mucosal barrier. TEM imaging revealed that ZJP restored intercellular space (DIS), increased desmosome density, thereby protecting esophageal tissues from the detrimental effects of GERD. Furthermore, ZJP modulated macrophage polarization in the GERD rat model. Mechanistic investigations indicated that ZJP exerted its therapeutic effects by inhibiting MAPK/NF-κB signaling pathway activation and downregulating the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and matrix metalloproteinase 2 (MMP2), consistent with predictions from network pharmacology analysis. CONCLUSIONS This study provides comprehensive evidence for the therapeutic efficacy of ZJP in GERD, acting through modulation of inflammation, mucosal barrier integrity, and macrophage polarization. Additionally, ZJP downregulated PTGS2 and MMP2 expression and suppressed the activation of MAPK/NF-κB signaling pathways, underscoring its potential as a therapeutic intervention for GERD.
Collapse
Affiliation(s)
- Guoliang Cui
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Manli Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiting Liu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Cheng Chang
- Jiangsu Provincial Hospital of Chinese medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 225200, China.
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiguang Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
42
|
Fay EJ, Isterabadi K, Rezanka CM, Le J, Daugherty MD. Evolutionary and functional analyses reveal a role for the RHIM in tuning RIPK3 activity across vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.09.593370. [PMID: 39149247 PMCID: PMC11326134 DOI: 10.1101/2024.05.09.593370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Receptor interacting protein kinases (RIPK) RIPK1 and RIPK3 play important roles in diverse innate immune pathways. Despite this, some RIPK1/3-associated proteins are absent in specific vertebrate lineages, suggesting that some RIPK1/3 functions are conserved while others are more evolutionarily labile. Here, we perform comparative evolutionary analyses of RIPK1-5 and associated proteins in vertebrates to identify lineage-specific rapid evolution of RIPK3 and RIPK1 and recurrent loss of RIPK3-associated proteins. Despite this, diverse vertebrate RIPK3 proteins are able to activate NF-κB and cell death in human cells. Additional analyses revealed a striking conservation of the RIP homotypic interaction motif (RHIM) in RIPK3, as well as other human RHIM-containing proteins. Interestingly, diversity in the RIPK3 RHIM can tune activation of NF-κB while retaining the ability to activate cell death. Altogether, these data suggest that NF-κB activation is a core, conserved function of RIPK3, and the RHIM can tailor RIPK3 function to specific needs within and between species.
Collapse
Affiliation(s)
- Elizabeth J. Fay
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Kolya Isterabadi
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Charles M. Rezanka
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Jessica Le
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Matthew D. Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
43
|
Shi S, Ou X, Liu C, Li R, Zheng Q, Hu L. NF-κB signaling and the tumor microenvironment in osteosarcoma: implications for immune evasion and therapeutic resistance. Front Immunol 2025; 16:1518664. [PMID: 39949765 PMCID: PMC11821961 DOI: 10.3389/fimmu.2025.1518664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
Osteosarcoma, a highly aggressive malignancy with a generally poor prognosis, is characterized by tumor cells' ability to evade immune responses and resist treatment. The nuclear transcription factor NF-κB signaling pathway is crucial in regulating inflammatory and immune reactions. It occupies a central position in the development of the osteosarcoma tumor microenvironment. This research aimed to explore how NF-κB influences the recruitment and polarization of tumor-associated macrophages and myeloid-derived suppressor cells, both of which contribute to immunosuppression. Furthermore, NF-κB facilitates immune surveillance evasion in osteosarcoma cells by altering the expression of immune checkpoint molecules, such as PD-L1. It also enhances tumor cell resistance to chemotherapy and radiotherapy by activating anti-apoptotic signaling pathways and exacerbating treatment-induced inflammation. Potential therapeutic approaches include using NF-κB inhibitors, possibly in combination with immune checkpoint inhibitors, to overcome tumor cell resistance mechanisms and reshape antitumor immune responses. A thorough examination of NF-κB's role in osteosarcoma development is expected to yield novel clinical treatment strategies, and significantly improve patient prognosis by targeting this key signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Leiming Hu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, XI’an, China
| |
Collapse
|
44
|
Chuaikhongthong W, Khimmaktong W, Thipthong N, Lorthong N, Chaisakul J. Respiratory Muscle Injury Following Acute Monocled Cobra ( Naja kaouthia) Envenoming: Histopathological Study in Rat Diaphragm. Curr Issues Mol Biol 2025; 47:86. [PMID: 39996807 PMCID: PMC11854468 DOI: 10.3390/cimb47020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Clinical symptoms of monocled cobra (Naja kaouthia) envenoming include the paralysis of extraocular muscles, local tissue necrosis and death through respiratory failure. These neurotoxic outcomes are mainly due to the inhibitory action of postsynaptic neurotoxins to nicotinic acetylcholine receptors. However, injuries involving respiratory muscles have rarely been investigated. In this study, we determined the effect of N. kaouthia envenoming on morphological changes in the rat diaphragm. The efficacy of cobra monovalent antivenom in neutralising the histopathological effects of N. kaouthia venom was also evaluated. The intramuscular (i.m.) administration of N. kaouthia venom (2 mg/kg) caused skeletal muscle fibre atrophy and ruptures of myofibrils shown via a light microscope study. Transmission electron microscopy (TEM) revealed the zig-zagging of the Z-band, mitochondrial damages and degeneration of the synaptic fold of the neuromuscular junction following experimental cobra envenoming for 4 h. Intravenous administration of cobra antivenom at manufacturer-recommended doses diminished histopathological changes in the diaphragm following the administration of cobra venom. The expression of NF-kB and MuRF1 in the experimentally N. kaouthia-envenomed diaphragm indicated inflammation and tissue atrophy in the immunofluorescence analysis, respectively. In this study, we found that there were respiratory muscle injuries following N. kaouthia envenoming. The early administration of monovalent N. kaouthia antivenom is capable of neutralising neurotoxic outcomes following cobra envenoming.
Collapse
Affiliation(s)
- Wanida Chuaikhongthong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (W.C.); (W.K.); (N.T.); (N.L.)
| | - Wipapan Khimmaktong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (W.C.); (W.K.); (N.T.); (N.L.)
| | - Natyamee Thipthong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (W.C.); (W.K.); (N.T.); (N.L.)
| | - Nissara Lorthong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (W.C.); (W.K.); (N.T.); (N.L.)
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| |
Collapse
|
45
|
Ze Y, Wu Y, Tan Z, Li R, Li R, Gao W, Zhao Q. Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review. Bone Res 2025; 13:19. [PMID: 39870641 PMCID: PMC11772753 DOI: 10.1038/s41413-025-00403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/29/2025] Open
Abstract
Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent. Studies have shown that multiple signaling pathways are involved in the process of Bmal1 regulating bone and cartilage metabolism, but the exact regulatory mechanisms remain unclear. This paper reviews the signaling pathways by which Bmal1 regulates bone/cartilage metabolism, the upstream regulatory factors that control Bmal1, and the current Bmal1 knockout mouse models for research. We hope to provide new insights for the prevention and treatment of bone/cartilage diseases related to circadian rhythms.
Collapse
Affiliation(s)
- Yiting Ze
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongyao Wu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Tan
- Department of Implant Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Rui Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Rong Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenzhen Gao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
46
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
47
|
Chen Z, Zeng C, Yang L, Che Y, Chen M, Sau L, Wang B, Zhou K, Chen Y, Qing Y, Shen C, Zhang T, Wunderlich M, Wu D, Li W, Wang K, Leung K, Sun M, Tang T, He X, Zhang L, Swaminathan S, Mulloy JC, Müschen M, Huang H, Weng H, Xiao G, Deng X, Chen J. YTHDF2 promotes ATP synthesis and immune evasion in B cell malignancies. Cell 2025; 188:331-351.e30. [PMID: 39694037 DOI: 10.1016/j.cell.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/21/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
Long-term durable remission in patients with B cell malignancies following chimeric antigen receptor (CAR)-T cell immunotherapy remains unsatisfactory, often due to antigen escape. Malignant B cell transformation and oncogenic growth relies on efficient ATP synthesis, although the underlying mechanisms remain unclear. Here, we report that YTHDF2 facilitates energy supply and antigen escape in B cell malignancies, and its overexpression alone is sufficient to cause B cell transformation and tumorigenesis. Mechanistically, YTHDF2 functions as a dual reader where it stabilizes mRNAs as a 5-methylcytosine (m5C) reader via recruiting PABPC1, thereby enhancing their expression and ATP synthesis. Concomitantly, YTHDF2 also promotes immune evasion by destabilizing other mRNAs as an N6-methyladenosine (m6A) reader. Small-molecule-mediated targeting of YTHDF2 suppresses aggressive B cell malignancies and sensitizes them to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA.
| | - Chengwu Zeng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA; Jinan University Institute of Hematology, and Department of Hematology, The Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou 510700, China
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Yuan Che
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Meiling Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA; Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Lillian Sau
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Bintao Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Yu Chen
- Molecular Instrumentation Center, University of California, Los Angeles, CA 90095, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Tingjian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Miao Sun
- Keck School of Medicine, University of Southern California, and Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tingting Tang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Xin He
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lianjun Zhang
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, and Department of Immunobiology, Yale University, New Haven, CT 06511, USA
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Hengyou Weng
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
| | - Gang Xiao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA.
| |
Collapse
|
48
|
Mirzaei Z, Zarei S, Sayadi A, Hosseiniara R, Karimabad MN, Mahmoodi M. Combination effects of Pistachio hull and carfilzomib on NF-κB p65, MDR1, MRP1, and Caspase3 gene expression in breast cancer cell line. BMC Complement Med Ther 2025; 25:15. [PMID: 39844241 PMCID: PMC11752740 DOI: 10.1186/s12906-024-04716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the synergistic effects of the chemotherapy drug Carfilzomib (CFZ) and Pistachio hull extract on the SK-BR3 breast cancer cell line. METHODS In this experimental study, we evaluated the effect of Pistachio hull extract and CFZ as standalone treatments on cell viability using the MTT assay at 24- and 48-hours post-treatment. Following this, we conducted combination therapy analyses to assess the potential synergistic relationship between Pistachio hull extract and CFZ after 24- and 48-hours of treatment on both the SK-BR3 breast cancer cell line and the MCF10A normal cell line. We utilized real-time PCR to measure the expression levels of MDR1, MRP1, NF-κB p65, and Caspase3 genes. Additionally, the NF-κB p65 transcription factor was evaluated using ELISA after 24- and 48-hours. RESULTS The MTT assay revealed IC50 values of 2.014 mg/mL and 1.031 mg/mL in the SK-BR3 cell line, and 3.265 mg/mL and 2.994 mg/mL in the MCF10A cell line at 24- and 48-hours post-treatment with Pistachio hull extract. CFZ concentrations of 0.181 × 10- 3 mg/mL and 0.0057 × 10- 3 mg/mL in the SK-BR3 cell line, as well as 5.54 × 10- 3 mg/mL and 2.51 × 10- 3 mg/mL in the MCF10A cell line, inhibited growth by up to 50%. The analysis of combination therapy indicated a synergistic effect between the two treatments after both 24- and 48-hours of exposure. Real-time PCR results demonstrated significant alterations in the expression of MDR1, MRP1, NF-κB p65, and Caspase3 genes, along with changes in NF-κB p65 protein levels in both cell lines following treatment with Pistachio hull extract, CFZ, or their combination compared to the control group (p < 0.05). CONCLUSION The findings highlight the effectiveness of CFZ as a proteasome inhibitor when used in conjunction with Pistachio hull extract in breast cancer cell lines. Therefore, both CFZ and Pistachio hull extract, whether administered alone or in combination, represent promising molecular targets for breast cancer treatment.
Collapse
Affiliation(s)
- Zahra Mirzaei
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmadreza Sayadi
- Department of Psychiatric Nursing, School of Nursing and Midwifery, Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Hosseiniara
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
49
|
Li H, Ke X, Feng B, Tian H, Cai Z, Zhang A, Man Q. Research progress on the mechanism and markers of metabolic disorders in the occurrence and development of cognitive dysfunction after ischemic stroke. Front Endocrinol (Lausanne) 2025; 16:1500650. [PMID: 39911922 PMCID: PMC11794095 DOI: 10.3389/fendo.2025.1500650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a common complication following a stroke that significantly affects patients' quality of life and rehabilitation outcomes. It also imposes a heavy economic burden. There is an urgent need to better understand the pathophysiology and pathogenesis of PSCI, as well as to identify markers that can predict PSCI early in the clinical stage, facilitating early prevention, monitoring, and treatment. Although the mechanisms underlying PSCI are complex and multifaceted, involving factors such as atherosclerosis and neuroinflammation, metabolic disorders also play a critical role. This article primarily reviews the relationship between metabolic disorders of the three major nutrients-sugar, fat, and protein-and the development of cognitive dysfunction following ischemic stroke (IS). It aims to elucidate how these metabolic disturbances contribute to cognitive dysfunction post-stroke and to explore potential metabolic biomarkers for PSCI. We believe that this review will offer new insights into the early identification, treatment, and prognostic assessment of PSCI.
Collapse
Affiliation(s)
- Huaqiang Li
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bianying Feng
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huan Tian
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenzhen Cai
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
50
|
Thacharodi A, Hassan S, Vithlani A, Ahmed T, Kavish S, Geli Blacknell NM, Alqahtani A, Pugazhendhi A. The burden of group A Streptococcus (GAS) infections: The challenge continues in the twenty-first century. iScience 2025; 28:111677. [PMID: 39877071 PMCID: PMC11773489 DOI: 10.1016/j.isci.2024.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Streptococcus pyogenes is a Gram-positive bacterium, also known as Group A Streptococcus (GAS), that has become a significant threat to the healthcare system, infecting more than 18 million people and resulting in more than 500,000 deaths annually worldwide. GAS infection rates decreased gradually during the 20th century in Western countries, largely due to improved living conditions and access to antibiotics. However, post-COVID-19, the situation has led to a steep increase in GAS infection rates in Europe, the United States, Australia, and New Zealand, which triggers a global concern. GAS infections are normally moderate, with symptoms of fever, pharyngitis, and pyoderma; nevertheless, if left untreated or with continued exposure to GAS or with recurring infections it can result in fatal outcomes. GAS produces a variety of virulence factors and exotoxins that can lead to deadly infections such as necrotizing fasciitis, impetigo, cellulitis, pneumonia, empyema, streptococcal toxic shock syndrome, bacteremia, and puerperal sepsis. In addition, post-immune mediated disorders such as post-streptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease contribute to extremely high death rates in developing nations. Despite substantial research on GAS infections, it is still unclear what molecular pathways are responsible for their emergence and how to best manage them. This review thus provides insights into the most recent research on the pathogenesis, virulence, resistance, and host interaction mechanisms of GAS, as well as novel management options to assist scientific communities in combating GAS infections.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi’s Laboratories, Department of Research and Development, Puducherry 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington 20036, USA
| | - Avadh Vithlani
- Senior Resident, Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Sanjana Kavish
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|