1
|
Zhang Y, Du X, Zhang M, Sun Y. Constructing mRNA-meth-miRNA single-sample networks to reveal the molecular interaction patterns induced by lunar orbital stressors in rice (Oryzasativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109430. [PMID: 39724765 DOI: 10.1016/j.plaphy.2024.109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
To explore the bio-effects during Moon exploration missions, we utilized the Chang'E 5 probe to carry the seeds of Oryza. Sativa L., which were later returned to Earth after 23 days in lunar orbit and planted in an artificial climate chamber. Compared to the control group, rice seeds that underwent spaceflight showed inhibited growth and development when planted on the ground. Then we collected samples and employed RNA sequencing (RNA-Seq) and whole-genome bisulfite sequencing (WGBS) in the tillering and heading stages of rice. To gain a comprehensive understanding of the dysregulation in molecular interaction patterns during Moon exploration, a bioinformatics pipeline based on mRNA-meth-miRNA Single-Sample Networks (SSNs) was developed. Specifically, we constructed four SSNs for each sample at the mRNA, DNA methylation (promoter and gene bodies), and miRNA levels. By combining with the Protein-Protein Interaction (PPI) network, SSNs can character individual-specific gene interaction patterns. Under spaceflight conditions, distinct interaction patterns emerge across various omics levels. However, the molecules driving changes at each omics level predominantly regulate consistent biological functions, such as metabolic processes, DNA damage and repair, cell cycle, developmental processes, etc. In the tillering stage, pathways such as ubiquitin mediated proteolysis, nucleotide excision repair, and nucleotide metabolism are significantly enriched. Moreover, we identified 18 genes that played key/hub roles in the dysregulation of multi-omics molecular interaction patterns, and observed their involvement in regulating the above biological processes. As aforementioned, our multi-omics SSNs method can reveal the molecular interaction patterns under deep space exploration.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Xiaohui Du
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Meng Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| |
Collapse
|
2
|
Singh K, Verma P, Srivastava R, Rustagi Y, Kumar M, Verma SS, Mohanty S, Beheshti A, Warren L, Sen CK. Mission SpaceX CRS-19 RRRM-1 space flight induced skin genomic plasticity via an epigenetic trigger. iScience 2024; 27:111382. [PMID: 39687026 PMCID: PMC11647166 DOI: 10.1016/j.isci.2024.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Genomic plasticity helps adapt to extreme environmental conditions. We tested the hypothesis that exposure to space environment (ESE) impacts the epigenome inducing genomic plasticity. Murine skin samples from the Rodent Research Reference Mission-1 were procured from the International Space Station (ISS) National Laboratory. Targeted RNA sequencing to test differential gene expression between the skin of ESE versus ground controls revealed upregulation of VEGF-mediated angiogenesis pathways secondary to promoter hypomethylation in responders. Methylome sequencing identified ESE-sensitive hypomethylated genes including developmental angiogenic genes Araf, Vegfb, and Vegfr1. Based on differentially expressed genes, the angiogenesis biofunction was enriched in responders. The induction of genomic plasticity in response to ESE, as reported herein, may be viewed as a mark of biological resilience that is evident in a minority of organisms, responders but not in non-responders, exposed to the same stressor. Inducible genomic plasticity may be implicated in natural resilience to ESE.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajneesh Srivastava
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Manishekhar Kumar
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S. Verma
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujit Mohanty
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Afshin Beheshti
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liz Warren
- Center for the Advancement of Science in Space, Houston, TX, USA
| | - Chandan K. Sen
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Wu Z, Liu H, Yan L, Deng Y, Tian Z, Du Y, Zhao Y, Ma H, Deng Y, Li Y, Wang Z. Imaging of Gut Bacterial Macroscopic Changes in Simulated Microgravity-Exposed Rats via In Vivo Metabolic Labeling. Anal Chem 2024; 96:19758-19767. [PMID: 39591367 DOI: 10.1021/acs.analchem.4c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
The impact of the microgravity environment on gut bacteria has been widely recognized to induce notable gastrointestinal pathology during extended spaceflight. However, most current studies for gut microbiome homeostasis profiling are based on the 16S rRNA gene sequencing of fecal samples; this technology faces challenges in analyzing gut bacterial alterations in situ, dynamically, and with high spatiotemporal resolution. Herein, we present the utilization of bioorthogonal metabolic labeling for noninvasive imaging of gut bacterial macroscopic changes in simulated microgravity (SMG) rats. After being subsequently labeled with the metabolic reporters d-Ala-N3 and ICG-DBCO through click chemistry, it was shown that SMG can trigger obvious perturbation of gut bacteria, evidenced by the significant increase in the total bacterial content and spatial distribution variations. Such a difference was accompanied by the occurrence of intestinal inflammation and tissue damage. Compared with 16S rRNA genome analysis focusing on composition and diversity, the metabolic labeling strategy provides unprecedented insights into the macroscopic changes of the gut bacterial content and distribution under SMG. Our study will be helpful for investigating the biological implication of SMG-induced imbalance in gut bacteria, potentially promoting the deep investigation of the complex gastrointestinal pathology in space biomedicine.
Collapse
Affiliation(s)
- Zhujun Wu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Huayan Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Liben Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yifan Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhongqin Tian
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yiyang Du
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yuankun Zhao
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Jahng JWS, Little MP, No HJ, Loo BW, Wu JC. Consequences of ionizing radiation exposure to the cardiovascular system. Nat Rev Cardiol 2024; 21:880-898. [PMID: 38987578 DOI: 10.1038/s41569-024-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Ionizing radiation is widely used in various industrial and medical applications, resulting in increased exposure for certain populations. Lessons from radiation accidents and occupational exposure have highlighted the cardiovascular and cerebrovascular risks associated with radiation exposure. In addition, radiation therapy for cancer has been linked to numerous cardiovascular complications, depending on the distribution of the dose by volume in the heart and other relevant target tissues in the circulatory system. The manifestation of symptoms is influenced by numerous factors, and distinct cardiac complications have previously been observed in different groups of patients with cancer undergoing radiation therapy. However, in contemporary radiation therapy, advances in treatment planning with conformal radiation delivery have markedly reduced the mean heart dose and volume of exposure, and these variables are therefore no longer sole surrogates for predicting the risk of specific types of heart disease. Nevertheless, certain cardiac substructures remain vulnerable to radiation exposure, necessitating close monitoring. In this Review, we provide a comprehensive overview of the consequences of radiation exposure on the cardiovascular system, drawing insights from various cohorts exposed to uniform, whole-body radiation or to partial-body irradiation, and identify potential risk modifiers in the development of radiation-associated cardiovascular disease.
Collapse
Affiliation(s)
- James W S Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, UK
| | - Hyunsoo J No
- Department of Radiation Oncology, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Greenstone Biosciences, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Tian L, Ren J, Luo Y, Li Y, Guo W, Zhang B, Pan Y. Potential health risks of hypomagnetic field for manned deep-space explorations. Natl Sci Rev 2024; 11:nwae395. [PMID: 39660302 PMCID: PMC11629523 DOI: 10.1093/nsr/nwae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Affiliation(s)
- Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| | - Jie Ren
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| | - Yukai Luo
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
| | - Bingfang Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, China
| |
Collapse
|
6
|
Loke G, Chandrapala J, Besnard A, Kantono K, Brennan C, Newman L, Low J. Food odour perception and affective response in Virtual spacecraft and microgravity body posture (1-G) - Potential ground-based simulations. Food Res Int 2024; 197:115260. [PMID: 39577930 DOI: 10.1016/j.foodres.2024.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
This study investigates food odour perception and affective response within a virtually simulated spacecraft environment, with links to the volatile composition of odours. Healthy participants (n = 44) between the ages of 18-39 years rated the intensity of eight food odours in two simulated space environments for comparison, a 'microgravity' posture (MicroG Posture; physical) and Virtual Reality (VR; visual-spatial cues) simulation of a spacecraft. Results indicate that these methods yield different outcomes. Particularly, odour intensity perception was significantly higher in VR compared to the MicroG Posture for all odours (p < 0.05), except lemongrass. Moreover, individual differences in odour sensitivity were observed, with low-sensitive individuals (n = 14) perceiving stronger almond odour (p < 0.001) and highly sensitive individuals (n = 29) perceiving stronger vinegar odour (p = 0.003) in VR. Emotional dimensions of valence and arousal were also significantly higher (p < 0.001) in VR, while stress response remained low across contexts (all p > 0.05). While emotional and stress responses did not generally affect odour intensity perception, valence was positively correlated with almond and vinegar odour perception, while stress was negatively correlated with vinegar odour perception. These findings suggest that odour perception and affective response may vary in virtual space contexts, with certain individuals exhibiting sensitivity to specific odours due to their unique flavour profiles. This highlights how confined, cluttered environments, reminiscent of space conditions, affect sensory responses to food, with implications for personalised dietary interventions and improved well-being in similar populations.
Collapse
Affiliation(s)
- Grace Loke
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Jayani Chandrapala
- School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Anne Besnard
- International Flavors and Fragrances (IFF), Hilversum, Netherlands
| | - Kevin Kantono
- International Flavors and Fragrances (IFF), Hilversum, Netherlands
| | - Charles Brennan
- School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Lisa Newman
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Julia Low
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia.
| |
Collapse
|
7
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
8
|
Gebre SG, Scott RT, Saravia-Butler AM, Lopez DK, Sanders LM, Costes SV. NASA open science data repository: open science for life in space. Nucleic Acids Res 2024:gkae1116. [PMID: 39558178 DOI: 10.1093/nar/gkae1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Space biology and health data are critical for the success of deep space missions and sustainable human presence off-world. At the core of effectively managing biomedical risks is the commitment to open science principles, which ensure that data are findable, accessible, interoperable, reusable, reproducible and maximally open. The 2021 integration of the Ames Life Sciences Data Archive with GeneLab to establish the NASA Open Science Data Repository significantly enhanced access to a wide range of life sciences, biomedical-clinical and mission telemetry data alongside existing 'omics data from GeneLab. This paper describes the new database, its architecture and new data streams supporting diverse data types and enhancing data submission, retrieval and analysis. Features include the biological data management environment for improved data submission, a new user interface, controlled data access, an enhanced API and comprehensive public visualization tools for environmental telemetry, radiation dosimetry data and 'omics analyses. By fostering global collaboration through its analysis working groups and training programs, the open science data repository promotes widespread engagement in space biology, ensuring transparency and inclusivity in research. It supports the global scientific community in advancing our understanding of spaceflight's impact on biological systems, ensuring humans will thrive in future deep space missions.
Collapse
Affiliation(s)
- Samrawit G Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Danielle K Lopez
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
9
|
Luo X, Pang Z, Li J, Anh M, Kim BS, Gao G. Bioengineered human arterial equivalent and its applications from vascular graft to in vitro disease modeling. iScience 2024; 27:111215. [PMID: 39555400 PMCID: PMC11565542 DOI: 10.1016/j.isci.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Arterial disorders such as atherosclerosis, thrombosis, and aneurysm pose significant health risks, necessitating advanced interventions. Despite progress in artificial blood vessels and animal models aimed at understanding pathogenesis and developing therapies, limitations in graft functionality and species discrepancies restrict their clinical and research utility. Addressing these issues, bioengineered arterial equivalents (AEs) with enhanced vascular functions have been developed, incorporating innovative technologies that improve clinical outcomes and enhance disease progression modeling. This review offers a comprehensive overview of recent advancements in bioengineered AEs, systematically summarizing the bioengineered technologies used to construct these AEs, and discussing their implications for clinical application and pathogenesis understanding. Highlighting current breakthroughs and future perspectives, this review aims to inform and inspire ongoing research in the field, potentially transforming vascular medicine and offering new avenues for preclinical and clinical advances.
Collapse
Affiliation(s)
- Xi Luo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zherui Pang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology, Zhuhai 519088, China
| | - Minjun Anh
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
10
|
Hardy JG. Articular cartilage loss is an unmitigated risk of human spaceflight. NPJ Microgravity 2024; 10:104. [PMID: 39543227 PMCID: PMC11564753 DOI: 10.1038/s41526-024-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Microgravity and space radiation are hazards of spaceflight that have deleterious effects on articular cartilage. Since it is not widely monitored or protected through dedicated countermeasures, articular cartilage loss is an unmitigated risk of human spaceflight. Spaceflight-induced cartilage loss will affect an astronaut's performance during a mission and long-term health after a mission. Addressing concerns for cartilage health will be critical to the continued safe and successful exploration of space.
Collapse
Affiliation(s)
- John G Hardy
- KBR, 2400 E NASA Parkway, Houston, TX, 77058, USA.
| |
Collapse
|
11
|
Du X, Zhang Y, Zhang M, Sun Y. Variations in DNA methylation and the role of regulatory factors in rice ( Oryza sativa) response to lunar orbit stressors. FRONTIERS IN PLANT SCIENCE 2024; 15:1427578. [PMID: 39610890 PMCID: PMC11603183 DOI: 10.3389/fpls.2024.1427578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Deep space flight imposes higher levels of damage on biological organisms; however, its specific effects on rice remain unclear. To investigate the variations in DNA methylation under deep space flight conditions, this study examined rice seeds carried by Chang'e-5. After 23 days of lunar orbital flight, the samples were planted in an artificial climate chamber and subjected to transcriptome and DNA methylation sequencing during the tillering and heading stages. The methylation patterns in the rice genome exhibited variability in response to lunar orbital stressors. DNA methylation alters the expression and interaction patterns of functional genes, involving biological processes such as metabolism and defense. Furthermore, we employed single-sample analysis methods to assess the gene expression and interaction patterns of different rice individuals. The genes exhibiting changes at the transcriptional and methylation levels varied among the different plants; however, these genes regulate consistent biological functions, primarily emphasizing metabolic processes. Finally, through single-sample analysis, we identified a set of miRNAs induced by lunar orbital stressors that potentially target DNA methylation regulatory factors. The findings of this study broaden the understanding of space biological effects and lay a foundation for further exploration of the mechanisms by which deep space flight impacts plants.
Collapse
Affiliation(s)
| | | | | | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and
Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
12
|
Mao XW, Pecaut MJ, Stanbouly S, Nelson G. Oxidative stress, neuroinflammation, and the blood-brain barrier biomarkers on the brain response to spaceflight. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:22-28. [PMID: 39521489 DOI: 10.1016/j.lssr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
Prolonged spaceflight can induce physiologic and pathologic abnormalities in the central nervous system (CNS). Our knowledge of the adaptive and/or detrimental effects of spaceflight on the structure and function of the nervous system is limited. Substantial effort has been devoted to identifying and developing reliable indicators to characterize and predict CNS injury and dysfunction associated with prolonged exposure to major components of the space environment including microgravity, physiological/psychological stress, and radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). The blood-brain barrier (BBB) is a semi-permeable membrane that is essential to maintain homeostasis of the brain microenvironment. Oxidative stress or other environmental stressors may disrupt BBB integrity and increase permeability leading to immune cell infiltration and undesirable neuroinflammation. The focus of this review article is on BBB damage associated with spaceflight and space radiation in rodent and human studies. We will highlight potential biomarkers for this damage, including site-specific and circulating neuroinflammatory factors, BBB structural and brain parenchyma proteins, and neuroimaging tools for BBB damage evaluation. These knowledge will help to understand the risks associated with space travel and are also critical for novel countermeasure development to mitigate the space flight risk to astronaut performances.
Collapse
Affiliation(s)
- Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA, USA.
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA, USA
| | - Gregory Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA, USA
| |
Collapse
|
13
|
Kong X, Qin Y, Pei W, Zhou G. Recent progresses on space life science research in China. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:35-42. [PMID: 39521492 DOI: 10.1016/j.lssr.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024]
Abstract
In the past decades, China has made significant progress on space life science research. Since completing the construction of the China Space Station (CSS) at the end of 2022, space life science research in China has entered a new era. Through carrying out numerous experiments on space life sciences, space medicine, and space agriculture conducted aboard the Shenzhou series, the CSS, and ground-based space environment simulation platforms, Chinese scientists have uncovered the effects of the space environment on the physiological and molecular mechanisms of live organisms. These findings provide essential theoretical support for long-term manned space exploration. In this article, we review the new discoveries made by Chinese researchers, focusing on the impacts of both actual and simulated space environment on cells, microorganisms, plants, animals, and human health.
Collapse
Affiliation(s)
- Xiangyu Kong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuhao Qin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
14
|
Aksoyalp ZŞ, Temel A, Karpuz M. Pharmacological Innovations in Space: Challenges and Future Perspectives. Pharm Res 2024; 41:2095-2120. [PMID: 39532779 DOI: 10.1007/s11095-024-03788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Since the first human experience in space, the interest in space research and medicine to explore universe is growing day by day. The extreme space conditions mainly radiation and microgravity effects on human physiology, antimicrobial susceptibility, and efficacy, safety, and stability of drugs. Therefore, the aim of this review is to address the impact of extreme space conditions, mainly microgravity and radiation, on human physiology and highlights the need for future approaches by evaluating the effectiveness of strategies to prevent or mitigate health problems. METHODS Published papers and NASA technical documents were searched in Pubmed and Google Scholar databases using the keywords ''antimicrobial susceptibility or drug resistance or drug stability or innovations or pharmacokinetic or pharmacodynamics'' and ''radiation or microgravity or space environments or space medicine or space pharmacy'' to prepare this review. RESULTS In this review, the challenges regarding physiological effects and drug-related problems are examined through the evaluation of extreme conditions in space. Medications used in spaceflight are summarized, and the role of pharmacists specializing in space medicine is briefly explained. Last but not least, to overcome the aforementioned issues, novel approaches have been addressed, such as personalised treatments, development of space-resistant formulations and various microbial applications. CONCLUSIONS Further research in the space medicine is required to facilitate the safe and healthy travel of humans to the Moon, Mars and other extraterrestrial destinations. One bear in mind that space research will contribute not only to the exploration of the universe, but also to the advancement of health and technological discoveries on Earth.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye.
| |
Collapse
|
15
|
Suwanprakorn N, Shin KJ, Tran PH, Truong NT, Kim KS, Yoo HJ, Yang SG. Transcriptomic analysis of embryonic mouse hypothalamic N38 cells exposed to high-energy protons and/or simulated microgravity. Heliyon 2024; 10:e39533. [PMID: 39506968 PMCID: PMC11538749 DOI: 10.1016/j.heliyon.2024.e39533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Space exploration poses unique challenges to astronauts, especially the effects of space radiation and microgravity (μG). Understanding molecular responses to these factors is crucial for ensuring astronaut health, and this study aimed to identify transcriptomic changes in mouse hypothalamic cell line N38 (mHypoE-N38) caused by simulated space environments. Method Four experimental groups were established, namely, a ground condition group (GC; the control group), a proton irradiated group (the space radiation group), a simulated μG group, and a proton irradiated × simulated μG group (the combination group). RNA sequencing and quantitative real-time polymerase chain reaction were performed to investigate key altered genes and to validate them. Results Three hundred and fifty-five differentially expressed genes were identified. Notably, the expressions of UCN2 and UGT1A5 genes were upregulated in all three experimental groups, suggesting a shared regulatory mechanism with potential consequences for brain function during space missions. Moreover, the study revealed significant alterations in genes belonging to the USP17 and ZSCAN4 families, indicating active response to DNA damage and telomere maintenance. PCR results validated that UGT1A5, USP17 family, and ZSCAN4 families (ZSCAN4C, ZSCAN4D, and ZSCAN4F) were significantly upregulated at the mRNA level in the combination group, while UCN2, ZSCAN4A, and ZSCAN4B were not reproduced. Conclusion The present study on mHypoE-N38 cells exposed to space environments revealed a complex molecular narrative with disease-oriented implications. The knowledge gained might serve as a cornerstone for developing strategies to mitigate potential health risks associated with extended exposure to space-related stressors.
Collapse
Affiliation(s)
- Nattha Suwanprakorn
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Kyung-Ju Shin
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Phuong Hoa Tran
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Ngoc Thuan Truong
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Kyu-Sung Kim
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Otorhinolaryngology, Head and Neck Surgery, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Hye Jin Yoo
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Institute for Specialized Teaching and Research (INSTAR), Inha University, Incheon, 22332, Republic of Korea
| | - Su-Geun Yang
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| |
Collapse
|
16
|
Xie X, Zhong M, Huang X, Yuan X, Mahna N, Mussagy CU, Ren M. Astaxanthin biosynthesis for functional food development and space missions. Crit Rev Biotechnol 2024:1-15. [PMID: 39428346 DOI: 10.1080/07388551.2024.2410364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/21/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Astaxanthin (AXT), a natural carotenoid, has strong antioxidant and anti-ageing effects and can reduce ultraviolet light-induced damage to cells and DNA, stimulate the immune system, and improve cardiovascular disease prognosis. Despite its wide applications in the: nutraceutical, cosmetic, aquaculture, and pharmaceutical industries, AXT industrial production and application are hindered by natural source scarcity, low production efficiency, and high requirements. This review compares the qualitative differences of AXT derived from different natural sources, evaluates the upstream procedures for AXT expression in different chassis organisms, and investigates synthetic biology- and cell factory-based strategies for the industrial production of natural AXT. Synthetic biology is a promising novel strategy for reprogramming plants or microorganisms to produce AXT. Additionally, genetic engineering using cell factories extends beyond terrestrial applications, as it may contribute to the long-term sustainability of human health during space exploration and migration endeavors. This review provides a theoretical basis for the efficient and accurate genetic engineering of AXT from the microalga Haematococcuspluvialis, providing a valuable reference for future research on the biomanufacturing of AXT and other biological metabolites.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Moyu Zhong
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xinxin Huang
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinrui Yuan
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Corti G, Kim J, Enguita FJ, Guarnieri JW, Grossman LI, Costes SV, Fuentealba M, Scott RT, Magrini A, Sanders LM, Singh K, Sen CK, Juran CM, Paul AM, Furman D, Calleja-Agius J, Mason CE, Galeano D, Bottini M, Beheshti A. To boldly go where no microRNAs have gone before: spaceflight impact on risk for small-for-gestational-age infants. Commun Biol 2024; 7:1268. [PMID: 39369042 PMCID: PMC11455966 DOI: 10.1038/s42003-024-06944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
In the era of renewed space exploration, comprehending the effects of the space environment on human health, particularly for deep space missions, is crucial. While extensive research exists on the impacts of spaceflight, there is a gap regarding female reproductive risks. We hypothesize that space stressors could have enduring effects on female health, potentially increasing risks for future pregnancies upon return to Earth, particularly related to small-for-gestational-age (SGA) fetuses. To address this, we identify a shared microRNA (miRNA) signature between SGA and the space environment, conserved across humans and mice. These miRNAs target genes and pathways relevant to diseases and development. Employing a machine learning approach, we identify potential FDA-approved drugs to mitigate these risks, including estrogen and progesterone receptor antagonists, vitamin D receptor antagonists, and DNA polymerase inhibitors. This study underscores potential pregnancy-related health risks for female astronauts and proposes pharmaceutical interventions to counteract the impact of space travel on female health.
Collapse
Affiliation(s)
- Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra M Juran
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Amber M Paul
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, MF9M + 958, San Lorenzo, Paraguay
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Space Biomedicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Oommen AM, Stafford P, Joshi L. Profiling muscle transcriptome in mice exposed to microgravity using gene set enrichment analysis. NPJ Microgravity 2024; 10:94. [PMID: 39367013 PMCID: PMC11452717 DOI: 10.1038/s41526-024-00434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Space exploration's advancement toward long-duration missions prompts intensified research on physiological effects. Despite adaptive physiological stability in some variables, persistent changes affect genome integrity, immune response, and cognitive function. Our study, utilizing multi-omics data from GeneLab, provides crucial insights investigating muscle atrophy during space mission. Leveraging NASA GeneLab's data resources, we apply systems biology-based analyses, facilitating comprehensive understanding and enabling meta-analysis. Through transcriptomics, we establish a reference profile of biological processes underlying muscle atrophy, crucial for intervention development. We emphasize the often-overlooked role of glycosylation in muscle atrophy. Our research sheds light on fundamental molecular mechanisms, bridging gaps between space research and terrestrial conditions. This study underscores the importance of interdisciplinary collaboration and data-sharing initiatives like GeneLab in advancing space medicine research.
Collapse
Affiliation(s)
- Anup Mammen Oommen
- Advanced Glycoscience Research Cluster (AGRC), University of Galway, Galway, Ireland
| | - Phillip Stafford
- Arizona State University, School of Life Sciences, Biodesign Institute, Arizona, USA
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster (AGRC), University of Galway, Galway, Ireland.
- Aquila Bioscience, University of Galway, Galway, Ireland.
| |
Collapse
|
19
|
Zarubin M, Murugova T, Ryzhykau Y, Ivankov O, Uversky VN, Kravchenko E. Structural study of the intrinsically disordered tardigrade damage suppressor protein (Dsup) and its complex with DNA. Sci Rep 2024; 14:22910. [PMID: 39358423 PMCID: PMC11447161 DOI: 10.1038/s41598-024-74335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Studies of proteins, found in one of the most stress-resistant animals tardigrade Ramazzottius varieornatus, aim to reveal molecular principles of extreme tolerance to various types of stress and developing applications based on them for medicine, biotechnology, pharmacy, and space research. Tardigrade DNA/RNA-binding damage suppressor protein (Dsup) reduces DNA damage caused by reactive oxygen spices (ROS) produced upon irradiation and oxidative stresses in Dsup-expressing transgenic organisms. This work is focused on the determination of structural features of Dsup protein and Dsup-DNA complex, which refines details of protective mechanism. For the first time, intrinsically disordered nature of Dsup protein with highly flexible structure was experimentally proven and characterized by the combination of small angle X-ray scattering (SAXS) technique, circular dichroism spectroscopy, and computational methods. Low resolution models of Dsup protein and an ensemble of conformations were presented. In addition, we have shown that Dsup forms fuzzy complex with DNA.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Yury Ryzhykau
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Elena Kravchenko
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia.
| |
Collapse
|
20
|
Tasoula A, Szewczyk N. Astronaut proteomics: Japan leads the way for transformative studies in space. Proteomics 2024; 24:e2300645. [PMID: 39388383 DOI: 10.1002/pmic.202300645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Alexia Tasoula
- Heritage College of Osteopathic Medicine, Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, USA
| | - Nathaniel Szewczyk
- Heritage College of Osteopathic Medicine, Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
21
|
Tocci D, Ducai T, Stoute CAB, Hopkins G, Sabbir MG, Beheshti A, Albensi BC. "Monitoring inflammatory, immune system mediators, and mitochondrial changes related to brain metabolism during space flight". Front Immunol 2024; 15:1422864. [PMID: 39411717 PMCID: PMC11473291 DOI: 10.3389/fimmu.2024.1422864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
The possibility of impaired cognitive function during deep space flight missions or while living on a Martian colony is a critical point of concern and pleads for further research. In addition, a fundamental gap exists both in our understanding and application of countermeasures for the consequences of long duration space travel and/or living in an extreme environment such as on the Moon or Mars. Previous studies, while heavily analyzing pre- and post-flight conditions, mostly fail to appreciate the cognitive stressors associated with space radiation, microgravity, confinement, hostile or closed environments, and the long distances from earth. A specific understanding of factors that affect cognition as well as structural and/or physiological changes in the brains of those on a space mission in addition to new countermeasures should result in improved health of our astronauts and reduce risks. At the core of cognitive changes are mechanisms we typically associate with aging, such as inflammatory responses, changes in brain metabolism, depression, and memory impairments. In fact, space flight appears to accelerate aging. In this review, we will discuss the importance of monitoring inflammatory and immune system mediators such as nuclear factor kappa B (NF-κB), and mitochondrial changes related to brain metabolism. We conclude with our recommended countermeasures that include pharmacological, metabolic, and nutritional considerations for the risks on cognition during space missions.
Collapse
Affiliation(s)
- Darcy Tocci
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Tomas Ducai
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | | | - Gabrielle Hopkins
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Mohammad G. Sabbir
- College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Broad Institute, Cambridge, MA, United States
| | - Benedict C. Albensi
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
23
|
Al-Shargie F, Tariq U, Al-Ameri S, Al-Hammadi A, Vladimirovna SD, Al-Nashash H. Assessment of Brain Function After 240 Days Confinement Using Functional Near Infrared Spectroscopy. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 6:54-60. [PMID: 39564559 PMCID: PMC11573361 DOI: 10.1109/ojemb.2024.3457240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/05/2024] [Accepted: 09/04/2024] [Indexed: 09/23/2024] Open
Abstract
Future space exploration missions will expose astronauts to various stressors, making the early detection of mental stress crucial for prolonged missions. Our study proposes using functional near infrared spectroscopy (fNIRS) combined with multiple machine learning models to assess the level of mental stress. Objective: The objective is to identify and quantify stress levels during 240 days confinement scenario. In this study, we utilize a diverse set of stress indicators including salivary alpha amylase (sAA) levels, reaction time (RT) to stimuli, accuracy of target detection, and power spectral density (PSD), in conjunction with functional connectivity networks (FCN). We estimate the PSD using Fast Fourier Transform (FFT) and the FCN using partial directed coherence. Results: Our findings reveal several intriguing insights. The sAA levels increased from the first 30 days in confinement to the culmination of the lengthy 240-day mission, suggesting a cumulative impact of stress. Conversely, RT and the accuracy of target detection exhibit significant fluctuations over the course of the mission. The power spectral density shows a significant increase with time-in-mission across all participants in most of the frontal area. The FCN shows a significant decrease in most of the right frontal areas. Five different machine learning classifiers are employed to differentiate between two levels of stress resulting in impressive classification accuracy rates: 96.44% with-nearest neighbor (KNN), 95.52% with linear discriminant analysis (LDA), 88.71% with Naïve Bayes (NB), 87.41 with decision trees (DT) and 96.48% with Support Vector Machine (SVM). In conclusion, this study demonstrates the effectiveness of combining functional near infrared spectroscopy (fNIRS) with multiple machine learning models to accurately assess and quantify mental stress levels during prolonged space missions, providing a promising approach for early stress detection in astronauts.
Collapse
|
24
|
Yan W, Hu W, Song Y, Liu X, Zhou Z, Li W, Cao Z, Pei W, Zhou G, Hu G. Differential network analysis reveals the key role of the ECM-receptor pathway in α-particle-induced malignant transformation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102260. [PMID: 39049874 PMCID: PMC11268105 DOI: 10.1016/j.omtn.2024.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Space particle radiation is a major environmental factor in spaceflight, and it is known to cause body damage and even trigger cancer, but with unknown molecular etiologies. To examine these causes, we developed a systems biology approach by focusing on the co-expression network analysis of transcriptomics profiles obtained from single high-dose (SE) and multiple low-dose (ME) α-particle radiation exposures of BEAS-2B human bronchial epithelial cells. First, the differential network and pathway analysis based on the global network and the core modules showed that genes in the ME group had higher enrichment for the extracellular matrix (ECM)-receptor interaction pathway. Then, collagen gene COL1A1 was screened as an important gene in the ME group assessed by network parameters and an expression study of lung adenocarcinoma samples. COL1A1 was found to promote the emergence of the neoplastic characteristics of BEAS-2B cells by both in vitro experimental analyses and in vivo immunohistochemical staining. These findings suggested that the degree of malignant transformation of cells in the ME group was greater than that of the SE, which may be caused by the dysregulation of the ECM-receptor pathway.
Collapse
Affiliation(s)
- Wenying Yan
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yidan Song
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
| | - Xingyi Liu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Wanshi Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhifei Cao
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
Liu ZP, Wang T. Network biology approach unveils transcriptomic alterations triggered by particle radiation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102294. [PMID: 39252875 PMCID: PMC11382101 DOI: 10.1016/j.omtn.2024.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Tong Wang
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
26
|
Miranda S, Vermeesen R, Janssen A, Rehnberg E, Etlioglu E, Baatout S, Tabury K, Baselet B. Effects of simulated space conditions on CD4+ T cells: a multi modal analysis. Front Immunol 2024; 15:1443936. [PMID: 39286254 PMCID: PMC11402665 DOI: 10.3389/fimmu.2024.1443936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The immune system is an intricate network of cellular components that safeguards against pathogens and aberrant cells, with CD4+ T cells playing a central role in this process. Human space travel presents unique health challenges, such as heavy ion ionizing radiation, microgravity, and psychological stress, which can collectively impede immune function. The aim of this research was to examine the consequences of simulated space stressors on CD4+ T cell activation, cytokine production, and gene expression. Methods CD4+ T cells were obtained from healthy individuals and subjected to Fe ion particle radiation, Photon irradiation, simulated microgravity, and hydrocortisone, either individually or in different combinations. Cytokine levels for Th1 and Th2 cells were determined using multiplex Luminex assays, and RNA sequencing was used to investigate gene expression patterns and identify essential genes and pathways impacted by these stressors. Results Simulated microgravity exposure resulted in an apparent Th1 to Th2 shift, evidenced on the level of cytokine secretion as well as altered gene expression. RNA sequencing analysis showed that several gene pathways were altered, particularly in response to Fe ions irradiation and simulated microgravity exposures. Individually, each space stressor caused differential gene expression, while the combination of stressors revealed complex interactions. Discussion The research findings underscore the substantial influence of the space exposome on immune function, particularly in the regulation of T cell responses. Future work should focus expanding the limited knowledge in this field. Comprehending these modifications will be essential for devising effective strategies to safeguard the health of astronauts during extended space missions. Conclusion The effects of simulated space stressors on CD4+ T cell function are substantial, implying that space travel poses a potential threat to immune health. Additional research is necessary to investigate the intricate relationship between space stressors and to develop effective countermeasures to mitigate these consequences.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
27
|
Muhsen IN, Zubair AC, Niederwieser T, Hashmi SK. Space exploration and cancer: the risks of deeper space adventures. Leukemia 2024; 38:1872-1875. [PMID: 38969730 DOI: 10.1038/s41375-024-02298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Ibrahim N Muhsen
- Section of Hematology and Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Jacksonville, FL, USA
- Sheikh Shakhbout Medical City-Mayo Clinic Joint Venture, Abu Dhabi, UAE
| | - Tobias Niederwieser
- University of Colorado Boulder, Ann and H.J. Smead Department of Aerospace Engineering Sciences, BioServe Space Technologies, 429 UCB, Boulder, CO, 80309, USA
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Medicine, Sheikh Shakbout Medical City, Abu Dhabi, UAE.
- Medical and Clinical Affairs, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
28
|
Xie X, Jaleel A, Zhan J, Ren M. Microalgae: towards human health from urban areas to space missions. FRONTIERS IN PLANT SCIENCE 2024; 15:1419157. [PMID: 39220018 PMCID: PMC11361926 DOI: 10.3389/fpls.2024.1419157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Space exploration and interstellar migration are important strategies for long-term human survival. However, extreme environmental conditions, such as space radiation and microgravity, can cause adverse effects, including DNA damage, cerebrovascular disease, osteoporosis, and muscle atrophy, which would require prophylactic and remedial treatment en route. Production of oral drugs in situ is therefore critical for interstellar travel and can be achieved through industrial production utilizing microalgae, which offers high production efficiency, edibility, resource minimization, adaptability, stress tolerance, and genetic manipulation ease. Synthetic biological techniques using microalgae as a chassis offer several advantages in producing natural products, including availability of biosynthetic precursors, potential for synthesizing natural metabolites, superior quality and efficiency, environmental protection, and sustainable development. This article explores the advantages of bioproduction from microalgal chassis using synthetic biological techniques, suitability of microalgal bioreactor-based cell factories for producing value-added natural metabolites, and prospects and applications of microalgae in interstellar travel.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Xerfan EMS, Tempaku PF, Tufik S, Andersen ML. The effects of the space environment on circadian rhythm and sleep in astronauts: An emphasis on the telomere length dynamics associated with sleep. J Sleep Res 2024:e14312. [PMID: 39137932 DOI: 10.1111/jsr.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Ellen M S Xerfan
- Department of Psychobiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Priscila F Tempaku
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa (AFIP), São Paulo, Brazil
| |
Collapse
|
30
|
Ishii H, Endo R, Hamanaka S, Hidaka N, Miyauchi M, Hagiwara N, Miyao T, Yamamori T, Aiba T, Akiyama N, Akiyama T. Establishing a method for the cryopreservation of viable peripheral blood mononuclear cells in the International Space Station. NPJ Microgravity 2024; 10:84. [PMID: 39122696 PMCID: PMC11315897 DOI: 10.1038/s41526-024-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The analysis of cells frozen within the International Space Station (ISS) will provide crucial insights into the impact of the space environment on cellular functions and properties. The objective of this study was to develop a method for cryopreserving blood cells under the specific constraints of the ISS. In a ground experiment, mouse blood was directly mixed with a cryoprotectant and gradually frozen at -80 °C. Thawing the frozen blood sample resulted in the successful recovery of viable mononuclear cells when using a mixed solution of dimethylsulfoxide and hydroxyethyl starch as a cryoprotectant. In addition, we developed new freezing cases to minimize storage space utilization within the ISS freezer. Finally, we confirmed the recovery of major mononuclear immune cell subsets from the cryopreserved blood cells through a high dimensional analysis of flow cytometric data using 13 cell surface markers. Consequently, this ground study lays the foundation for the cryopreservation of viable blood cells on the ISS, enabling their analysis upon return to Earth. The application of this method in ISS studies will contribute to understanding the impact of space environments on human cells. Moreover, this method may find application in the cryopreservation of blood cells in situations where research facilities are inadequate.
Collapse
Affiliation(s)
- Hiroto Ishii
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Rin Endo
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Sanae Hamanaka
- Space Biomedical Research Group, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Nobuyuki Hidaka
- Space Biomedical Research Group, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Naho Hagiwara
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | | | - Tatsuya Aiba
- Space Biomedical Research Group, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan.
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
31
|
Mason CE, Green J, Adamopoulos KI, Afshin EE, Baechle JJ, Basner M, Bailey SM, Bielski L, Borg J, Borg J, Broddrick JT, Burke M, Caicedo A, Castañeda V, Chatterjee S, Chin CR, Church G, Costes SV, De Vlaminck I, Desai RI, Dhir R, Diaz JE, Etlin SM, Feinstein Z, Furman D, Garcia-Medina JS, Garrett-Bakelman F, Giacomello S, Gupta A, Hassanin A, Houerbi N, Irby I, Javorsky E, Jirak P, Jones CW, Kamal KY, Kangas BD, Karouia F, Kim J, Kim JH, Kleinman AS, Lam T, Lawler JM, Lee JA, Limoli CL, Lucaci A, MacKay M, McDonald JT, Melnick AM, Meydan C, Mieczkowski J, Muratani M, Najjar D, Othman MA, Overbey EG, Paar V, Park J, Paul AM, Perdyan A, Proszynski J, Reynolds RJ, Ronca AE, Rubins K, Ryon KA, Sanders LM, Glowe PS, Shevde Y, Schmidt MA, Scott RT, Shirah B, Sienkiewicz K, Sierra MA, Siew K, Theriot CA, Tierney BT, Venkateswaran K, Hirschberg JW, Walsh SB, Walter C, Winer DA, Yu M, Zea L, Mateus J, Beheshti A. A second space age spanning omics, platforms and medicine across orbits. Nature 2024; 632:995-1008. [PMID: 38862027 DOI: 10.1038/s41586-024-07586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The recent acceleration of commercial, private and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit, concomitant with the largest-ever number of crewed missions entering space and preparations for exploration-class (lasting longer than one year) missions. Such rapid advancement into space from many new companies, countries and space-related entities has enabled a 'second space age'. This era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews. The applications of these biomedical technologies and algorithms are diverse, and encompass multi-omic, single-cell and spatial biology tools to investigate human and microbial responses to spaceflight. Additionally, they extend to the development of new imaging techniques, real-time cognitive assessments, physiological monitoring and personalized risk profiles tailored for astronauts. Furthermore, these technologies enable advancements in pharmacogenomics, as well as the identification of novel spaceflight biomarkers and the development of corresponding countermeasures. In this Perspective, we highlight some of the recent biomedical research from the National Aeronautics and Space Administration, Japan Aerospace Exploration Agency, European Space Agency and other space agencies, and detail the entrance of the commercial spaceflight sector (including SpaceX, Blue Origin, Axiom and Sierra Space) into aerospace medicine and space biology, the first aerospace medicine biobank, and various upcoming missions that will utilize these tools to ensure a permanent human presence beyond low Earth orbit, venturing out to other planets and moons.
Collapse
Affiliation(s)
- Christopher E Mason
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA.
| | | | - Konstantinos I Adamopoulos
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National University of Athens, Athens, Greece
| | - Evan E Afshin
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Jordan J Baechle
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luca Bielski
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Josef Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Joseph Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Jared T Broddrick
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Marissa Burke
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Verónica Castañeda
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile
| | | | - Christopher R Chin
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Iwijn De Vlaminck
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Rajeev I Desai
- Integrative Neurochemistry Laboratory, Behavioral Biology Program, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Raja Dhir
- Seed Health, Venice, CA, USA
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Juan Esteban Diaz
- Data Science Institute, School of Business, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sofia M Etlin
- Department of Astrobiology, Cornell University, New York, NY, USA
| | - Zachary Feinstein
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Research in Translational Medicine, Universidad Austral, CONICET, Pilar, Argentina
| | - J Sebastian Garcia-Medina
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Francine Garrett-Bakelman
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Amira Hassanin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nadia Houerbi
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Iris Irby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emilia Javorsky
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Future of Life Institute, Campbell, CA, USA
| | - Peter Jirak
- Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine, Hospital Gmünd, Lower Austria, Austria
| | - Christopher W Jones
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Khaled Y Kamal
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
- Department of Kinesiology, Iowa State University, Ames, USA
| | - Brian D Kangas
- Behavioral Biology Program, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Fathi Karouia
- Blue Marble Institute of Science, Exobiology Branch NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- BioServe Space Technologies, Smead Aerospace Engineering Science Department, University of Colorado Boulder, Boulder, CO, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Joo Hyun Kim
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Try Lam
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - John M Lawler
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Jessica A Lee
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Alexander Lucaci
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, D.C., USA
| | - Ari M Melnick
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Jakub Mieczkowski
- International Research Agenda 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Deena Najjar
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Mariam A Othman
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, New York, NY, USA
| | - Vera Paar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Jiwoon Park
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Amber M Paul
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Adrian Perdyan
- International Research Agenda 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Robert J Reynolds
- University of Texas Medical Branch, Galveston, TX, USA
- KBR, Inc., Houston, TX, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Wake Forest Medical School, Dept of Obstetrics and Gynecology, Winston-Salem, NC, USA
| | | | - Krista A Ryon
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Lauren M Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Yash Shevde
- Ursa Biotechnology Corporation, Ursa Bio, New York, NY, USA
| | | | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Karolina Sienkiewicz
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Maria A Sierra
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | | | - Braden T Tierney
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Claire Walter
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Min Yu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luis Zea
- Smead Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, USA
- Jaguar Space, LLC, Erie, CO, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
32
|
He X, Zhao L, Huang B, Zhang G, Lu Y, Mi D, Sun Y. Integrated analysis of miRNAome and transcriptome reveals that microgravity induces the alterations of critical functional gene modules via the regulation of miRNAs in short-term space-flown C. elegans. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:117-132. [PMID: 39067983 DOI: 10.1016/j.lssr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Microgravity, as a unique hazardous factor encountered in space, can induce a series of harmful effects on living organisms. The impact of microgravity on the pivotal functional gene modules stemming from gene enrichment analysis via the regulation of miRNAs is not fully illustrated. To explore the microgravity-induced alterations in critical functional gene modules via the regulation of miRNAs, in the present study, we proposed a novel bioinformatics algorithm for the integrated analysis of miRNAome and transcriptome from short-term space-flown C. elegans. The samples of C. elegans were exposed to two space conditions, namely spaceflight (SF) and spaceflight control (SC) onboard the International Space Station for 4 days. Additionally, the samples of ground control (GC) were included for comparative analysis. Using the present algorithm, we constructed regulatory networks of functional gene modules annotated from differentially expressed genes (DEGs) and their associated regulatory differentially expressed miRNAs (DEmiRNAs). The results showed that functional gene modules of molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathway were facilitated by 25 down-regulated DEmiRNAs (e.g., cel-miR-792, cel-miR-65, cel-miR-70, cel-lsy-6, cel-miR-796, etc.) in the SC vs. GC groups, whereas these modules were inhibited by 13 up-regulated DEmiRNAs (e.g., cel-miR-74, cel-miR-229, cel-miR-70, cel-miR-249, cel-miR-85, etc.) in the SF vs. GC groups. These findings indicated that microgravity could significantly alter gene expression patterns and their associated functional gene modules in short-term space-flown C. elegans. Additionally, we identified 34 miRNAs as post-transcriptional regulators that modulated these functional gene modules under microgravity conditions. Through the experimental verification, our results demonstrated that microgravity could induce the down-regulation of five critical functional gene modules (i.e., molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathways) via the regulation of miRNAs in short-term space-flown C. elegans.
Collapse
Affiliation(s)
- Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Ge Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Ye Lu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
| |
Collapse
|
33
|
Maity T, Saxena A. Challenges and innovations in food and water availability for a sustainable Mars colonization. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:27-36. [PMID: 39067987 DOI: 10.1016/j.lssr.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 07/30/2024]
Abstract
In recent years, extensive research has been dedicated to Mars exploration and the potential for sustainable interplanetary human colonization. One of the significant challenges in ensuring the survival of life on Mars lies in the production of food as the Martian environment is highly inhospitable to agriculture, rendering it impractical to transport food from Earth. To improve the well-being and quality of life for future space travelers on Mars, it is crucial to develop innovative horticultural techniques and food processing technologies. The unique challenges posed by the Martian environment, such as the lack of oxygen, nutrient-deficient soil, thin atmosphere, low gravity, and cold, dry climate, necessitate the development of advanced farming strategies. This study explores existing knowledge and various technological innovations that can help overcome the constraints associated with food production and water extraction on Mars. The key lies in utilizing resources available on Mars through in-situ resource utilization. Water can be extracted from beneath the ice and from the Martian soil. Furthermore, hydroponics in controlled environment chambers, equipped with nutrient delivery systems and waste recovery mechanisms, have been investigated as a means of cultivating crops on Mars. The inefficiency of livestock production, which requires substantial amounts of water and land, highlights the need for alternative protein sources such as microbial protein, insects, and in-vitro meat. Moreover, the fields of synthetic biology and 3-D food printing hold immense potential in revolutionizing food production and making significant contributions to the sustainability of human life on Mars.
Collapse
Affiliation(s)
- Tanushree Maity
- O/o Director General - Life Sciences, Defence Research and Development Organization, SSPL Campus, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Alok Saxena
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
34
|
Overbey EG, Kim J, Tierney BT, Park J, Houerbi N, Lucaci AG, Garcia Medina S, Damle N, Najjar D, Grigorev K, Afshin EE, Ryon KA, Sienkiewicz K, Patras L, Klotz R, Ortiz V, MacKay M, Schweickart A, Chin CR, Sierra MA, Valenzuela MF, Dantas E, Nelson TM, Cekanaviciute E, Deards G, Foox J, Narayanan SA, Schmidt CM, Schmidt MA, Schmidt JC, Mullane S, Tigchelaar SS, Levitte S, Westover C, Bhattacharya C, Lucotti S, Wain Hirschberg J, Proszynski J, Burke M, Kleinman AS, Butler DJ, Loy C, Mzava O, Lenz J, Paul D, Mozsary C, Sanders LM, Taylor LE, Patel CO, Khan SA, Suhail Mohamad M, Byhaqui SGA, Aslam B, Gajadhar AS, Williamson L, Tandel P, Yang Q, Chu J, Benz RW, Siddiqui A, Hornburg D, Blease K, Moreno J, Boddicker A, Zhao J, Lajoie B, Scott RT, Gilbert RR, Lai Polo SH, Altomare A, Kruglyak S, Levy S, Ariyapala I, Beer J, Zhang B, Hudson BM, Rininger A, Church SE, Beheshti A, Church GM, Smith SM, Crucian BE, Zwart SR, Matei I, Lyden DC, Garrett-Bakelman F, Krumsiek J, Chen Q, Miller D, Shuga J, Williams S, Nemec C, Trudel G, Pelchat M, Laneuville O, De Vlaminck I, Gross S, Bolton KL, Bailey SM, Granstein R, Furman D, Melnick AM, Costes SV, Shirah B, Yu M, Menon AS, Mateus J, Meydan C, Mason CE. The Space Omics and Medical Atlas (SOMA) and international astronaut biobank. Nature 2024; 632:1145-1154. [PMID: 38862028 PMCID: PMC11357981 DOI: 10.1038/s41586-024-07639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, Axiom and Polaris. The SOMA resource represents a more than tenfold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome datasets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific mouse datasets. Leveraging the datasets, tools and resources in SOMA can help to accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation and countermeasure data for upcoming lunar, Mars and exploration-class missions.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- BioAstra Inc., New York, NY, USA.
- Center for STEM, University of Austin, Austin, TX, USA.
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander G Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Sebastian Garcia Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Karolina Sienkiewicz
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew MacKay
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Annalise Schweickart
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Maria A Sierra
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Ezequiel Dantas
- Department of Medicine, Division of Endocrinology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Theodore M Nelson
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Gabriel Deards
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - S Anand Narayanan
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis and Human Performance Group, Boulder, CO, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, CO, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis and Human Performance Group, Boulder, CO, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis and Human Performance Group, Boulder, CO, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | | | - Steven Levitte
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
- Division of Pediatric Gastroenterology, Stanford University, Palo Alto, CA, USA
| | - Craig Westover
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Chandrima Bhattacharya
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Marissa Burke
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, United States
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Daniel J Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Conor Loy
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Omary Mzava
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joan Lenz
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Doru Paul
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | | | | | | - Qiu Yang
- Seer Inc., Redwood City, CA, USA
| | | | | | | | | | | | | | | | | | | | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Rachel R Gilbert
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - San-Huei Lai Polo
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | | | | | | | | | | | | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - George M Church
- Harvard Medical School and the Wyss Institute, Boston, MA, USA
| | - Scott M Smith
- National Aeronautics and Space Administration, Johnson Space Center, Human Health and Performance Directorate, Biomedical Research and Environmental Sciences Division, Houston, TX, USA
| | - Brian E Crucian
- National Aeronautics and Space Administration, Johnson Space Center, Human Health and Performance Directorate, Biomedical Research and Environmental Sciences Division, Houston, TX, USA
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David C Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Francine Garrett-Bakelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, Division of Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, Division of Physiatry, The Ottawa Hospital, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Odette Laneuville
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Steven Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Kelly L Bolton
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Richard Granstein
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Cosmica Biosciences Inc., San Francisco, CA, USA
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Research in Translational Medicine, Universidad Austral and CONICET, Buenos Aires, Argentina
| | - Ari M Melnick
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anil S Menon
- University of Texas Medical Branch, Galveston, TX, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- BioAstra Inc., New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Jullienne A, Malo M, Shaw K, Zheng Y, Johnston JD, Kontulainen S, Chilibeck PD, Dadachova E, Obenaus A, Sarty GE. Musculoskeletal perturbations of deep space radiation: Assessment using a Gateway MRI. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:74-83. [PMID: 39067994 DOI: 10.1016/j.lssr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Human space exploration expansion from Low-Earth Orbit to deep space is accelerating the need to monitor and address the known health concerns related to deep space radiation. The human musculoskeletal system is vulnerable to these risks (alongside microgravity) and its health reflects the well-being of other body systems. Multiparametric magnetic resonance imaging (MRI) is an important approach for assessing temporal physiological changes in the musculoskeletal system. We propose that ultra-low-field MRI provides an optimal low Size Weight and Power (SwaP) solution for non-invasively monitoring muscle and bone changes on the planned Gateway lunar space station. Our proposed ultra-low-field Gateway MRI meets low SWaP design specifications mandated by limited room in the lunar space station. This review summarizes the current state of our knowledge on musculoskeletal consequences of spaceflight, especially with respect to radiation, and then elaborates how MRI can be used to monitor the deleterious effects of space travel and the efficacy of putative countermeasures. We argue that an ultra-low-field MRI in cis-lunar space on the Gateway can provide valuable research and medical insights into the effects of deep space radiation exposure on astronauts. Such an MRI would also allow the development of imaging protocols that would facilitate Earth-bound teams to monitor space personnel musculoskeletal changes during future interplanetary spaceflight. It will especially have a role in monitoring countermeasures, such as the use of melanin, in protecting space explorers.
Collapse
Affiliation(s)
- Amandine Jullienne
- School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617, United States
| | - Mackenzie Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Keely Shaw
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada
| | - Yuwen Zheng
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada
| | - James D Johnston
- College of Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, SK S7N 5A9, Canada
| | - Saija Kontulainen
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Andre Obenaus
- School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617, United States; School of Medicine, University of California Riverside, United States
| | - Gordon E Sarty
- Space MRI Lab, University of Saskatchewan, QuanTA Centre, 9 Campus Dr, Saskatoon, SK S7N 5A5, Canada.
| |
Collapse
|
36
|
Mo X, Zhang Y, Wang Z, Zhou X, Zhang Z, Fang Y, Fan Z, Guo Y, Zhang T, Xiong Z. Satellite-Based On-Orbit Printing of 3D Tumor Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309618. [PMID: 38145905 DOI: 10.1002/adma.202309618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Space three dimension (3D) bioprinting provides a precise and bionic tumor model for evaluating the compound effect of the space environment on tumors, thereby providing insight into the progress of the disease and potential treatments. However, space 3D bioprinting faces several challenges, including prelaunch uncertainty, possible liquid leakage, long-term culture in space, automatic equipment control, data acquisition, and transmission. Here, a novel satellite-based 3D bioprinting device with high structural strength, small volume, and low weight (<6 kg) is developed. A microgel-based biphasic thermosensitive bioink and suspension medium that supports the on-orbit printing and in situ culture of complex tumor models is developed. An intelligent control algorithm that enables the automatic control of 3D printing, autofocusing, fluorescence imaging, and data transfer back to the ground is developed. To the authors' knowledge, this is the first time that on-orbit printing of tumor models is achieved in space with stable morphology and moderate viability via a satellite. It is found that 3D tumor models are more sensitive to antitumor drugs in space than on Earth. This study opens up a new avenue for 3D bioprinting in space and offers new possibilities for future research in space life science and medicine.
Collapse
Affiliation(s)
- Xingwu Mo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Xianhao Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhenrui Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zilian Fan
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yihan Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| |
Collapse
|
37
|
Jones CW, Overbey EG, Lacombe J, Ecker AJ, Meydan C, Ryon K, Tierney B, Damle N, MacKay M, Afshin EE, Foox J, Park J, Nelson TM, Suhail Mohamad M, Byhaqui SGA, Aslam B, Tali UA, Nisa L, Menon PV, Patel CO, Khan SA, Ebert DJ, Everson A, Schubert MC, Ali NN, Sarma MS, Kim J, Houerbi N, Grigorev K, Garcia Medina JS, Summers AJ, Gu J, Altin JA, Fattahi A, Hirzallah MI, Wu JH, Stahn AC, Beheshti A, Klotz R, Ortiz V, Yu M, Patras L, Matei I, Lyden D, Melnick A, Banerjee N, Mullane S, Kleinman AS, Loesche M, Menon AS, Donoviel DB, Urquieta E, Mateus J, Sargsyan AE, Shelhamer M, Zenhausern F, Bershad EM, Basner M, Mason CE. Molecular and physiological changes in the SpaceX Inspiration4 civilian crew. Nature 2024; 632:1155-1164. [PMID: 38862026 PMCID: PMC11357997 DOI: 10.1038/s41586-024-07648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Human spaceflight has historically been managed by government agencies, such as in the NASA Twins Study1, but new commercial spaceflight opportunities have opened spaceflight to a broader population. In 2021, the SpaceX Inspiration4 mission launched the first all-civilian crew to low Earth orbit, which included the youngest American astronaut (aged 29), new in-flight experimental technologies (handheld ultrasound imaging, smartwatch wearables and immune profiling), ocular alignment measurements and new protocols for in-depth, multi-omic molecular and cellular profiling. Here we report the primary findings from the 3-day spaceflight mission, which induced a broad range of physiological and stress responses, neurovestibular changes indexed by ocular misalignment, and altered neurocognitive functioning, some of which match those of long-term spaceflight2, but almost all of which did not differ from baseline (pre-flight) after return to Earth. Overall, these preliminary civilian spaceflight data suggest that short-duration missions do not pose a significant health risk, and moreover present a rich opportunity to measure the earliest phases of adaptation to spaceflight in the human body at anatomical, cellular, physiological and cognitive levels. Finally, these methods and results lay the foundation for an open, rapidly expanding biomedical database for astronauts3, which can inform countermeasure development for both private and government-sponsored space missions.
Collapse
Affiliation(s)
- Christopher W Jones
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eliah G Overbey
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, USA
| | - Jerome Lacombe
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Adrian J Ecker
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Krista Ryon
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Braden Tierney
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Theodore M Nelson
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | - Michael C Schubert
- Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nabila N Ali
- Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mallika S Sarma
- Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Nadia Houerbi
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kirill Grigorev
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - J Sebastian Garcia Medina
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander J Summers
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Jian Gu
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - John A Altin
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Ali Fattahi
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Mohammad I Hirzallah
- Departments of Neurology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jimmy H Wu
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- The Translational Research Institute for Space Health (TRISH), Houston, TX, USA
| | - Alexander C Stahn
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Ashley S Kleinman
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Anil S Menon
- University of Texas, Department of Emergency Medicine, Houston, TX, USA
| | - Dorit B Donoviel
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- The Translational Research Institute for Space Health (TRISH), Houston, TX, USA
| | - Emmanuel Urquieta
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- The Translational Research Institute for Space Health (TRISH), Houston, TX, USA
| | | | | | - Mark Shelhamer
- Department of Otolaryngology - Head & Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederic Zenhausern
- Center for Applied Nanobioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
- The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Eric M Bershad
- Departments of Neurology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Christopher E Mason
- Department of Physiology, Biophysics and Medicine, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Pacelli C, Ferranti F, Del Bianco M. Special Issue: 'Advances in Space Biology'. Life (Basel) 2024; 14:931. [PMID: 39202673 PMCID: PMC11355448 DOI: 10.3390/life14080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 09/03/2024] Open
Abstract
As we enter a new era of space exploration, space biology is at the forefront of both robotic and human space programs [...].
Collapse
Affiliation(s)
- Claudia Pacelli
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Francesca Ferranti
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Marta Del Bianco
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
39
|
Rutter LA, MacKay MJ, Cope H, Szewczyk NJ, Kim J, Overbey E, Tierney BT, Muratani M, Lamm B, Bezdan D, Paul AM, Schmidt MA, Church GM, Giacomello S, Mason CE. Protective alleles and precision healthcare in crewed spaceflight. Nat Commun 2024; 15:6158. [PMID: 39039045 PMCID: PMC11263583 DOI: 10.1038/s41467-024-49423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.
Collapse
Affiliation(s)
- Lindsay A Rutter
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ben Lamm
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, Austin, TX, 78701, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Yuri GmbH, Meckenbeuren, Germany
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, 80302, USA.
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, 80302, USA.
| | - George M Church
- GC Therapeutics Inc, Cambridge, MA, 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
| | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
40
|
Finch RH, Vitry G, Siew K, Walsh SB, Behesti A, Hardiman G, da Silveira WA. Spaceflight causes strain dependent gene expression changes associated with lipid and extracellular matrix dysregulation in the mouse kidney in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584781. [PMID: 38559158 PMCID: PMC10979940 DOI: 10.1101/2024.03.13.584781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To explore new worlds we must ensure humans can survive and thrive in the space environment. Incidence of kidney stones in astronauts is a major risk factor associated with long term missions, caused by increased blood calcium levels due to bone demineralisation triggered by microgravity and space radiation. Transcriptomic changes have been observed in other tissues during spaceflight, including the kidney. We analysed kidney transcriptome patterns in two different strains of mice flown on the International Space Station, C57BL/6J and BALB/c. Here we show a link between spaceflight and transcriptome patterns associated with dysregulation of lipid and extracellular matrix metabolism and altered transforming growth factor-beta signalling. A stronger response was seen in C57BL/6J mice than BALB/c. Genetic differences in hyaluronan metabolism between strains may confer protection against extracellular matrix remodelling through downregulation of epithelial-mesenchymal transition. We intend for our findings to contribute to development of new countermeasures against kidney disease in astronauts and people here on Earth.
Collapse
|
41
|
Tian L, Ren J, Luo Y. The effects of different durations of exposure to hypomagnetic field on the number of active mitochondria and ROS levels in the mouse hippocampus. Biochem Biophys Rep 2024; 38:101696. [PMID: 38586825 PMCID: PMC10995802 DOI: 10.1016/j.bbrep.2024.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Reactive oxygen species (ROS) are one of the potential molecules in response to a hypomagnetic field (HMF), and exposure to an HMF for eight weeks led to an increase in ROS levels in the whole hippocampus area in mice. ROS are mainly derived from the byproducts of mitochondrial metabolism. However, previous in vivo studies mostly focus on the influence of one time point of HMF exposure on the mouse hippocampus and lack comparative studies on the effects of different durations of HMF exposure on the mouse hippocampus. Here, we investigated the effects of different durations of HMF on the number of active mitochondria and ROS levels in mouse hippocampus. Compared with the geomagnetic field (GMF) group, we found that the number of active mitochondria in the hippocampus was significantly reduced during the sixth week of HMF exposure, whereas the number of active mitochondria was significantly reduced and the ROS levels was significantly increased during the eighth week of HMF exposure. The number of active mitochondria gradually decreased and ROS levels gradually increased in both GMF and HMF groups with prolonged exposure time. In addition, the expression level of the PGC-1α gene in the hippocampus, the main regulator of mitochondrial biogenesis, decreased significantly in the eighth week of HMF exposure. These results reveal that the changes in active mitochondria number and ROS levels were dependent on the durations of HMF exposure, and prolonged exposure to HMF exacerbates these changes.
Collapse
Affiliation(s)
- Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Ren
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yukai Luo
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Gros A, Furlan FM, Rouglan V, Favereaux A, Bontempi B, Morel JL. Physical exercise restores adult neurogenesis deficits induced by simulated microgravity. NPJ Microgravity 2024; 10:69. [PMID: 38906877 PMCID: PMC11192769 DOI: 10.1038/s41526-024-00411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Cognitive impairments have been reported in astronauts during spaceflights and documented in ground-based models of simulated microgravity (SMG) in animals. However, the neuronal causes of these behavioral effects remain largely unknown. We explored whether adult neurogenesis, known to be a crucial plasticity mechanism supporting memory processes, is altered by SMG. Adult male Long-Evans rats were submitted to the hindlimb unloading model of SMG. We studied the proliferation, survival and maturation of newborn cells in the following neurogenic niches: the subventricular zone (SVZ)/olfactory bulb (OB) and the dentate gyrus (DG) of the hippocampus, at different delays following various periods of SMG. SMG exposure for 7 days, but not shorter periods of 6 or 24 h, resulted in a decrease of newborn cell proliferation restricted to the DG. SMG also induced a decrease in short-term (7 days), but not long-term (21 days), survival of newborn cells in the SVZ/OB and DG. Physical exercise, used as a countermeasure, was able to reverse the decrease in newborn cell survival observed in the SVZ and DG. In addition, depending on the duration of SMG periods, transcriptomic analysis revealed modifications in gene expression involved in neurogenesis. These findings highlight the sensitivity of adult neurogenesis to gravitational environmental factors during a transient period, suggesting that there is a period of adaptation of physiological systems to this new environment.
Collapse
Affiliation(s)
- Alexandra Gros
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Centre National d'Etudes Spatiales, F-75001, Paris, France
| | - Fandilla Marie Furlan
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
- Department of Genetics & Evolution, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Vanessa Rouglan
- CNRS, IINS, UMR 5297, University Bordeaux, F-33000, Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France
| | - Jean-Luc Morel
- CNRS, INCIA, UMR 5287, University Bordeaux, F-33000, Bordeaux, France.
- CNRS, IMN, UMR 5293, University Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
43
|
Ru M, He J, Bai Y, Zhang K, Shi Q, Gao F, Wang Y, Li B, Shen L. Integration of Proteomic and Metabolomic Data Reveals the Lipid Metabolism Disorder in the Liver of Rats Exposed to Simulated Microgravity. Biomolecules 2024; 14:682. [PMID: 38927087 PMCID: PMC11201887 DOI: 10.3390/biom14060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Long-term exposure to microgravity is considered to cause liver lipid accumulation, thereby increasing the risk of non-alcoholic fatty liver disease (NAFLD) among astronauts. However, the reasons for this persistence of symptoms remain insufficiently investigated. In this study, we used tandem mass tag (TMT)-based quantitative proteomics techniques, as well as non-targeted metabolomics techniques based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), to comprehensively analyse the relative expression levels of proteins and the abundance of metabolites associated with lipid accumulation in rat liver tissues under simulated microgravity conditions. The differential analysis revealed 63 proteins and 150 metabolites between the simulated microgravity group and the control group. By integrating differentially expressed proteins and metabolites and performing pathway enrichment analysis, we revealed the dysregulation of major metabolic pathways under simulated microgravity conditions, including the biosynthesis of unsaturated fatty acids, linoleic acid metabolism, steroid hormone biosynthesis and butanoate metabolism, indicating disrupted liver metabolism in rats due to weightlessness. Finally, we examined differentially expressed proteins associated with lipid metabolism in the liver of rats exposed to stimulated microgravity. These findings contribute to identifying the key molecules affected by microgravity and could guide the design of rational nutritional or pharmacological countermeasures for astronauts.
Collapse
Affiliation(s)
- Mengyao Ru
- School of Basic Medicine, Yan’an University, Yan’an 716000, China; (M.R.); (K.Z.)
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an 710032, China;
| | - Jun He
- Department of Anesthesiology, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an 710018, China;
| | - Yungang Bai
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (Y.W.)
| | - Kun Zhang
- School of Basic Medicine, Yan’an University, Yan’an 716000, China; (M.R.); (K.Z.)
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an 710032, China;
| | - Qianqian Shi
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an 710032, China;
- School of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Fang Gao
- Department of Neurobiology, The Fourth Military Medical University, Xi’an 710032, China;
| | - Yunying Wang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (Y.W.)
| | - Baoli Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, Yan’an University, Yan’an 716000, China
| | - Lan Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an 710032, China;
| |
Collapse
|
44
|
Cope H, Elsborg J, Demharter S, McDonald JT, Wernecke C, Parthasarathy H, Unadkat H, Chatrathi M, Claudio J, Reinsch S, Avci P, Zwart SR, Smith SM, Heer M, Muratani M, Meydan C, Overbey E, Kim J, Chin CR, Park J, Schisler JC, Mason CE, Szewczyk NJ, Willis CRG, Salam A, Beheshti A. Transcriptomics analysis reveals molecular alterations underpinning spaceflight dermatology. COMMUNICATIONS MEDICINE 2024; 4:106. [PMID: 38862781 PMCID: PMC11166967 DOI: 10.1038/s43856-024-00532-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. METHODS To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4. RESULTS Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression. CONCLUSION Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.
Collapse
Affiliation(s)
- Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Jonas Elsborg
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Abzu, Copenhagen, 2150, Denmark
| | | | - J Tyson McDonald
- Department of Radiation Medicine, School of Medicine, Georgetown University, Washington D.C., WA, 20057, USA
| | - Chiara Wernecke
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Department of Aerospace and Geodesy, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Hari Parthasarathy
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Engineering and Haas School of Business, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Hriday Unadkat
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- School of Engineering and Applied Science, Princeton University, Princeton, NJ, 08540, USA
| | - Mira Chatrathi
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Letters and Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jennifer Claudio
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Sigrid Reinsch
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Pinar Avci
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, 77058, USA
| | - Martina Heer
- IU International University of Applied Sciences, Erfurt and University of Bonn, Bonn, Germany
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jangkeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Christopher R Chin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Craig R G Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Amr Salam
- St John's Institute of Dermatology, King's College London, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
45
|
Al-Turki TM, Maranon DG, Nelson CB, Lewis AM, Luxton JJ, Taylor LE, Altina N, Wu F, Du H, Kim J, Damle N, Overbey E, Meydan C, Grigorev K, Winer DA, Furman D, Mason CE, Bailey SM. Telomeric RNA (TERRA) increases in response to spaceflight and high-altitude climbing. Commun Biol 2024; 7:698. [PMID: 38862827 PMCID: PMC11167063 DOI: 10.1038/s42003-024-06014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 06/13/2024] Open
Abstract
Telomeres are repetitive nucleoprotein complexes at chromosomal termini essential for maintaining genome stability. Telomeric RNA, or TERRA, is a previously presumed long noncoding RNA of heterogeneous lengths that contributes to end-capping structure and function, and facilitates telomeric recombination in tumors that maintain telomere length via the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway. Here, we investigated TERRA in the radiation-induced DNA damage response (DDR) across astronauts, high-altitude climbers, healthy donors, and cellular models. Similar to astronauts in the space radiation environment and climbers of Mt. Everest, in vitro radiation exposure prompted increased transcription of TERRA, while simulated microgravity did not. Data suggest a specific TERRA DDR to telomeric double-strand breaks (DSBs), and provide direct demonstration of hybridized TERRA at telomere-specific DSB sites, indicative of protective TERRA:telomeric DNA hybrid formation. Targeted telomeric DSBs also resulted in accumulation of TERRA foci in G2-phase, supportive of TERRA's role in facilitating recombination-mediated telomere elongation. Results have important implications for scenarios involving persistent telomeric DNA damage, such as those associated with chronic oxidative stress (e.g., aging, systemic inflammation, environmental and occupational radiation exposures), which can trigger transient ALT in normal human cells, as well as for targeting TERRA as a therapeutic strategy against ALT-positive tumors.
Collapse
Affiliation(s)
- Taghreed M Al-Turki
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
- Lineberger Comprehensive Cancer Center and Departments of Microbiology and Immunology, and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Christopher B Nelson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW, 2145, Australia
| | - Aidan M Lewis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Noelia Altina
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Fei Wu
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA, USA
| | - Huixun Du
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A Winer
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA, USA
| | - David Furman
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford, CA, USA
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
46
|
An R, Blackwell VK, Harandi B, Gibbons AC, Siu O, Irby I, Rees A, Cornejal N, Sattler KM, Sheng T, Syracuse NC, Loftus D, Santa Maria SR, Cekanaviciute E, Reinsch SS, Ray HE, Paul AM. Influence of the spaceflight environment on macrophage lineages. NPJ Microgravity 2024; 10:63. [PMID: 38862517 PMCID: PMC11166655 DOI: 10.1038/s41526-023-00293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2024] Open
Abstract
Spaceflight and terrestrial spaceflight analogs can alter immune phenotypes. Macrophages are important immune cells that bridge the innate and adaptive immune systems and participate in immunoregulatory processes of homeostasis. Furthermore, macrophages are critically involved in initiating immunity, defending against injury and infection, and are also involved in immune resolution and wound healing. Heterogeneous populations of macrophage-type cells reside in many tissues and cause a variety of tissue-specific effects through direct or indirect interactions with other physiological systems, including the nervous and endocrine systems. It is vital to understand how macrophages respond to the unique environment of space to safeguard crew members with appropriate countermeasures for future missions in low Earth orbit and beyond. This review highlights current literature on macrophage responses to spaceflight and spaceflight analogs.
Collapse
Affiliation(s)
- Rocky An
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Cornell University, Department of Biological and Environmental Engineering and Sibley School of Mechanical and Aerospace Engineering, Ithaca, NY, 14853, USA
| | - Virginia Katherine Blackwell
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, 02139, USA
| | - Bijan Harandi
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Tufts University, Department of Chemistry, Medford, MA, 02155, USA
| | - Alicia C Gibbons
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of California San Diego, Department of Cellular and Molecular Medicine, La Jolla, CA, 92093, USA
| | - Olivia Siu
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Iris Irby
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Amy Rees
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nadjet Cornejal
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Brooklyn College, Department of Natural and Behavioral Sciences, Brooklyn, NY, 11210, USA
| | - Kristina M Sattler
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- Ohio State University, Department of Physiology and Cell Biology, Columbus, OH, 43210, USA
| | - Tao Sheng
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- University of Pittsburgh, Department of Computer Science, Pittsburgh, PA, 15260, USA
| | - Nicholas C Syracuse
- NASA Ames Research Center, Space Life Sciences Training Program, Moffett Field, CA, 94035, USA
- North Carolina State University, Department of Molecular and Structural Biochemistry and Department of Biological Sciences, Raleigh, NC, 27695, USA
| | - David Loftus
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sergio R Santa Maria
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Egle Cekanaviciute
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Sigrid S Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
| | - Hami E Ray
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA
- ASRC Federal, Inc, Beltsville, MD, 20705, USA
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA.
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 94035, USA.
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA.
| |
Collapse
|
47
|
McDonald JT, Kim J, Farmerie L, Johnson ML, Trovao NS, Arif S, Siew K, Tsoy S, Bram Y, Park J, Overbey E, Ryon K, Haltom J, Singh U, Enguita FJ, Zaksas V, Guarnieri JW, Topper M, Wallace DC, Meydan C, Baylin S, Meller R, Muratani M, Porterfield DM, Kaufman B, Mori MA, Walsh SB, Sigaudo-Roussel D, Mebarek S, Bottini M, Marquette CA, Wurtele ES, Schwartz RE, Galeano D, Mason CE, Grabham P, Beheshti A. Space radiation damage rescued by inhibition of key spaceflight associated miRNAs. Nat Commun 2024; 15:4825. [PMID: 38862542 PMCID: PMC11166944 DOI: 10.1038/s41467-024-48920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.
Collapse
Affiliation(s)
- J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, D.C, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Lily Farmerie
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Meghan L Johnson
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Krista Ryon
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey Haltom
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Joseph W Guarnieri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Topper
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Douglas C Wallace
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Division of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Stephen Baylin
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Robert Meller
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Brett Kaufman
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | | | - Saida Mebarek
- ICBMS, UMR5246, CNRS, INSA, CPE-Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
- Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Peter Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, US.
| |
Collapse
|
48
|
Houerbi N, Kim J, Overbey EG, Batra R, Schweickart A, Patras L, Lucotti S, Ryon KA, Najjar D, Meydan C, Damle N, Chin C, Narayanan SA, Guarnieri JW, Widjaja G, Beheshti A, Tobias G, Vatter F, Hirschberg JW, Kleinman A, Afshin EE, MacKay M, Chen Q, Miller D, Gajadhar AS, Williamson L, Tandel P, Yang Q, Chu J, Benz R, Siddiqui A, Hornburg D, Gross S, Shirah B, Krumsiek J, Mateus J, Mao X, Matei I, Mason CE. Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflight. Nat Commun 2024; 15:4862. [PMID: 38862464 PMCID: PMC11166969 DOI: 10.1038/s41467-024-48841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.
Collapse
Affiliation(s)
- Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Annalise Schweickart
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - S Anand Narayanan
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Joseph W Guarnieri
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gabrielle Widjaja
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Gabriel Tobias
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Seer, Inc., Redwood City, CA, 94065, USA
| | - Fanny Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Qiu Yang
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Ryan Benz
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | | | - Steven Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Jan Krumsiek
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Xiao Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
49
|
Masarapu Y, Cekanaviciute E, Andrusivova Z, Westholm JO, Björklund Å, Fallegger R, Badia-I-Mompel P, Boyko V, Vasisht S, Saravia-Butler A, Gebre S, Lázár E, Graziano M, Frapard S, Hinshaw RG, Bergmann O, Taylor DM, Wallace DC, Sylvén C, Meletis K, Saez-Rodriguez J, Galazka JM, Costes SV, Giacomello S. Spatially resolved multiomics on the neuronal effects induced by spaceflight in mice. Nat Commun 2024; 15:4778. [PMID: 38862479 PMCID: PMC11166911 DOI: 10.1038/s41467-024-48916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR).
Collapse
Affiliation(s)
- Yuvarani Masarapu
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Zaneta Andrusivova
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jakub O Westholm
- National Bioinformatics Infrastructure Sweden, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robin Fallegger
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Pau Badia-I-Mompel
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- GSK, Cellzome, Heidelberg, Germany
| | - Valery Boyko
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
- Bionetics, Yorktown, VA, USA
| | - Shubha Vasisht
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Amanda Saravia-Butler
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Samrawit Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Enikő Lázár
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Marta Graziano
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solna, Sweden
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Robert G Hinshaw
- NASA Postdoctoral Program - Oak Ridge Associated Universities, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Pharmacology and Toxicology, Department of Pharmacology and Toxicology University Medical Center Goettingen, Goettingen, Germany
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pediatrics, Division of Human Genetics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christer Sylvén
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA.
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
50
|
Costes SV, Gentemann CL, Platts SH, Carnell LA. Biological horizons: pioneering open science in the cosmos. Nat Commun 2024; 15:4780. [PMID: 38862512 PMCID: PMC11167097 DOI: 10.1038/s41467-024-48633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Affiliation(s)
- Sylvain V Costes
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, USA.
| | - Chelle L Gentemann
- Office of the Chief Science Data Officer, Science Mission Directorate, NASA Headquarters, Washington DC on Intergovernmental Personnel Act assignment from the International Computer Science Institute, Berkeley, CA, USA
| | - Steven H Platts
- Human Research Program, NASA Johnson Space Center, Houston, TX, USA
| | - Lisa A Carnell
- Biological and Physical Sciences Division, NASA Headquarters, Washington, DC, USA
| |
Collapse
|