1
|
Naffaa MM. Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity. Neural Regen Res 2025; 20:1565-1581. [PMID: 38934393 DOI: 10.4103/nrr.nrr-d-24-00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover, the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Zhu MY, Dong WY, Guo JR, Huang JY, Cheng PK, Yang Y, Liu A, Yang XL, Zhu X, Zhang Z, Wang Y, Tao W. A Neural Circuit For Bergamot Essential Oil-Induced Anxiolytic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406766. [PMID: 39487959 DOI: 10.1002/advs.202406766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Indexed: 11/04/2024]
Abstract
Aromatic essential oils have been shown to relieve anxiety and enhance relaxation, although the neural circuits underlying these effects have remained unknown. Here, it is found that treatment with 1.0% bergamot essential oil (BEO) exerts anxiolytic-like effects through a neural circuit projecting from the anterior olfactory nucleus (AON) to the anterior cingulate cortex (ACC) in acute restraint stress model mice. Collectively, in vivo two-photon calcium imaging, viral tracing, and whole-cell patch clamp recordings show that inhalation exposure to 1.0% BEO can activate glutamatergic projections from the AON to GABAergic neurons in the ACC, which drives inhibition of local glutamatergic neurons (AONGlu→ACCGABA→Glu). Optogenetic or chemogenetic manipulation of this pathway can recapitulate or abolish the BEO-induced anxiolytic-like behavioral effects in mice with ARS. Beyond depicting a previously unrecognized pathway involved in stress response, this study provides a circuit mechanism for the effects of BEO and suggests a potential target for anxiety treatment.
Collapse
Affiliation(s)
- Meng-Yu Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- Department of Physiology, Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wan-Ying Dong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Jin-Rong Guo
- Department of Physiology, Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ji-Ye Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Ping-Kai Cheng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yumeng Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- Department of Physiology, Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - An Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- Department of Physiology, Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xin-Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi Zhang
- Department of Physiology, Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Wenjuan Tao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
- Department of Physiology, Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
3
|
Chen X. Reimagining Cortical Connectivity by Deconstructing Its Molecular Logic into Building Blocks. Cold Spring Harb Perspect Biol 2024; 16:a041509. [PMID: 38621822 PMCID: PMC11529856 DOI: 10.1101/cshperspect.a041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Comprehensive maps of neuronal connectivity provide a foundation for understanding the structure of neural circuits. In a circuit, neurons are diverse in morphology, electrophysiology, gene expression, activity, and other neuronal properties. Thus, constructing a comprehensive connectivity map requires associating various properties of neurons, including their connectivity, at cellular resolution. A commonly used approach is to use the gene expression profiles as an anchor to which all other neuronal properties are associated. Recent advances in genomics and anatomical techniques dramatically improved the ability to determine and associate the long-range projections of neurons with their gene expression profiles. These studies revealed unprecedented details of the gene-projection relationship, but also highlighted conceptual challenges in understanding this relationship. In this article, I delve into the findings and the challenges revealed by recent studies using state-of-the-art neuroanatomical and transcriptomic techniques. Building upon these insights, I propose an approach that focuses on understanding the gene-projection relationship through basic features in gene expression profiles and projections, respectively, that associate with underlying cellular processes. I then discuss how the developmental trajectories of projections and gene expression profiles create additional challenges and necessitate interrogating the gene-projection relationship across time. Finally, I explore complementary strategies that, together, can provide a comprehensive view of the gene-projection relationship.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| |
Collapse
|
4
|
Wolf D, Oettl LL, Winkelmeier L, Linster C, Kelsch W. Anterior Olfactory Cortices Differentially Transform Bottom-Up Odor Signals to Produce Inverse Top-Down Outputs. J Neurosci 2024; 44:e0231242024. [PMID: 39266300 PMCID: PMC11529817 DOI: 10.1523/jneurosci.0231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Odor information arrives first in the main olfactory bulb and is then broadcasted to the olfactory cortices and striatum. Downstream regions have unique cellular and connectivity architectures that may generate different coding patterns to the same odors. To reveal region-specific response features, tuning and decoding of single-unit populations, we recorded responses to the same odors under the same conditions across regions, namely, the main olfactory bulb (MOB), the anterior olfactory nucleus (AON), the anterior piriform cortex (aPC), and the olfactory tubercle of the ventral striatum (OT), of awake male mice. We focused on chemically closely related aldehydes that still create distinct percepts. The MOB had the highest decoding accuracy for aldehydes and was the only region encoding chemical similarity. The MOB had the highest fraction of inhibited responses and narrowly tuned odor-excited responses in terms of timing and odor selectivity. Downstream, the interconnected AON and aPC differed in their response patterns to the same stimuli. While odor-excited responses dominated the AON, the aPC had a comparably high fraction of odor-inhibited responses. Both cortices share a main output target that is the MOB. This prompted us to test if the two regions convey also different net outputs. Aldehydes activated AON terminals in the MOB as a bulk signal but inhibited those from the aPC. The differential cortical projection responses generalized to complex odors. In summary, olfactory regions reveal specialized features in their encoding with AON and aPC differing in their local computations, thereby generating inverse net centrifugal and intercortical outputs.
Collapse
Affiliation(s)
- David Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Lars-Lennart Oettl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Laurens Winkelmeier
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
| | - Christiane Linster
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
5
|
Isko EC, Harpole CE, Zheng XM, Zhan H, Davis MB, Zador AM, Banerjee A. Selective expansion of motor cortical projections in the evolution of vocal novelty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612752. [PMID: 39484467 PMCID: PMC11526862 DOI: 10.1101/2024.09.13.612752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Deciphering how cortical architecture evolves to drive behavioral innovations is a long-standing challenge in neuroscience and evolutionary biology. Here, we leverage a striking behavioral novelty in the Alston's singing mouse ( Scotinomys teguina ), compared to the laboratory mouse ( Mus musculus ), to quantitatively test models of motor cortical evolution. We used bulk tracing, serial two-photon tomography, and high-throughput DNA sequencing of over 76,000 barcoded neurons to discover a specific and substantial expansion ( ∼ 200%) of orofacial motor cortical (OMC) projections to the auditory cortical region (AudR) and the midbrain periaqueductal gray (PAG), both implicated in vocal behaviors. Moreover, analysis of individual OMC neurons' projection motifs revealed preferential expansion of exclusive projections to AudR. Our results imply that selective expansion of ancestral motor cortical projections can underlie behavioral divergence over short evolutionary timescales, suggesting potential mechanisms for the evolution of enhanced cortical control over vocalizations-a crucial preadaptation for human language.
Collapse
|
6
|
Yang Y, Huang H, Zhu MY, Wei HR, Zhang M, Tang L, Gao W, Yang X, Zhang Z, Cao P, Tao W. A neural circuit for lavender-essential-oil-induced antinociception. Cell Rep 2024; 43:114800. [PMID: 39365703 DOI: 10.1016/j.celrep.2024.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
Lavender essential oil (LEO) has been shown to relieve pain in humans, but the underlying neural mechanisms remain unknown. Here, we found that inhalation exposure to 0.1% LEO confers antinociceptive effects in mice with complete Freund adjuvant (CFA)-induced inflammatory pain through activation of projections from the anterior piriform cortex (aPir) to the insular cortex (IC). Specifically, in vivo fiber photometry recordings and viral tracing data show that glutamatergic projections from the aPir (aPirGlu) innervate GABAergic neurons in the IC (ICGABA) to inhibit local glutamatergic neurons (ICGlu) that are hyperactivated in inflammatory pain. Optogenetic or chemogenetic activation of this aPirGlu→ICGABA→Glu pathway can recapitulate the antinociceptive effects of LEO inhalation in CFA mice. Conversely, artificial inhibition of IC-projecting aPirGlu neurons abolishes LEO-induced antinociception. Our study thus depicts an LEO-responsive olfactory system circuit mechanism for alleviating inflammatory pain via aPir→IC neural connections, providing evidence to support development of aroma-based treatments for alleviating pain.
Collapse
Affiliation(s)
- Yumeng Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hao Huang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Meng-Yu Zhu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hong-Rui Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mingjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lan Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wei Gao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xinlu Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Advance Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
7
|
Howe JR, Chan CL, Lee D, Blanquart M, Lee JH, Romero HK, Zadina AN, Lemieux ME, Mills F, Desplats PA, Tye KM, Root CM. Control of innate olfactory valence by segregated cortical amygdala circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600895. [PMID: 38979308 PMCID: PMC11230396 DOI: 10.1101/2024.06.26.600895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Animals exhibit innate behaviors that are stereotyped responses to specific evolutionarily relevant stimuli in the absence of prior learning or experience. These behaviors can be reduced to an axis of valence, whereby specific odors evoke approach or avoidance responses. The posterolateral cortical amygdala (plCoA) mediates innate attraction and aversion to odor. However, little is known about how this brain area gives rise to behaviors of opposing motivational valence. Here, we sought to define the circuit features of plCoA that give rise to innate attraction and aversion to odor. We characterized the physiology, gene expression, and projections of this structure, identifying a divergent, topographic organization that selectively controls innate attraction and avoidance to odor. First, we examined odor-evoked responses in these areas and found sparse encoding of odor identity, but not valence. We next considered a topographic organization and found that optogenetic stimulation of the anterior and posterior domains of plCoA elicits attraction and avoidance, respectively, suggesting a functional axis for valence. Using single cell and spatial RNA sequencing, we identified the molecular cell types in plCoA, revealing an anteroposterior gradient in cell types, whereby anterior glutamatergic neurons preferentially express VGluT2 and posterior neurons express VGluT1 . Activation of these respective cell types recapitulates appetitive and aversive behaviors, and chemogenetic inhibition reveals partial necessity for responses to innate appetitive or aversive odors. Finally, we identified topographically organized circuits defined by projections, whereby anterior neurons preferentially project to medial amygdala, and posterior neurons preferentially project to nucleus accumbens, which are respectively sufficient and necessary for innate attraction and aversion. Together, these data advance our understanding of how the olfactory system generates stereotypic, hardwired attraction and avoidance, and supports a model whereby distinct, topographically distributed plCoA populations direct innate olfactory responses by signaling to divergent valence-specific targets, linking upstream olfactory identity to downstream valence behaviors, through a population code. This suggests a novel amygdala circuit motif in which valence encoding is represented not by the firing properties of individual neurons, but by population level identity encoding that is routed through divergent targets to mediate distinct behaviors of opposing appetitive and aversive responses.
Collapse
|
8
|
Saad MZH, Ryan V WG, Edwards CA, Szymanski BN, Marri AR, Jerow LG, McCullumsmith R, Bamber BA. Olfactory combinatorial coding supports risk-reward decision making in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599745. [PMID: 39484578 PMCID: PMC11526860 DOI: 10.1101/2024.06.19.599745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Olfactory-driven behaviors are essential for animal survival, but mechanisms for decoding olfactory inputs remain poorly understood. We have used whole-network Ca ++ imaging to study olfactory coding in Caenorhabditis elegans. We show that the odorant 1-octanol is encoded combinatorially in the periphery as both an attractant and a repellant. These inputs are integrated centrally, and their relative strengths determine the sensitivity and valence of the behavioral response through modulation of locomotory reversals and speed. The balance of these pathways also dictates the activity of the locomotory command interneurons, which control locomotory reversals. This balance serves as a regulatory node for response modulation, allowing C. elegans to weigh opportunities and hazards in its environment when formulating behavioral responses. Thus, an odorant can be encoded simultaneously as inputs of opposite valence, focusing attention on the integration of these inputs in determining perception, response, and plasticity.
Collapse
|
9
|
Wang P, Li S, Li A. Odor representation and coding by the mitral/tufted cells in the olfactory bulb. J Zhejiang Univ Sci B 2024; 25:824-840. [PMID: 39420520 PMCID: PMC11494158 DOI: 10.1631/jzus.b2400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 10/19/2024]
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies-spatial coding and temporal coding-work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.
Collapse
Affiliation(s)
- Panke Wang
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China
| | - An'an Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
10
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
11
|
Yuan L, Chen X, Zhan H, Henry GL, Zador AM. Massive multiplexing of spatially resolved single neuron projections with axonal BARseq. Nat Commun 2024; 15:8371. [PMID: 39333158 PMCID: PMC11437104 DOI: 10.1038/s41467-024-52756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Neurons in the cortex are heterogeneous, sending diverse axonal projections to multiple brain regions. Unraveling the logic of these projections requires single-neuron resolution. Although a growing number of techniques have enabled high-throughput reconstruction, these techniques are typically limited to dozens or at most hundreds of neurons per brain, requiring that statistical analyses combine data from different specimens. Here we present axonal BARseq, a high-throughput approach based on reading out nucleic acid barcodes using in situ RNA sequencing, which enables analysis of even densely labeled neurons. As a proof of principle, we have mapped the long-range projections of >8000 primary auditory cortex neurons from a single male mouse. We identified major cell types based on projection targets and axonal trajectory. The large sample size enabled us to systematically quantify the projections of intratelencephalic (IT) neurons, and revealed that individual IT neurons project to different layers in an area-dependent fashion. Axonal BARseq is a powerful technique for studying the heterogeneity of single neuronal projections at high throughput within individual brains.
Collapse
Affiliation(s)
- Li Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xiaoyin Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | |
Collapse
|
12
|
Wang P, Xiang J, Niu Y, Wei J, Lan C, Li X, Xu L, Yin Y, Wang H, Zhang T, Yang L, Xing H, Fan S, Niu Q, Kang H, Liang Y. Study of a precise treatment protocol for patients with consciousness disorders based on the brain network analysis of functional magnetic resonance imaging. Front Neurosci 2024; 18:1443478. [PMID: 39351395 PMCID: PMC11439825 DOI: 10.3389/fnins.2024.1443478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Objective How to conduct objective and accurate individualized assessments of patients with disorders of consciousness (DOC) and carry out precision rehabilitation treatment technology is a major rehabilitation problem that needs to be solved urgently. Methods In this study, a multi-layer brain network was constructed based on functional magnetic resonance imaging (fMRI) to analyze the structural and functional brain networks of patients with DOC at different levels and to find regulatory targets (imaging markers) with recovery potential for DOC. Then repeated transcranial magnetic stimulation (rTMS) was performed in DOC patients to clinically validate. Results The brain network connectivity of DOC patients with different consciousness states is different, and the most obvious brain regions appeared in the olfactory cortex and precuneus. rTMS stimulation could effectively improve the consciousness level of DOC patients and stimulate the occipital lobe (specific regions found in this study) and the dorsolateral prefrontal cortex (DLPFC), and both parts had a good consciousness recovery effect. Conclusion In clinical work, personalized stimulation regimen treatment combined with the brain network characteristics of DOC patients can improve the treatment effect.
Collapse
Affiliation(s)
- Pingzhi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Jing Wei
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Caiqin Lan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiangping Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liying Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Yajie Yin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Hongxiong Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Tao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Lei Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Hao Xing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Shasha Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Qing Niu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Huicong Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
13
|
Mori K, Sakano H. One respiratory cycle as a minimum time unit for making behavioral decisions in the mammalian olfactory system. Front Neurosci 2024; 18:1423694. [PMID: 39315076 PMCID: PMC11417025 DOI: 10.3389/fnins.2024.1423694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Voluntary behaviors such as sniffing, moving, and eating require decision-making accompanied by intentional respiration. Based on the study of respiration-coherent activity of rodent olfactory networks, we infer that during the inhalation phase of respiration, olfactory cortical areas process environmental odor information and transmit it to the higher multisensory cognitive areas via feedforward pathways to comprehensively evaluate the surrounding situation. We also infer that during the exhalation phase, the higher multisensory areas generate cognitive-signals and transmit them not only to the behavioral output system but also back to the olfactory cortical areas. We presume that the cortical mechanism couples the intentional respiration with the voluntary behaviors. Thus, in one respiratory cycle, the mammalian brain may transmit and process sensory information to cognize and evaluate the multisensory image of the external world, leading to one behavioral decision and one emotional expression. In this perspective article, we propose that one respiratory cycle provides a minimum time unit for decision making during wakefulness.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
14
|
Wolf D, Hartig R, Zhuo Y, Scheller MF, Articus M, Moor M, Grinevich V, Linster C, Russo E, Weber-Fahr W, Reinwald JR, Kelsch W. Oxytocin induces the formation of distinctive cortical representations and cognitions biased toward familiar mice. Nat Commun 2024; 15:6274. [PMID: 39054324 PMCID: PMC11272796 DOI: 10.1038/s41467-024-50113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Social recognition is essential for the formation of social structures. Many times, recognition comes with lesser exploration of familiar animals. This lesser exploration has led to the assumption that recognition may be a habituation memory. The underlying memory mechanisms and the thereby acquired cortical representations of familiar mice have remained largely unknown, however. Here, we introduce an approach directly examining the recognition process from volatile body odors among male mice. We show that volatile body odors emitted by mice are sufficient to identify individuals and that more salience is assigned to familiar mice. Familiarity is encoded by reinforced population responses in two olfactory cortex hubs and communicated to other brain regions. The underlying oxytocin-induced plasticity promotes the separation of the cortical representations of familiar from other mice. In summary, neuronal encoding of familiar animals is distinct and utilizes the cortical representational space more broadly, promoting storage of complex social relationships.
Collapse
Affiliation(s)
- David Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Yi Zhuo
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Max F Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Mirko Articus
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Marcel Moor
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christiane Linster
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, NY, 14850, USA
| | - Eleonora Russo
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Translational Imaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Jonathan R Reinwald
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Department of Neuroimaging, Translational Imaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
15
|
Zhang YJ, Lee JY, Igarashi KM. Circuit dynamics of the olfactory pathway during olfactory learning. Front Neural Circuits 2024; 18:1437575. [PMID: 39036422 PMCID: PMC11258029 DOI: 10.3389/fncir.2024.1437575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
The olfactory system plays crucial roles in perceiving and interacting with their surroundings. Previous studies have deciphered basic odor perceptions, but how information processing in the olfactory system is associated with learning and memory is poorly understood. In this review, we summarize recent studies on the anatomy and functional dynamics of the mouse olfactory learning pathway, focusing on how neuronal circuits in the olfactory bulb (OB) and olfactory cortical areas integrate odor information in learning. We also highlight in vivo evidence for the role of the lateral entorhinal cortex (LEC) in olfactory learning. Altogether, these studies demonstrate that brain regions throughout the olfactory system are critically involved in forming and representing learned knowledge. The role of olfactory areas in learning and memory, and their susceptibility to dysfunction in neurodegenerative diseases, necessitate further research.
Collapse
Affiliation(s)
- Yutian J. Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
| | - Jason Y. Lee
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
| | - Kei M. Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, United States
- Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, Irvine, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, United States
| |
Collapse
|
16
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
17
|
McKissick O, Klimpert N, Ritt JT, Fleischmann A. Odors in space. Front Neural Circuits 2024; 18:1414452. [PMID: 38978957 PMCID: PMC11228174 DOI: 10.3389/fncir.2024.1414452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
As an evolutionarily ancient sense, olfaction is key to learning where to find food, shelter, mates, and important landmarks in an animal's environment. Brain circuitry linking odor and navigation appears to be a well conserved multi-region system among mammals; the anterior olfactory nucleus, piriform cortex, entorhinal cortex, and hippocampus each represent different aspects of olfactory and spatial information. We review recent advances in our understanding of the neural circuits underlying odor-place associations, highlighting key choices of behavioral task design and neural circuit manipulations for investigating learning and memory.
Collapse
Affiliation(s)
- Olivia McKissick
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Nell Klimpert
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Jason T Ritt
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Alexander Fleischmann
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| |
Collapse
|
18
|
Sabin KZ, Chen S, Hill EM, Weaver KJ, Yonke J, Kirkman M, Redwine WB, Klompen AML, Zhao X, Guo F, McKinney MC, Dewey JL, Gibson MC. Graded FGF activity patterns distinct cell types within the apical sensory organ of the sea anemone Nematostella vectensis. Dev Biol 2024; 510:50-65. [PMID: 38521499 DOI: 10.1016/j.ydbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.
Collapse
Affiliation(s)
- Keith Z Sabin
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Eric M Hill
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kyle J Weaver
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jacob Yonke
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | | | - Xia Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
19
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Saxon D, Alderman PJ, Sorrells SF, Vicini S, Corbin JG. Neuronal Subtypes and Connectivity of the Adult Mouse Paralaminar Amygdala. eNeuro 2024; 11:ENEURO.0119-24.2024. [PMID: 38811163 PMCID: PMC11208988 DOI: 10.1523/eneuro.0119-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
The paralaminar nucleus of the amygdala (PL) comprises neurons that exhibit delayed maturation. PL neurons are born during gestation but mature during adolescent ages, differentiating into excitatory neurons. These late-maturing PL neurons contribute to the increase in size and cell number of the amygdala between birth and adulthood. However, the function of the PL upon maturation is unknown, as the region has only recently begun to be characterized in detail. In this study, we investigated key defining features of the adult mouse PL; the intrinsic morpho-electric properties of its neurons, and its input and output circuit connectivity. We identify two subtypes of excitatory neurons in the PL based on unsupervised clustering of electrophysiological properties. These subtypes are defined by differential action potential firing properties and dendritic architecture, suggesting divergent functional roles. We further uncover major axonal inputs to the adult PL from the main olfactory network and basolateral amygdala. We also find that axonal outputs from the PL project reciprocally to these inputs and to diverse targets including the amygdala, frontal cortex, hippocampus, hypothalamus, and brainstem. Thus, the adult mouse PL is centrally placed to play a major role in the integration of olfactory sensory information, to coordinate affective and autonomic behavioral responses to salient odor stimuli.
Collapse
Affiliation(s)
- David Saxon
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Pia J Alderman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011
| |
Collapse
|
21
|
Liu B, Qin S, Murthy V, Tu Y. One nose but two nostrils: Learn to align with sparse connections between two olfactory cortices. ARXIV 2024:arXiv:2405.03602v1. [PMID: 38764587 PMCID: PMC11100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The integration of neural representations in the two hemispheres is an important problem in neuroscience. Recent experiments revealed that odor responses in cortical neurons driven by separate stimulation of the two nostrils are highly correlated. This bilateral alignment points to structured inter-hemispheric connections, but detailed mechanism remains unclear. Here, we hypothesized that continuous exposure to environmental odors shapes these projections and modeled it as online learning with local Hebbian rule. We found that Hebbian learning with sparse connections achieves bilateral alignment, exhibiting a linear trade-off between speed and accuracy. We identified an inverse scaling relationship between the number of cortical neurons and the inter-hemispheric projection density required for desired alignment accuracy, i.e., more cortical neurons allow sparser inter-hemispheric projections. We next compared the alignment performance of local Hebbian rule and the global stochastic-gradient-descent (SGD) learning for artificial neural networks. We found that although SGD leads to the same alignment accuracy with modestly sparser connectivity, the same inverse scaling relation holds. We showed that their similar performance originates from the fact that the update vectors of the two learning rules align significantly throughout the learning process. This insight may inspire efficient sparse local learning algorithms for more complex problems.
Collapse
Affiliation(s)
- Bo Liu
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, Massachusetts, USA
| | - Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Present address: Center for Computational Neuroscience, Flatiron Institute, New York, NY 10010, USA
| | - Venkatesh Murthy
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, Massachusetts, USA
| | - Yuhai Tu
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA
| |
Collapse
|
22
|
Fang S, Luo Z, Wei Z, Qin Y, Zheng J, Zhang H, Jin J, Li J, Miao C, Yang S, Li Y, Liang Z, Yu XD, Zhang XM, Xiong W, Zhu H, Gan WB, Huang L, Li B. Sexually dimorphic control of affective state processing and empathic behaviors. Neuron 2024; 112:1498-1517.e8. [PMID: 38430912 DOI: 10.1016/j.neuron.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.
Collapse
Affiliation(s)
- Shunchang Fang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengyi Luo
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zicheng Wei
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxin Qin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieyan Zheng
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hongyang Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianhua Jin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiali Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chenjian Miao
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shana Yang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yonglin Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zirui Liang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Dan Yu
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao Min Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Xiong
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | | | - Lianyan Huang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| | - Boxing Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| |
Collapse
|
23
|
Yang L, Liu F, Hahm H, Okuda T, Li X, Zhang Y, Kalyanaraman V, Heitmeier MR, Samineni VK. Projection-TAGs enable multiplex projection tracing and multi-modal profiling of projection neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590975. [PMID: 38712231 PMCID: PMC11071495 DOI: 10.1101/2024.04.24.590975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Single-cell multiomic techniques have sparked immense interest in developing a comprehensive multi-modal map of diverse neuronal cell types and their brain wide projections. However, investigating the spatial organization, transcriptional and epigenetic landscapes of brain wide projection neurons is hampered by the lack of efficient and easily adoptable tools. Here we introduce Projection-TAGs, a retrograde AAV platform that allows multiplex tagging of projection neurons using RNA barcodes. By using Projection-TAGs, we performed multiplex projection tracing of the mouse cortex and high-throughput single-cell profiling of the transcriptional and epigenetic landscapes of the cortical projection neurons. Projection-TAGs can be leveraged to obtain a snapshot of activity-dependent recruitment of distinct projection neurons and their molecular features in the context of a specific stimulus. Given its flexibility, usability, and compatibility, we envision that Projection-TAGs can be readily applied to build a comprehensive multi-modal map of brain neuronal cell types and their projections.
Collapse
Affiliation(s)
- Lite Yang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Fang Liu
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Hannah Hahm
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Takao Okuda
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiaoyue Li
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Yufen Zhang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Vani Kalyanaraman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Monique R. Heitmeier
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Vijay K. Samineni
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
24
|
Chen X, Fischer S, Rue MCP, Zhang A, Mukherjee D, Kanold PO, Gillis J, Zador AM. Whole-cortex in situ sequencing reveals input-dependent area identity. Nature 2024:10.1038/s41586-024-07221-6. [PMID: 38658747 DOI: 10.1038/s41586-024-07221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/22/2024] [Indexed: 04/26/2024]
Abstract
The cerebral cortex is composed of neuronal types with diverse gene expression that are organized into specialized cortical areas. These areas, each with characteristic cytoarchitecture1,2, connectivity3,4 and neuronal activity5,6, are wired into modular networks3,4,7. However, it remains unclear whether these spatial organizations are reflected in neuronal transcriptomic signatures and how such signatures are established in development. Here we used BARseq, a high-throughput in situ sequencing technique, to interrogate the expression of 104 cell-type marker genes in 10.3 million cells, including 4,194,658 cortical neurons over nine mouse forebrain hemispheres, at cellular resolution. De novo clustering of gene expression in single neurons revealed transcriptomic types consistent with previous single-cell RNA sequencing studies8,9. The composition of transcriptomic types is highly predictive of cortical area identity. Moreover, areas with similar compositions of transcriptomic types, which we defined as cortical modules, overlap with areas that are highly connected, suggesting that the same modular organization is reflected in both transcriptomic signatures and connectivity. To explore how the transcriptomic profiles of cortical neurons depend on development, we assessed cell-type distributions after neonatal binocular enucleation. Notably, binocular enucleation caused the shifting of the cell-type compositional profiles of visual areas towards neighbouring cortical areas within the same module, suggesting that peripheral inputs sharpen the distinct transcriptomic identities of areas within cortical modules. Enabled by the high throughput, low cost and reproducibility of BARseq, our study provides a proof of principle for the use of large-scale in situ sequencing to both reveal brain-wide molecular architecture and understand its development.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, WA, USA.
| | - Stephan Fischer
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Mara C P Rue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aixin Zhang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
25
|
Mihalj D, Borbelyova V, Pirnik Z, Bacova Z, Ostatnikova D, Bakos J. Shank3 Deficiency Results in a Reduction in GABAergic Postsynaptic Puncta in the Olfactory Brain Areas. Neurochem Res 2024; 49:1008-1016. [PMID: 38183586 PMCID: PMC10902016 DOI: 10.1007/s11064-023-04097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Dysfunctional sensory systems, including altered olfactory function, have recently been reported in patients with autism spectrum disorder (ASD). Disturbances in olfactory processing can potentially result from gamma-aminobutyric acid (GABA)ergic synaptic abnormalities. The specific molecular mechanism by which GABAergic transmission affects the olfactory system in ASD remains unclear. Therefore, the present study aimed to evaluate selected components of the GABAergic system in olfactory brain regions and primary olfactory neurons isolated from Shank3-deficient (-/-) mice, which are known for their autism-like behavioral phenotype. Shank3 deficiency led to a significant reduction in GEPHYRIN/GABAAR colocalization in the piriform cortex and in primary neurons isolated from the olfactory bulb, while no change of cell morphology was observed. Gene expression analysis revealed a significant reduction in the mRNA levels of GABA transporter 1 in the olfactory bulb and Collybistin in the frontal cortex of the Shank3-/- mice compared to WT mice. A similar trend of reduction was observed in the expression of Somatostatin in the frontal cortex of Shank3-/- mice. The analysis of the expression of other GABAergic neurotransmission markers did not yield statistically significant results. Overall, it appears that Shank3 deficiency leads to changes in GABAergic synapses in the brain regions that are important for olfactory information processing, which may represent basis for understanding functional impairments in autism.
Collapse
Affiliation(s)
- Denisa Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Veronika Borbelyova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zdeno Pirnik
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
26
|
Wang H, Wang Q, Cui L, Feng X, Dong P, Tan L, Lin L, Lian H, Cao S, Huang H, Cao P, Li XM. A molecularly defined amygdala-independent tetra-synaptic forebrain-to-hindbrain pathway for odor-driven innate fear and anxiety. Nat Neurosci 2024; 27:514-526. [PMID: 38347199 DOI: 10.1038/s41593-023-01562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/14/2023] [Indexed: 03/08/2024]
Abstract
Fear-related disorders (for example, phobias and anxiety) cause a substantial public health problem. To date, studies of the neural basis of fear have mostly focused on the amygdala. Here we identify a molecularly defined amygdala-independent tetra-synaptic pathway for olfaction-evoked innate fear and anxiety in male mice. This pathway starts with inputs from the olfactory bulb mitral and tufted cells to pyramidal neurons in the dorsal peduncular cortex that in turn connect to cholecystokinin-expressing (Cck+) neurons in the superior part of lateral parabrachial nucleus, which project to tachykinin 1-expressing (Tac1+) neurons in the parasubthalamic nucleus. Notably, the identified pathway is specifically involved in odor-driven innate fear. Selective activation of this pathway induces innate fear, while its inhibition suppresses odor-driven innate fear. In addition, the pathway is both necessary and sufficient for stress-induced anxiety-like behaviors. These findings reveal a forebrain-to-hindbrain neural substrate for sensory-triggered fear and anxiety that bypasses the amygdala.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine / Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Qin Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liuzhe Cui
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Feng
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Dong
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liheng Tan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Lin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Lian
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuxia Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiqian Huang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences / Nanhu Brain-Computer Interface Institute, Hangzhou, China.
| |
Collapse
|
27
|
Mori K, Sakano H. Circuit formation and sensory perception in the mouse olfactory system. Front Neural Circuits 2024; 18:1342576. [PMID: 38434487 PMCID: PMC10904487 DOI: 10.3389/fncir.2024.1342576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
In the mouse olfactory system, odor information is converted to a topographic map of activated glomeruli in the olfactory bulb (OB). Although the arrangement of glomeruli is genetically determined, the glomerular structure is plastic and can be modified by environmental stimuli. If the pups are exposed to a particular odorant, responding glomeruli become larger recruiting the dendrites of connecting projection neurons and interneurons. This imprinting not only increases the sensitivity to the exposed odor, but also imposes the positive quality on imprinted memory. External odor information represented as an odor map in the OB is transmitted to the olfactory cortex (OC) and amygdala for decision making to elicit emotional and behavioral outputs using two distinct neural pathways, innate and learned. Innate olfactory circuits start to work right after birth, whereas learned circuits become functional later on. In this paper, the recent progress will be summarized in the study of olfactory circuit formation and odor perception in mice. We will also propose new hypotheses on the timing and gating of olfactory circuit activity in relation to the respiration cycle.
Collapse
Affiliation(s)
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
28
|
Liu D, Lu J, Wei L, Yao M, Yang H, Lv P, Wang H, Zhu Y, Zhu Z, Zhang X, Chen J, Yang QX, Zhang B. Olfactory deficit: a potential functional marker across the Alzheimer's disease continuum. Front Neurosci 2024; 18:1309482. [PMID: 38435057 PMCID: PMC10907997 DOI: 10.3389/fnins.2024.1309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent form of dementia that affects an estimated 32 million individuals globally. Identifying early indicators is vital for screening at-risk populations and implementing timely interventions. At present, there is an urgent need for early and sensitive biomarkers to screen individuals at risk of AD. Among all sensory biomarkers, olfaction is currently one of the most promising indicators for AD. Olfactory dysfunction signifies a decline in the ability to detect, identify, or remember odors. Within the spectrum of AD, impairment in olfactory identification precedes detectable cognitive impairments, including mild cognitive impairment (MCI) and even the stage of subjective cognitive decline (SCD), by several years. Olfactory impairment is closely linked to the clinical symptoms and neuropathological biomarkers of AD, accompanied by significant structural and functional abnormalities in the brain. Olfactory behavior examination can subjectively evaluate the abilities of olfactory identification, threshold, and discrimination. Olfactory functional magnetic resonance imaging (fMRI) can provide a relatively objective assessment of olfactory capabilities, with the potential to become a promising tool for exploring the neural mechanisms of olfactory damage in AD. Here, we provide a timely review of recent literature on the characteristics, neuropathology, and examination of olfactory dysfunction in the AD continuum. We focus on the early changes in olfactory indicators detected by behavioral and fMRI assessments and discuss the potential of these techniques in MCI and preclinical AD. Despite the challenges and limitations of existing research, olfactory dysfunction has demonstrated its value in assessing neurodegenerative diseases and may serve as an early indicator of AD in the future.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liangpeng Wei
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Yao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huiquan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haoyao Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajing Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing X. Yang
- Department of Radiology, Center for NMR Research, Penn State University College of Medicine, Hershey, PA, United States
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Provincial Medical Key Discipline (Laboratory), Nanjing, China
| |
Collapse
|
29
|
Zhang A, Jin L, Yao S, Matsuyama M, van Velthoven CTJ, Sullivan HA, Sun N, Kellis M, Tasic B, Wickersham I, Chen X. Rabies virus-based barcoded neuroanatomy resolved by single-cell RNA and in situ sequencing. eLife 2024; 12:RP87866. [PMID: 38319699 PMCID: PMC10942611 DOI: 10.7554/elife.87866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4130 retrogradely labeled cells and 2914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.
Collapse
Affiliation(s)
- Aixin Zhang
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shenqin Yao
- Allen Institute for Brain ScienceSeattleUnited States
| | - Makoto Matsuyama
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | | | - Heather Anne Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Na Sun
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Broad Institute of MIT and HarvardCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Manolis Kellis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Broad Institute of MIT and HarvardCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | | | - Ian Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Xiaoyin Chen
- Allen Institute for Brain ScienceSeattleUnited States
| |
Collapse
|
30
|
Saxon D, Alderman PJ, Sorrells SF, Vicini S, Corbin JG. Neuronal subtypes and connectivity of the adult mouse paralaminar amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575250. [PMID: 38260244 PMCID: PMC10802617 DOI: 10.1101/2024.01.11.575250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The paralaminar nucleus of the amygdala (PL) is comprised of neurons which exhibit delayed maturation. PL neurons are born during gestation but mature during adolescent ages, differentiating into excitatory neurons. The PL is prominent in the adult amygdala, contributing to its increased neuron number and relative size compared to childhood. However, the function of the PL is unknown, as the region has only recently begun to be characterized in detail. In this study, we investigated key defining features of the adult PL; the intrinsic morpho-electric properties of its neurons, and its input and output connectivity. We identify two subtypes of excitatory neurons in the PL based on unsupervised clustering of electrophysiological properties. These subtypes are defined by differential action potential firing properties and dendritic architecture, suggesting divergent functional roles. We further uncover major axonal inputs to the adult PL from the main olfactory network and basolateral amygdala. We also find that axonal outputs from the PL project reciprocally to major inputs, and to diverse targets including the amygdala, frontal cortex, hippocampus, hypothalamus, and brainstem. Thus, the adult PL is centrally placed to play a major role in the integration of olfactory sensory information, likely coordinating affective and autonomic behavioral responses to salient odor stimuli. Significance Statement Mammalian amygdala development includes a growth period from childhood to adulthood, believed to support emotional and social learning. This amygdala growth is partly due to the maturation of neurons during adolescence in the paralaminar amygdala. However, the functional properties of these neurons are unknown. In our recent studies, we characterized the paralaminar amygdala in the mouse. Here, we investigate the properties of the adult PL in the mouse, revealing the existence of two neuronal subtypes that may play distinct functional roles in the adult brain. We further reveal the brain-wide input and output connectivity of the PL, indicating that the PL combines olfactory cues for emotional processing and delivers information to regions associated with reward and autonomic states.
Collapse
|
31
|
Niu M, Zong C. From high-throughput transcriptome characterization of individual synaptosomes to constructing the whole-brain connectome. Neuropsychopharmacology 2024; 49:325-326. [PMID: 37550440 PMCID: PMC10700480 DOI: 10.1038/s41386-023-01697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Affiliation(s)
- Muchun Niu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Bashkirova EV, Klimpert N, Monahan K, Campbell CE, Osinski J, Tan L, Schieren I, Pourmorady A, Stecky B, Barnea G, Xie XS, Abdus-Saboor I, Shykind BM, Marlin BJ, Gronostajski RM, Fleischmann A, Lomvardas S. Opposing, spatially-determined epigenetic forces impose restrictions on stochastic olfactory receptor choice. eLife 2023; 12:RP87445. [PMID: 38108811 PMCID: PMC10727497 DOI: 10.7554/elife.87445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this 'privileged' repertoire. Our experiments identify early transcription as a potential 'epigenetic' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
Collapse
Affiliation(s)
- Elizaveta V Bashkirova
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Kevin Monahan
- Department of Biochemistry and Molecular Biology, Rutgers UniversityNewarkUnited States
| | - Christine E Campbell
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Jason Osinski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Longzhi Tan
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ira Schieren
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Ariel Pourmorady
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Beka Stecky
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Xiaoliang Sunney Xie
- Beijing Innovation Center for Genomics, Peking UniversityBeijingChina
- Biomedical Pioneering Innovation Center, Peking UniversityBeijingChina
| | - Ishmail Abdus-Saboor
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Benjamin M Shykind
- Prevail Therapeutics- a wholly-owned subsidiary of Eli Lilly and CompanyNew YorkUnited States
| | - Bianca J Marlin
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard M Gronostajski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Stavros Lomvardas
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
| |
Collapse
|
33
|
Brewer AA, Barton B. Cortical field maps across human sensory cortex. Front Comput Neurosci 2023; 17:1232005. [PMID: 38164408 PMCID: PMC10758003 DOI: 10.3389/fncom.2023.1232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.
Collapse
Affiliation(s)
- Alyssa A. Brewer
- mindSPACE Laboratory, Departments of Cognitive Sciences and Language Science (by Courtesy), Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Brian Barton
- mindSPACE Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
34
|
Rockland KS. Cellular and laminar architecture: A short history and commentary. J Comp Neurol 2023; 531:1926-1933. [PMID: 37941081 PMCID: PMC11406557 DOI: 10.1002/cne.25553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
The feedforward/feedback classification, as originally stated in relation to early visual areas in the macaque monkey, has had a significant influence on ideas of laminar interactions, area reciprocity, and cortical hierarchical organization. In some contrast with this macroscale "laminar connectomics," a more cellular approach to cortical connections, as briefly surveyed here, points to a still underappreciated heterogeneity of neuronal subtypes and complex microcircuitries. From the perspective of heterogeneities, the question of how brain regions interact and influence each other quickly leads to discussions about concurrent hierarchical and nonhierarchical cortical features, brain organization as a multiscale system forming nested groups and hierarchies, connectomes annotated by multiple biological attributes, and interleaved and overlapping scales of organization.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Zhang A, Jin L, Yao S, Matsuyama M, van Velthoven C, Sullivan H, Sun N, Kellis M, Tasic B, Wickersham IR, Chen X. Rabies virus-based barcoded neuroanatomy resolved by single-cell RNA and in situ sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532873. [PMID: 36993334 PMCID: PMC10055146 DOI: 10.1101/2023.03.16.532873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4,130 retrogradely labeled cells and 2,914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.
Collapse
Affiliation(s)
- Aixin Zhang
- Allen Institute for Brain Science, Seattle, WA
| | - Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Current address: Lingang Laboratory, Shanghai, China
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA
| | - Makoto Matsuyama
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Current address: Metcela Inc., Kawasaki, Kanagawa, Japan
| | | | - Heather Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Na Sun
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manolis Kellis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Ian R. Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| | | |
Collapse
|
36
|
Chen YN, Kostka JK, Bitzenhofer SH, Hanganu-Opatz IL. Olfactory bulb activity shapes the development of entorhinal-hippocampal coupling and associated cognitive abilities. Curr Biol 2023; 33:4353-4366.e5. [PMID: 37729915 PMCID: PMC10617757 DOI: 10.1016/j.cub.2023.08.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
The interplay between olfaction and higher cognitive processing has been documented in the adult brain; however, its development is poorly understood. In mice, shortly after birth, endogenous and stimulus-evoked activity in the olfactory bulb (OB) boosts the oscillatory entrainment of downstream lateral entorhinal cortex (LEC) and hippocampus (HP). However, it is unclear whether early OB activity has a long-lasting impact on entorhinal-hippocampal function and cognitive processing. Here, we chemogenetically silenced the synaptic outputs of mitral/tufted cells, the main projection neurons in the OB, during postnatal days 8-10. The transient manipulation leads to a long-lasting reduction of oscillatory coupling and weaker responsiveness to stimuli within developing entorhinal-hippocampal circuits accompanied by dendritic sparsification of LEC pyramidal neurons. Moreover, the transient silencing reduces the performance in behavioral tests involving entorhinal-hippocampal circuits later in life. Thus, neonatal OB activity is critical for the functional LEC-HP development and maturation of cognitive abilities.
Collapse
Affiliation(s)
- Yu-Nan Chen
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Johanna K Kostka
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center of Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
37
|
Grieco SF, Holmes TC, Xu X. Probing neural circuit mechanisms in Alzheimer's disease using novel technologies. Mol Psychiatry 2023; 28:4407-4420. [PMID: 36959497 PMCID: PMC10827671 DOI: 10.1038/s41380-023-02018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
The study of Alzheimer's Disease (AD) has traditionally focused on neuropathological mechanisms that has guided therapies that attenuate neuropathological features. A new direction is emerging in AD research that focuses on the progressive loss of cognitive function due to disrupted neural circuit mechanisms. Evidence from humans and animal models of AD show that dysregulated circuits initiate a cascade of pathological events that culminate in functional loss of learning, memory, and other aspects of cognition. Recent progress in single-cell, spatial, and circuit omics informs this circuit-focused approach by determining the identities, locations, and circuitry of the specific cells affected by AD. Recently developed neuroscience tools allow for precise access to cell type-specific circuitry so that their functional roles in AD-related cognitive deficits and disease progression can be tested. An integrated systems-level understanding of AD-associated neural circuit mechanisms requires new multimodal and multi-scale interrogations that longitudinally measure and/or manipulate the ensemble properties of specific molecularly-defined neuron populations first susceptible to AD. These newly developed technological and conceptual advances present new opportunities for studying and treating circuits vulnerable in AD and represent the beginning of a new era for circuit-based AD research.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
38
|
Bashkirova EV, Klimpert N, Monahan K, Campbell CE, Osinski JM, Tan L, Schieren I, Pourmorady A, Stecky B, Barnea G, Xie XS, Abdus-Saboor I, Shykind B, Jones-Marlin B, Gronostajski RM, Fleischmann A, Lomvardas S. Opposing, spatially-determined epigenetic forces impose restrictions on stochastic olfactory receptor choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532726. [PMID: 36993168 PMCID: PMC10055043 DOI: 10.1101/2023.03.15.532726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this "privileged" repertoire. Our experiments identify early transcription as a potential "epigenetic" contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
Collapse
Affiliation(s)
- Elizaveta V Bashkirova
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Kevin Monahan
- Department of Biochemistry and Molecular Biology, Rutgers University, NJ, USA
| | - Christine E Campbell
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Jason M Osinski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Longzhi Tan
- Department of Bioengineering, Stanford University, CA, USA
| | - Ira Schieren
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Ariel Pourmorady
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Beka Stecky
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - X Sunnie Xie
- Beijing Innovation Center for Genomics, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Ishmail Abdus-Saboor
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Benjamin Shykind
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bianca Jones-Marlin
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Richard M Gronostajski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Stavros Lomvardas
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
39
|
Raithel CU, Miller AJ, Epstein RA, Kahnt T, Gottfried JA. Recruitment of grid-like responses in human entorhinal and piriform cortices by odor landmark-based navigation. Curr Biol 2023; 33:3561-3570.e4. [PMID: 37506703 PMCID: PMC10510564 DOI: 10.1016/j.cub.2023.06.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Olfactory navigation is universal across the animal kingdom. Humans, however, have rarely been considered in this context. Here, we combined olfactometry techniques, virtual reality (VR) software, and neuroimaging methods to investigate whether humans can navigate an olfactory landscape by learning the spatial relationships among discrete odor cues and integrating this knowledge into a spatial map. Our data show that over time, participants improved their performance on the odor navigation task by taking more direct paths toward targets and completing more trials within a given time period. This suggests that humans can successfully navigate a complex odorous environment, reinforcing the notion of human olfactory navigation. fMRI data collected during the olfactory navigation task revealed the emergence of grid-like responses in entorhinal and piriform cortices that were attuned to the same grid orientation. This result implies the existence of a specialized olfactory grid network tasked with guiding spatial navigation based on odor landmarks.
Collapse
Affiliation(s)
- Clara U Raithel
- Department of Psychology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Alexander J Miller
- Department of Neurology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Thorsten Kahnt
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Zeppilli S, Gurrola AO, Demetci P, Brann DH, Attey R, Zilkha N, Kimchi T, Datta SR, Singh R, Tosches MA, Crombach A, Fleischmann A. Mammalian olfactory cortex neurons retain molecular signatures of ancestral cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553130. [PMID: 37645751 PMCID: PMC10461972 DOI: 10.1101/2023.08.13.553130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cerebral cortex diversified extensively during vertebrate evolution. Intriguingly, the three-layered mammalian olfactory cortex resembles the cortical cytoarchitecture of non-mammals yet evolved alongside the six-layered neocortex, enabling unique comparisons for investigating cortical neuron diversification. We performed single-nucleus multiome sequencing across mouse three- to six-layered cortices and compared neuron types across mice, reptiles and salamander. We identified neurons that are olfactory cortex-specific or conserved across mouse cortical areas. However, transcriptomically similar neurons exhibited area-specific epigenetic states. Additionally, the olfactory cortex showed transcriptomic divergence between lab and wild-derived mice, suggesting enhanced circuit plasticity through adult immature neurons. Finally, olfactory cortex neurons displayed marked transcriptomic similarities to reptile and salamander neurons. Together, these data indicate that the mammalian olfactory cortex retains molecular signatures representative of ancestral cortical traits.
Collapse
|
41
|
Li Y, Zhi W, Qi B, Wang L, Hu X. Update on neurobiological mechanisms of fear: illuminating the direction of mechanism exploration and treatment development of trauma and fear-related disorders. Front Behav Neurosci 2023; 17:1216524. [PMID: 37600761 PMCID: PMC10433239 DOI: 10.3389/fnbeh.2023.1216524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Fear refers to an adaptive response in the face of danger, and the formed fear memory acts as a warning when the individual faces a dangerous situation again, which is of great significance to the survival of humans and animals. Excessive fear response caused by abnormal fear memory can lead to neuropsychiatric disorders. Fear memory has been studied for a long time, which is of a certain guiding effect on the treatment of fear-related disorders. With continuous technological innovations, the study of fear has gradually shifted from the level of brain regions to deeper neural (micro) circuits between brain regions and even within single brain regions, as well as molecular mechanisms. This article briefly outlines the basic knowledge of fear memory and reviews the neurobiological mechanisms of fear extinction and relapse, which aims to provide new insights for future basic research on fear emotions and new ideas for treating trauma and fear-related disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Qi
- College of Education, Hebei University, Baoding, China
| | - Lifeng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
42
|
Luo D, Li J, Liu H, Wang J, Xia Y, Qiu W, Wang N, Wang X, Wang X, Ma C, Ge W. Integrative Transcriptomic Analyses of Hippocampal-Entorhinal System Subfields Identify Key Regulators in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300876. [PMID: 37232225 PMCID: PMC10401097 DOI: 10.1002/advs.202300876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The hippocampal-entorhinal system supports cognitive function and is selectively vulnerable to Alzheimer's disease (AD). Little is known about global transcriptomic changes in the hippocampal-entorhinal subfields during AD. Herein, large-scale transcriptomic analysis is performed in five hippocampal-entorhinal subfields of postmortem brain tissues (262 unique samples). Differentially expressed genes are assessed across subfields and disease states, and integrated genotype data from an AD genome-wide association study. An integrative gene network analysis of bulk and single-nucleus RNA sequencing (snRNA-Seq) data identifies genes with causative roles in AD progression. Using a system-biology approach, pathology-specific expression patterns for cell types are demonstrated, notably upregulation of the A1-reactive astrocyte signature in the entorhinal cortex (EC) during AD. SnRNA-Seq data show that PSAP signaling is involved in alterations of cell- communications in the EC during AD. Further experiments validate the key role of PSAP in inducing astrogliosis and an A1-like reactive astrocyte phenotype. In summary, this study reveals subfield-, cell type-, and AD pathology-specific changes and demonstrates PSAP as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Dan Luo
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Jingying Li
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Hanyou Liu
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Jiayu Wang
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Yu Xia
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Wenying Qiu
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Naili Wang
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Xue Wang
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Xia Wang
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Chao Ma
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Wei Ge
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| |
Collapse
|
43
|
Ghibaudi M, Marchetti N, Vergnano E, La Rosa C, Benedetti B, Couillard-Despres S, Farioli-Vecchioli S, Bonfanti L. Age-related changes in layer II immature neurons of the murine piriform cortex. Front Cell Neurosci 2023; 17:1205173. [PMID: 37576566 PMCID: PMC10416627 DOI: 10.3389/fncel.2023.1205173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The recent identification of a population of non-newly born, prenatally generated "immature" neurons in the layer II of the piriform cortex (cortical immature neurons, cINs), raises questions concerning their maintenance or depletion through the lifespan. Most forms of brain structural plasticity progressively decline with age, a feature that is particularly prominent in adult neurogenesis, due to stem cell depletion. By contrast, the entire population of the cINs is produced during embryogenesis. Then these cells simply retain immaturity in postnatal and adult stages, until they "awake" to complete their maturation and ultimately integrate into neural circuits. Hence, the question remains open whether the cINs, which are not dependent on stem cell division, might follow a similar pattern of age-related reduction, or in alternative, might leave a reservoir of young, undifferentiated cells in the adult and aging brain. Here, the number and features of cINs were analyzed in the mouse piriform cortex from postnatal to advanced ages, by using immunocytochemistry for the cytoskeletal marker doublecortin. The abundance and stage of maturation of cINs, along with the expression of other markers of maturity/immaturity were investigated. Despite a marked decrease in this neuronal population during juvenile stages, reminiscent of that observed in hippocampal neurogenesis, a small amount of highly immature cINs persisted up to advanced ages. Overall, albeit reducing in number with increasing age, we report that the cINs are present through the entire animal lifespan.
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Nicole Marchetti
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Elena Vergnano
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Venegas JP, Navarrete M, Orellana-Garcia L, Rojas M, Avello-Duarte F, Nunez-Parra A. Basal Forebrain Modulation of Olfactory Coding In Vivo. Int J Psychol Res (Medellin) 2023; 16:62-86. [PMID: 38106956 PMCID: PMC10723750 DOI: 10.21500/20112084.6486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 12/19/2023] Open
Abstract
Sensory perception is one of the most fundamental brain functions, allowing individuals to properly interact and adapt to a constantly changing environment. This process requires the integration of bottom-up and topdown neuronal activity, which is centrally mediated by the basal forebrain, a brain region that has been linked to a series of cognitive processes such as attention and alertness. Here, we review the latest research using optogenetic approaches in rodents and in vivo electrophysiological recordings that are shedding light on the role of this region, in regulating olfactory processing and decisionmaking. Moreover, we summarize evidence highlighting the anatomical and physiological differences in the basal forebrain of individuals with autism spectrum disorder, which could underpin the sensory perception abnormalities they exhibit, and propose this research line as a potential opportunity to understand the neurobiological basis of this disorder.
Collapse
Affiliation(s)
- Juan Pablo Venegas
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Marcela Navarrete
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Laura Orellana-Garcia
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Marcelo Rojas
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Felipe Avello-Duarte
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Biology Department, Faculty of Science, University of Chile, Chile.Universidad de ChileUniversity of ChileChile
| |
Collapse
|
45
|
Diaz C, Franks KM, Blazing RM. Neuroscience: Seq-ing maps in the olfactory cortex. Curr Biol 2023; 33:R266-R269. [PMID: 37040708 PMCID: PMC10644302 DOI: 10.1016/j.cub.2023.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Many cortical brain regions are spatially organized to optimize sensory representation. Such topographic maps have so far been elusive in the olfactory cortex. A high-throughput tracing study reveals that the neural circuits connecting olfactory regions are indeed topographically organized.
Collapse
Affiliation(s)
- Carolyn Diaz
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA.
| | - Robin M Blazing
- Department of Neurobiology, Duke University Medical School, Durham, NC 27705, USA
| |
Collapse
|
46
|
Berners-Lee A, Shtrahman E, Grimaud J, Murthy VN. Experience-dependent evolution of odor mixture representations in piriform cortex. PLoS Biol 2023; 21:e3002086. [PMID: 37098044 PMCID: PMC10129003 DOI: 10.1371/journal.pbio.3002086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/17/2023] [Indexed: 04/26/2023] Open
Abstract
Rodents can learn from exposure to rewarding odors to make better and quicker decisions. The piriform cortex is thought to be important for learning complex odor associations; however, it is not understood exactly how it learns to remember discriminations between many, sometimes overlapping, odor mixtures. We investigated how odor mixtures are represented in the posterior piriform cortex (pPC) of mice while they learn to discriminate a unique target odor mixture against hundreds of nontarget mixtures. We find that a significant proportion of pPC neurons discriminate between the target and all other nontarget odor mixtures. Neurons that prefer the target odor mixture tend to respond with brief increases in firing rate at odor onset compared to other neurons, which exhibit sustained and/or decreased firing. We allowed mice to continue training after they had reached high levels of performance and find that pPC neurons become more selective for target odor mixtures as well as for randomly chosen repeated nontarget odor mixtures that mice did not have to discriminate from other nontargets. These single unit changes during overtraining are accompanied by better categorization decoding at the population level, even though behavioral metrics of mice such as reward rate and latency to respond do not change. However, when difficult ambiguous trial types are introduced, the robustness of the target selectivity is correlated with better performance on the difficult trials. Taken together, these data reveal pPC as a dynamic and robust system that can optimize for both current and possible future task demands at once.
Collapse
Affiliation(s)
- Alice Berners-Lee
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elizabeth Shtrahman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Julien Grimaud
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Cell Engineering Laboratory (CellTechs), Sup'Biotech, Villejuif, France
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
47
|
Yuan L, Chen X, Zhan H, Gilbert HL, Zador AM. Massive Multiplexing of Spatially Resolved Single Neuron Projections with Axonal BARseq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.528865. [PMID: 36824753 PMCID: PMC9949159 DOI: 10.1101/2023.02.18.528865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Neurons in the cortex are heterogenous, sending diverse axonal projections to multiple brain regions. Unraveling the logic of these projections requires single-neuron resolution. Although a growing number of techniques have enabled high-throughput reconstruction, these techniques are typically limited to dozens or at most hundreds of neurons per brain, requiring that statistical analyses combine data from different specimens. Here we present axonal BARseq, a high-throughput approach based on reading out nucleic acid barcodes using in situ RNA sequencing, which enables analysis of even densely labeled neurons. As a proof of principle, we have mapped the long-range projections of >8000 mouse primary auditory cortex neurons from a single brain. We identified major cell types based on projection targets and axonal trajectory. The large sample size enabled us to systematically quantify the projections of intratelencephalic (IT) neurons, and revealed that individual IT neurons project to different layers in an area-dependent fashion. Axonal BARseq is a powerful technique for studying the heterogeneity of single neuronal projections at high throughput within individual brains.
Collapse
Affiliation(s)
- Li Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | |
Collapse
|
48
|
Gao Y, Liu Y, Zhang Y, Wang Y, Zheng J, Xu Z, Yu H, Jin Z, Yin Y, He B, Sun F, Xiong R, Lei H, Jiang T, Liang Y, Ke D, Zhao S, Mo W, Li Y, Zhou Q, Wang X, Zheng C, Zhang H, Liu G, Yang Y, Wang JZ. Olfactory Threshold Test as a Quick Screening Tool for Cognitive Impairment: Analysis of Two Independent Cohorts. J Alzheimers Dis 2023; 93:169-178. [PMID: 36970911 DOI: 10.3233/jad-230023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Olfactory dysfunction appears prior to cognitive decline, and thus it has been suggested to be an early predictor of Alzheimer's disease. However, it is currently not known whether and how olfactory threshold test could serve as a quick screening tool for cognitive impairment. OBJECTIVE To define olfactory threshold test for screening cognitive impairment in two independent cohorts. METHODS The participants are comprised of two cohorts in China, 1,139 inpatients with type 2 diabetes mellitus (T2DM, Discovery cohort) and 1,236 community-dwelling elderly (Validation cohort). Olfactory and cognitive functions were evaluated by Connecticut Chemosensory Clinical Research Center test and Mini-Mental State Examination (MMSE), respectively. Regression analyses and receiver operating characteristic (ROC) analyses were carried out to determine the relation and discriminative performance of the olfactory threshold score (OTS) regarding identification of cognition impairment. RESULTS Regression analysis showed that olfactory deficit (reducing OTS) was correlated with cognitive impairment (reducing MMSE score) in two cohorts. ROC analysis revealed that the OTS could distinguish cognitive impairment from cognitively normal individuals, with mean area under the curve values of 0.71 (0.67, 0.74) and 0.63 (0.60, 0.66), respectively, but it failed to discriminate dementia from mild cognitive impairment. The cut-off point of 3 showed the highest validity for the screening, with the diagnostic accuracy of 73.3% and 69.5%. CONCLUSION Reducing OTS is associated with cognitive impairment in T2DM patients and the community-dwelling elderly. Therefore, olfactory threshold test may be used as a readily accessible screening tool for cognitive impairment.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Wuhan Brain Hospital, Wuhan, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Li-Yuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuying Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haitao Yu
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zetao Jin
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Yin
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Benrong He
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liang
- Department of Radiology, Wuhan Brain Hospital, Wuhan, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Zhao
- Department of Endocrinology, the Central Hospital of Wuhan, Wuhan, China
| | - Wen Mo
- Health Service Center of Jianghan District, Wuhan, China
| | - Yanni Li
- Health Service Center of Jianghan District, Wuhan, China
| | - Qiuzhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghong Zheng
- Department of Endocrinology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|