1
|
De Paula GC, Simões RF, Garcia-Serrano AM, Duarte JMN. High-fat and High-sucrose Diet-induced Hypothalamic Inflammation Shows Sex Specific Features in Mice. Neurochem Res 2024; 49:3356-3366. [PMID: 39302596 PMCID: PMC11502605 DOI: 10.1007/s11064-024-04243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Hypothalamic inflammation underlies diet-induced obesity and diabetes in rodent models. While diet normalization largely allows for recovery from metabolic impairment, it remains unknown whether long-term hypothalamic inflammation induced by obesogenic diets is a reversible process. In this study, we aimed at determining sex specificity of hypothalamic neuroinflammation and gliosis in mice fed a fat- and sugar-rich diet, and their reversibility upon diet normalization. Mice were fed a 60%-fat diet complemented by a 20% sucrose drink (HFHSD) for 3 days or 24 weeks, followed by a third group that had their diet normalized for the last 8 weeks of the study (reverse diet group, RevD). We determined the expression of pro- and anti-inflammatory cytokines, and of the inflammatory cell markers IBA1, CD68, GFAP and EMR1 in the hypothalamus, and analyzed morphology of microglia (IBA-1+ cells) and astrocytes (GFAP+ cells) in the arcuate nucleus. After 3 days of HFHSD feeding, male mice showed over-expression of IL-13, IL-18, IFN-γ, CD68 and EMR1 and reduced expression of IL-10, while females showed increased IL-6 and IBA1 and reduced IL-13, compared to controls. After 24 weeks of HFHSD exposure, male mice showed a general depression in the expression of cytokines, with prominent reduction of TNF-α, IL-6 and IL-13, but increased TGF-β, while female mice showed over-expression of IFN-γ and IL-18. Furthermore, both female and male mice showed some degree of gliosis after HFHSD feeding for 24 weeks. In mice of both sexes, diet normalization after prolonged HFHSD feeding resulted in partial neuroinflammation recovery in the hypothalamus, but gliosis was only recovered in females. In sum, HFHSD-fed mice display sex-specific inflammatory processes in the hypothalamus that are not fully reversible after diet normalization.
Collapse
Affiliation(s)
- Gabriela C De Paula
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | - Rui F Simões
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alba M Garcia-Serrano
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
3
|
Shelp GV, Dong J, Orlov NO, Malysheva OV, Bender E, Shoveller AK, Bakovic M, Cho CE. Exposure to prenatal excess or imbalanced micronutrients leads to long-term perturbations in one-carbon metabolism, trimethylamine-N-oxide and DNA methylation in Wistar rat offspring. FASEB J 2024; 38:e70032. [PMID: 39212230 DOI: 10.1096/fj.202401018rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Prenatal multivitamins, including folic acid, are commonly consumed in excess, whereas choline, an essential nutrient and an important source of labile methyl groups, is underconsumed. Here, we characterized profiles of one-carbon metabolism and related pathways and patterns of DNA methylation in offspring exposed to excess or imbalanced micronutrients prenatally. Pregnant Wistar rats were fed either recommended 1× vitamins (RV), high 10× vitamins (HV), high 10× folic acid with recommended choline (HFolRC), or high 10× folic acid with no choline (HFolNC). Offspring were weaned to a high-fat diet for 12 weeks. Circulating metabolites were analyzed with a focus on the hypothalamus, an area known to be under epigenetic regulation. HV, HFolRC, and HFolNC males had higher body weight (BW) and lower plasma choline and methionine consistent with lower hypothalamic S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) and global DNA methylation compared with RV. HV and HFolNC females had higher BW and lower plasma 5-methyltetrahydrofolate and methionine consistent with lower hypothalamic global DNA methylation compared with RV. Plasma dimethylglycine (DMG) and methionine were higher as with hypothalamic SAM:SAH and global DNA methylation in HFolRC females without changes in BW compared with RV. Plasma trimethylamine and trimethylamine-N-oxide were higher in males but lower in females from HFolRC compared with RV. Network modeling revealed a link between the folate-dependent pathway and SAH, with most connections through DMG. Final BW was negatively correlated with choline, DMG, and global DNA methylation. In conclusion, prenatal intake of excess or imbalanced micronutrients induces distinct metabolic and epigenetic perturbations in offspring that reflect long-term nutritional programming of health.
Collapse
Affiliation(s)
- Gia V Shelp
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jianzhang Dong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nikolai O Orlov
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Olga V Malysheva
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Erica Bender
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Naveed M, Smedlund K, Zhou QG, Cai W, Hill JW. Astrocyte involvement in metabolic regulation and disease. Trends Endocrinol Metab 2024:S1043-2760(24)00220-0. [PMID: 39214743 DOI: 10.1016/j.tem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Astrocytes, the predominant glial cell type in the mammalian brain, influence a wide variety of brain parameters including neuronal energy metabolism. Exciting recent studies have shown that obesity and diabetes can impact on astrocyte function. We review evidence that dysregulation of astrocytic lipid metabolism and glucose sensing contributes to dysregulation of whole-body energy balance, thermoregulation, and insulin sensitivity. In addition, we consider the overlooked topic of the sex-specific roles of astrocytes and their response to hormonal fluctuations that provide insights into sex differences in metabolic regulation. Finally, we provide an update on potential ways to manipulate astrocyte function, including genetic targeting, optogenetic and chemogenetic techniques, transplantation, and tailored exosome-based therapies, which may lead to improved treatments for metabolic disease.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Weikang Cai
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
5
|
Albornoz N, Álvarez-Indo J, de la Peña A, Arias-Muñoz E, Coca A, Segovia-Miranda F, Kerr B, Budini M, Criollo A, García-Robles MA, Morselli E, Soza A, Burgos PV. Targeting the immunoproteasome in hypothalamic neurons as a novel therapeutic strategy for high-fat diet-induced obesity and metabolic dysregulation. J Neuroinflammation 2024; 21:191. [PMID: 39095788 PMCID: PMC11297766 DOI: 10.1186/s12974-024-03154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases. METHODS The levels of the immunoproteasome β5i subunit were analyzed by immunostaining, western blotting, and proteasome activity assay in mice fed with either a high-fat diet (HFD) or a regular diet (CHOW). We also characterized the impact of autophagy inhibition on the levels of the immunoproteasome β5i subunit and the activation of the AKT pathway. Finally, through confocal microscopy, we analyzed the contribution of β5i subunit inhibition on mitochondrial function by flow cytometry and mitophagy assay. RESULTS Using an HFD-fed obese mouse model, we found increased immunoproteasome levels in hypothalamic POMC neurons. Furthermore, we observed that palmitic acid (PA), a major component of saturated fats found in HFD, increased the levels of the β5i subunit of the immunoproteasome in hypothalamic neuronal cells. Notably, the increase in immunoproteasome expression was associated with decreased autophagy, a critical cellular process in maintaining homeostasis and suppressing inflammation. Functionally, PA disrupted the insulin-glucose axis, leading to reduced AKT phosphorylation and increased intracellular glucose levels in response to insulin due to the upregulation of the immunoproteasome. Mechanistically, we identified that the protein PTEN, a key regulator of insulin signaling, was reduced in an immunoproteasome-dependent manner. To further investigate the potential therapeutic implications of these findings, we used ONX-0914, a specific immunoproteasome inhibitor. We demonstrated that this inhibitor prevents PA-induced insulin-glucose axis imbalance. Given the interplay between mitochondrial dysfunction and metabolic disturbances, we explored the impact of ONX-0914 on mitochondrial function. Notably, ONX-0914 preserved mitochondrial membrane potential and attenuated mitochondrial ROS production in the presence of PA. Moreover, we found that ONX-0914 reduced mitophagy in the presence of PA. CONCLUSIONS Our findings strongly support the pathogenic involvement of the immunoproteasome in hypothalamic neurons in the context of HFD-induced obesity and metabolic disturbances. Targeting the immunoproteasome highlights a promising therapeutic strategy to mitigate the detrimental effects of obesity on the insulin-glucose axis and cellular homeostasis. This study provides valuable insights into the mechanisms driving obesity-related metabolic diseases and offers potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Nicolás Albornoz
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alanis Coca
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fabián Segovia-Miranda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Molecular and Cellular Pathology, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago, Chile
| | - Alfredo Criollo
- Cell and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María A García-Robles
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
6
|
García-Navarrete C, Kretschmar C, Toledo J, Gutiérrez K, Hernández-Cáceres MP, Budini M, Parra V, Burgos PV, Lavandero S, Morselli E, Peña-Oyarzún D, Criollo A. PKD2 regulates autophagy and forms a protein complex with BECN1 at the primary cilium of hypothalamic neuronal cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167256. [PMID: 38782303 DOI: 10.1016/j.bbadis.2024.167256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The primary cilium, hereafter cilium, is an antenna-like organelle that modulates intracellular responses, including autophagy, a lysosomal degradation process essential for cell homeostasis. Dysfunction of the cilium is associated with impairment of autophagy and diseases known as "ciliopathies". The discovery of autophagy-related proteins at the base of the cilium suggests its potential role in coordinating autophagy initiation in response to physiopathological stimuli. One of these proteins, beclin-1 (BECN1), it which is necessary for autophagosome biogenesis. Additionally, polycystin-2 (PKD2), a calcium channel enriched at the cilium, is required and sufficient to induce autophagy in renal and cancer cells. We previously demonstrated that PKD2 and BECN1 form a protein complex at the endoplasmic reticulum in non-ciliated cells, where it initiates autophagy, but whether this protein complex is present at the cilium remains unknown. Anorexigenic pro-opiomelanocortin (POMC) neurons are ciliated cells that require autophagy to maintain intracellular homeostasis. POMC neurons are sensitive to metabolic changes, modulating signaling pathways crucial for controlling food intake. Exposure to the saturated fatty acid palmitic acid (PA) reduces ciliogenesis and inhibits autophagy in these cells. Here, we show that PKD2 and BECN1 form a protein complex in N43/5 cells, an in vitro model of POMC neurons, and that both PKD2 and BECN1 locate at the cilium. In addition, our data show that the cilium is required for PKD2-BECN1 protein complex formation and that PA disrupts the PKD2-BECN1 complex, suppressing autophagy. Our findings provide new insights into the mechanisms by which the cilium controls autophagy in hypothalamic neuronal cells.
Collapse
Affiliation(s)
- Camila García-Navarrete
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Advanced Scientific Equipment Network (REDECA), Facultad de Medicina, Universidad de Chile, Chile
| | - Karla Gutiérrez
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Santiago, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas & Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia V Burgos
- Autophagy Research Center, Santiago, Chile; Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, Huechuraba 8580702, Santiago, Chile
| | - Sergio Lavandero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas & Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile; Autophagy Research Center, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile; Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastián, Chile.
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
Liu D, Wang T, Zhao X, Chen J, Yang T, Shen Y, Zhou YD. Saturated fatty acids stimulate cytokine production in tanycytes via the PP2Ac-dependent signaling pathway. J Cereb Blood Flow Metab 2024; 44:985-999. [PMID: 38069840 PMCID: PMC11318396 DOI: 10.1177/0271678x231219115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 05/18/2024]
Abstract
The hypothalamic tanycytes are crucial for free fatty acids (FFAs) detection, storage, and transport within the central nervous system. They have been shown to effectively respond to fluctuations in circulating FFAs, thereby regulating energy homeostasis. However, the precise molecular mechanisms by which tanycytes modulate lipid utilization remain unclear. Here, we report that the catalytic subunit of protein phosphatase 2 A (PP2Ac), a serine/threonine phosphatase, is expressed in tanycytes and its accumulation and activation occur in response to high-fat diet consumption. In vitro, tanycytic PP2Ac responds to palmitic acid (PA) exposure and accumulates and is activated at an early stage in an AMPK-dependent manner. Furthermore, activated PP2Ac boosts hypoxia-inducible factor-1α (HIF-1α) accumulation, resulting in upregulation of an array of cytokines. Pretreatment with a PP2Ac inhibitor, LB100, prevented the PA-induced elevation of vascular endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF1), hepatocyte growth factor (HGF), and dipeptidyl peptidase IV (DPPIV or CD26). Our results disclose a mechanism of lipid metabolism in tanycytes that involves the activation of PP2Ac and highlight the physiological significance of PP2Ac in hypothalamic tanycytes in response to overnutrition and efficacious treatment of obesity.
Collapse
Affiliation(s)
- Danyang Liu
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Wang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xingqi Zhao
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Tianqi Yang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Lingang Laboratory, Shanghai 200031, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
9
|
Collado-Perez R, Chamoso-Sánchez D, García A, Fernández-Alfonso MS, Jiménez-Hernáiz M, Canelles S, Argente J, Frago LM, Chowen JA. The differential effects of palmitic acid and oleic acid on the metabolic response of hypothalamic astrocytes from male and female mice. J Neurosci Res 2024; 102:e25339. [PMID: 38741550 DOI: 10.1002/jnr.25339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Diets rich in saturated fats are more detrimental to health than those containing mono- or unsaturated fats. Fatty acids are an important source of energy, but they also relay information regarding nutritional status to hypothalamic metabolic circuits and when in excess can be detrimental to these circuits. Astrocytes are the main site of central fatty acid β-oxidation, and hypothalamic astrocytes participate in energy homeostasis, in part by modulating hormonal and nutritional signals reaching metabolic neurons, as well as in the inflammatory response to high-fat diets. Thus, we hypothesized that how hypothalamic astrocytes process-specific fatty acids participates in determining the differential metabolic response and that this is sex dependent as males and females respond differently to high-fat diets. Male and female primary hypothalamic astrocyte cultures were treated with oleic acid (OA) or palmitic acid (PA) for 24 h, and an untargeted metabolomics study was performed. A clear predictive model for PA exposure was obtained, while the metabolome after OA exposure was not different from controls. The observed modifications in metabolites, as well as the expression levels of key metabolic enzymes, indicate a reduction in the activity of the Krebs and glutamate/glutamine cycles in response to PA. In addition, there were specific differences between the response of astrocytes from male and female mice, as well as between hypothalamic and cerebral cortical astrocytes. Thus, the response of hypothalamic astrocytes to specific fatty acids could result in differential impacts on surrounding metabolic neurons and resulting in varied systemic metabolic outcomes.
Collapse
Affiliation(s)
- Roberto Collado-Perez
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Chamoso-Sánchez
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Antonia García
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | | | - Maria Jiménez-Hernáiz
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Instituto de Investigación La Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
10
|
Shi S, Wang J, Gong H, Huang X, Mu B, Cheng X, Feng B, Jia L, Luo Q, Liu W, Chen Z, Huang C. PGC-1α-Coordinated Hypothalamic Antioxidant Defense Is Linked to SP1-LanCL1 Axis during High-Fat-Diet-Induced Obesity in Male Mice. Antioxidants (Basel) 2024; 13:252. [PMID: 38397850 PMCID: PMC10885970 DOI: 10.3390/antiox13020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
High-fat-diet (HFD)-induced obesity parallels hypothalamic inflammation and oxidative stress, but the correlations between them are not well-defined. Here, with mouse models targeting the antioxidant gene LanCL1 in the hypothalamus, we demonstrate that impaired hypothalamic antioxidant defense aggravates HFD-induced hypothalamic inflammation and obesity progress, and these could be improved in mice with elevated hypothalamic antioxidant defense. We also show that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator, is implicated in regulating hypothalamic LanCL1 transcription, in collaboration with SP1 through a direct interaction, in response to HFD-induced palmitic acid (PA) accumulation. According to our results, when exposed to HFD, mice undergo a process of overwhelming hypothalamic antioxidant defense; short-time HFD exposure induces ROS production to activate PGC-1α and elevate LanCL1-mediated antioxidant defense, while long-time exposure promotes ubiquitin-mediated PGC-1α degradation and suppresses LanCL1 expression. Our findings show the critical importance of the hypothalamic PGC-1α-SP1-LanCL1 axis in regulating HFD-induced obesity, and provide new insights describing the correlations of hypothalamic inflammation and oxidative stress during this process.
Collapse
Affiliation(s)
- Shuai Shi
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jichen Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohua Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.F.)
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangyu Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (B.F.)
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.S.); (J.W.); (H.G.); (B.M.); (X.C.); (L.J.); (Q.L.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Lopes PKF, Costa SDO, Simino LADP, Chaves WF, Silva FA, Costa CL, Milanski M, Ignacio-Souza LM, Torsoni AS, Torsoni MA. Hypothalamic inflammation and the development of an obese phenotype induced by high-fat diet consumption is exacerbated in alpha7 nicotinic cholinergic receptor knockout mice. Food Res Int 2024; 176:113808. [PMID: 38163714 DOI: 10.1016/j.foodres.2023.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Hypothalamic inflammation and metabolic changes resulting from the consumption of high-fat diets have been linked to low grade inflammation and obesity. Inflammation impairs the hypothalamic expression of α7 nicotinic acetylcholine receptor (α7nAChR). The α7nAChR is described as the main component of the anti-inflammatory cholinergic pathway in different inflammation models. To assess whether the reduction in α7nAChR expression exacerbates hypothalamic inflammation induced by a high-fat diet (HFD), were used male and female global α7nAChR knockout mouse line in normal or high-fat diet for 4 weeks. Body weight gain, adiposity, glucose homeostasis, hypothalamic inflammation, food intake, and energy expenditure were evaluated. Insulin sensitivity was evaluated in neuronal cell culture. Consumption of an HFD for 4 weeks resulted in body weight gain and adiposity in male Chrna7-/- mice and the hypothalamus of male Chrna7-/- mice showed neuroinflammatory markers, with increased gene expression of pro-inflammatory cytokines and dysregulation in the nuclear factor kappa B pathway. Moreover, male Chrna7-/- mice consuming an HFD showed alterations in glucose homeostasis and serum of Chrna7-/- mice that consumed an HFD impaired insulin signalling in neuronal cell culture experiments. In general, female Chrna7-/- mice that consumed an HFD did not show the phenotypic and molecular changes found in male mice, indicating that there is sexual dimorphism in the analysed parameters. Thus, receptor deletion resulted in increased susceptibility to hypothalamic inflammation and metabolic damage associated with HFD consumption in male mice.
Collapse
Affiliation(s)
| | - Suleyma de Oliveira Costa
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Laís A de Paula Simino
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Wenicios Ferreira Chaves
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Franciely Alves Silva
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Caroline Lobo Costa
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil
| | - Leticia Martins Ignacio-Souza
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Brazil; Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
12
|
Fang LZ, Linehan V, Licursi M, Alberto CO, Power JL, Parsons MP, Hirasawa M. Prostaglandin E 2 activates melanin-concentrating hormone neurons to drive diet-induced obesity. Proc Natl Acad Sci U S A 2023; 120:e2302809120. [PMID: 37467285 PMCID: PMC10401019 DOI: 10.1073/pnas.2302809120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 07/21/2023] Open
Abstract
Hypothalamic inflammation reduces appetite and body weight during inflammatory diseases, while promoting weight gain when induced by high-fat diet (HFD). How hypothalamic inflammation can induce opposite energy balance outcomes remains unclear. We found that prostaglandin E2 (PGE2), a key hypothalamic inflammatory mediator of sickness, also mediates diet-induced obesity (DIO) by activating appetite-promoting melanin-concentrating hormone (MCH) neurons in the hypothalamus in rats and mice. The effect of PGE2 on MCH neurons is excitatory at low concentrations while inhibitory at high concentrations, indicating that these neurons can bidirectionally respond to varying levels of inflammation. During prolonged HFD, endogenous PGE2 depolarizes MCH neurons through an EP2 receptor-mediated inhibition of the electrogenic Na+/K+-ATPase. Disrupting this mechanism by genetic deletion of EP2 receptors on MCH neurons is protective against DIO and liver steatosis in male and female mice. Thus, an inflammatory mediator can directly stimulate appetite-promoting neurons to exacerbate DIO and fatty liver.
Collapse
Affiliation(s)
- Lisa Z. Fang
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Victoria Linehan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Maria Licursi
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Christian O. Alberto
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Jacob L. Power
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Matthew P. Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’sA1B 3V6, Canada
| |
Collapse
|
13
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Salsinha AS, Socodato R, Rodrigues A, Vale-Silva R, Relvas JB, Pintado M, Rodríguez-Alcalá LM. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159331. [PMID: 37172801 DOI: 10.1016/j.bbalip.2023.159331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
High-fat diet-induced obesity detrimentally affects brain function by inducing chronic low-grade inflammation. This neuroinflammation is, at least in part, likely to be mediated by microglia, which are the main immune cell population in the brain. Microglia express a wide range of lipid-sensitive receptors and their activity can be modulated by fatty acids that cross the blood-brain barrier. Here, by combining live cell imaging and FRET technology we assessed how different fatty acids modulate microglia activity. We demonstrate that the combined action of fructose and palmitic acid induce Ikβα degradation and nuclear translocation of the p65 subunit nuclear factor kB (NF-κB) in HCM3 human microglia. Such obesogenic nutrients also lead to reactive oxygen species production and LynSrc activation (critical regulators of microglia inflammation). Importantly, short-time exposure to omega-3 (EPA and DHA), CLA and CLNA are sufficient to abolish NF-κB pathway activation, suggesting a potential neuroprotective role. Omega-3 and CLA also show an antioxidant potential by inhibiting reactive oxygen species production, and the activation of LynSrc in microglia. Furthermore, using chemical agonists (TUG-891) and antagonists (AH7614) of GPR120/FFA4, we demonstrated that omega-3, CLA and CLNA inhibition of the NF-κB pathway is mediated by this receptor, while omega-3 and CLA antioxidant potential occurs through different signaling mechanisms.
Collapse
Affiliation(s)
- A S Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Socodato
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - A Rodrigues
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - J B Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - L M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
15
|
Elzinga SE, Koubek EJ, Hayes JM, Carter A, Mendelson FE, Webber-Davis I, Lentz SI, Feldman EL. Modeling the innate inflammatory cGAS/STING pathway: sexually dimorphic effects on microglia and cognition in obesity and prediabetes. Front Cell Neurosci 2023; 17:1167688. [PMID: 37206668 PMCID: PMC10188944 DOI: 10.3389/fncel.2023.1167688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction The prevalence of obesity, prediabetes, and diabetes continues to grow worldwide. These metabolic dysfunctions predispose individuals to neurodegenerative diseases and cognitive impairment, including dementias such as Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD). The innate inflammatory cGAS/STING pathway plays a pivotal role in metabolic dysfunction and is an emerging target of interest in multiple neurodegenerative diseases, including AD/ADRD. Therefore, our goal was to establish a murine model to specifically target the cGAS/STING pathway to study obesity- and prediabetes-induced cognitive impairment. Methods We performed two pilot studies in cGAS knockout (cGAS-/-) male and female mice designed to characterize basic metabolic and inflammatory phenotypes and examine the impact of high-fat diet (HFD) on metabolic, inflammatory, and cognitive parameters. Results cGAS-/- mice displayed normal metabolic profiles and retained the ability to respond to inflammatory stimuli, as indicated by an increase in plasma inflammatory cytokine production in response to lipopolysaccharide injection. HFD feeding caused expected increases in body weight and decreases in glucose tolerance, although onset was accelerated in females versus males. While HFD did not increase plasma or hippocampal inflammatory cytokine production, it did alter microglial morphology to a state indicative of activation, particularly in female cGAS-/- mice. However, HFD negatively impacted cognitive outcomes in male, but not female animals. Discussion Collectively, these results suggest that cGAS-/- mice display sexually dimorphic responses to HFD, possibly based on differences in microglial morphology and cognition.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - A. Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Ian Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stephen I. Lentz
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Fernández-Felipe J, Valencia-Avezuela M, Merino B, Somoza B, Cano V, Sanz-Martos AB, Frago LM, Fernández-Alfonso MS, Ruiz-Gayo M, Chowen JA. Effects of saturated versus unsaturated fatty acids on metabolism, gliosis, and hypothalamic leptin sensitivity in male mice. Nutr Neurosci 2023; 26:173-186. [PMID: 35125071 DOI: 10.1080/1028415x.2022.2029294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Development of obesity and its comorbidities is not only the result of excess energy intake, but also of dietary composition. Understanding how hypothalamic metabolic circuits interpret nutritional signals is fundamental to advance towards effective dietary interventions. OBJECTIVE We aimed to determine the metabolic response to diets enriched in specific fatty acids. METHODS Male mice received a diet enriched in unsaturated fatty acids (UOLF) or saturated fatty acids (SOLF) for 8 weeks. RESULTS UOLF and SOLF mice gained more weight and adiposity, but with no difference between these two groups. Circulating leptin levels increased on both fatty acid-enriched diet, but were higher in UOLF mice, as were leptin mRNA levels in visceral adipose tissue. In contrast, serum non-esterified fatty acid levels only rose in SOLF mice. Hypothalamic mRNA levels of NPY decreased and of POMC increased in both UOLF and SOLF mice, but only SOLF mice showed signs of hypothalamic astrogliosis and affectation of central fatty acid metabolism. Exogenous leptin activated STAT3 in the hypothalamus of all groups, but the activation of AKT and mTOR and the decrease in AMPK activation in observed in controls and UOLF mice was not found in SOLF mice. CONCLUSIONS Diets rich in fatty acids increase body weight and adiposity even if energy intake is not increased, while increased intake of saturated and unsaturated fatty acids differentially modify metabolic parameters that could underlie more long-term comorbidities. Thus, more understanding of how specific nutrients affect metabolism, weight gain, and obesity associated complications is necessary.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Maria Valencia-Avezuela
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Victoria Cano
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Ana B Sanz-Martos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria S Fernández-Alfonso
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia Universidad Complutense de Madrid, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
18
|
Wang C, Lu J, Sha X, Qiu Y, Chen H, Yu Z. TRPV1 regulates ApoE4-disrupted intracellular lipid homeostasis and decreases synaptic phagocytosis by microglia. Exp Mol Med 2023; 55:347-363. [PMID: 36720919 PMCID: PMC9981624 DOI: 10.1038/s12276-023-00935-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 02/02/2023] Open
Abstract
Although the ε4 allele of the apolipoprotein E (ApoE4) gene has been established as a genetic risk factor for many neurodegenerative diseases, including Alzheimer's disease, the mechanism of action remains poorly understood. Transient receptor potential vanilloid 1 (TRPV1) was reported to regulate autophagy to protect against foam cell formation in atherosclerosis. Here, we show that ApoE4 leads to lipid metabolism dysregulation in microglia, resulting in enhanced MHC-II-dependent antigen presentation and T-cell activation. Lipid accumulation and inflammatory reactions were accelerated in microglia isolated from TRPV1flox/flox; Cx3cr1cre-ApoE4 mice. We showed that metabolic boosting by treatment with the TRPV1 agonist capsaicin rescued lipid metabolic impairments in ApoE4 neurons and defects in autophagy caused by disruption of the AKT-mTOR pathway. TRPV1 activation with capsaicin reversed ApoE4-induced microglial immune dysfunction and neuronal autophagy impairment. Capsaicin rescued memory impairment, tau pathology, and neuronal autophagy in ApoE4 mice. Activation of TRPV1 decreased microglial phagocytosis of synapses in ApoE4 mice. TRPV1 gene deficiency exacerbated recognition memory impairment and tau pathology in ApoE4 mice. Our study suggests that TRPV1 regulation of lipid metabolism could be a therapeutic approach to alleviate the consequences of the ApoE4 allele.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xudong Sha
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Fosch A, Rodriguez-Garcia M, Miralpeix C, Zagmutt S, Larrañaga M, Reguera AC, Garcia-Chica J, Herrero L, Serra D, Casals N, Rodriguez-Rodriguez R. Central Regulation of Brown Fat Thermogenesis in Response to Saturated or Unsaturated Long-Chain Fatty Acids. Int J Mol Sci 2023; 24:1697. [PMID: 36675212 PMCID: PMC9866012 DOI: 10.3390/ijms24021697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Sensing of long-chain fatty acids (LCFA) in the hypothalamus modulates energy balance, and its disruption leads to obesity. To date, the effects of saturated or unsaturated LCFA on hypothalamic-brown adipose tissue (BAT) axis and the underlying mechanisms have remained largely unclear. Our aim was to characterize the main molecular pathways involved in the hypothalamic regulation of BAT thermogenesis in response to LCFA with different lengths and degrees of saturation. One-week administration of high-fat diet enriched in monounsaturated FA led to higher BAT thermogenesis compared to a saturated FA-enriched diet. Intracerebroventricular infusion of oleic and linoleic acids upregulated thermogenesis markers and temperature in brown fat of mice, and triggered neuronal activation of paraventricular (PaV), ventromedial (VMH) and arcuate (ARC) hypothalamic nuclei, which was not found with saturated FAs. The neuron-specific protein carnitine palmitoyltransferase 1-C (CPT1C) was a crucial effector of oleic acid since the FA action was blunted in CPT1C-KO mice. Moreover, changes in the AMPK/ACC/malonyl-CoA pathway and fatty acid synthase expression were evoked by oleic acid. Altogether, central infusion of unsaturated but not saturated LCFA increases BAT thermogenesis through CPT1C-mediated sensing of FA metabolism shift, which in turn drive melanocortin system activation. These findings add new insight into neuronal circuitries activated by LCFA to drive thermogenesis.
Collapse
Affiliation(s)
- Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Maria Rodriguez-Garcia
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Cristina Miralpeix
- INSERM, Neurocentre Magendie, U1215, University of Bordeaux, 3300 Bordeaux, France
| | - Sebastián Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Maite Larrañaga
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Ana Cristina Reguera
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Jesus Garcia-Chica
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Nuria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosalia Rodriguez-Rodriguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
21
|
Campillo BW, Galguera D, Cerdan S, López-Larrubia P, Lizarbe B. Short-term high-fat diet alters the mouse brain magnetic resonance imaging parameters consistently with neuroinflammation on males and metabolic rearrangements on females. A pre-clinical study with an optimized selection of linear mixed-effects models. Front Neurosci 2022; 16:1025108. [PMID: 36507349 PMCID: PMC9729798 DOI: 10.3389/fnins.2022.1025108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction High-fat diet (HFD) consumption is known to trigger an inflammatory response in the brain that prompts the dysregulation of energy balance, leads to insulin and leptin resistance, and ultimately obesity. Obesity, at the same, has been related to cerebral magnetic resonance imaging (MRI) alterations, but the onset of HFD-induced neuroinflammation, however, has been principally reported on male rodents and by ex vivo methods, with the effects on females and the origin of MRI changes remaining unassessed. Methods We characterized the onset and evolution of obesity on male and female mice during standard or HFD administration by physiological markers and multiparametric MRI on four cerebral regions involved in appetite regulation and energy homeostasis. We investigated the effects of diet, time under diet, brain region and sex by identifying their significant contributions to sequential linear mixed-effects models, and obtained their regional neurochemical profiles by high-resolution magic angle spinning spectroscopy. Results Male mice developed an obese phenotype paralleled by fast increases in magnetization transfer ratio values, while females delayed the obesity progress and showed no MRI-signs of cerebral inflammation, but larger metabolic rearrangements on the neurochemical profile. Discussion Our study reveals early MRI-detectable changes compatible with the development of HFD-induced cerebral cytotoxic inflammation on males but suggest the existence of compensatory metabolic adaptations on females that preclude the corresponding detection of MRI alterations.
Collapse
Affiliation(s)
- Basilio Willem Campillo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - David Galguera
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sebastian Cerdan
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain,Pilar López-Larrubia,
| | - Blanca Lizarbe
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain,Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain,*Correspondence: Blanca Lizarbe,
| |
Collapse
|
22
|
MacKay H, Gunasekara CJ, Yam KY, Srisai D, Yalamanchili HK, Li Y, Chen R, Coarfa C, Waterland RA. Sex-specific epigenetic development in the mouse hypothalamic arcuate nucleus pinpoints human genomic regions associated with body mass index. SCIENCE ADVANCES 2022; 8:eabo3991. [PMID: 36170368 PMCID: PMC9519050 DOI: 10.1126/sciadv.abo3991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Recent genome-wide association studies corroborate classical research on developmental programming indicating that obesity is primarily a neurodevelopmental disease strongly influenced by nutrition during critical ontogenic windows. Epigenetic mechanisms regulate neurodevelopment; however, little is known about their role in establishing and maintaining the brain's energy balance circuitry. We generated neuron and glia methylomes and transcriptomes from male and female mouse hypothalamic arcuate nucleus, a key site for energy balance regulation, at time points spanning the closure of an established critical window for developmental programming of obesity risk. We find that postnatal epigenetic maturation is markedly cell type and sex specific and occurs in genomic regions enriched for heritability of body mass index in humans. Our results offer a potential explanation for both the limited ontogenic windows for and sex differences in sensitivity to developmental programming of obesity and provide a rich resource for epigenetic analyses of developmental programming of energy balance.
Collapse
Affiliation(s)
- Harry MacKay
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chathura J. Gunasekara
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kit-Yi Yam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Dollada Srisai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Hari Krishna Yalamanchili
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Yumei Li
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Waterland
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Ávalos Y, Hernández-Cáceres MP, Lagos P, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Joy-Immediato M, Venegas-Zamora L, Lopez-Gallardo E, Kretschmar C, Batista-Gonzalez A, Cifuentes-Araneda F, Toledo-Valenzuela L, Rodriguez-Peña M, Espinoza-Caicedo J, Perez-Leighton C, Bertocchi C, Cerda M, Troncoso R, Parra V, Budini M, Burgos PV, Criollo A, Morselli E. Palmitic acid control of ciliogenesis modulates insulin signaling in hypothalamic neurons through an autophagy-dependent mechanism. Cell Death Dis 2022; 13:659. [PMID: 35902579 PMCID: PMC9334645 DOI: 10.1038/s41419-022-05109-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.
Collapse
Affiliation(s)
- Yenniffer Ávalos
- grid.412179.80000 0001 2191 5013Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Pablo Lagos
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Pinto-Nuñez
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Rivera
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michelle Joy-Immediato
- grid.7870.80000 0001 2157 0406Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leslye Venegas-Zamora
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Erik Lopez-Gallardo
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Ana Batista-Gonzalez
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Flavia Cifuentes-Araneda
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lilian Toledo-Valenzuela
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Rodriguez-Peña
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Jasson Espinoza-Caicedo
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Perez-Leighton
- grid.7870.80000 0001 2157 0406Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- grid.7870.80000 0001 2157 0406Laboratory for Molecular Mechanics of Cell Adhesion, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Cerda
- grid.443909.30000 0004 0385 4466Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Center for Medical Informatics and Telemedicine, Facultad de Medicina, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Biomedical Neuroscience Institute, Santiago, Chile
| | - Rodrigo Troncoso
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile
| | - Valentina Parra
- grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile ,grid.443909.30000 0004 0385 4466Network for the Study of High-Lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Autophagy Research Center, Santiago, Chile ,grid.443909.30000 0004 0385 4466Laboratory of Molecular and Cellular Pathology, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - Patricia V. Burgos
- Autophagy Research Center, Santiago, Chile ,grid.442215.40000 0001 2227 4297Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile ,grid.7870.80000 0001 2157 0406Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- grid.443909.30000 0004 0385 4466Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, Universidad de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile
| | - Eugenia Morselli
- grid.7870.80000 0001 2157 0406Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,Autophagy Research Center, Santiago, Chile ,grid.442215.40000 0001 2227 4297Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
24
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
25
|
Lee JI, Busler JN, Millett CE, Principe JL, Levin LL, Corrigan A, Burdick KE. Association between visceral adipose tissue and major depressive disorder across the lifespan: A scoping review. Bipolar Disord 2022; 24:375-391. [PMID: 34551182 DOI: 10.1111/bdi.13130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Increasing evidence supports a bidirectional relationship between major depressive disorder (MDD) and obesity, but the role of visceral adipose tissue (VAT) as a measure of obesity in relation to MDD is not well understood. Here we review literature investigating the link between MDD and VAT in terms of biomarkers, sex differences, and aging. METHODS PubMed, EMBASE, PsycINFO, and CINAHL searches were conducted on December 11, 2020. No date or language limits were imposed. Major concepts searched were Depressive Disorder linked with Adipose Tissue, White, Hypothalmo-Hypophyseal System, and Pituitary-Adrenal System in addition to keywords. A final set of 32 items meeting criteria for inclusion. RESULTS Converging biological evidence suggests a significant bidirectional relationship between VAT and MDD across the lifespan. In adulthood, greater VAT was associated with increased risk for depression, especially in vulnerable groups such as individuals who are overweight/obese, postmenopausal women, and individuals with comorbid medical or psychiatric illness. In older adults, sarcopenia had an impact on the relationship between abnormal VAT and risk of depression. Additionally, sex differences emerged as a potential factor affecting the strength of the association between VAT and depression. CONCLUSIONS Elucidating the pathophysiological mechanisms associated with increased rates of depression in obese individuals will be crucial for developing specific treatment strategies that seek to improve outcomes in individuals with comorbid depression and obesity. Moreover, identifying age- and sex-specific risk factors may contribute to a more personalized medicine approach, thereby improving the quality of clinical care.
Collapse
Affiliation(s)
- Jia-In Lee
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jessica N Busler
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Caitlin E Millett
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica L Principe
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonard L Levin
- Countway Library, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Alexandra Corrigan
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine E Burdick
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Folick A, Cheang RT, Valdearcos M, Koliwad SK. Metabolic factors in the regulation of hypothalamic innate immune responses in obesity. Exp Mol Med 2022; 54:393-402. [PMID: 35474339 PMCID: PMC9076660 DOI: 10.1038/s12276-021-00666-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is a central regulator of body weight and energy homeostasis. There is increasing evidence that innate immune activation in the mediobasal hypothalamus (MBH) is a key element in the pathogenesis of diet-induced obesity. Microglia, the resident immune cells in the brain parenchyma, have been shown to play roles in diverse aspects of brain function, including circuit refinement and synaptic pruning. As such, microglia have also been implicated in the development and progression of neurological diseases. Microglia express receptors for and are responsive to a wide variety of nutritional, hormonal, and immunological signals that modulate their distinct functions across different brain regions. We showed that microglia within the MBH sense and respond to a high-fat diet and regulate the function of hypothalamic neurons to promote food intake and obesity. Neurons, glia, and immune cells within the MBH are positioned to sense and respond to circulating signals that regulate their capacity to coordinate aspects of systemic energy metabolism. Here, we review the current knowledge of how these peripheral signals modulate the innate immune response in the MBH and enable microglia to regulate metabolic control.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rachel T Cheang
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA
| | - Martin Valdearcos
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| | - Suneil K Koliwad
- Diabetes Center and Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
27
|
Espinosa R, Gutiérrez K, Rios J, Ormeño F, Yantén L, Galaz-Davison P, Ramírez-Sarmiento CA, Parra V, Albornoz A, Alfaro IE, Burgos PV, Morselli E, Criollo A, Budini M. Palmitic and Stearic Acids Inhibit Chaperone-Mediated Autophagy (CMA) in POMC-like Neurons In Vitro. Cells 2022; 11:cells11060920. [PMID: 35326371 PMCID: PMC8945987 DOI: 10.3390/cells11060920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 12/28/2022] Open
Abstract
The intake of food with high levels of saturated fatty acids (SatFAs) is associated with the development of obesity and insulin resistance. SatFAs, such as palmitic (PA) and stearic (SA) acids, have been shown to accumulate in the hypothalamus, causing several pathological consequences. Autophagy is a lysosomal-degrading pathway that can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Previous studies showed that PA impairs macroautophagy function and insulin response in hypothalamic proopiomelanocortin (POMC) neurons. Here, we show in vitro that the exposure of POMC neurons to PA or SA also inhibits CMA, possibly by decreasing the total and lysosomal LAMP2A protein levels. Proteomics of lysosomes from PA- and SA-treated cells showed that the inhibition of CMA could impact vesicle formation and trafficking, mitochondrial components, and insulin response, among others. Finally, we show that CMA activity is important for regulating the insulin response in POMC hypothalamic neurons. These in vitro results demonstrate that CMA is inhibited by PA and SA in POMC-like neurons, giving an overview of the CMA-dependent cellular pathways that could be affected by such inhibition and opening a door for in vivo studies of CMA in the context of the hypothalamus and obesity.
Collapse
Affiliation(s)
- Rodrigo Espinosa
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Karla Gutiérrez
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Javiera Rios
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Fernando Ormeño
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
| | - Liliana Yantén
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (P.G.-D.); (C.A.R.-S.)
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (P.G.-D.); (C.A.R.-S.)
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380544, Chile; (V.P.); (A.C.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
| | - Amelina Albornoz
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Iván E. Alfaro
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
- Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Patricia V. Burgos
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; (L.Y.); (A.A.); (I.E.A.); (P.V.B.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Eugenia Morselli
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago 8331150, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380544, Chile; (V.P.); (A.C.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Cellular and Molecular Biology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile
| | - Mauricio Budini
- Molecular and Cellular Pathology Laboratory, Institute in Dentistry Sciences, Dentistry Faculty, University of Chile, Santiago 8380544, Chile; (R.E.); (K.G.); (J.R.); (F.O.)
- Autophagy Research Center (ARC), Santiago 8380544, Chile;
- Correspondence:
| |
Collapse
|
28
|
Estrogenic Action in Stress-Induced Neuroendocrine Regulation of Energy Homeostasis. Cells 2022; 11:cells11050879. [PMID: 35269500 PMCID: PMC8909319 DOI: 10.3390/cells11050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Estrogens are among important contributing factors to many sex differences in neuroendocrine regulation of energy homeostasis induced by stress. Research in this field is warranted since chronic stress-related psychiatric and metabolic disturbances continue to be top health concerns, and sex differences are witnessed in these aspects. For example, chronic stress disrupts energy homeostasis, leading to negative consequences in the regulation of emotion and metabolism. Females are known to be more vulnerable to the psychological consequences of stress, such as depression and anxiety, whereas males are more vulnerable to the metabolic consequences of stress. Sex differences that exist in the susceptibility to various stress-induced disorders have led researchers to hypothesize that gonadal hormones are regulatory factors that should be considered in stress studies. Further, estrogens are heavily recognized for their protective effects on metabolic dysregulation, such as anti-obesogenic and glucose-sensing effects. Perturbations to energy homeostasis using laboratory rodents, such as physiological stress or over-/under- feeding dietary regimen prevalent in today’s society, offer hints to the underlying mechanisms of estrogenic actions. Metabolic effects of estrogens primarily work through estrogen receptor α (ERα), which is differentially expressed between the sexes in hypothalamic nuclei regulating energy metabolism and in extrahypothalamic limbic regions that are not typically associated with energy homeostasis. In this review, we discuss estrogenic actions implicated in stress-induced sex-distinct metabolic disorders.
Collapse
|
29
|
Wodrich APK, Scott AW, Shukla AK, Harris BT, Giniger E. The Unfolded Protein Responses in Health, Aging, and Neurodegeneration: Recent Advances and Future Considerations. Front Mol Neurosci 2022; 15:831116. [PMID: 35283733 PMCID: PMC8914544 DOI: 10.3389/fnmol.2022.831116] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Aging and age-related neurodegeneration are both associated with the accumulation of unfolded and abnormally folded proteins, highlighting the importance of protein homeostasis (termed proteostasis) in maintaining organismal health. To this end, two cellular compartments with essential protein folding functions, the endoplasmic reticulum (ER) and the mitochondria, are equipped with unique protein stress responses, known as the ER unfolded protein response (UPR ER ) and the mitochondrial UPR (UPR mt ), respectively. These organellar UPRs play roles in shaping the cellular responses to proteostatic stress that occurs in aging and age-related neurodegeneration. The loss of adaptive UPR ER and UPR mt signaling potency with age contributes to a feed-forward cycle of increasing protein stress and cellular dysfunction. Likewise, UPR ER and UPR mt signaling is often altered in age-related neurodegenerative diseases; however, whether these changes counteract or contribute to the disease pathology appears to be context dependent. Intriguingly, altering organellar UPR signaling in animal models can reduce the pathological consequences of aging and neurodegeneration which has prompted clinical investigations of UPR signaling modulators as therapeutics. Here, we review the physiology of both the UPR ER and the UPR mt , discuss how UPR ER and UPR mt signaling changes in the context of aging and neurodegeneration, and highlight therapeutic strategies targeting the UPR ER and UPR mt that may improve human health.
Collapse
Affiliation(s)
- Andrew P. K. Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W. Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Arvind Kumar Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Brent T. Harris
- Department of Pathology, Georgetown University, Washington, DC, United States
- Department of Neurology, Georgetown University, Washington, DC, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Abstract
The role of central estrogen in cognitive, metabolic, and reproductive health has long fascinated the lay public and scientists alike. In the last two decades, insight into estrogen signaling in the brain and its impact on female physiology is beginning to catch up with the vast information already established for its actions on peripheral tissues. Using newer methods to manipulate estrogen signaling in hormone-sensitive brain regions, neuroscientists are now identifying the molecular pathways and neuronal subtypes required for controlling sex-dependent energy allocation. However, the immense cellular complexity of these hormone-sensitive brain regions makes it clear that more research is needed to fully appreciate how estrogen modulates neural circuits to regulate physiological and behavioral end points. Such insight is essential for understanding how natural or drug-induced hormone fluctuations across lifespan affect women's health.
Collapse
Affiliation(s)
- Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| |
Collapse
|
31
|
Roger C, Lasbleiz A, Guye M, Dutour A, Gaborit B, Ranjeva JP. The Role of the Human Hypothalamus in Food Intake Networks: An MRI Perspective. Front Nutr 2022; 8:760914. [PMID: 35047539 PMCID: PMC8762294 DOI: 10.3389/fnut.2021.760914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hypothalamus (HT), this small structure often perceived through the prism of neuroimaging as morphologically and functionally homogeneous, plays a key role in the primitive act of feeding. The current paper aims at reviewing the contribution of magnetic resonance imaging (MRI) in the study of the role of the HT in food intake regulation. It focuses on the different MRI techniques that have been used to describe structurally and functionally the Human HT. The latest advances in HT parcellation as well as perspectives in this field are presented. The value of MRI in the study of eating disorders such as anorexia nervosa (AN) and obesity are also highlighted.
Collapse
Affiliation(s)
- Coleen Roger
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| | - Adèle Lasbleiz
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France.,Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Maxime Guye
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| | - Anne Dutour
- Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Bénédicte Gaborit
- Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Jean-Philippe Ranjeva
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| |
Collapse
|
32
|
Obesity and Men's Health. Nurs Clin North Am 2021; 56:599-607. [PMID: 34749898 DOI: 10.1016/j.cnur.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The health outcomes of men are significantly worse, when compared with their female counterparts, for the top 15 leading causes of death nationwide. At this time, men are not actively engaged in the health care system, creating a challenge for those managing patients in the clinical setting. The premature morbidity and mortality of men financially burdens the health care system and places a financial strain in secondary and tertiary preventive care that is simply not sustainable. Obesity is a catalyst that fuels disease and is directly responsible for the pathogenesis for the disease claiming the lives of men nationwide.
Collapse
|
33
|
Décarie-Spain L, Hryhorczuk C, Lau D, Jacob-Brassard É, Fisette A, Fulton S. Prolonged saturated, but not monounsaturated, high-fat feeding provokes anxiodepressive-like behaviors in female mice despite similar metabolic consequences. Brain Behav Immun Health 2021; 16:100324. [PMID: 34589811 PMCID: PMC8474568 DOI: 10.1016/j.bbih.2021.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022] Open
Abstract
Obesity significantly increases the risk for anxiety and depression. Our group has recently demonstrated a role for nucleus accumbens (NAc) pro-inflammatory nuclear factor kappa-B (NFkB) signaling in the development of anxiodepressive-like behaviors by diet-induced obesity in male mice. The NAc is a brain region involved in goal-oriented behavior and mood regulation whose functions are critical to hedonic feeding and motivation. While the incidence of depression and anxiety disorders is significantly higher in women than in men, the use of female animal models in psychiatric research remains limited. We set out to investigate the impact of chronic intake of saturated and monounsaturated high-fat diets (HFD) on energy metabolism and on anxiety- and despair-like behaviors in female mice and to ascertain the contribution of NAc NFkB-mediated inflammation herein. Adult C57Bl6N female mice were fed either a saturated HFD, an isocaloric monounsaturated HFD or a control low-fat diet for 24 weeks, after which metabolic profiling and behavioral testing for anxiodepressive-like behaviors were conducted. Plasma was collected at time of sacrifice for quantification of leptin, inflammatory markers as well as 17 β-estradiol levels and brains were harvested to analyze NAc expression of pro-inflammatory genes and estrogen-signaling molecules. In another group of female mice placed on the saturated HFD or the control diet for 24 weeks, we performed adenoviral-mediated invalidation of the NFkB signaling pathway in the NAc prior to behavioral testing. While both HFDs provoked obesity and metabolic impairments, only the saturated HFD triggered anxiodepressive-like behaviors and caused marked elevations in plasma estrogen. This saturated HFD-specific behavioral phenotype could not be explained by NAc inflammation alone and was unaffected by NAc invalidation of the NFkB signaling pathway. Instead, we found changes in the expression of estrogen signaling markers. Such results diverge from the inflammatory mechanisms underlying diet- and obesity-induced metabolic dysfunction and anxiodepressive-like behavior onset in male mice and call attention to the role of estrogen signaling in diet-related anxiodepressive-like phenotypes in female mice.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Canada
| | - Cécile Hryhorczuk
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada
| | - David Lau
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Canada
| | | | - Alexandre Fisette
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Canada
| | - Stephanie Fulton
- Centre de recherche du CHUM & Montreal Diabetes Research Centre, Canada.,Department of Nutrition, Faculty of Medicine, University of Montreal, Canada
| |
Collapse
|
34
|
Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab 2021; 52:101234. [PMID: 33845179 PMCID: PMC8513144 DOI: 10.1016/j.molmet.2021.101234] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The brain was once thought of as an insulin-insensitive organ. We now know that the insulin receptor is present throughout the brain and serves important functions in whole-body metabolism and brain function. Brain insulin signaling is involved not only in brain homeostatic processes but also neuropathological processes such as cognitive decline and Alzheimer's disease. SCOPE OF REVIEW In this review, we provide an overview of insulin signaling within the brain and the metabolic impact of brain insulin resistance and discuss Alzheimer's disease, one of the neurologic diseases most closely associated with brain insulin resistance. MAJOR CONCLUSIONS While brain insulin signaling plays only a small role in central nervous system glucose regulation, it has a significant impact on the brain's metabolic health. Normal insulin signaling is important for mitochondrial functioning and normal food intake. Brain insulin resistance contributes to obesity and may also play an important role in neurodegeneration.
Collapse
Affiliation(s)
- Joshua L Milstein
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Heather A Ferris
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
35
|
Minabe S, Iwata K, Tsuchida H, Tsukamura H, Ozawa H. Effect of diet-induced obesity on kisspeptin-neurokinin B-dynorphin A neurons in the arcuate nucleus and luteinizing hormone secretion in sex hormone-primed male and female rats. Peptides 2021; 142:170546. [PMID: 33794282 DOI: 10.1016/j.peptides.2021.170546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
Metabolic stress resulting from either lack or excess of nutrients often causes infertility in both sexes. Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) has been suggested to be a key players in reproduction via direct stimulation of the pulsatile gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release in mammalian species. In this study, we investigated the effect of high-fat diet (HFD) on hypothalamic KNDy gene expression to examine the pathogenic mechanism underlying obesity-induced infertility in male and female rats. Male and female rats at 7 weeks of age were fed with either a standard or HFD for 4 months. In the male rats, the HFD caused a significant suppression of ARC Kiss1 and Pdyn gene expressions, but did not affect the plasma luteinizing hormone (LH) levels and sizes of the morphology of the testis and epididymis. In the female rats, 58% of the HFD-fed female rats exhibited irregular estrous cycles, whereas the remaining rats showed regular cycles. Two of the 10 rats that showed HFD-induced irregular estrous cycles showed profound suppression of LH pulse frequency and the number of ARC Kiss1-expressing cells, whereas the other females showed normal LH pulses and ARC Kiss1 expression. Our finding shows that suppression of ARC Kiss1 expression might be the initial pathological change of hypogonadotropic hypogonadism in HFD-fed male rats, while the obese-related infertility in the female rats may be mainly induced by KNDy-independent pathways. Taken together, ARC kisspeptin neurons in male rats may be susceptible to HFD-induced obesity compared with those in female rats.
Collapse
Affiliation(s)
- Shiori Minabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113- 8602, Japan.
| | - Kinuyo Iwata
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113- 8602, Japan
| | - Hitomi Tsuchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113- 8602, Japan
| |
Collapse
|
36
|
Hersey M, Woodruff JL, Maxwell N, Sadek AT, Bykalo MK, Bain I, Grillo CA, Piroli GG, Hashemi P, Reagan LP. High-fat diet induces neuroinflammation and reduces the serotonergic response to escitalopram in the hippocampus of obese rats. Brain Behav Immun 2021; 96:63-72. [PMID: 34010713 PMCID: PMC8319113 DOI: 10.1016/j.bbi.2021.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Clinical studies indicate that obese individuals have an increased risk of developing co-morbid depressive illness and that these patients have reduced responses to antidepressant therapy, including selective serotonin reuptake inhibitors (SSRIs). Obesity, a condition of chronic mild inflammation including obesity-induced neuroinflammation, is proposed to contribute to decreases in synaptic concentrations of neurotransmitters like serotonin (5HT) by decreasing 5HT synthesis in the dorsal raphe nucleus (DRN) and/or affecting 5HT reuptake in DRN target regions like the hippocampus. In view of these observations, the goal of the current study was to examine inflammatory markers and serotonergic dynamics in co-morbid obesity and depression. Biochemical and behavioral assays revealed that high-fat diet produced an obesity and depressive-like phenotype in one cohort of rats and that these changes were marked by increases in key pro-inflammatory cytokines in the hippocampus. In real time using fast scan cyclic voltammetry (FSCV), we observed no changes in basal levels of hippocampal 5HT; however responses to escitalopram were significantly impaired in the hippocampus of obese rats compared to diet resistant rats and control rats. Further studies revealed that these neurochemical observations could be explained by increases in serotonin transporter (SERT) expression in the hippocampus driven by elevated neuroinflammation. Collectively, these results demonstrate that obesity-induced increases in neuroinflammation adversely affect SERT expression in the hippocampus of obese rats, thereby providing a potential synaptic mechanism for reduced SSRI responsiveness in obese subjects with co-morbid depressive illness.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Jennifer L. Woodruff
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA,Columbia VA Health Care System, Columbia, SC, USA
| | - Nicholas Maxwell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Alia T. Sadek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Maria K. Bykalo
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Ian Bain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Claudia A. Grillo
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA,Columbia VA Health Care System, Columbia, SC, USA
| | - Gerardo G. Piroli
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| | - Lawrence P. Reagan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina SOM, Columbia, SC, USA,Columbia VA Health Care System, Columbia, SC, USA,Corresponding author: Lawrence P. Reagan, Ph.D., Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, D40, Columbia, SC, USA 29208, Phone: 001 803 216 3515; Fax: 001 803 216 3538,
| |
Collapse
|
37
|
Ruigrok SR, Stöberl N, Yam KY, de Lucia C, Lucassen PJ, Thuret S, Korosi A. Modulation of the Hypothalamic Nutrient Sensing Pathways by Sex and Early-Life Stress. Front Neurosci 2021; 15:695367. [PMID: 34366778 PMCID: PMC8342927 DOI: 10.3389/fnins.2021.695367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
There are sex differences in metabolic disease risk, and early-life stress (ES) increases the risk to develop such diseases, potentially in a sex-specific manner. It remains to be understood, however, how sex and ES affect such metabolic vulnerability. The hypothalamus regulates food intake and energy expenditure by sensing the organism's energy state via metabolic hormones (leptin, insulin, ghrelin) and nutrients (glucose, fatty acids). Here, we investigated if and how sex and ES alter hypothalamic nutrient sensing short and long-term. ES was induced in mice by limiting the bedding and nesting material from postnatal day (P)2-P9, and the expression of genes critical for hypothalamic nutrient sensing were studied in male and female offspring, both at P9 and in adulthood (P180). At P9, we observed a sex difference in both Ppargc1a and Lepr expression, while the latter was also increased in ES-exposed animals relative to controls. In adulthood, we found sex differences in Acacb, Agrp, and Npy expression, whereas ES did not affect the expression of genes involved in hypothalamic nutrient sensing. Thus, we observe a pervasive sex difference in nutrient sensing pathways and a targeted modulation of this pathway by ES early in life. Future research is needed to address if the modulation of these pathways by sex and ES is involved in the differential vulnerability to metabolic diseases.
Collapse
Affiliation(s)
- Silvie R. Ruigrok
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nina Stöberl
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Kit-Yi Yam
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Paul J. Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
39
|
Folick A, Koliwad SK, Valdearcos M. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:668396. [PMID: 34122343 PMCID: PMC8191416 DOI: 10.3389/fendo.2021.668396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
40
|
Reginato A, Veras ACC, Baqueiro MDN, Panzarin C, Siqueira BP, Milanski M, Lisboa PC, Torsoni AS. The Role of Fatty Acids in Ceramide Pathways and Their Influence on Hypothalamic Regulation of Energy Balance: A Systematic Review. Int J Mol Sci 2021; 22:5357. [PMID: 34069652 PMCID: PMC8160791 DOI: 10.3390/ijms22105357] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/09/2022] Open
Abstract
Obesity is a global health issue for which no major effective treatments have been well established. High-fat diet consumption is closely related to the development of obesity because it negatively modulates the hypothalamic control of food intake due to metaflammation and lipotoxicity. The use of animal models, such as rodents, in conjunction with in vitro models of hypothalamic cells, can enhance the understanding of hypothalamic functions related to the control of energy balance, thereby providing knowledge about the impact of diet on the hypothalamus, in addition to targets for the development of new drugs that can be used in humans to decrease body weight. Recently, sphingolipids were described as having a lipotoxic effect in peripheral tissues and the central nervous system. Specifically, lipid overload, mainly from long-chain saturated fatty acids, such as palmitate, leads to excessive ceramide levels that can be sensed by the hypothalamus, triggering the dysregulation of energy balance control. However, no systematic review has been undertaken regarding studies of sphingolipids, particularly ceramide and sphingosine-1-phosphate (S1P), the hypothalamus, and obesity. This review confirms that ceramides are associated with hypothalamic dysfunction in response to metaflammation, endoplasmic reticulum (ER) stress, and lipotoxicity, leading to insulin/leptin resistance. However, in contrast to ceramide, S1P appears to be a central satiety factor in the hypothalamus. Thus, our work describes current evidence related to sphingolipids and their role in hypothalamic energy balance control. Hypothetically, the manipulation of sphingolipid levels could be useful in enabling clinicians to treat obesity, particularly by decreasing ceramide levels and the inflammation/endoplasmic reticulum stress induced in response to overfeeding with saturated fatty acids.
Collapse
Affiliation(s)
- Andressa Reginato
- Biology Institute, State University of Rio de Janeiro, UERJ, Rio de Janeiro 20551-030, Brazil;
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Alana Carolina Costa Veras
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Mayara da Nóbrega Baqueiro
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Carolina Panzarin
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Beatriz Piatezzi Siqueira
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Marciane Milanski
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | | | - Adriana Souza Torsoni
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| |
Collapse
|
41
|
Lafferty RA, O’Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-Derived Peptides as Therapeutics. Front Endocrinol (Lausanne) 2021; 12:689678. [PMID: 34093449 PMCID: PMC8171296 DOI: 10.3389/fendo.2021.689678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.
Collapse
Affiliation(s)
| | | | | | - Victor A. Gault
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | |
Collapse
|
42
|
Baranowski BJ, Hayward GC, Marko DM, MacPherson REK. Examination of BDNF Treatment on BACE1 Activity and Acute Exercise on Brain BDNF Signaling. Front Cell Neurosci 2021; 15:665867. [PMID: 34017238 PMCID: PMC8129185 DOI: 10.3389/fncel.2021.665867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Perturbations in metabolism results in the accumulation of beta-amyloid peptides, which is a pathological feature of Alzheimer’s disease. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate limiting enzyme responsible for beta-amyloid production. Obesogenic diets increase BACE1 while exercise reduces BACE1 activity, although the mechanisms are unknown. Brain-derived neurotropic factor (BDNF) is an exercise inducible neurotrophic factor, however, it is unknown if BDNF is related to the effects of exercise on BACE1. The purpose of this study was to determine the direct effect of BDNF on BACE1 activity and to examine neuronal pathways induced by exercise. C57BL/6J male mice were assigned to either a low (n = 36) or high fat diet (n = 36) for 10 weeks. To determine the direct effect of BDNF on BACE1, a subset of mice (low fat diet = 12 and high fat diet n = 12) were used for an explant experiment where the brain tissue was directly treated with BDNF (100 ng/ml) for 30 min. To examine neuronal pathways activated with exercise, mice remained sedentary (n = 12) or underwent an acute bout of treadmill running at 15 m/min with a 5% incline for 120 min (n = 12). The prefrontal cortex and hippocampus were collected 2-h post-exercise. Direct treatment with BDNF resulted in reductions in BACE1 activity in the prefrontal cortex (p < 0.05), but not the hippocampus. The high fat diet reduced BDNF content in the hippocampus; however, the acute bout of exercise increased BDNF in the prefrontal cortex (p < 0.05). These novel findings demonstrate the region specific differences in exercise induced BDNF in lean and obese mice and show that BDNF can reduce BACE1 activity, independent of other exercise-induced alterations. This work demonstrates a previously unknown link between BDNF and BACE1 regulation.
Collapse
Affiliation(s)
| | - Grant C Hayward
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
43
|
Kolodziej F, O’Halloran KD. Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World? Antioxidants (Basel) 2021; 10:609. [PMID: 33921022 PMCID: PMC8071436 DOI: 10.3390/antiox10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are popularly called the "powerhouses" of the cell. They promote energy metabolism through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which in contrast to cytosolic glycolysis are oxygen-dependent and significantly more substrate efficient. That is, mitochondrial metabolism provides substantially more cellular energy currency (ATP) per macronutrient metabolised. Enhancement of mitochondrial density and metabolism are associated with endurance training, which allows for the attainment of high relative VO2 max values. However, the sedentary lifestyle and diet currently predominant in the Western world lead to mitochondrial dysfunction. Underdeveloped mitochondrial metabolism leads to nutrient-induced reducing pressure caused by energy surplus, as reduced nicotinamide adenine dinucleotide (NADH)-mediated high electron flow at rest leads to "electron leak" and a chronic generation of superoxide radicals (O2-). Chronic overload of these reactive oxygen species (ROS) damages cell components such as DNA, cell membranes, and proteins. Counterintuitively, transiently generated ROS during exercise contributes to adaptive reduction-oxidation (REDOX) signalling through the process of cellular hormesis or "oxidative eustress" defined by Helmut Sies. However, the unaccustomed, chronic oxidative stress is central to the leading causes of mortality in the 21st century-metabolic syndrome and the associated cardiovascular comorbidities. The endurance exercise training that improves mitochondrial capacity and the protective antioxidant cellular system emerges as a universal intervention for mitochondrial dysfunction and resultant comorbidities. Furthermore, exercise might also be a solution to prevent ageing-related degenerative diseases, which are caused by impaired mitochondrial recycling. This review aims to break down the metabolic components of exercise and how they translate to athletic versus metabolically diseased phenotypes. We outline a reciprocal relationship between oxidative metabolism and inflammation, as well as hypoxia. We highlight the importance of oxidative stress for metabolic and antioxidant adaptation. We discuss the relevance of lactate as an indicator of critical exercise intensity, and inferring from its relationship with hypoxia, we suggest the most appropriate mode of exercise for the case of a lost oxidative identity in metabolically inflexible patients. Finally, we propose a reciprocal signalling model that establishes a healthy balance between the glycolytic/proliferative and oxidative/prolonged-ageing phenotypes. This model is malleable to adaptation with oxidative stress in exercise but is also susceptible to maladaptation associated with chronic oxidative stress in disease. Furthermore, mutations of components involved in the transcriptional regulatory mechanisms of mitochondrial metabolism may lead to the development of a cancerous phenotype, which progressively presents as one of the main causes of death, alongside the metabolic syndrome.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, T12 XF62 Cork, Ireland;
| | | |
Collapse
|
44
|
Beaulieu J, Costa G, Renaud J, Moitié A, Glémet H, Sergi D, Martinoli MG. The Neuroinflammatory and Neurotoxic Potential of Palmitic Acid Is Mitigated by Oleic Acid in Microglial Cells and Microglial-Neuronal Co-cultures. Mol Neurobiol 2021; 58:3000-3014. [PMID: 33604780 DOI: 10.1007/s12035-021-02328-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Neuroinflammation has been implicated in the pathogenesis of neurodegeneration and is now accepted as a common molecular feature underpinning neuronal damage and death. Palmitic acid (PA) may represent one of the links between diet and neuroinflammation. The aims of this study were to assess whether PA induced toxicity in neuronal cells by modulating microglial inflammatory responses and/or by directly targeting neurons. We also determined the potential of oleic acid (OA), a monounsaturated fatty acid, to counteract inflammation and promote neuroprotection. We measured the ability of PA to induce the secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the induction of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling pathways, as well as the phosphorylation of c-Jun, and the expression of inducible nitric oxide synthase (iNOS). Finally, to determine whether PA exerted an indirect neurotoxic effect on neuronal cells, we employed a microglia-neuron co-culture paradigm where microglial cells communicate with neuronal cells in a paracrine fashion. Herein, we demonstrate that PA induces the activation of the NF-κB signalling pathway and c-Jun phosphorylation in N9 microglia cells, in the absence of increased cytokine secretion. Moreover, our data illustrate that PA exerts an indirect as well as a direct neurotoxic role on neuronal PC12 cells and these effects are partially prevented by OA. These results are important to establish that PA interferes with neuronal homeostasis and suggest that dietary PA, when consumed in excess, may induce neuroinflammation and possibly concurs in the development of neurodegeneration.
Collapse
Affiliation(s)
- Jimmy Beaulieu
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. des Forges, G9A 5H7, Trois-Rivières, QC, Canada
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neurosciences, University of Cagliari, Cagliari, Italy
| | - Justine Renaud
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. des Forges, G9A 5H7, Trois-Rivières, QC, Canada
| | - Amélie Moitié
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. des Forges, G9A 5H7, Trois-Rivières, QC, Canada
| | - Hélène Glémet
- Department of Biological and Ecological Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Domenico Sergi
- Nutrition & Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. des Forges, G9A 5H7, Trois-Rivières, QC, Canada. .,Department of Psychiatry & Neurosciences, Université Laval and CHU Research Center, Québec, Canada.
| |
Collapse
|
45
|
Barlampa D, Bompoula MS, Bargiota A, Kalantaridou S, Mastorakos G, Valsamakis G. Hypothalamic Inflammation as a Potential Pathophysiologic Basis for the Heterogeneity of Clinical, Hormonal, and Metabolic Presentation in PCOS. Nutrients 2021; 13:520. [PMID: 33562540 PMCID: PMC7915850 DOI: 10.3390/nu13020520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. It is a heterogeneous condition characterized by reproductive, endocrine, metabolic, and psychiatric abnormalities. More than one pathogenic mechanism is involved in its development. On the other hand, the hypothalamus plays a crucial role in many important functions of the body, including weight balance, food intake, and reproduction. A high-fat diet with a large amount of long-chain saturated fatty acids can induce inflammation in the hypothalamus. Hypothalamic neurons can sense extracellular glucose concentrations and participate, with a feedback mechanism, in the regulation of whole-body glucose homeostasis. When consumed nutrients are rich in fat and sugar, and these regulatory mechanisms can trigger inflammatory pathways resulting in hypothalamic inflammation. The latter has been correlated with metabolic diseases, obesity, and depression. In this review, we explore whether the pattern and the expansion of hypothalamic inflammation, as a result of a high-fat and -sugar diet, may contribute to the heterogeneity of the clinical, hormonal, and metabolic presentation in PCOS via pathophysiologic mechanisms affecting specific areas of the hypothalamus. These mechanisms could be potential targets for the development of effective therapies for the treatment of PCOS.
Collapse
Affiliation(s)
- Danai Barlampa
- Unit of Endocrinology, Aretaieion University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, Athens, Vasilisis Sofia Avenue 76, 115 28 Athens, Greece; (D.B.); (G.V.)
| | - Maria Sotiria Bompoula
- Reproductive Endocrinology Unit, 3nd University Department of Obs & Gynae, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (M.S.B.); (S.K.)
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Disorders, University Hospital of Larissa, Medical School of Larissa, University of Thessaly, 41334 Larissa, Greece;
| | - Sophia Kalantaridou
- Reproductive Endocrinology Unit, 3nd University Department of Obs & Gynae, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (M.S.B.); (S.K.)
| | - George Mastorakos
- Unit of Endocrinology, Aretaieion University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, Athens, Vasilisis Sofia Avenue 76, 115 28 Athens, Greece; (D.B.); (G.V.)
| | - Georgios Valsamakis
- Unit of Endocrinology, Aretaieion University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, Athens, Vasilisis Sofia Avenue 76, 115 28 Athens, Greece; (D.B.); (G.V.)
- Reproductive Endocrinology Unit, 3nd University Department of Obs & Gynae, Attikon University Hospital, Medical School of Athens, Ethnikon and Kapodistriakon University of Athens, 12462 Athens, Greece; (M.S.B.); (S.K.)
- Department of Endocrinology and Metabolic Disorders, University Hospital of Larissa, Medical School of Larissa, University of Thessaly, 41334 Larissa, Greece;
| |
Collapse
|
46
|
Dionysopoulou S, Charmandari E, Bargiota A, Vlahos NF, Mastorakos G, Valsamakis G. The Role of Hypothalamic Inflammation in Diet-Induced Obesity and Its Association with Cognitive and Mood Disorders. Nutrients 2021; 13:498. [PMID: 33546219 PMCID: PMC7913301 DOI: 10.3390/nu13020498] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is often associated with cognitive and mood disorders. Recent evidence suggests that obesity may cause hypothalamic inflammation. Our aim was to investigate the hypothesis that there is a causal link between obesity-induced hypothalamic inflammation and cognitive and mood disorders. Inflammation may influence hypothalamic inter-connections with regions important for cognition and mood, while it may cause dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and influence monoaminergic systems. Exercise, healthy diet, and glucagon-like peptide receptor agonists, which can reduce hypothalamic inflammation in obese models, could improve the deleterious effects on cognition and mood.
Collapse
Affiliation(s)
- Sofia Dionysopoulou
- Division of Endocrinology, Metabolism and Diabetes, Hippocratio General Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics and Gynecology, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgios Valsamakis
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
47
|
Ma Q, Deng P, Lin M, Yang L, Li L, Guo L, Zhang L, He M, Lu Y, Pi H, Zhang Y, Yu Z, Chen C, Zhou Z. Long-term bisphenol A exposure exacerbates diet-induced prediabetes via TLR4-dependent hypothalamic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123926. [PMID: 33254826 DOI: 10.1016/j.jhazmat.2020.123926] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), an environmental endocrine-disrupting compound, has been revealed associated with metabolic disorders such as obesity, prediabetes, and type 2 diabetes (T2D). However, its underlying mechanisms are still not fully understood. Here, we provide new evidence that BPA is a risk factor for T2D from a case-control study. To explore the detailed mechanisms, we used two types of diet models, standard diet (SD) and high-fat diet (HFD), to study the effects of long-term BPA exposure on prediabetes in 4-week-old mice. We found that BPA exposure for 12 weeks exacerbated HFD-induced prediabetic symptoms. Female mice showed increased body mass, serum insulin level, and impaired glucose tolerance, while male mice only exhibited impaired glucose tolerance. No change was found in SD-fed mice. Besides, BPA exposure enhanced astrocyte-dependent hypothalamic inflammation in both male and female mice, which impaired proopiomelanocortin (POMC) neuron functions. Moreover, eliminating inflammation by toll-like receptor 4 (TLR4) knockout significantly abolished the effects of BPA on the hypothalamus and diet-induced prediabetes. Taken together, our data establish a key role for TLR4-dependent hypothalamic inflammation in regulating the effects of BPA on prediabetes.
Collapse
Affiliation(s)
- Qinlong Ma
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Ping Deng
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Min Lin
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lingling Yang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Le Li
- Department of Health Management Center, Southwest Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lu Guo
- Department of Neurology, Daping Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Mindi He
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yonghui Lu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yanwen Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Chunhai Chen
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China.
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
48
|
Bomba M, Granzotto A, Castelli V, Onofrj M, Lattanzio R, Cimini A, Sensi SL. Exenatide Reverts the High-Fat-Diet-Induced Impairment of BDNF Signaling and Inflammatory Response in an Animal Model of Alzheimer's Disease. J Alzheimers Dis 2020; 70:793-810. [PMID: 31256135 DOI: 10.3233/jad-190237] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial condition in which, along with amyloid-β (Aβ) and tau-related pathology, the synergistic activity of co-morbidity factors promote the onset and progression of the disease. Epidemiological evidence indicates that glucose intolerance, deficits in insulin secretion, or type-2 diabetes mellitus (T2DM) participate in increasing cognitive impairment or dementia risk. Insulin plays a pivotal role in the process as the hormone critically regulates brain functioning. GLP-1, the glucagon-like peptide 1, facilitates insulin signaling, regulates glucose homeostasis, and modulates synaptic plasticity. Exenatide is a synthetic GLP-1 analog employed in T2DM. However, exenatide has also been shown to affect the signaling of the brain-derived neurotrophic factor (BDNF), synaptic plasticity, and cognitive performances in animal models. In this study, we tested whether exenatide exerts neuroprotection in a preclinical AD model set to mimic the clinical complexity of the human disease. We investigated the effects of exenatide treatment in 3xTg-AD mice challenged with a high-fat diet (HFD). Endpoints of the study were variations in systemic metabolism, insulin and neurotrophic signaling, neuroinflammation, Aβ and tau pathology, and cognitive performances. Results of the study indicate that exenatide reverts the adverse changes of BDNF signaling and the neuroinflammation status of 3xTg-AD mice undergoing HFD without affecting systemic metabolism or promoting changes in cognitive performances.
Collapse
Affiliation(s)
- Manuela Bomba
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Marco Onofrj
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Rossano Lattanzio
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Medical, Oral, and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy.,Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders - iMIND, University of California - Irvine, Irvine, CA, USA
| |
Collapse
|
49
|
Fu X, Qin T, Yu J, Jiao J, Ma Z, Fu Q, Deng X, Ma S. Formononetin Ameliorates Cognitive Disorder via PGC-1α Pathway in Neuroinflammation Conditions in High-Fat Diet-Induced Mice. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:566-577. [PMID: 31389320 DOI: 10.2174/1871527318666190807160137] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alzheimer's disease is one of the most common neurodegenerative diseases in many modern societies. The core pathogenesis of Alzheimer's disease includes the aggregation of hyperphosphorylated Tau and abnormal Amyloid-β generation. In addition, previous studies have shown that neuroinflammation is one of the pathogenesis of Alzheimer's disease. Formononetin, an isoflavone compound extracted from Trifolium pratense L., has been found to have various properties including anti-obesity, anti-inflammation, and neuroprotective effects. But there are very few studies on the treatment of Alzheimer's disease with Formononetin. OBJECTIVE The present study focused on the protective activities of Formononetin on a high-fat dietinduced cognitive decline and explored the underlying mechanisms. METHODS Mice were fed with HFD for 10 weeks and intragastric administrated daily with metformin (300 mg/kg) and Formononetin (20 and 40 mg/kg). RESULTS We found that Formononetin (20, 40 mg/kg) significantly attenuated the learning and memory deficits companied by weight improvement and decreased the levels of blood glucose, total cholesterol and triglyceride in high-fat diet-induced mice. Meanwhile, we observed high-fat diet significantly caused the Tau hyperphosphorylation in the hippocampus of mice, whereas Formononetin reversed this effect. Additionally, Formononetin markedly reduced the levels of inflammation cytokines IL-1β and TNF-α in high-fat diet-induced mice. The mechanism study showed that Formononetin suppressed the pro-inflammatory NF-κB signaling and enhanced the anti-inflammatory Nrf-2/HO-1 signaling, which might be related to the regulation of PGC-1α in the hippocampus of high-fat diet -induced mice. CONCLUSION Taken together, our results showed that Formononetin could improve the cognitive function by inhibiting neuroinflammation, which is attributed to the regulation of PGC-1α pathway in HFD-induced mice.
Collapse
Affiliation(s)
- Xinxin Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639, Longmian Road, Nanjing 21198, China
| | - Tingting Qin
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639, Longmian Road, Nanjing 21198, China
| | - Jiayu Yu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639, Longmian Road, Nanjing 21198, China
| | - Jie Jiao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639, Longmian Road, Nanjing 21198, China
| | - Zhanqiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639, Longmian Road, Nanjing 21198, China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639, Longmian Road, Nanjing 21198, China
| | - Xueyang Deng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639, Longmian Road, Nanjing 21198, China
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639, Longmian Road, Nanjing 21198, China.,Qinba Traditional Chinese Medicine Resources Research and Development Center, AnKang University, AnKang 725000, China
| |
Collapse
|
50
|
Debarba LK, Mulka A, Lima JBM, Didyuk O, Fakhoury P, Koshko L, Awada AA, Zhang K, Klueh U, Sadagurski M. Acarbose protects from central and peripheral metabolic imbalance induced by benzene exposure. Brain Behav Immun 2020; 89:87-99. [PMID: 32505715 DOI: 10.1016/j.bbi.2020.05.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023] Open
Abstract
Benzene is a well-known human carcinogen that is one of the major components of air pollution. Sources of benzene in ambient air include cigarette smoke, e-cigarettes vaping, and evaporation of benzene containing petrol processes. While the carcinogenic effects of benzene exposure have been well studied, less is known about the metabolic effects of benzene exposure. We show that chronic exposure to benzene at low levels induces a severe metabolic imbalance in a sex-specific manner, and is associated with hypothalamic inflammation and endoplasmic reticulum (ER) stress. Benzene exposure rapidly activates hypothalamic ER stress and neuroinflammatory responses in male mice, while pharmacological inhibition of ER stress response by inhibiting IRE1α-XBP1 pathway significantly alleviates benzene-induced glial inflammatory responses. Additionally, feeding mice with Acarbose, a clinically available anti-diabetes drug, protected against benzene induced central and peripheral metabolic imbalance. Acarbose imitates the slowing of dietary carbohydrate digestion, suggesting that choosing a diet with a low glycemic index might be a potential strategy for reducing the negative metabolic effect of chronic exposure to benzene for smokers or people living/working in urban environments with high concentrations of exposure to automobile exhausts.
Collapse
Affiliation(s)
- L K Debarba
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - A Mulka
- Biomedical Engineering, IBio (Integrative Biosciences Center), Wayne State University, Detroit, MI, United States
| | - J B M Lima
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - O Didyuk
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - P Fakhoury
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - L Koshko
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - A A Awada
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - K Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - U Klueh
- Biomedical Engineering, IBio (Integrative Biosciences Center), Wayne State University, Detroit, MI, United States
| | - M Sadagurski
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|