1
|
Ivanko I, Hanžek M, Ćelap I, Margetić S, Marijančević D, Josipović J, Gaćina P. CCL20 chemokine and other proinflammatory markers after Ad26.COV2.S vaccination. Biochem Med (Zagreb) 2024; 34:030706. [PMID: 39435167 PMCID: PMC11493461 DOI: 10.11613/bm.2024.030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction In highly stressed circumstances, such as COVID-19 pandemic, biomarkers of the vaccine-induced immunity could be especially convenient. The main aim of our study was to determine C-C motif ligand 20 (CCL20) concentration after Ad26.COV2.S vaccination in regard to more common proinflammatory molecules and its correlation with anti-SARS-CoV-2 antibody concentration. Secondly, we investigated inflammatory and immunologic profile differences between patients with and without arterial hypertension. Materials and methods The study included 84 subjects vaccinated with Ad26.COV2.S vaccine. Concentration of CCL20, interleukin (IL) 6, C-reactive protein (CRP) was investigated before, 7 and 14 days after vaccination and concentration of anti-SARS-CoV-2 IgG antibody 7 and 14 days after vaccination. All the markers were measured by well-established laboratory methods. Results There were no statistically significant changes of CCL20 and IL-6 concentration after the vaccination. The obtained results have shown statistically significant differences for CRP (P = 0.006) concentrations between 3 time points and SARS-CoV-2 IgG antibody (P < 0.001) concentrations between 2 time points. CCL20 did not correlate with IL-6, CRP or anti-SARS-CoV-2 IgG antibody concentration. Statistically significant difference for CRP (P = 0.025) concentration between 3 time points was observed in the subgroup of subjects with arterial hypertension. Conclusions Although our results did not show changes in CCL20 concentration after the vaccination, possibly due to the study timeframe, further investigations on chemokine profile post SARS-CoV-2 immunization could facilitate the recognition of specific patterns of response (supra- or sub-optimal) to the vaccine.
Collapse
Affiliation(s)
- Iva Ivanko
- Department of Haematology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Milena Hanžek
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Ćelap
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Sandra Margetić
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Domagoj Marijančević
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Josipa Josipović
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
- Department of Nephrology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Petar Gaćina
- Department of Haematology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Ochar K, Iwar K, Nair VD, Chung YJ, Ha BK, Kim SH. The Potential of Glucosinolates and Their Hydrolysis Products as Inhibitors of Cytokine Storms. Molecules 2024; 29:4826. [PMID: 39459194 PMCID: PMC11510469 DOI: 10.3390/molecules29204826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
A cytokine storm is an intense inflammatory response characterized by the overproduction of proinflammatory cytokines, resulting in tissue damage, and organ dysfunction. Cytokines play a crucial role in various conditions, such as coronavirus disease, in which the immune system becomes overactive and releases excessive levels of cytokines, including interleukins, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). This anomalous response often leads to acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), and multiple organ injury (MOI). Glucosinolates are plant secondary metabolites predominantly found in Brassica vegetables, but are also present in other species, such as Moringa Adens and Carica papaya L. When catalyzed by the enzyme myrosinase, glucosinolates produce valuable products, including sulforaphane, phenethyl isothiocyanate, 6-(methylsulfinyl) hexyl isothiocyanate, erucin, goitrin, and moringin. These hydrolyzed products regulate proinflammatory cytokine production by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) signaling pathway and stimulating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This action can alleviate hyperinflammation in infected cells and modulate cytokine storms. In this review, we aimed to examine the potential role of glucosinolates in modulating cytokine storms and reducing inflammation in various conditions, such as coronavirus disease. Overall, we found that glucosinolates and their hydrolysis products can potentially attenuate cytokine production and the onset of cytokine storms in diseased cells. In summary, glucosinolates could be beneficial in regulating cytokine production and preventing complications related to cytokine storms.
Collapse
Affiliation(s)
- Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana;
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Kanivalan Iwar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Vadakkemuriyil Divya Nair
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, Kangra District, Shahpur 176206, HP, India;
| | - Yun-Jo Chung
- National Creative Research Laboratory for Ca Signaling Network, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
3
|
Awaya T, Hara H, Moroi M. Cytokine Storms and Anaphylaxis Following COVID-19 mRNA-LNP Vaccination: Mechanisms and Therapeutic Approaches. Diseases 2024; 12:231. [PMID: 39452475 PMCID: PMC11507195 DOI: 10.3390/diseases12100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Acute adverse reactions to COVID-19 mRNA vaccines are a major concern, as autopsy reports indicate that deaths most commonly occur on the same day of or one day following vaccination. These acute reactions may be due to cytokine storms triggered by lipid nanoparticles (LNPs) and anaphylaxis induced by polyethene glycol (PEG), both of which are vital constituents of the mRNA-LNP vaccines. Kounis syndrome, in which anaphylaxis triggers acute coronary syndrome (ACS), may also be responsible for these cardiovascular events. Furthermore, COVID-19 mRNA-LNP vaccines encompass adjuvants, such as LNPs, which trigger inflammatory cytokines, including interleukin (IL)-1β and IL-6. These vaccines also produce spike proteins which facilitate the release of inflammatory cytokines. Apart from this, histamine released from mast cells during allergic reactions plays a critical role in IL-6 secretion, which intensifies inflammatory responses. In light of these events, early reduction of IL-1β and IL-6 is imperative for managing post-vaccine cytokine storms, ACS, and myocarditis. Corticosteroids can restrict inflammatory cytokines and mitigate allergic responses, while colchicine, known for its IL-1β-reducing capabilities, could also prove effective. The anti-IL-6 antibody tocilizumab also displays promising treatment of cytokine release syndrome. Aside from its significance for treating anaphylaxis, epinephrine can induce coronary artery spasms and myocardial ischemia in Kounis syndrome, making accurate diagnosis essential. The upcoming self-amplifying COVID-19 mRNA-LNP vaccines also contain LNPs. Given that these vaccines can cause a cytokine storm and allergic reactions post vaccination, it is crucial to consider corticosteroids and measure IL-6 levels for effective management.
Collapse
Affiliation(s)
- Toru Awaya
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Hidehiko Hara
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
- Department of Internal Medicine, Misato Central General Hospital, Saitama 341-8526, Japan
| |
Collapse
|
4
|
Kim HH, Lee HK, Hennighausen L, Furth PA, Sung H, Huh JW. Time-course analysis of antibody and cytokine response after the third SARS-CoV-2 vaccine dose. Vaccine X 2024; 20:100565. [PMID: 39399820 PMCID: PMC11470517 DOI: 10.1016/j.jvacx.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The widespread administration of an additional dose of the SARS-CoV-2 vaccine has been promoted across adult populations, demonstrating a robust immune response against COVID-19. Longitudinal studies provide crucial data on the durability of immune response after the third vaccination. This study aims to explore the antibody response, neutralizing activity, and cytokine response against the SARS-CoV-2 ancestral strain (wild-type) and its variants during the timeline before and after the administration of the third vaccine dose. Anti-spike antibody titers and neutralizing antibodies blocking ACE2 binding to spike antigens were measured in 62 study participants at baseline, and on days 7, 21, and 180 post-vaccination. Cytokine levels were assessed at the same points except for day 180, with an additional measurement on day 3 post-vaccination. The analysis revealed no substantial variation in anti-spike antibody titer against the SARS-CoV-2 ancestral strain between the pre-vaccination phase and three days following the third dose. However, a significant nine-fold increase in these titers was observed by day 7, maintained until day 21. Although a decrease was observed by day 180, all participants still had detectable antibody levels. A similar trend was noted for neutralizing antibodies, with a four-fold rise by day 7 post-vaccination. At day 180, a diminution of neutralizing antibody titers was evident for both wild-type and all variants, including Omicron subvariant. A transient increase in cytokine activity, notably involving components of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway, such as CXCL10 and IL-10, was observed within three days after the third dose. This study underscores a distinct amplification of humoral immune response seven days following the third SARS-CoV-2 vaccine dose and observes a decline in neutralizing antibody titers 180 days following the third dose, thus indicating the temporal humoral effectiveness of booster vaccination. A short-term cytokine surge, notably involving the JAK/STAT pathway, highlights the dynamic immune modulation post-vaccination.
Collapse
Affiliation(s)
- Hyeon Hwa Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Priscilla A. Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Won Huh
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Severa M, Ricci D, Etna MP, Facchini M, Puzelli S, Fedele G, Iorio E, Cairo G, Castrechini S, Ungari V, Iannetta M, Leone P, Chirico M, Pisanu ME, Bottazzi B, Benedetti L, Sali M, Bartolomucci R, Balducci S, Garlanda C, Stefanelli P, Spadea A, Palamara AT, Coccia EM. A Serum Multi-Parametric Analysis Identifies an Early Innate Immune Signature Associated to Increased Vaccine-Specific Antibody Production and Seroconversion in Simultaneous COVID-19 mRNA and Cell-Based Quadrivalent Influenza Vaccination. Vaccines (Basel) 2024; 12:1050. [PMID: 39340080 PMCID: PMC11436141 DOI: 10.3390/vaccines12091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
In this pilot study, a multi-parametric analysis comparing immune responses in sera of adult healthy subjects (HS) or people with type 2 diabetes mellitus (T2D) undergoing the single or simultaneous administration of mRNA-based COVID-19 and cellular quadrivalent inactivated influenza vaccines was conducted. While SARS-CoV-2 antibodies remains comparable, influenza antibody titers and seroconversion were significantly higher upon simultaneous vaccination. Magnitude of anti-influenza humoral response closely correlated with an early innate immune signature, previously described for the COVID-19 vaccine, composed of IL-15, IL-6, TNF-α, IFN-γ, CXCL-10 and here extended also to acute-phase protein Pentraxin 3. People with T2D receiving simultaneous vaccination showed a protective response comparable to HS correlating with the early induction of IFN-γ/CXCL10 and a significant reduction of the circulating glucose level due to increased oxidation of glucose digestion and consumption. These data, although preliminary and in-need of validation in larger cohorts, might be exploited to optimize future vaccination in people with chronic disorders, including diabetes.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Daniela Ricci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Marilena Paola Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Marzia Facchini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Simona Puzelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Egidio Iorio
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Giada Cairo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Sara Castrechini
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | - Valentina Ungari
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | - Marco Iannetta
- Infectious Disease Clinic, Tor Vergata University Hospital, 00133 Rome, Italy; (M.I.); (L.B.)
| | - Pasqualina Leone
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Mattea Chirico
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.I.); (M.C.); (M.E.P.)
| | - Barbara Bottazzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Centre—IRCCS, 20019 Milan, Italy; (B.B.); (C.G.)
| | - Livia Benedetti
- Infectious Disease Clinic, Tor Vergata University Hospital, 00133 Rome, Italy; (M.I.); (L.B.)
| | - Michela Sali
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Remo Bartolomucci
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | | | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Centre—IRCCS, 20019 Milan, Italy; (B.B.); (C.G.)
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Antonietta Spadea
- ASL ROMA 1, Regione Lazio, 00145 Rome, Italy; (S.C.); (V.U.); (R.B.); (A.S.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| | - Eliana Marina Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (M.F.); (S.P.); (G.F.); (G.C.); (P.L.); (P.S.); (A.T.P.)
| |
Collapse
|
7
|
Engelbogen B, Donaldson L, McAuley SA, Fourlanos S. SARS-CoV-2 booster vaccination does not worsen glycemia in people with type 1 diabetes using insulin pumps: an observational study. Acta Diabetol 2024:10.1007/s00592-024-02372-4. [PMID: 39254746 DOI: 10.1007/s00592-024-02372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Despite an increased risk for adverse outcomes from SARS-CoV-2 infection among individuals with type 1 diabetes (T1D), vaccine hesitancy persists due to safety concerns including dysglycemia. The impact of booster vaccination on individuals using automated insulin delivery (AID) systems remains unclear. METHODS We used continuous glucose monitoring (CGM) data from 53 individuals with T1D using insulin pump therapy who received their third and/or fourth COVID-19 vaccination. CGM data from the 14 days before and 3 and 7 days after each vaccination were compared. The primary outcome was glucose time in range (TIR) (70-180 mg/dL) 3 and 7 days post-vaccination compared with the 14 days prior. Secondary outcomes included other CGM metrics such as time below range (< 70 mg/dL), time above range (> 180 mg/dL), mean glucose, co-efficient of variation and average total daily insulin. RESULTS The cohort comprised 53 adults (64% women, 64% AID), totaling 74 vaccination periods (84% Pfizer-BioNTech boosters), mean ± SD age 40.0 ± 15.9 years, duration of diabetes 26.0 ± 15.4 years. There was no significant difference between pre-vaccination TIR (61.0%±18.5) versus 3 (60.5%±22.8) and 7 days post-vaccination (60.2%±21.8; p = 0.79). Level 1 hypoglycemia, time in range 54-69 mg/dL, was lower 3 (1.1%±1.7) and 7 days post-vaccination (1.1%±1.6), compared with 14 days pre-vaccination (1.4%±1.4; p = 0.021). CONCLUSION The study provides evidence that SARS-CoV-2 booster vaccination does not acutely worsen glycemia in people with T1D receiving insulin pump therapy.
Collapse
Affiliation(s)
- Braden Engelbogen
- Department of Diabetes & Endocrinology, Royal Melbourne Hospital, Melbourne, Australia.
| | - Laura Donaldson
- Department of Diabetes & Endocrinology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Sybil A McAuley
- Department of Medicine, The University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, Australia
| | - Spiros Fourlanos
- Department of Diabetes & Endocrinology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
- Australian Centre for Accelerating Diabetes Innovations, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Chen WC, Hu SY, Cheng CM, Shen CF, Chuang HY, Ker CR, Sun DJ, Shen CJ. Evaluating TRAIL and IP-10 alterations in vaccinated pregnant women after COVID-19 diagnosis and their correlation with neutralizing antibodies. Front Immunol 2024; 15:1415561. [PMID: 39290698 PMCID: PMC11405216 DOI: 10.3389/fimmu.2024.1415561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Background This study evaluates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and interferon-γ-induced protein-10 (IP-10) in pregnant women with COVID-19 and their newborns, exploring the effects of antiviral treatments and vaccine-induced neutralizing antibody (Nab) inhibition on these key viral infection biomarkers. Methods We studied 61 pregnant women with past COVID-19 and either three (n=56) or four (n=5) doses of vaccination, and 46 without COVID-19 but vaccinated. We analyzed them and their newborns' blood for TRAIL, IP-10, and Nab levels using enzyme-linked immunosorbent assays (ELISA), correlating these with other clinical factors. Results Our study found lower TRAIL but higher IP-10 levels in maternal blood than neonatal cord blood, irrespective of past COVID-19 diagnosis. Cases diagnosed with COVID-19 < 4 weeks previously had higher maternal blood TRAIL levels (16.49 vs. 40.81 pg/mL, p=0.0064) and IP-10 (154.68 vs. 225.81 pg/mL, p=0.0170) than those never diagnosed. Antiviral medication lowered TRAIL and IP-10 in maternal blood without affecting Nab inhibition (TRAIL: 19.24 vs. 54.53 pg/mL, p=0.028; IP-10: 158.36 vs. 255.47 pg/mL, p=0.0089). TRAIL and IP-10 levels were similar with three or four vaccine doses, but four doses increased Nab inhibition (p=0.0363). Previously COVID-19 exposed pregnant women had higher Nab inhibition (p < 0.0001). No obvious correlation was found among TRAIL, IP-10, and Nab inhibition level. Conclusions Our study suggests that lower maternal TRAIL and higher IP-10 levels compared to neonatal cord blood coupled with a rise in both markers following COVID-19 diagnosis that could be reduced by antivirals indicates a correlation to infection severity. Higher vaccine doses enhance Nab inhibition, irrespective of antiviral medication use and independent of TRAIL or IP-10 levels, highlighting the significance and safety of adequate vaccination and antiviral use post-diagnosis in pregnant women.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Yu Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Ru Ker
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Der-Ji Sun
- Department of Obstetrics and Gynecology, Pojen Hospital, Kaohsiung, Taiwan
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Nystrom SE, Soldano KL, Rockett M, Datta S, Li G, Silas D, Garrett ME, Ashley-Koch AE, Olabisi OA. APOL1 High-Risk Genotype is Not Associated With New or Worsening of Proteinuria or Kidney Function Decline Following COVID-19 Vaccination. Kidney Int Rep 2024; 9:2657-2666. [PMID: 39291186 PMCID: PMC11403097 DOI: 10.1016/j.ekir.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction SARS-CoV-2 infection increases systemic inflammatory cytokines which act as a second-hit driver of Apolipoprotein L1 (APOL1)-mediated collapsing glomerulopathy. SARS-CoV-2 vaccination also increases cytokines. Recent reports of new glomerular disease in individuals with APOL1 high-risk genotype (HRG) following SARS-CoV-2 vaccination raised the concern SARS-CoV-2 vaccination may also act as a second-hit driver of APOL1-mediated glomerulopathy. Methods We screened 1507 adults in the Duke's Measurement to Understand Reclassification of Disease of Cabarrus and Kannapolis (MURDOCK) registry and enrolled 105 eligible participants with available SARS-CoV-2 vaccination data, prevaccination and postvaccination serum creatinine, and urine protein measurements. Paired data were stratified by number of APOL1 risk alleles (RAs) and compared within groups using Wilcoxon signed rank test and across groups by analysis of variance. Results Among 105 participants, 30 (28.6%) had 2, 39 (37.1%) had 1, and 36 (34.3%) had 0 APOL1 RA. Most of the participants (94%) received at least 2 doses of vaccine. Most (98%) received the BNT162B2 (Pfizer) or mRNA-1273 (Moderna) vaccine. On average, the prevaccine and postvaccine laboratory samples were drawn 648 days apart. There were no detectable differences between pre- and post-serum creatinine or pre- and post-urine albumin creatinine ratio irrespective of the participants' APOL1 genotype. Finally, most participants with APOL1 RA had the most common haplotype (E150, I228, and K255) and lacked the recently described protective N264K haplotype. Conclusion In this observational study, APOL1 HRG is not associated with new or worsening of proteinuria or decline in kidney function following SARS-CoV-2 vaccination. Validation of this result in larger cohorts would further support the renal safety of SARS-CoV-2 vaccine in individuals with APOL1 HRG.
Collapse
Affiliation(s)
- Sarah E Nystrom
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Karen L Soldano
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micki Rockett
- Duke Clinical and Translational Science Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Somenath Datta
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Guojie Li
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Silas
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Melanie E Garrett
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Allison E Ashley-Koch
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Opeyemi A Olabisi
- Division of Nephrology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
10
|
Tahsin A, Bhattacharjee P, Al Saba A, Yasmin T, Nabi AHMN. Genetic and epigenetic analyses of IFN-γ gene proximal promoter region underlying positive correlation between persistently high anti-SARS-CoV-2 IgG and IFN-γ among COVID-19 vaccinated Bangladeshi adults. Vaccine 2024; 42:126157. [PMID: 39079811 DOI: 10.1016/j.vaccine.2024.126157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
IFN-γ is an immunological modulator influencing IgG isotype and concentration, which present a correlate of protection to evaluate vaccine efficacy. As transiently expressed, stable genetic and epigenetic signatures of the cytokine's expression may exist. This study investigates correlation between plasma IFN-γ and anti-SARS-CoV-2 IgG levels, seeking genetic polymorphisms and epigenetic variations within the IFN-γ gene proximal promoter. 200 COVID-19-vaccinated adults were classified into seropositive and seronegative groups based on plasma anti-SARS-CoV-2 IgG. Upon correlation analysis between anti-SARS-CoV-2 IgG and IFN-γ levels, IFN-γ gene proximal promoter region was subjected to nucleotide sequencing for two subsets: seronegative (21 < Days post-vaccination ≤180, n = 11) and seropositive (IgG > Q3 and Days post-vaccination >180, n = 24). Relative unmethylation of IFN-γ proximal promoter was assessed for the latter subset and its correlation with plasma IFN-γ and IgG levels was evaluated. A statistically significant positive correlation (r = 0.492, p = 0.018) was observed between IFN-γ and anti-SARS-CoV-2 IgG in the seropositive group with persistently high IgG titre (IgG > Q3, Days elapsed post-vaccination >180). A heterozygous 5'-UTR variant (rs776667149:C>T) identified in one seronegative individual revealed a potential impact on PKR-mediated translational attenuation of IFN-γ mRNA. No significant correlation was found between IFN-γ proximal promoter unmethylation and its plasma levels among HAR individuals with Days post-vaccination of either >180 (r = 0.14, p = 0.679) or < 180 (r = -0.062, p = 0.693). This study demonstrates an extent of humoral immunity against SARS-CoV-2 among COVID-19 vaccinated Bangladeshi population. This study suggests plasma IFN-γ may play a role in maintaining persistent anti-SARS-CoV-2 IgG levels, which warrants further investigation along with genetic and/or epigenetic basis to fully establish its protective nature in COVID-19 vaccination.
Collapse
Affiliation(s)
- Anika Tahsin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Piyash Bhattacharjee
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Tahirah Yasmin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh.
| |
Collapse
|
11
|
Leno-Duran E, Serrano-Conde E, Salas-Rodríguez A, Salcedo-Bellido I, Barrios-Rodríguez R, Fuentes A, Viñuela L, García F, Requena P. Evaluation of inflammatory biomarkers and their association with anti-SARS-CoV-2 antibody titers in healthcare workers vaccinated with BNT162B2. Front Immunol 2024; 15:1447317. [PMID: 39247198 PMCID: PMC11377239 DOI: 10.3389/fimmu.2024.1447317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Vaccine-induced immunity against COVID-19 generates antibody and lymphocyte responses. However, variability in antibody titers has been observed after vaccination, and the determinants of a better response should be studied. The main objective of this investigation was to analyze the inflammatory biomarker response induced in healthcare workers vaccinated with BNT162b2, and its association with anti-Spike (a SARS-CoV-2 antigen) antibodies measured throughout a 1-year follow-up. Methods Anti-spike antibodies and 92 biomarkers were analyzed in serum, along with socio-demographic and clinical variables collected by interview or exploration. Results In our study, four biomarkers (ADA, IL-17C, CCL25 and CD8α) increased their expression after the first vaccine dose; and 8 others (uPA, IL-18R1, EN-RAGE, CASP-8, MCP-2, TNFβ, CD5 and CXCL10) decreased their expression. Age, body mass index (BMI), smoking, alcohol consumption, and prevalent diseases were associated with some of these biomarkers. Furthermore, higher baseline levels of T-cell surface glycoprotein CD6 and hepatocyte growth factor (HGF) were associated with lower mean antibody titers at follow-up, while levels of monocyte chemotactic protein 2 (MCP-2) had a positive association with antibody levels. Age and BMI were positively related to baseline levels of MCP-2 (β=0.02, 95%CI 0.00-0.04, p=0.036) and HGF (β=0.03, 95%CI 0.00-0.06, p=0.039), respectively. Conclusion Our findings indicate that primary BNT162b2 vaccination had a positive effect on the levels of several biomarkers related to T cell function, and a negative one on some others related to cancer or inflammatory processes. In addition, a higher level of MCP-2 and lower levels of HGF and CD6 were found to be associated with higher anti-Spike antibody titer following vaccination.
Collapse
Affiliation(s)
- Ester Leno-Duran
- Universidad de Granada, Departamento de Obstetricia y Ginecología, Granada, Spain
| | - Esther Serrano-Conde
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Ana Salas-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Fuentes
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Laura Viñuela
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Federico García
- Servicio de Microbiología, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Pilar Requena
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
12
|
Kalams SA, Felber BK, Mullins JI, Scott HM, Allen MA, De Rosa SC, Heptinstall J, Tomaras GD, Hu J, DeCamp AC, Rosati M, Bear J, Pensiero MN, Eldridge J, Egan MA, Hannaman D, McElrath MJ, Pavlakis GN. Focusing HIV-1 Gag T cell responses to highly conserved regions by DNA vaccination in HVTN 119. JCI Insight 2024; 9:e180819. [PMID: 39088271 PMCID: PMC11466283 DOI: 10.1172/jci.insight.180819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUNDAn HIV-1 DNA vaccine composed of 7 highly conserved, structurally important elements (conserved elements, CE) of p24Gag was tested in a phase I randomized, double-blind clinical trial (HVTN 119, NCT03181789) in people without HIV. DNA vaccination of CE prime/CE+p55Gag boost was compared with p55Gag.METHODSTwo groups (n = 25) received 4 DNA vaccinations (CE/CE+p55Gag or p55Gag) by intramuscular injection/electroporation, including IL-12 DNA adjuvant. The placebo group (n = 6) received saline. Participants were followed for safety and tolerability. Immunogenicity was assessed for T cell and antibody responses.RESULTSBoth regimens were safe and generally well tolerated. The p24CE vaccine was immunogenic and significantly boosted by CE+p55Gag (64% CD4+, P = 0.037; 42% CD8+, P = 0.004). CE+p55Gag induced responses to 5 of 7 CE, compared with only 2 CE by p55Gag DNA, with a higher response to CE5 in 30% of individuals (P = 0.006). CE+p55Gag induced significantly higher CD4+ CE T cell breadth (0.68 vs. 0.22 CE; P = 0.029) and a strong trend for overall T cell breadth (1.14 vs. 0.52 CE; P = 0.051). Both groups developed high cellular and humoral responses. p24CE vaccine-induced CD4+ CE T cell responses correlated (P = 0.007) with p24Gag antibody responses.CONCLUSIONThe CE/CE+p55Gag DNA vaccine induced T cell responses to conserved regions in p24Gag, increasing breadth and epitope recognition throughout p55Gag compared with p55Gag DNA. Vaccines focusing immune responses by priming responses to highly conserved regions could be part of a comprehensive HIV vaccine strategy.TRIAL REGISTRATIONClinical Trials.gov NCT03181789FUNDINGHVTN, NIAID/NIH.
Collapse
Affiliation(s)
- Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - James I. Mullins
- Departments of Microbiology, Medicine and Global Health, University of Washington, Seattle, Washington, USA
| | - Hyman M. Scott
- San Francisco Department of Public Health, San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mary A. Allen
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jack Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Jiani Hu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Allan C. DeCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Michael N. Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - John Eldridge
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | - Michael A. Egan
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
13
|
Amini A, Klenerman P, Provine NM. Role of mucosal-associated invariant T cells in coronavirus disease 2019 vaccine immunogenicity. Curr Opin Virol 2024; 67:101412. [PMID: 38838550 PMCID: PMC11511680 DOI: 10.1016/j.coviro.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell population that are highly abundant in humans. They possess a semi-invariant T cell receptor (TCR) that recognises microbial metabolites formed during riboflavin biosynthesis, presented on a nonpolymorphic MHC-like molecule MR1. MAIT cells possess an array of effector functions, including type 1, type 17, and tissue repair activity. Deployment of these functions depends on the stimuli they receive through their TCR and/or cytokine receptors. Strong cytokine signalling, such as in response to vaccination, can bypass TCR triggering and provokes a strong proinflammatory response. Although data are still emerging, multiple aspects of MAIT cell biology are associated with modulation of immunity induced by the coronavirus disease 2019 mRNA and adenovirus vector vaccines. In this review, we will address how MAIT cells may play a role in immunogenicity of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how these cells can be harnessed as cellular adjuvants.
Collapse
Affiliation(s)
- Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, UK; Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, UK; Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK.
| | - Nicholas M Provine
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
14
|
Kang DD, Hou X, Wang L, Xue Y, Li H, Zhong Y, Wang S, Deng B, McComb DW, Dong Y. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact Mater 2024; 37:86-93. [PMID: 38523704 PMCID: PMC10957522 DOI: 10.1016/j.bioactmat.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Since the approval of the lipid nanoparticles (LNP)-mRNA vaccines against the SARS-CoV-2 virus, there has been an increased interest in the delivery of mRNA through LNPs. However, current LNP formulations contain PEG lipids, which can stimulate the generation of anti-PEG antibodies. The presence of these antibodies can potentially cause adverse reactions and reduce therapeutic efficacy after administration. Given the widespread deployment of the COVID-19 vaccines, the increased exposure to PEG may necessitate the evaluation of alternative LNP formulations without PEG components. In this study, we investigated a series of polysarcosine (pSar) lipids as alternatives to the PEG lipids to determine whether pSar lipids could still provide the functionality of the PEG lipids in the ALC-0315 and SM-102 LNP systems. We found that complete replacement of the PEG lipid with a pSar lipid can increase or maintain mRNA delivery efficiency and exhibit similar safety profiles in vivo.
Collapse
Affiliation(s)
- Diana D. Kang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leiming Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yonger Xue
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yichen Zhong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - David W. McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
15
|
Lim SH, Choi SH, Ji YS, Kim SH, Kim CK, Yun J, Park SK. Comparison of antibody response to coronavirus disease 2019 vaccination between patients with solid or hematologic cancer patients undergoing chemotherapy. Asia Pac J Clin Oncol 2024; 20:346-353. [PMID: 37026374 DOI: 10.1111/ajco.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
AIM This study examined the serum antibody response of coronavirus disease 2019 (COVID-19) vaccines in solid and hematologic cancer patients undergoing chemotherapy. Levels of various inflammatory cytokines/chemokines after full vaccination were analyzed. METHODS Forty-eight patients with solid cancer and 37 with hematologic malignancy who got fully vaccinated either with severe acute respiratory syndrome coronavirus 2 messenger RNA (mRNA) or vector vaccines or their combination were included. After consecutively collecting blood, immunogenicity was assessed by surrogate virus neutralization test (sVNT), and cytokine/chemokines were evaluated by Meso Scale Discovery assay. RESULTS Seropositivity and protective immune response were lower in patients with hematologic cancer compared to those with solid cancers, regardless of vaccine type. Significantly lower sVNT inhibition was observed in patients with hematologic cancer (mean [SD] 45.30 [40.27] %) than in those with solid cancer (mean [SD] 61.78 [34.79] %) (p = 0.047). Heterologous vector/mRNA vaccination was independently and most markedly associated with a higher sVNT inhibition score (p < 0.05), followed by homologous mRNA vaccination. The mean serum levels of tumor necrosis factor α, macrophage inflammatory protein (MIP)-1α, and MIP-1β were significantly higher in patients with hematologic cancers compared to those with solid cancers after the full vaccination. In 36 patients who received an additional booster shot, 29 demonstrated increased antibody titer in terms of mean sVNT (%) (40.80 and 75.21, respectively, before and after the additional dose, p < 0.001). CONCLUSION Hematologic cancer patients receiving chemotherapy tended to respond poorly to both COVID-19 mRNA and vector vaccines and had a significantly lower antibody titer compared to those with solid cancers.
Collapse
Affiliation(s)
- Sung Hee Lim
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seong Hyeok Choi
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Young Sok Ji
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Se Hyung Kim
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Chan Kyu Kim
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jina Yun
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Seong Kyu Park
- Department of Medicine, Division of Hematology-Oncology, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
16
|
Hellgren F, Rosdahl A, Arcoverde Cerveira R, Lenart K, Ols S, Gwon YD, Kurt S, Delis AM, Joas G, Evander M, Normark J, Ahlm C, Forsell MN, Cajander S, Loré K. Modulation of innate immune response to mRNA vaccination after SARS-CoV-2 infection or sequential vaccination in humans. JCI Insight 2024; 9:e175401. [PMID: 38716734 PMCID: PMC11141904 DOI: 10.1172/jci.insight.175401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/22/2024] [Indexed: 06/02/2024] Open
Abstract
mRNA vaccines are likely to become widely used for the prevention of infectious diseases in the future. Nevertheless, a notable gap exists in mechanistic data, particularly concerning the potential effects of sequential mRNA immunization or preexisting immunity on the early innate immune response triggered by vaccination. In this study, healthy adults, with or without documented prior SARS-CoV-2 infection, were vaccinated with the BNT162b2/Comirnaty mRNA vaccine. Prior infection conferred significantly stronger induction of proinflammatory and type I IFN-related gene signatures, serum cytokines, and monocyte expansion after the prime vaccination. The response to the second vaccination further increased the magnitude of the early innate response in both study groups. The third vaccination did not further increase vaccine-induced inflammation. In vitro stimulation of PBMCs with TLR ligands showed no difference in cytokine responses between groups, or before or after prime vaccination, indicating absence of a trained immunity effect. We observed that levels of preexisting antigen-specific CD4 T cells, antibody, and memory B cells correlated with elements of the early innate response to the first vaccination. Our data thereby indicate that preexisting memory formed by infection may augment the innate immune activation induced by mRNA vaccines.
Collapse
Affiliation(s)
- Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anja Rosdahl
- Department of Infectious Diseases and
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Seta Kurt
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anna Maria Delis
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gustav Joas
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | - Sara Cajander
- Department of Infectious Diseases and
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden & Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Zhang Z, Yang W, Chen Z, Chi H, Wu S, Zheng W, Jin R, Wang B, Wang Y, Huo N, Zhang J, Song X, Xu L, Zhang J, Hou L, Chen W. A causal multiomics study discriminates the early immune features of Ad5-vectored Ebola vaccine recipients. Innovation (N Y) 2024; 5:100603. [PMID: 38745762 PMCID: PMC11092886 DOI: 10.1016/j.xinn.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 05/16/2024] Open
Abstract
The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenjing Yang
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zhengshan Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haoang Chi
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
- Intelligent Game and Decision Lab, Academy of Military Science, Beijing 100091, China
| | - Shipo Wu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wanru Zheng
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ruochun Jin
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Busen Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yudong Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Nan Huo
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jinlong Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaohong Song
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liyang Xu
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Jun Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lihua Hou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
18
|
Livieratos A, Gogos C, Akinosoglou K. Impact of Prior COVID-19 Immunization and/or Prior Infection on Immune Responses and Clinical Outcomes. Viruses 2024; 16:685. [PMID: 38793566 PMCID: PMC11125779 DOI: 10.3390/v16050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Cellular and humoral immunity exhibit dynamic adaptation to the mutating SARS-CoV-2 virus. It is noteworthy that immune responses differ significantly, influenced by whether a patient has received vaccination or whether there is co-occurrence of naturally acquired and vaccine-induced immunity, known as hybrid immunity. The different immune reactions, conditional on vaccination status and the viral variant involved, bear implications for inflammatory responses, patient outcomes, pathogen transmission rates, and lingering post-COVID conditions. Considering these developments, we have performed a review of recently published literature, aiming to disentangle the intricate relationships among immunological profiles, transmission, the long-term health effects post-COVID infection poses, and the resultant clinical manifestations. This investigation is directed toward understanding the variability in the longevity and potency of cellular and humoral immune responses elicited by immunization and hybrid infection.
Collapse
Affiliation(s)
| | - Charalambos Gogos
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
| | - Karolina Akinosoglou
- Department of Medicine, University of Patras, 26504 Rio, Greece; (C.G.); (K.A.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
19
|
Korosec CS, Dick DW, Moyles IR, Watmough J. SARS-CoV-2 booster vaccine dose significantly extends humoral immune response half-life beyond the primary series. Sci Rep 2024; 14:8426. [PMID: 38637521 PMCID: PMC11026522 DOI: 10.1038/s41598-024-58811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
SARS-CoV-2 lipid nanoparticle mRNA vaccines continue to be administered as the predominant prophylactic measure to reduce COVID-19 disease pathogenesis. Quantifying the kinetics of the secondary immune response from subsequent doses beyond the primary series and understanding how dose-dependent immune waning kinetics vary as a function of age, sex, and various comorbidities remains an important question. We study anti-spike IgG waning kinetics in 152 individuals who received an mRNA-based primary series (first two doses) and a subset of 137 individuals who then received an mRNA-based booster dose. We find the booster dose elicits a 71-84% increase in the median Anti-S half life over that of the primary series. We find the Anti-S half life for both primary series and booster doses decreases with age. However, we stress that although chronological age continues to be a good proxy for vaccine-induced humoral waning, immunosenescence is likely not the mechanism, rather, more likely the mechanism is related to the presence of noncommunicable diseases, which also accumulate with age, that affect immune regulation. We are able to independently reproduce recent observations that those with pre-existing asthma exhibit a stronger primary series humoral response to vaccination than compared to those that do not, and further, we find this result is sustained for the booster dose. Finally, via a single-variate Kruskal-Wallis test we find no difference between male and female humoral decay kinetics, however, a multivariate approach utilizing Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature selection reveals a statistically significant (p < 1 × 10 - 3 ), albeit small, bias in favour of longer-lasting humoral immunity amongst males.
Collapse
Affiliation(s)
- Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - David W Dick
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Iain R Moyles
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
| | - James Watmough
- Department of Mathematics and Statistics, University of New Brunswick, 3 Bailey Dr, Fredericton, E3B 5A3, NB, Canada
| |
Collapse
|
20
|
Aşkın Turan S, Aydın Ş. A retrospective cohort study: is COVID-19 BNT162b2 mRNA vaccination a trigger factor for cluster headache? Acta Neurol Belg 2024:10.1007/s13760-024-02536-7. [PMID: 38619748 DOI: 10.1007/s13760-024-02536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
OBJECTıVE: Cluster headache (CH) is a coronavirus 2019 (COVID-19) vaccination-related adverse event. There are a few case reports of relapses or de novo cluster episodes following the vaccine. The disease's pathophysiology is still not clear. The most widely accepted mechanism is activation of the trigeminocervical complex (TCC). However, the correlation between vaccination and CH is unexplainable. Its goal is to compare the CH bouts of patients before and after the vaccine. METHODS Patients with a history of CH and who had never experienced COVID-19 illness during the pandemic were included in this retrospective cohort analysis. The semi-structured survey was administered face to face to 24 CH patients (16 male). The headache features before and after vaccination were detailed in this survey. RESULTS 18 patients got vaccinated twice, and 6 of them had no vaccination. After the first vaccination, 83.3% of them had CH bout; after the second vaccination, 72.2% of them had CH bout. We divided headache episodes into three groups: (1) before vaccination, (2) after the first vaccination, and (3) after the second vaccination. The third group had a higher pain intensity (9.30 ± 0.630, p = 0.047) and remitting longer (20.00 ± 5.40 days, p = 0.019) than the other groups. The management of the 53.3% bouts after vaccinations was less effective than the usual episodes. CONCLUSION Most ECH patients experienced new bouts more intense and longer duration after vaccinations than their previous bouts, the mechanism, and pathogenesis of the bouts are the subject of future research. The new studies can be a light for understanding the CH pathophysiology more deeply.
Collapse
Affiliation(s)
- Suna Aşkın Turan
- Pain Department, Mersin City Training and Research Hospital, University of Health Sciences, 33240, Korukent Mah. 96015 Sok. Mersin Entegre Sağlık Kampüsü, Toroslar/Mersin, Türkiye.
| | - Şenay Aydın
- Department of Neurology, Yedikule Chest Disease and Surgery Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| |
Collapse
|
21
|
Wolz OO, Vahrenhorst D, Quintini G, Lemberg C, Koch SD, Kays SK, Walz L, Kulkarni N, Fehlings M, Wengenmayer P, Heß J, Oostvogels L, Lazzaro S, von Eisenhart-Rothe P, Mann P. Innate Responses to the Former COVID-19 Vaccine Candidate CVnCoV and Their Relation to Reactogenicity and Adaptive Immunogenicity. Vaccines (Basel) 2024; 12:388. [PMID: 38675770 PMCID: PMC11053638 DOI: 10.3390/vaccines12040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines are highly effective at preventing severe coronavirus disease (COVID-19). With mRNA vaccines, further research is needed to understand the association between immunogenicity and reactogenicity, which is defined as the physical manifestation of an inflammatory response to a vaccination. This study analyzed the immune response and reactogenicity in humans, post immunization, to the former SARS-CoV-2 mRNA investigational vaccine CVnCoV (CV-NCOV-001 and CV-NCOV-002 clinical trials). Immunogenicity was investigated using whole-blood RNA sequencing, serum cytokine levels, and SARS-CoV-2-specific antibodies. The T cell responses in peripheral blood were assessed using intracellular cytokine staining (ICS) and high-dimensional profiling in conjunction with SARS-CoV-2 antigen-specificity testing via mass cytometry. Reactogenicity was graded after participants' first and second doses of CVnCoV using vaccine-related solicited adverse events (AEs). Finally, a Spearman correlation was performed between reactogenicity, humoral immunity, and serum cytokine levels to assess the relationship between reactogenicity and immunogenicity post CVnCoV vaccination. Our findings showed that the gene sets related to innate and inflammatory immune responses were upregulated one day post CVnCoV vaccination, while the gene sets related to adaptive immunity were upregulated predominantly one week after the second dose. The serum levels of IFNα, IFNγ, IP-10, CXCL11, IL-10, and MCP-1 increased transiently, peaking one day post vaccination. CD4+ T cells were induced in all vaccinated participants and low frequencies of CD8+ T cells were detected by ex vivo ICS. Using mass cytometry, SARS-CoV-2 spike-specific CD8+ T cells were induced and were characterized as having an activated effector memory phenotype. Overall, the results demonstrated a positive correlation between vaccine-induced systemic cytokines, reactogenicity, and adaptive immunity, highlighting the importance of the balance between the induction of innate immunity to achieve vaccine efficacy and ensuring low reactogenicity.
Collapse
Affiliation(s)
- Olaf-Oliver Wolz
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Dominik Vahrenhorst
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Gianluca Quintini
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Christina Lemberg
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sven D. Koch
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sarah-Katharina Kays
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Lisa Walz
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Neeraja Kulkarni
- ImmunoScape Pte Ltd., Singapore 139954, Singapore; (N.K.); (M.F.)
| | - Michael Fehlings
- ImmunoScape Pte Ltd., Singapore 139954, Singapore; (N.K.); (M.F.)
| | - Peter Wengenmayer
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Jana Heß
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Lidia Oostvogels
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sandra Lazzaro
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | | | - Philipp Mann
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| |
Collapse
|
22
|
Palladino M, Del Vecchio M, Farroni S, Martellucci O, Gigante A, Alessandri C, Muscaritoli M. Fever and dyspnea after anti-Covid-19 vaccination: a challenging diagnosis. Intern Emerg Med 2024; 19:757-760. [PMID: 37566358 DOI: 10.1007/s11739-023-03390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
There is still little information regarding the long-term safety of the vaccines. We report a case of new-onset adult-onset Still's disease (AOSD) that occurred following Covid-19 vaccination. This patient went to the emergency room with dyspnea from the last two weeks and bilateral swellings that occurred several weeks after the first vaccination. Based on the symptoms and laboratory results, we suspected AOSD. Considering the time relationship between Covid-19 vaccination and AOSD onset in our patient, and possible mechanisms linking vaccination with the onset of autoimmune disorders, physicians should consider adverse events from Covid-19 vaccination and assess the benefits and risks of vaccination for each patient.
Collapse
Affiliation(s)
- Mariangela Palladino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy.
| | - Martina Del Vecchio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Simone Farroni
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Ottavio Martellucci
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Cristiano Alessandri
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale Dell'Università 37, 00185, Rome, Italy
| |
Collapse
|
23
|
Boston RH, Guan R, Kalmar L, Beier S, Horner EC, Beristain-Covarrubias N, Yam-Puc JC, Pereyra Gerber P, Faria L, Kuroshchenkova A, Lindell AE, Blasche S, Correa-Noguera A, Elmer A, Saunders C, Bermperi A, Jose S, Kingston N, Grigoriadou S, Staples E, Buckland MS, Lear S, Matheson NJ, Benes V, Parkinson C, Thaventhiran JE, Patil KR. Stability of gut microbiome after COVID-19 vaccination in healthy and immuno-compromised individuals. Life Sci Alliance 2024; 7:e202302529. [PMID: 38316462 PMCID: PMC10844540 DOI: 10.26508/lsa.202302529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Bidirectional interactions between the immune system and the gut microbiota are key contributors to various physiological functions. Immune-associated diseases such as cancer and autoimmunity, and efficacy of immunomodulatory therapies, have been linked to microbiome variation. Although COVID-19 infection has been shown to cause microbial dysbiosis, it remains understudied whether the inflammatory response associated with vaccination also impacts the microbiota. Here, we investigate the temporal impact of COVID-19 vaccination on the gut microbiome in healthy and immuno-compromised individuals; the latter included patients with primary immunodeficiency and cancer patients on immunomodulating therapies. We find that the gut microbiome remained remarkably stable post-vaccination irrespective of diverse immune status, vaccine response, and microbial composition spanned by the cohort. The stability is evident at all evaluated levels including diversity, phylum, species, and functional capacity. Our results indicate the resilience of the gut microbiome to host immune changes triggered by COVID-19 vaccination and suggest minimal, if any, impact on microbiome-mediated processes. These findings encourage vaccine acceptance, particularly when contrasted with the significant microbiome shifts observed during COVID-19 infection.
Collapse
Affiliation(s)
- Rebecca H Boston
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rui Guan
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lajos Kalmar
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sina Beier
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Emily C Horner
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Juan Carlos Yam-Puc
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Pehuén Pereyra Gerber
- https://ror.org/013meh722 Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- https://ror.org/013meh722 Department of Medicine, University of Cambridge, Cambridge, UK
| | - Luisa Faria
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Kuroshchenkova
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna E Lindell
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sonja Blasche
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Andrea Correa-Noguera
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Anne Elmer
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | | | - Areti Bermperi
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Sherly Jose
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Emily Staples
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Matthew S Buckland
- Department of Clinical Immunology, Barts Health, London, UK
- UCL GOSH Institute of Child Health Division of Infection and Immunity, Section of Cellular and Molecular Immunology, London, UK
| | - Sara Lear
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Nicholas J Matheson
- https://ror.org/013meh722 Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- https://ror.org/013meh722 Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christine Parkinson
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - James Ed Thaventhiran
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Kiran R Patil
- https://ror.org/013meh722 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Edelman A, Boniface ER, Male V, Cameron S, Benhar E, Han L, Matteson KA, van Lamsweerde A, Pearson JT, Darney BG. Timing of Coronavirus Disease 2019 (COVID-19) Vaccination and Effects on Menstrual Cycle Changes. Obstet Gynecol 2024; 143:585-594. [PMID: 38412506 PMCID: PMC10953681 DOI: 10.1097/aog.0000000000005550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To assess whether menstrual cycle timing (follicular or luteal phase) of coronavirus disease 2019 (COVID-19) vaccine administration is associated with cycle length changes. METHODS We used prospectively collected (2021-2022) menstrual cycle tracking data from 19,497 reproductive-aged users of the application "Natural Cycles." We identified whether vaccine was delivered in the follicular or luteal phase and also included an unvaccinated control group. Our primary outcome was the adjusted within-individual change in cycle length (in days) from the average of the three menstrual cycles before the first vaccination cycle (individuals in the unvaccinated control group were assigned a notional vaccine date). We also assessed cycle length changes in the second vaccination cycle and whether a clinically significant change in cycle length (8 days or more) occurred in either cycle. RESULTS Most individuals were younger than age 35 years (80.1%) and from North America (28.6%), continental Europe (33.5%), or the United Kingdom (31.7%). In the vaccinated group, the majority received an mRNA vaccine (63.8% of the full sample). Individuals vaccinated in the follicular phase experienced an average 1-day longer adjusted cycle length with a first or second dose of COVID-19 vaccine compared with their prevaccination average (first dose: 1.00 day [98.75% CI, 0.88-1.13], second dose: 1.11 days [98.75% CI, 0.93-1.29]); those vaccinated in the luteal phase and those in the unvaccinated control group experienced no change in cycle length (respectively, first dose: -0.09 days [98.75% CI, -0.26 to 0.07], second dose: 0.06 days [98.75% CI, -0.16 to 0.29], unvaccinated notional first dose: 0.08 days [98.75% CI, -0.10 to 0.27], second dose: 0.17 days [98.75% CI, -0.04 to 0.38]). Those vaccinated during the follicular phase were also more likely to experience a clinically significant change in cycle length (8 days or more; first dose: 6.8%) than those vaccinated in the luteal phase or unvaccinated (3.3% and 5.0%, respectively; P <.001). CONCLUSION COVID-19 vaccine-related cycle length increases are associated with receipt of vaccination in the first half of the menstrual cycle (follicular phase).
Collapse
Affiliation(s)
- Alison Edelman
- Department of Obstetrics and Gynecology, Oregon Health & Science University, and Oregon Health & Science University-Portland State University, School of Public Health, Portland, Oregon; the Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom; Obstetrics and Gynaecology, University of Edinburgh and Chalmers Centre, Edinburgh, Scotland; Natural Cycles USA Corp, New York, New York; the Department of Obstetrics and Gynecology, University of Massachusetts Chan Medical School, Worcester, Massachusetts; and the National Institute of Public Health, Center for Population Health Research, Cuernavaca, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen WC, Hu SY, Cheng CM, Shen CF, Chuang HY, Ker CR, Sun DJ, Shen CJ. TRAIL and IP-10 dynamics in pregnant women post COVID-19 vaccination: associations with neutralizing antibody potency. Front Cell Infect Microbiol 2024; 14:1358967. [PMID: 38572318 PMCID: PMC10987851 DOI: 10.3389/fcimb.2024.1358967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The aim of this study is to investigate changes in TNF-related apoptosis-inducing ligand (TRAIL) and gamma interferon-induced protein 10 (IP-10) after COVID-19 vaccination in pregnant women and to explore their association with neutralizing antibody (Nab) inhibition. Methods The study evaluated 93 pregnant women who had previously received two (n=21), three (n=55) or four (n=17) doses of COVID-19 vaccine. Also we evaluated maternal blood samples that were collected during childbirth. The levels of TRAIL, IP-10 and Nab inhibition were measured using enzyme-linked immunosorbent assays (ELISA). Results and discussion Our study revealed four-dose group resulted in lower TRAIL levels when compared to the two-dose and three-dose groups (4.78 vs. 16.07 vs. 21.61 pg/ml, p = 0.014). The two-dose group had reduced IP-10 levels than the three-dose cohort (111.49 vs. 147.89 pg/ml, p=0.013), with no significant variation compared to the four-dose group. In addition, the four-dose group showed stronger Nab inhibition against specific strains (BA.2 and BA.5) than the three-dose group. A positive correlation was observed between TRAIL and IP-10 in the two-dose group, while this relationship was not found in other dose groups or between TRAIL/IP-10 and Nab inhibition. As the doses of the COVID-19 vaccine increase, the levels of TRAIL and IP-10 generally increase, only by the fourth dose, the group previously vaccinated with AZD1222 showed lower TRAIL but higher IP-10. Despite these changes, more doses of the vaccine consistently reinforced Nab inhibition, apparently without any relation to TRAIL and IP-10 levels. The variation may indicate the induction of immunological memory in vaccinated mothers, which justifies further research in the future.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Yu Chuang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Ru Ker
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Der-Ji Sun
- Department of Obstetrics and Gynecology, Pojen Hospital, Kaohsiung, Taiwan
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Sarin KY, Zheng H, Chaichian Y, Arunachalam PS, Swaminathan G, Eschholz A, Gao F, Wirz OF, Lam B, Yang E, Lee LW, Feng A, Lewis MA, Lin J, Maecker HT, Boyd SD, Davis MM, Nadeau KC, Pulendran B, Khatri P, Utz PJ, Zaba LC. Impaired innate and adaptive immune responses to BNT162b2 SARS-CoV-2 vaccination in systemic lupus erythematosus. JCI Insight 2024; 9:e176556. [PMID: 38456511 PMCID: PMC10972586 DOI: 10.1172/jci.insight.176556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
Understanding the immune responses to SARS-CoV-2 vaccination is critical to optimizing vaccination strategies for individuals with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here, we comprehensively analyzed innate and adaptive immune responses in 19 patients with SLE receiving a complete 2-dose Pfizer-BioNTech mRNA vaccine (BNT162b2) regimen compared with a control cohort of 56 healthy control (HC) volunteers. Patients with SLE exhibited impaired neutralizing antibody production and antigen-specific CD4+ and CD8+ T cell responses relative to HC. Interestingly, antibody responses were only altered in patients with SLE treated with immunosuppressive therapies, whereas impairment of antigen-specific CD4+ and CD8+ T cell numbers was independent of medication. Patients with SLE also displayed reduced levels of circulating CXC motif chemokine ligands, CXCL9, CXCL10, CXCL11, and IFN-γ after secondary vaccination as well as downregulation of gene expression pathways indicative of compromised innate immune responses. Single-cell RNA-Seq analysis reveals that patients with SLE showed reduced levels of a vaccine-inducible monocyte population characterized by overexpression of IFN-response transcription factors. Thus, although 2 doses of BNT162b2 induced relatively robust immune responses in patients with SLE, our data demonstrate impairment of both innate and adaptive immune responses relative to HC, highlighting a need for population-specific vaccination studies.
Collapse
Affiliation(s)
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, and
| | - Yashaar Chaichian
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | | | | | - Fei Gao
- Institute for Immunity, Transplantation and Infection
| | | | | | - Emily Yang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | - Lori W. Lee
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | | | - Janice Lin
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | | | | | - Mark M. Davis
- Institute for Immunity, Transplantation and Infection
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Kari C. Nadeau
- Institute for Immunity, Transplantation and Infection
- Department of Environmental Gealth, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bali Pulendran
- Department of Pathology and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, and
| | - Paul J. Utz
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
27
|
Bagheri-Hosseinabadi Z, Kaeidi A, Rezvani M, Taghipour Khaje Sharifi G, Abbasifard M. Evaluation of the serum levels of CCL2, CCL3, and IL-29 after first and second administrations of the COVID-19 vaccine (Oxford-AstraZeneca). Immunobiology 2024; 229:152789. [PMID: 38290406 DOI: 10.1016/j.imbio.2024.152789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Previous studies show that chemokines and cytokines play a very important role in eliciting an appropriate response against viruses. Vaccination causes inflammation in the person receiving the vaccine, accompanied with production of inflammatory molecules by immune cells. The more and better the production and expression of chemokines and cytokines by immune cells, the better the response of the acquired immune system. Chemokines and cytokines are critical in promoting the innate immune response against the COVID-19. Here we intended to assess serum levels of CCL2, CCL3, and interleukin (IL)-29 in patients received COVID-19 vaccine. METHODS In this study, 40 subjects vaccinated with the Oxford-AstraZeneca COVID-19 vaccine were selected. Blood samples were collected before injection of the vaccine, 3-5 days after the first dose injection, and 3-5 days subsequent to the second vaccination. To check the serum level of CCL2, CCL3, and IL-29, ELISA technique was used. RESULTS Our results indicated that the serum levels of CCL2, CCL3, and IL-29 were significantly higher after first and second dose of vaccination compared to before vaccine administration. Furthermore, serum levels of all these mediators were higher after second dose of vaccine compared to the first vaccine administration. CONCLUSIONS Oxford-AstraZeneca COVID-19 vaccine is able to induce inflammatory CCL2 and CCL3 chemokines as well as protective interferon lambda (IL-29).
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahdi Rezvani
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
28
|
van Eijk LE, Bourgonje AR, Messchendorp AL, Bulthuis MLC, Reinders-Luinge M, Doornbos-van der Meer B, Westra J, den Dunnen WFA, Hillebrands JL, Sanders JSF, van Goor H. Systemic oxidative stress may be associated with reduced IgG antibody titers against SARS-CoV-2 in vaccinated kidney transplant recipients: A post-hoc analysis of the RECOVAC-IR observational study. Free Radic Biol Med 2024; 215:14-24. [PMID: 38395091 DOI: 10.1016/j.freeradbiomed.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) poses an increased risk for severe illness and suboptimal vaccination responses in patients with kidney disease, in which oxidative stress may be involved. Oxidative stress can be reliably measured by determining circulating free thiols (R-SH, sulfhydryl groups), since R-SH are rapidly oxidized by reactive species. In this study, we aimed to examine the association between serum free thiols and the ability to mount a humoral immune response to SARS-CoV-2 vaccination in kidney patients. METHODS Serum free thiol concentrations were measured in patients with chronic kidney disease stages 4/5 (CKD G4/5) (n = 46), on dialysis (n = 43), kidney transplant recipients (KTR) (n = 73), and controls (n = 50). Baseline serum free thiol and interferon-γ-induced protein-10 (IP-10) - a biomarker of the interferon response - were analyzed for associations with seroconversion rates and SARS-CoV-2 spike (S1)-specific IgG concentrations after two doses of the mRNA-1273 vaccine. RESULTS Albumin-adjusted serum free thiol concentrations were significantly lower in patients with CKD G4/5 (P < 0.001), on dialysis (P < 0.001), and KTR (P < 0.001), as compared to controls. Seroconversion rates after full vaccination were markedly reduced in KTR (52.1%) and were significantly associated with albumin-adjusted free thiols (OR = 1.76, P = 0.033). After adjustment for MMF use, hemoglobin, and eGFR, this significance was not sustained (OR = 1.49, P = 0.241). CONCLUSIONS KTR show suboptimal serological responses to SARS-CoV-2 vaccination, which is inversely associated with serum R-SH, reflecting systemic oxidative stress. Albeit this association was not robust to relevant confounding factors, it may at least partially be involved in the inability of KTR to generate a positive serological response after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Larissa E van Eijk
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Arno R Bourgonje
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - A Lianne Messchendorp
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, 9713 GZ, Groningen, the Netherlands.
| | - Marian L C Bulthuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Marjan Reinders-Luinge
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Berber Doornbos-van der Meer
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9713 GZ, Groningen, the Netherlands.
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9713 GZ, Groningen, the Netherlands.
| | - Wilfred F A den Dunnen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Jan-Luuk Hillebrands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| | - Jan-Stephan F Sanders
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, 9713 GZ, Groningen, the Netherlands.
| | - Harry van Goor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
29
|
Hu C, Hu W, Tang B, Bao Q, Jiang X, Tang L, Wang H, He L, Lv M, Xiao Y, Liu C, Li X, Liu Y, Li J, Huang G, Dong Z, Li Z, Guo T, Yang S. Plasma and urine proteomics and gut microbiota analysis reveal potential factors affecting COVID-19 vaccination response. iScience 2024; 27:108851. [PMID: 38318387 PMCID: PMC10838952 DOI: 10.1016/j.isci.2024.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
The efficacy of COVID-19 vaccination relies on the induction of neutralizing antibodies, which can vary among vaccine recipients. In this study, we investigated the potential factors affecting the neutralizing antibody response by combining plasma and urine proteomics and gut microbiota analysis. We found that activation of the LXR/FXR pathway in plasma was associated with the production of ACE2-RBD-inhibiting antibodies, while urine proteins related to complement system, acute phase response signaling, LXR/FXR, and STAT3 pathways were correlated with neutralizing antibody production. Moreover, we observed a correlation between the gut microbiota and plasma and urine proteins, as well as the vaccination response. Based on the above data, we built a predictive model for vaccination response (AUC = 0.85). Our study provides insights into characteristic plasma and urine proteins and gut microbiota associated with the ACE2-RBD-inhibiting antibodies, which could benefit our understanding of the host response to COVID-19 vaccination.
Collapse
Affiliation(s)
- Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qiyu Bao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xingyu Jiang
- Laboratory Medicine Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - He Wang
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Lijiao He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xinzhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yunyi Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jie Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guiping Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Zhen Dong
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Zhongjun Li
- Laboratory Medicine Center, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Tiannan Guo
- iMarkerlab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
30
|
de Sousa PMB, Silva EA, Campos MAG, Lages JS, Corrêa RDGCF, Silva GEB. Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report and Differential Diagnosis Review. Vaccines (Basel) 2024; 12:194. [PMID: 38400177 PMCID: PMC10891853 DOI: 10.3390/vaccines12020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Carditis in childhood is a rare disease with several etiologies. We report a case of infant death due to pericarditis and myocarditis after the mRNA vaccine against COVID-19 (COVIDmRNAV). A 7-year-old male child received the first dose of the COVIDmRNAV and presented with monoarthritis and a fever non-responsive to oral antibiotics. The laboratory investigation showed signs of infection (leukocytosis, high levels of c-reactive protein). His condition rapidly deteriorated, and the patient died. The autopsy identified pericardial fibrin deposits, hemorrhagic areas in the myocardium, and normal valves. A diffuse intermyocardial inflammatory infiltrate composed of T CD8+ lymphocytes and histiocytes was identified. An antistreptolysin O (ASO) dosage showed high titers. The presence of arthritis, elevated ASO, and carditis fulfills the criteria for rheumatic fever. However, valve disease and Aschoff's nodules, present in 90% of rheumatic carditis cases, were absent in this case. The temporal correlation with mRNA vaccination prompted its inclusion as one of the etiologies. In cases of myocardial damage related to COVID-19mRNAV, it appears to be related to the expression of exosomes and lipid nanoparticles, leading to a cytokine storm. The potential effects of the COVID-19mRNAV must be considered in the pathogenesis of this disease, whether as an etiology or a contributing factor to a previously initiated myocardial injury.
Collapse
Affiliation(s)
- Pedro Manuel Barros de Sousa
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | - Elon Almeida Silva
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | - Marcos Adriano Garcia Campos
- Clinical Hospital of Botucatu Medical School, São Paulo State University, Professor Mário Rubens Guimarães Montenegro Avenue, Botucatu 18618-687, SP, Brazil
| | - Joyce Santos Lages
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | | | - Gyl Eanes Barros Silva
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
31
|
Teragaki M, Tanaka M, Yamamoto H, Watanabe T, Takeoka J, Fukumi A, Maeda K, Takami Y, Saita H, Iwanari S, Ikeda M, Takeoka H. Relapse of minimal change disease following the third mRNA COVID-19 vaccination: a case report and literature review. CEN Case Rep 2024; 13:53-58. [PMID: 37244881 PMCID: PMC10224756 DOI: 10.1007/s13730-023-00798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Mass vaccination is the most important strategy to terminate the coronavirus disease 2019 (COVID-19) pandemic. Reports suggest the potential risk of the development of new-onset or relapse of minimal change disease (MCD) following COVID-19 vaccination; however, details on vaccine-associated MCD remain unclear. A 43-year-old man with MCD, who had been in remission for 29 years, developed nephrotic syndrome 4 days after receiving the third dose of the Pfizer-BioNTech vaccine. His kidney biopsy revealed relapsing MCD. Intravenous methylprednisolone pulse therapy followed by oral prednisolone therapy was administered, and his proteinuria resolved within 3 weeks. This report highlights the importance of careful monitoring of proteinuria after COVID-19 vaccination in patients with MCD, even if the disease is stable and no adverse events occurred during previous vaccinations. Our case report and literature review of COVID-19 vaccine-associated MCD indicated that MCD relapse tends to occur later after vaccination and slightly more often following the second and subsequent vaccine doses than new-onset MCD.
Collapse
Affiliation(s)
- Mariko Teragaki
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan.
| | - Mari Tanaka
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Hiroko Yamamoto
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Tomoka Watanabe
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Jun Takeoka
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Awaisshafig Fukumi
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Kotaro Maeda
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Yohtaro Takami
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Hirona Saita
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Sachio Iwanari
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Masaki Ikeda
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| | - Hiroya Takeoka
- Department of Nephrology and Dialysis, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwa-Cho, Amagasaki, Hyogo, 660-8550, Japan
| |
Collapse
|
32
|
Lenart K, Arcoverde Cerveira R, Hellgren F, Ols S, Sheward DJ, Kim C, Cagigi A, Gagne M, Davis B, Germosen D, Roy V, Alter G, Letscher H, Van Wassenhove J, Gros W, Gallouët AS, Le Grand R, Kleanthous H, Guebre-Xabier M, Murrell B, Patel N, Glenn G, Smith G, Loré K. Three immunizations with Novavax's protein vaccines increase antibody breadth and provide durable protection from SARS-CoV-2. NPJ Vaccines 2024; 9:17. [PMID: 38245545 PMCID: PMC10799869 DOI: 10.1038/s41541-024-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Jérôme Van Wassenhove
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Harry Kleanthous
- Bill & Melinda Gates Foundation, Seattle, WA, USA
- SK Biosciences, Boston, MA, USA
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Martinez-Murillo PA, Huttner A, Lemeille S, Medaglini D, Ottenhoff THM, Harandi AM, Didierlaurent AM, Siegrist CA. Refined innate plasma signature after rVSVΔG-ZEBOV-GP immunization is shared among adult cohorts in Europe and North America. Front Immunol 2024; 14:1279003. [PMID: 38235127 PMCID: PMC10791923 DOI: 10.3389/fimmu.2023.1279003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Background During the last decade Ebola virus has caused several outbreaks in Africa. The recombinant vesicular stomatitis virus-vectored Zaire Ebola (rVSVΔG-ZEBOV-GP) vaccine has proved safe and immunogenic but is reactogenic. We previously identified the first innate plasma signature response after vaccination in Geneva as composed of five monocyte-related biomarkers peaking at day 1 post-immunization that correlates with adverse events, biological outcomes (haematological changes and viremia) and antibody titers. In this follow-up study, we sought to identify additional biomarkers in the same Geneva cohort and validate those identified markers in a US cohort. Methods Additional biomarkers were identified using multiplexed protein biomarker platform O-link and confirmed by Luminex. Principal component analysis (PCA) evaluated if these markers could explain a higher variability of the vaccine response (and thereby refined the initial signature). Multivariable and linear regression models evaluated the correlations of the main components with adverse events, biological outcomes, and antibody titers. External validation of the refined signature was conducted in a second cohort of US vaccinees (n=142). Results Eleven additional biomarkers peaked at day 1 post-immunization: MCP2, MCP3, MCP4, CXCL10, OSM, CX3CL1, MCSF, CXCL11, TRAIL, RANKL and IL15. PCA analysis retained three principal components (PC) that accounted for 79% of the vaccine response variability. PC1 and PC2 were very robust and had different biomarkers that contributed to their variability. PC1 better discriminated different doses, better defined the risk of fever and myalgia, while PC2 better defined the risk of headache. We also found new biomarkers that correlated with reactogenicity, including transient arthritis (MCP-2, CXCL10, CXCL11, CX3CL1, MCSF, IL-15, OSM). Several innate biomarkers are associated with antibody levels one and six months after vaccination. Refined PC1 correlated strongly in both data sets (Geneva: r = 0.97, P < 0.001; US: r = 0.99, P< 0.001). Conclusion Eleven additional biomarkers refined the previously found 5-biomarker Geneva signature. The refined signature better discriminated between different doses, was strongly associated with the risk of adverse events and with antibody responses and was validated in a separate cohort.
Collapse
Affiliation(s)
- Paola Andrea Martinez-Murillo
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Clinical Research, Geneva University Hospitals, Geneva, Switzerland
| | - Sylvain Lemeille
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Centre, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud M. Didierlaurent
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
34
|
Enssle JC, Campe J, Moter A, Voit I, Gessner A, Yu W, Wolf S, Steffen B, Serve H, Bremm M, Huenecke S, Lohoff M, Vehreschild M, Rabenau HF, Widera M, Ciesek S, Oellerich T, Imkeller K, Rieger MA, von Metzler I, Ullrich E. Cytokine-responsive T- and NK-cells portray SARS-CoV-2 vaccine-responders and infection in multiple myeloma patients. Leukemia 2024; 38:168-180. [PMID: 38049509 PMCID: PMC10776400 DOI: 10.1038/s41375-023-02070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Abstract
Patients with multiple myeloma (MM) routinely receive mRNA-based vaccines to reduce COVID-19-related mortality. However, whether disease- and therapy-related alterations in immune cells and cytokine-responsiveness contribute to the observed heterogeneous vaccination responses is unclear. Thus, we analyzed peripheral blood mononuclear cells from patients with MM during and after SARS-CoV-2 vaccination and breakthrough infection (BTI) using combined whole-transcriptome and surface proteome single-cell profiling with functional serological and T-cell validation in 58 MM patients. Our results demonstrate that vaccine-responders showed a significant overrepresentation of cytotoxic CD4+ T- and mature CD38+ NK-cells expressing FAS+/TIM3+ with a robust cytokine-responsiveness, such as type-I-interferon-, IL-12- and TNF-α-mediated signaling. Patients with MM experiencing BTI developed strong serological and cellular responses and exhibited similar cytokine-responsive immune cell patterns as vaccine-responders. This study can expand our understanding of molecular and cellular patterns associated with immunization responses and may benefit the design of improved vaccination strategies in immunocompromised patients.
Collapse
Affiliation(s)
- Julius C Enssle
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Julia Campe
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alina Moter
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Isabel Voit
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Alec Gessner
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Weijia Yu
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Wolf
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Björn Steffen
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
| | - Hubert Serve
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Melanie Bremm
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany
| | - Michael Lohoff
- Institute of Medical Microbiology and Hospital Hygiene, Philipps University, Marburg, Germany
| | - Maria Vehreschild
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Infectious Diseases, Frankfurt am Main, Germany
| | - Holger F Rabenau
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt am Main, Germany
- German Centre for Infection Research, external partner site, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Katharina Imkeller
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Edinger Institute (Neurological Institute), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, MSNZ Group of Computational Immunology, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Michael A Rieger
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Ivana von Metzler
- Goethe University Frankfurt, University Hospital, Department of Medicine II - Hematology and Oncology, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt am Main, Germany.
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Frankfurt am Main, Germany.
- University Cancer Center (UCT), Frankfurt am Main, Germany.
| |
Collapse
|
35
|
Odak I, Riemann L, Sandrock I, Cossmann A, Ramos GM, Hammerschmidt SI, Ritter C, Friedrichsen M, Hassan A, Dopfer-Jablonka A, Stankov MV, Weskamm LM, Addo MM, Ravens I, Willenzon S, Schimrock A, Ristenpart J, Janssen A, Barros-Martins J, Hansen G, Falk C, Behrens GMN, Förster R. Systems biology analysis reveals distinct molecular signatures associated with immune responsiveness to the BNT162b COVID-19 vaccine. EBioMedicine 2024; 99:104947. [PMID: 38160529 PMCID: PMC10792461 DOI: 10.1016/j.ebiom.2023.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Human immune responses to COVID-19 vaccines display a large heterogeneity of induced immunity and the underlying immune mechanisms for this remain largely unknown. METHODS Using a systems biology approach, we longitudinally profiled a unique cohort of female high and low responders to the BNT162b vaccine, who were known from previous COVID-19 vaccinations to develop maximum and minimum immune responses to the vaccine. We utilized high dimensional flow cytometry, bulk and single cell mRNA sequencing and 48-plex serum cytokine analyses. FINDINGS We revealed early, transient immunological and molecular signatures that distinguished high from low responders and correlated with B and T cell responses measured 14 days later. High responders featured a distinct transcriptional activity of interferon-driven genes and genes connected to enhanced antigen presentation. This was accompanied by a robust cytokine response related to Th1 differentiation. Both transcriptome and serum cytokine signatures were confirmed in two independent confirmatory cohorts. INTERPRETATION Collectively, our data contribute to a better understanding of the immunogenicity of mRNA-based COVID-19 vaccines, which might lead to the optimization of vaccine designs for individuals with poor vaccine responses. FUNDING German Center for Infection Research, German Center for Lung Research, German Research Foundation, Excellence Strategy EXC 2155 "RESIST" and European Regional Development Fund.
Collapse
Affiliation(s)
- Ivan Odak
- Institute of Immunology, Hannover Medical School, Germany
| | - Lennart Riemann
- Institute of Immunology, Hannover Medical School, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany; Clinician Scientist Program TITUS, Else-Kröner-Fresenius Foundation, Hannover Medical School, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Germany
| | - Anne Cossmann
- Department for Rheumatology and Immunology, Hannover Medical School, Germany
| | - Gema Morillas Ramos
- Department for Rheumatology and Immunology, Hannover Medical School, Germany
| | | | | | | | - Ahmed Hassan
- Institute of Immunology, Hannover Medical School, Germany
| | - Alexandra Dopfer-Jablonka
- Department for Rheumatology and Immunology, Hannover Medical School, Germany; German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Germany
| | - Metodi V Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Germany
| | - Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Germany
| | | | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, Germany
| | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Germany
| | | | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany; Clinician Scientist Program TITUS, Else-Kröner-Fresenius Foundation, Hannover Medical School, Germany; German Center of Lung Research (DZL), BREATH, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Germany
| | - Christine Falk
- Institute for Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Georg M N Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Germany; German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Germany; Centre for Individualized Infection Medicine (CiiM), Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Germany; Clinician Scientist Program TITUS, Else-Kröner-Fresenius Foundation, Hannover Medical School, Germany; German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany; German Center of Lung Research (DZL), BREATH, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Germany.
| |
Collapse
|
36
|
Ivanova EN, Shwetar J, Devlin JC, Buus TB, Gray-Gaillard S, Koide A, Cornelius A, Samanovic MI, Herrera A, Mimitou EP, Zhang C, Karmacharya T, Desvignes L, Ødum N, Smibert P, Ulrich RJ, Mulligan MJ, Koide S, Ruggles KV, Herati RS, Koralov SB. mRNA COVID-19 vaccine elicits potent adaptive immune response without the acute inflammation of SARS-CoV-2 infection. iScience 2023; 26:108572. [PMID: 38213787 PMCID: PMC10783604 DOI: 10.1016/j.isci.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.
Collapse
Affiliation(s)
- Ellie N. Ivanova
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jasmine Shwetar
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph C. Devlin
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Terkild B. Buus
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sophie Gray-Gaillard
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Akiko Koide
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Amber Cornelius
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Marie I. Samanovic
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alberto Herrera
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Chenzhen Zhang
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Trishala Karmacharya
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Ludovic Desvignes
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- High Containment Laboratories, Office of Science and Research, New York University Langone Health, New York, NY 10016, USA
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Robert J. Ulrich
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mark J. Mulligan
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V. Ruggles
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ramin S. Herati
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
37
|
Wang Z, Jacobus EJ, Stirling DC, Krumm S, Flight KE, Cunliffe RF, Mottl J, Singh C, Mosscrop LG, Santiago LA, Vogel AB, Kariko K, Sahin U, Erbar S, Tregoning JS. Reducing cell intrinsic immunity to mRNA vaccine alters adaptive immune responses in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102045. [PMID: 37876532 PMCID: PMC10591005 DOI: 10.1016/j.omtn.2023.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The response to mRNA vaccines needs to be sufficient for immune cell activation and recruitment, but moderate enough to ensure efficacious antigen expression. The choice of the cap structure and use of N1-methylpseudouridine (m1Ψ) instead of uridine, which have been shown to reduce RNA sensing by the cellular innate immune system, has led to improved efficacy of mRNA vaccine platforms. Understanding how RNA modifications influence the cell intrinsic immune response may help in the development of more effective mRNA vaccines. In the current study, we compared mRNA vaccines in mice against influenza virus using three different mRNA formats: uridine-containing mRNA (D1-uRNA), m1Ψ-modified mRNA (D1-modRNA), and D1-modRNA with a cap1 structure (cC1-modRNA). D1-uRNA vaccine induced a significantly different gene expression profile to the modified mRNA vaccines, with an up-regulation of Stat1 and RnaseL, and increased systemic inflammation. This result correlated with significantly reduced antigen-specific antibody responses and reduced protection against influenza virus infection compared with D1-modRNA and cC1-modRNA. Incorporation of m1Ψ alone without cap1 improved antibodies, but both modifications were required for the optimum response. Therefore, the incorporation of m1Ψ and cap1 alters protective immunity from mRNA vaccines by altering the innate immune response to the vaccine material.
Collapse
Affiliation(s)
- Ziyin Wang
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - David C. Stirling
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Katie E. Flight
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Robert F. Cunliffe
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Charanjit Singh
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Lucy G. Mosscrop
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | | | | | - Ugur Sahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|
38
|
Schramm CA, Moon D, Peyton L, Lima NS, Wake C, Boswell KL, Henry AR, Laboune F, Ambrozak D, Darko SW, Teng IT, Foulds KE, Carfi A, Edwards DK, Kwong PD, Koup RA, Seder RA, Douek DC. Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates. Nat Commun 2023; 14:7961. [PMID: 38042809 PMCID: PMC10693617 DOI: 10.1038/s41467-023-43420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023] Open
Abstract
As SARS-CoV-2 variants continue evolving, testing updated vaccines in non-human primates remains important for guiding human clinical practice. To date, such studies have focused on antibody titers and antigen-specific B and T cell frequencies. Here, we extend our understanding by integrating innate and adaptive immune responses to mRNA-1273 vaccination in rhesus macaques. We sorted innate immune cells from a pre-vaccine time point, as well as innate immune cells and antigen-specific peripheral B and T cells two weeks after each of two vaccine doses and used single-cell sequencing to assess the transcriptomes and adaptive immune receptors of each cell. We show that a subset of S-specific T cells expresses cytokines critical for activating innate responses, with a concomitant increase in CCR5-expressing intermediate monocytes and a shift of natural killer cells to a more cytotoxic phenotype. The second vaccine dose, administered 4 weeks after the first, elicits an increase in circulating germinal center-like B cells 2 weeks later, which are more clonally expanded and enriched for epitopes in the receptor binding domain. Both doses stimulate inflammatory response genes associated with elevated antibody production. Overall, we provide a comprehensive picture of bidirectional signaling between innate and adaptive components of the immune system and suggest potential mechanisms for the enhanced response to secondary exposure.
Collapse
Affiliation(s)
- Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemia S Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christian Wake
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin L Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel W Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Rosati M, Terpos E, Homan P, Bergamaschi C, Karaliota S, Ntanasis-Stathopoulos I, Devasundaram S, Bear J, Burns R, Bagratuni T, Trougakos IP, Dimopoulos MA, Pavlakis GN, Felber BK. Rapid transient and longer-lasting innate cytokine changes associated with adaptive immunity after repeated SARS-CoV-2 BNT162b2 mRNA vaccinations. Front Immunol 2023; 14:1292568. [PMID: 38090597 PMCID: PMC10711274 DOI: 10.3389/fimmu.2023.1292568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration Clinicaltrials.gov, identifier NCT04743388.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
40
|
Pencheva M, Bozhkova M, Kalchev Y, Petrov S, Baldzhieva A, Kalfova T, Dichev V, Keskinova D, Genova S, Atanasova M, Murdzheva M. The Serum ACE2, CTSL, AngII, and TNFα Levels after COVID-19 and mRNA Vaccines: The Molecular Basis. Biomedicines 2023; 11:3160. [PMID: 38137381 PMCID: PMC10741205 DOI: 10.3390/biomedicines11123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 virus as well as the COVID-19 mRNA vaccines cause an increased production of proinflammatory cytokines. AIM We investigated the relationship between ACE2, CTSL, AngII, TNFα and the serum levels of IL-6, IL-10, IL-33, IL-28A, CD40L, total IgM, IgG, IgA and absolute count of T- and B-lymphocytes in COVID-19 patients, vaccinees and healthy individuals. METHODS We measured the serum levels ACE2, AngII, CTSL, TNFα and humoral biomarkers (CD40L, IL-28A, IL-10, IL-33) by the ELISA method. Immunophenotyping of lymphocyte subpopulations was performed by flow cytometry. Total serum immunoglobulins were analyzed by the turbidimetry method. RESULTS The results established an increase in the total serum levels for ACE2, CTSL, AngII and TNFα by severely ill patients and vaccinated persons. The correlation analysis described a positive relationship between ACE2 and proinflammatory cytokines IL-33 (r = 0.539) and CD40L (r = 0.520), a positive relationship between AngII and CD40L (r = 0.504), as well as between AngII and IL-33 (r = 0.416), and a positive relationship between CTSL, total IgA (r = 0.437) and IL-28A (r = 0.592). Correlation analysis confirmed only two of the positive relationships between TNFα and IL-28A (r = 0.491) and CD40L (r = 0.458). CONCLUSIONS In summary, the findings presented in this study unveil a complex web of interactions within the immune system in response to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Martina Bozhkova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Yordan Kalchev
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Steliyan Petrov
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Teodora Kalfova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Valentin Dichev
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Donka Keskinova
- Department of Applied and Institutional Sociology, Faculty of Philosophy and History, University of Plovdiv “Paisii Hilendarski”, 4000 Plovdiv, Bulgaria;
| | - Silvia Genova
- Department of General and Clinical Pathology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mariya Atanasova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Laboratory of Virology, UMBAL “St. George” EAD, 4002 Plovdiv, Bulgaria
| | - Mariana Murdzheva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
41
|
Taylor JV, Callery EL, Rowbottom A. Optimisation of SARS-CoV-2 peptide stimulation and measurement of cytokine output by intracellular flow cytometry and bio-plex analysis. J Immunol Methods 2023; 522:113556. [PMID: 37683822 DOI: 10.1016/j.jim.2023.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Our study was conducted to optimise a peptide stimulation and an intracellular cytokine staining protocol, alongside Bio-Plex supernatant analysis, for use in patients who had previously contracted SARS-CoV-2 or received vaccination against this virus in a clinical laboratory setting. Peripheral Blood Mononuclear Cell extraction and cryopreservation allowed for cells to be stored long term and enhanced logistical processing of samples. Viability and functionality of cells were analysed by flow cytometric methodology using viability staining monoclonal antibodies conjugated to fluorochromes. Antibiotics and Benzonase Nuclease did not impact lymphocyte viability and so cell culture conditions were optimised in terms of retaining viability and functionality. Optimisation of peptide stimulation with Influenza and SARS-CoV-2 peptide pools was conducted through stimulation experiments assessing peptide concentration, peptide stimulation time and enrichment studies to increase precursor frequency. Cytokine output was measured by flow cytometry and Bio-Plex methodologies, with positive cytokine readings predominantly detected in the cell culture supernatant. Analysis of both intracellular and extracellular compartments allowed for detection of cytokines and established the retained cellular functionality post cryopreservation. These results also indicated that our peptide stimulation method can generate antigen-specific T lymphocytes upon exposure to SARS-CoV-2 peptide pools. Moreover, the measurement of specific cytokines could be applied to an array of conditions, such as chronic inflammatory diseases, but to also offer an alternative method of measuring vaccine responses. This platform is easily adaptable and can remain relevant alongside changing vaccine composition, thus ensuring its applicability to future vaccination programmes.
Collapse
Affiliation(s)
| | | | - Anthony Rowbottom
- Immunology Department at Lancashire Teaching Hospitals, United Kingdom
| |
Collapse
|
42
|
Chamboux M, Simon C, Beau-Salinas F, Maurier A, Agier MS, Thillard EM, Largeau B, Jonville-Bera AP. Peripheral facial palsy post SARS-CoV-2 vaccine: A regional pharmacovigilance cases series. Therapie 2023; 78:705-709. [PMID: 36849281 PMCID: PMC9933875 DOI: 10.1016/j.therap.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Peripheral facial palsy (PFP) is a rare adverse reaction identified from clinical trials of coronavirus disease 2019 (COVID-19) vaccines (messenger ribonucleic acid [mRNA] and viral vector). Few data are available on their onset patterns and risk of recurrence after re-injection of a COVID-19 vaccine; the objective of this study was to describe PFP cases attributed to COVID-19 vaccines. All cases of facial paralysis reported to the Regional Pharmacovigilance Center of Centre-Val de Loire area between January and October 2021, in which the role of a COVID-19 vaccine was suspected, were selected. Based on initial data and following additional information requested, each case was reviewed and analyzed to include only confirmed cases of PFP for which the role of the vaccine could be retained. From the 38 cases reported, 23 were included (15 excluded because of diagnosis not retained). They occurred in 12 men and 11 women (median age of 51 years). The first clinical manifestations occurred with a median time of 9 days after COVID-19 vaccine injection, and the paralysis was homolateral to the vaccinated arm in 70%. The etiological workup, always negative, included brain imaging (48%), infectious serologies (74%) and Covid-19 PCR (52%). Corticosteroid therapy was prescribed for 20 (87%) patients, combined with aciclovir in 12 (52%). At 4-month follow-up, clinical manifestations had regressed completely or partially in 20 (87%) of the 23 patients (median time of 30 days). From them 12 (60%) received another dose of COVID-19 vaccine and none had a recurrence and the PFP regressed despite the second dose in 2 of the 3 patients not fully recovered at 4 months. The potential mechanism of PFP after COVID-19 vaccine, which don't have a specific profile, is probably the interferon-γ. Moreover, the risk of recurrence after a new injection appears to be very low, which makes it possible to continue the vaccination.
Collapse
Affiliation(s)
- Morgane Chamboux
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Corinne Simon
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Frédérique Beau-Salinas
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Anaïs Maurier
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Marie Sara Agier
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Eve Marie Thillard
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Bérenger Largeau
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France
| | - Annie Pierre Jonville-Bera
- Department of Pharmacosurveillance, Pharmacovigilance Regional Center of Centre-Val de Loire, University Hospital of Tours, 37000 Tours, France.
| |
Collapse
|
43
|
Nayyerabadi M, Fourcade L, Joshi SA, Chandrasekaran P, Chakravarti A, Massé C, Paul ML, Houle J, Boubekeur AM, DuSablon C, Boudreau V, Bovan D, Darbinian E, Coleman EA, Vinci S, Routy JP, Hétu PO, Poudrier J, Falcone EL. Vaccination after developing long COVID: Impact on clinical presentation, viral persistence, and immune responses. Int J Infect Dis 2023; 136:136-145. [PMID: 37717649 DOI: 10.1016/j.ijid.2023.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Vaccination protects against severe COVID-19 manifestations. For those with post-COVID-19 conditions (PCC) or long COVID, the impact of COVID-19 vaccination on the evolution of symptoms, immune responses, and viral persistence is unclear. METHODS In this prospective observational cohort study, we evaluated the number of PCC symptoms, affected organ systems, and psychological well-being scores before and after patients with PCC received COVID-19 vaccination. We simultaneously evaluated biomarkers of systemic inflammation and levels of plasma cytokines/chemokines. We measured plasma and intracellular levels of SARS-CoV-2 antigens, and immunoreactivity to SARS-CoV-2 antigens in blood. RESULTS COVID-19 vaccination was associated with decreases in number of PCC symptoms (pre-vaccination: 6.56 ± 3.1 vs post-vaccination: 3.92 ± 4.02; P <0.001) and affected organ systems (pre-vaccination: 3.19 ± 1.04 vs post-vaccination: 1.89 ± 1.12; P <0.001), and increases in World Health Organization (WHO)-5 Well-Being Index Scores (pre-vaccination: 42.67 ± 22.76 vs post-vaccination: 56.15 ± 22.83; P <0.001). Patients with PCC also had significantly decreased levels of several pro-inflammatory plasma cytokines/chemokines after COVID-19 vaccination including sCD40L, GRO-⍺, macrophage inflammatory protein (MIP)-1⍺, interleukin (IL)-12p40, G-colony stimulating factor (CSF), M-CSF, IL-1β, and stem cell factor (SCF). PCC participants presented a certain level of immunoreactivity toward SARS-CoV-2, that was boosted with vaccination. SARS-CoV-2 S1 antigen persisted in the blood of PCC participants, mostly in non-classical monocytes, regardless of participants receiving vaccination. CONCLUSIONS Our study shows higher pro-inflammatory responses associated with PCC symptoms and brings forward a possible role for vaccination in mitigating PCC symptoms by decreasing systemic inflammation. We also observed persistence of viral products independent of vaccination that could be involved in perpetuating inflammation through non-classical monocytes.
Collapse
Affiliation(s)
- Maryam Nayyerabadi
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Lyvia Fourcade
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Swarali A Joshi
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Center for Commercialization of Regenerative Medicine (CCRM), Toronto, ON, Canada
| | | | - Arpita Chakravarti
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada; Department of Infectious Diseases and Medical Microbiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Chantal Massé
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Marie-Lorna Paul
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada
| | - Joanie Houle
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Amina M Boubekeur
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Charlotte DuSablon
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Valérie Boudreau
- Center for Cardiometabolic Health, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Danijela Bovan
- Center for Cardiometabolic Health, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Emma Darbinian
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Emilia Aïsha Coleman
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Sandra Vinci
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Jean-Pierre Routy
- Department of Medicine, McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Pierre-Olivier Hétu
- Department of Laboratory Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Johanne Poudrier
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Emilia Liana Falcone
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada; Department of Infectious Diseases and Medical Microbiology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
44
|
Cao C, Jiang J, Liu M, Dai Y, Chang T, Ji T, Gong F. Longitudinal evaluation of innate immune responses to three doses of CoronaVac vaccine. Front Immunol 2023; 14:1277831. [PMID: 37849746 PMCID: PMC10577214 DOI: 10.3389/fimmu.2023.1277831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
The adaptive immune responses induced by inactivated COVID-19 vaccine has been extensively studied. However, few studies have analyzed the impact of COVID-19 vaccination on innate immune cells. Here in this study, we recruited 62 healthcare workers who received three doses of CoronaVac vaccine and longitudinally profiled the alterations of peripheral monocytes and NK cells during vaccination. The results showed that both the monocyte and NK cell subsets distribution were altered, although the frequencies of the total monocyte and NK cells remained stable during the vaccination. Additionally, we found that both the 2nd and 3rd dose of CoronaVac vaccination elicited robust IFN-γ-producing NK cell response. Our data provided necessary insights on innate immune responses in the context of three homologous CoronaVac dose vaccination, and supplied immunological basis for the future design of inactivated vaccines against SARS-CoV-2 or other viruses.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Department of Laboratory Medicine, Changzhou Jintan First People’s Hospital, Changzhou, Jiangsu, China
| | - Junfeng Jiang
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Tianzhi Chang
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Tuo Ji
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Fang Gong
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
45
|
Maddaloni L, Santinelli L, Bugani G, Cacciola EG, Lazzaro A, Lofaro CM, Caiazzo S, Frasca F, Fracella M, Ajassa C, Leanza C, Napoli A, Cinti L, Gaeta A, Antonelli G, Ceccarelli G, Mastroianni CM, Scagnolari C, d'Ettorre G. Differential expression of Type I interferon and inflammatory genes in SARS-CoV-2-infected patients treated with monoclonal antibodies. Immun Inflamm Dis 2023; 11:e968. [PMID: 37904704 PMCID: PMC10571496 DOI: 10.1002/iid3.968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Considering the reported efficacy of monoclonal antibodies (mAbs) directed against the Spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in reducing disease severity, the aim of this study was to investigate the innate immune response before and after mAbs treatment in 72 vaccinated and 31 unvaccinated SARS-CoV-2 patients. METHODS The mRNA levels of IFN-I, IFN-related genes and cytokines were evaluated using RT/real-time quantitative PCR. RESULTS Vaccinated patients showed increased rate of negative SARS-CoV-2 PCR tests on nasopharyngeal swab compared with unvaccinated ones after mAbs treatment (p = .002). Unvaccinated patients had lower IFN-α/ω and higher IFN-related genes (IFNAR1, IFNAR2, IRF9, ISG15, ISG56 and IFI27) and cytokines (IL-6, IL-10 and TGF-β) mRNA levels compared to vaccinated individuals before mAbs (p < .05 for all genes). Increased IFN-α/ω, IFNAR1, IFNAR2 and IRF9 levels were observed in unvaccinated patients after mAbs treatment, while the mRNA expression ISGs and IL-10 were reduced in all patients. CONCLUSION These data suggest that anti-S vaccinated patients have increased levels of innate immune genes compared to unvaccinated ones. Also, gene expression changes in IFN genes after mAbs administration are different according to the vaccination status of patients.
Collapse
Affiliation(s)
- Luca Maddaloni
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Letizia Santinelli
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Ginevra Bugani
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Elio G. Cacciola
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Alessandro Lazzaro
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Chiara M. Lofaro
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Sara Caiazzo
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Federica Frasca
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Matteo Fracella
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Camilla Ajassa
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Cristiana Leanza
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Anna Napoli
- Laboratory of Microbiology and Virology, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Lilia Cinti
- Laboratory of Microbiology and Virology, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Aurelia Gaeta
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Guido Antonelli
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
- Azienda Ospedaliero‐Universitaria Policlinico Umberto IRomeItaly
| | | | - Carolina Scagnolari
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| |
Collapse
|
46
|
Kim D, Biancon G, Bai Z, VanOudenhove J, Liu Y, Kothari S, Gowda L, Kwan JM, Buitrago-Pocasangre NC, Lele N, Asashima H, Racke MK, Wilson JE, Givens TS, Tomayko MM, Schulz WL, Longbrake EE, Hafler DA, Halene S, Fan R. Microfluidic Immuno-Serolomic Assay Reveals Systems Level Association with COVID-19 Pathology and Vaccine Protection. SMALL METHODS 2023; 7:e2300594. [PMID: 37312418 PMCID: PMC10592458 DOI: 10.1002/smtd.202300594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Indexed: 06/15/2023]
Abstract
How to develop highly informative serology assays to evaluate the quality of immune protection against coronavirus disease-19 (COVID-19) has been a global pursuit over the past years. Here, a microfluidic high-plex immuno-serolomic assay is developed to simultaneously measure50 plasma or serum samples for50 soluble markers including 35proteins, 11 anti-spike/receptor binding domian (RBD) IgG antibodies spanningmajor variants, and controls. This assay demonstrates the quintuplicate test in a single run with high throughput, low sample volume, high reproducibilityand accuracy. It is applied to the measurement of 1012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein analysis reveals distinct immune mediator modules that exhibit a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies or receiving B cell depletion therapy. Serological analysis identifies that COVID-infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which can be associated with limited clonotype diversity and functional deficiency in B cells. These findings underscore the importance to individualize immunization strategies for these high-risk patients and provide an informative tool to monitor their responses at the systems level.
Collapse
Affiliation(s)
- Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yuxin Liu
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shalin Kothari
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jennifer M Kwan
- Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Nikhil Lele
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
| | | | | | | | | | - Mary M Tomayko
- Departments of Dermatology, Yale University, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Wade L Schulz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Erin E Longbrake
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
| | - David A Hafler
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale University, New Haven, CT, 06520, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center and Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center and Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Human and Translational Immunology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
47
|
Kuan AS, Chen SP, Wang YF, Wang SJ. Prolonged headache with vaccine- and dose-specific headache pattern associated with vaccine against SARS-CoV-2 in patients with migraine. Cephalalgia 2023; 43:3331024231208110. [PMID: 37851648 DOI: 10.1177/03331024231208110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
OBJECTIVE To examine SARS-CoV-2 vaccine-related headache characteristics and risk factors in migraine patients. METHODS This retrospective cohort study included 732 migraine patients who had AstraZeneca Vaxzevria, Pfizer-BioNTech Comirnaty, or Moderna Spikevax vaccines. Participants provided information through questionnaires and headache diaries. Headache frequency before and after vaccination and factors associated with headache risk were examined. RESULTS Approximately a third of patients reported increased headache the day after having primary and booster doses, with mean increase ± SD of 1.9 ± 1.2 and 1.8 ± 1.1 days/week, respectively. Proportions of migraine patients with headache (after vaccination vs. before vaccination) increased after having primary-dose Vaxzevria (35.3% vs. 22.8%, p < 0.001) but not Spikevax (23.8% vs. 26.7%, p = 0.700) or Comirnaty (33.2% vs. 25.8%, p = 0.058). Headache proportion increased after having all three boosters (Vaxzevria 27.1% vs. 17.9% p = 0.003; Comirnaty 34.1% vs. 24.5% p = 0.009; Spikevax 35.2% vs. 24.8% p = 0.031). For primary dose with Vaxzevria and Comirnaty, headache risk increased on the vaccination day, peaked on the day after vaccination, and subsided within a week, while for Spikevax headache risk rose gradually after vaccination, peaked on the seventh post-vaccination day and subsided subsequently. For booster dose, headache risk generally increased on the vaccination day, peaked on the day after vaccination, and subsided gradually with fluctuating pattern within a month. Our study also showed that headache increased on the day before primary dose but not booster dose vaccination and it may be attributable to stress associated with having to undertake new vaccines. Multivariable analyses showed that depression was associated with headache. CONCLUSION Prolonged headache with vaccine- and dose-specific headache pattern was found. Patients with higher risks of vaccine-related headache must be informed of the potential worsening headache.
Collapse
Affiliation(s)
- Ai Seon Kuan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
48
|
Föhse K, Geckin B, Zoodsma M, Kilic G, Liu Z, Röring RJ, Overheul GJ, van de Maat J, Bulut O, Hoogerwerf JJ, Ten Oever J, Simonetti E, Schaal H, Adams O, Müller L, Ostermann PN, van de Veerdonk FL, Joosten LAB, Haagmans BL, van Crevel R, van Rij RP, GeurtsvanKessel C, de Jonge MI, Li Y, Domínguez-Andrés J, Netea MG. The impact of BNT162b2 mRNA vaccine on adaptive and innate immune responses. Clin Immunol 2023; 255:109762. [PMID: 37673225 DOI: 10.1016/j.clim.2023.109762] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The mRNA-based BNT162b2 protects against severe disease and mortality caused by SARS-CoV-2 via induction of specific antibody and T-cell responses. Much less is known about its broad effects on immune responses against other pathogens. Here, we investigated the adaptive immune responses induced by BNT162b2 vaccination against various SARS-CoV-2 variants and its effects on the responsiveness of immune cells upon stimulation with heterologous stimuli. BNT162b2 vaccination induced effective humoral and cellular immunity against SARS-CoV-2 that started to wane after six months. We also observed long-term transcriptional changes in immune cells after vaccination. Additionally, vaccination with BNT162b2 modulated innate immune responses as measured by inflammatory cytokine production after stimulation - higher IL-1/IL-6 release and decreased IFN-α production. Altogether, these data expand our knowledge regarding the overall immunological effects of this new class of vaccines and underline the need for additional studies to elucidate their effects on both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Konstantin Föhse
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Büsra Geckin
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn Zoodsma
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zhaoli Liu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Josephine van de Maat
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jacobien J Hoogerwerf
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Ten Oever
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elles Simonetti
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Philipp Niklas Ostermann
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
49
|
Zhu X, Gebo KA, Abraham AG, Habtehyimer F, Patel EU, Laeyendecker O, Gniadek TJ, Fernandez RE, Baker OR, Ram M, Cachay ER, Currier JS, Fukuta Y, Gerber JM, Heath SL, Meisenberg B, Huaman MA, Levine AC, Shenoy A, Anjan S, Blair JE, Cruser D, Forthal DN, Hammitt LL, Kassaye S, Mosnaim GS, Patel B, Paxton JH, Raval JS, Sutcliffe CG, Abinante M, Broderick P, Cluzet V, Cordisco ME, Greenblatt B, Petrini J, Rausch W, Shade D, Lane K, Gawad AL, Klein SL, Pekosz A, Shoham S, Casadevall A, Bloch EM, Hanley D, Sullivan DJ, Tobian AAR. Dynamics of inflammatory responses after SARS-CoV-2 infection by vaccination status in the USA: a prospective cohort study. THE LANCET. MICROBE 2023; 4:e692-e703. [PMID: 37659419 PMCID: PMC10475695 DOI: 10.1016/s2666-5247(23)00171-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Cytokines and chemokines play a critical role in the response to infection and vaccination. We aimed to assess the longitudinal association of COVID-19 vaccination with cytokine and chemokine concentrations and trajectories among people with SARS-CoV-2 infection. METHODS In this longitudinal, prospective cohort study, blood samples were used from participants enrolled in a multi-centre randomised trial assessing the efficacy of convalescent plasma therapy for ambulatory COVID-19. The trial was conducted in 23 outpatient sites in the USA. In this study, participants (aged ≥18 years) were restricted to those with COVID-19 before vaccination or with breakthrough infections who had blood samples and symptom data collected at screening (pre-transfusion), day 14, and day 90 visits. Associations between COVID-19 vaccination status and concentrations of 21 cytokines and chemokines (measured using multiplexed sandwich immunoassays) were examined using multivariate linear mixed-effects regression models, adjusted for age, sex, BMI, hypertension, diabetes, trial group, and COVID-19 waves (pre-alpha or alpha and delta). FINDINGS Between June 29, 2020, and Sept 30, 2021, 882 participants recently infected with SARS-CoV-2 were enrolled, of whom 506 (57%) were female and 376 (43%) were male. 688 (78%) of 882 participants were unvaccinated, 55 (6%) were partly vaccinated, and 139 (16%) were fully vaccinated at baseline. After adjusting for confounders, geometric mean concentrations of interleukin (IL)-2RA, IL-7, IL-8, IL-15, IL-29 (interferon-λ), inducible protein-10, monocyte chemoattractant protein-1, and tumour necrosis factor-α were significantly lower among the fully vaccinated group than in the unvaccinated group at screening. On day 90, fully vaccinated participants had approximately 20% lower geometric mean concentrations of IL-7, IL-8, and vascular endothelial growth factor-A than unvaccinated participants. Cytokine and chemokine concentrations decreased over time in the fully and partly vaccinated groups and unvaccinated group. Log10 cytokine and chemokine concentrations decreased faster among participants in the unvaccinated group than in other groups, but their geometric mean concentrations were generally higher than fully vaccinated participants at 90 days. Days since full vaccination and type of vaccine received were not correlated with cytokine and chemokine concentrations. INTERPRETATION Initially and during recovery from symptomatic COVID-19, fully vaccinated participants had lower concentrations of inflammatory markers than unvaccinated participants suggesting vaccination is associated with short-term and long-term reduction in inflammation, which could in part explain the reduced disease severity and mortality in vaccinated individuals. FUNDING US Department of Defense, National Institutes of Health, Bloomberg Philanthropies, State of Maryland, Mental Wellness Foundation, Moriah Fund, Octapharma, HealthNetwork Foundation, and the Shear Family Foundation.
Collapse
Affiliation(s)
- Xianming Zhu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alison G Abraham
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Feben Habtehyimer
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Eshan U Patel
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Washington, DC, USA
| | - Thomas J Gniadek
- Department of Pathology and Laboratory Medicine, Northshore University Health System, Evanston, IL, USA
| | - Reinaldo E Fernandez
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Owen R Baker
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Malathi Ram
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Edward R Cachay
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, San Diego, CA, USA
| | - Judith S Currier
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, CA, USA
| | - Yuriko Fukuta
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Gerber
- Department of Medicine, Division of Hematology and Oncology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sonya L Heath
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barry Meisenberg
- Department of Medicine and Research Institute of Luminis Health, Annapolis, MD, USA
| | - Moises A Huaman
- Department of Medicine, Division of Infectious Diseases University of Cincinnati, Cincinnati, OH, USA
| | - Adam C Levine
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Aarthi Shenoy
- Division of Hematology, Medstar DC Hospital, Washington, DC, USA
| | - Shweta Anjan
- Department of Medicine, Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Janis E Blair
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - Daniel Cruser
- Department of Pathology, Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Donald N Forthal
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA, USA
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seble Kassaye
- Division of Infectious Diseases, Georgetown University Medical Center, Washington, DC, USA
| | - Giselle S Mosnaim
- Division of Allergy and Immunology, Department of Medicine, Northshore University Health System, Evanston, IL, USA
| | - Bela Patel
- Department of Medicine, Divisions of Pulmonary and Critical Care Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - James H Paxton
- Department of Emergency Medicine, Wayne State University, Detroit, MI, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | | | | | - Patrick Broderick
- Department of Emergency Medicine, Nuvance Health Danbury Hospital, Danbury, CT, USA
| | - Valerie Cluzet
- Department of Infectious Disease, Nuvance Health Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Marie Elena Cordisco
- Department of Emergency Medicine, Nuvance Health Danbury Hospital, Danbury, CT, USA
| | - Benjamin Greenblatt
- Department of Emergency Medicine, Nuvance Health Norwalk Hospital, Norwark, CT, USA
| | - Joann Petrini
- Department of Emergency Medicine, Nuvance Health Danbury Hospital, Danbury, CT, USA
| | - William Rausch
- Department of Emergency Medicine, Nuvance Health Danbury Hospital, Danbury, CT, USA
| | - David Shade
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Karen Lane
- Department of Neurology, Brain Injury Outcomes Division, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Amy L Gawad
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Evan M Bloch
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Hanley
- Department of Neurology, Brain Injury Outcomes Division, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
50
|
Ghanbari Naeini L, Abbasi L, Karimi F, Kokabian P, Abdi Abyaneh F, Naderi D. The Important Role of Interleukin-2 in COVID-19. J Immunol Res 2023; 2023:7097329. [PMID: 37649897 PMCID: PMC10465260 DOI: 10.1155/2023/7097329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/04/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
There is controversial literature about the effects of the interleukin-2 (IL-2) cytokine family in COVID-19 pathogenesis and immunity. So we aimed to identify the potential in the role of the IL-2 family in COVID-19. A narrative review search was done through online databases, including PubMed, Scopus, and Web of Science. The search deadline was up to December 2022. We applied no time limits for the searching strategy. After retrieving articles from the databases, the authors summarized the data into two data extraction tables. The first data extraction table described the changes in the IL-2 cytokine family in COVID-19 and the second table described the therapeutic interventions targeting IL-2 family cytokines. The results of the literature on the role of the IL-2 cytokine family do not show a singular rule. IL-2 cytokine family can change during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some studies suggest that IL-2 cytokine family rise during the infection and cause severe inflammatory response and cytokine storm. These cytokines are shown to be increased in immunocompromised patients and worsen their prognosis. In individuals without underlying disease, the upregulation of the IL-2 family shows the clinical outcome of the disease and rises with disease severity. However, some other studies show that these cytokines do not significantly change. IL-2 cytokine family is mostly upregulated in healthy individuals who had vaccination, but immunocompromised patients did not show significant changes after a single dose of vaccines, which shows that these patients need booster doses for efficient immunity. IL-2 cytokine family can also be used as immunotherapy agents in COVID-19.
Collapse
Affiliation(s)
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|