1
|
Zhang H, Wang Y, Chen W, Xu Y, Ren H, Chen S, Peng X, Li D, Wang J, Zhang Q. Enzymatic activity and gene expression changes in the earthworms induced by co-exposure to beta-cypermethrin and triadimefon. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02852-5. [PMID: 39777608 DOI: 10.1007/s10646-025-02852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Pesticides often exist as complex mixtures in soil environments, yet the toxicity of these combinations has not been thoroughly investigated. In light of this, the current study aimed to assess the enzymatic activity and gene expression responses in the earthworm Eisenia fetida when exposed to a mixture of beta-cypermethrin (BCY) and triadimefon (TRI). The findings revealed that co-exposure to BCY and TRI triggered acute synergistic toxicity in E. fetida, emphasizing the potential risk they pose to soil health. Significant elevations in MDA, Cu/Zn-SOD, and CAT levels were observed across most individual and combined treatments. Additionally, the expression of crt was notably upregulated under most exposure conditions, while the expression levels of tctp and sod were significantly downregulated. These changes suggested the occurrence of oxidative stress and potential carcinogenic effects upon exposure to BCY, TRI, and their combination. Notably, the activities of CAT, caspase-9, and CarE, along with the transcriptional levels of mt, displayed more pronounced variations in response to the pesticide mixture compared to individual exposures. These results indicated that the combined exposure to BCY and TRI intensified oxidative stress, promoted cellular apoptosis, and disrupted detoxification processes more than exposure to either chemical alone. Molecular docking results showed that these two pesticides could interact with CAT, SOD, and GST. These data provided critical insights into the biochemical and molecular toxicity caused by BCY and TRI on E. fetida, offering a deeper understanding of the ecological risks posed by chemical mixtures to soil organisms. This study shed light on the toxicological implications of BCY and TRI co-occurrence and underscored the importance of evaluating the environmental impact of pesticide mixtures to safeguard soil ecosystems.
Collapse
Grants
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
- 2024ASXM06 Key Research & Development Project of Anshun City Branch of Guizhou Tobacco Company, China
Collapse
Affiliation(s)
- Hai Zhang
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Ying Wang
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Wen Chen
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Yuhang Xu
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Huixiang Ren
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Siyao Chen
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Xin Peng
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Dan Li
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Jingwen Wang
- Hangzhou Agricultural Technology Extension Center, Hangzhou, Zhejiang, China.
| | - Quan Zhang
- Anshun City Branch of Guizhou Tobacco Company, Anshun, Guizhou, China.
| |
Collapse
|
2
|
Liu N, Huang J, Liu X, Wu J, Huang M. Pesticide-induced metabolic disruptions in crops: A global perspective at the molecular level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177665. [PMID: 39581450 DOI: 10.1016/j.scitotenv.2024.177665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Pesticide pollution has emerged as a critical global environmental issue of pervasive concern. Although the application of pesticides has provided substantial benefits in controlling weeds, pests, and crop diseases, their indiscriminate use poses considerable challenges to soil health and food safety. Pesticides can be absorbed by crops through either foliar or root uptake, resulting in deleterious effects such as extensive tissue damage, growth inhibition, and reduced crop quality. Beside these visible effects, pesticides can alter gene expression and disrupt cellular signaling transduction, thereby interfering with essential metabolic processes even inducing toxic stress. Moreover, pesticides can interact intricately with biomolecules (e.g. proteins, nucleic acid) in crops, causing significant alterations in protein structure and physiological function. This review focuses on pesticide residues and their associated toxicity, emphasizing their pervasive influence on vital physiological and metabolic pathways, including carbohydrate metabolism, amino acid metabolism, and fatty acid metabolism. Particular attention is given to elucidating the molecular mechanisms underlying these disturbances, specifically regarding transcriptional regulation, cell signaling pathways, and biomolecular interactions. This review provides a comprehensive understanding of multifaceted effects of pesticides and to underscore the necessity for sustainable agricultural practices to safeguard crop yield and quality.
Collapse
Affiliation(s)
- Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jiawen Huang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xinyue Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ming Huang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
3
|
Hu X, Huang L, Chen H, Chen L, Fallgren PH. Effects of soil bulk density and corresponding soil infiltration rate on the migration and transformation of gibberellic acid. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 269:104488. [PMID: 39667097 DOI: 10.1016/j.jconhyd.2024.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
High intensity agricultural activities can lead to a decrease in soil fertility and an increase in soil bulk density, which may significantly impact the migration and transformation of pesticides in soil. As a new widely-used micro-toxic pesticide, gibberellic acid (GA3) is more soluble and hydrophilic than most pesticides, which could readily migrate throughout the soil during water infiltration and impact groundwater quality. In this study, the leaching of GA3 in saturated soils with different bulk densities (1.15-1.75 g/cm3) and infiltration rates (0.2215-0.0017 mm/s) were analyzed using column experiments. The migration and distribution of GA3 in the soil with a depth of 50 cm were also investigated. The results indicated that GA3 could completely penetrate the soil with bulk densities less than 1.45 g/cm3, and GA3 mass variation in the effluent was normally distributed. The maximum mass of GA3 in the effluent was calculated using the equation Moutlet(max) = 79.01 t-0.97 (R2 = 0.9811), and 83.69-93.16 % mass of the added GA3 migrated downward in the soil. The analysis of the distribution of GA3 in the soil showed that GA3 accumulated in the upper soil layers with depths of 0-25 cm (the total depth of soil was 50 cm). In addition, the residual and hydrolyzed GA3 amounts in the soil were 75.07-96.47 % and 5-30 % of the added GA3, respectively. Overall, the soil bulk density and irrigation volume determine what type of impact that GA3 may potentially have on the environment.
Collapse
Affiliation(s)
- Xiaolei Hu
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin 300072, PR China; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Linxian Huang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Huihua Chen
- Jinhua Huachuang Environmental Protection Engineering Co., Ltd, Jinhua, Zhejiang 321017, PR China
| | - Liang Chen
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Paul H Fallgren
- Advanced Environmental Technologies, LLC, Fort Collins, CO 80525, United States
| |
Collapse
|
4
|
Lv B, Zhang Z, Chen B, Yu S, Song M, Yu Y, Lu T, Sun L, Qian H. The effects of different halogenated-pyrethroid pesticides on soil microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177882. [PMID: 39644647 DOI: 10.1016/j.scitotenv.2024.177882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The application of pesticides increases crop yields but affects the structure and function of the soil microbial community. Halogens are common functional modification groups in chemical compounds, and innovative pesticides have been developed on the basis of these groups. However, the effects of different halogen substituents on soil microorganisms remain unclear. This study investigated the effects of three pyrethroid pesticides (deltamethrin, cypermethrin, and cyfluthrin) on the soil microbiota. Our results revealed that all these pesticides significantly reduced the stability of the bacterial communities and decreased bacterial diversity at high concentrations. Compared with deltamethrin (Br-) and cypermethrin (Cl-), low concentrations (0.5 mg/kg) of cyfluthrin (F-) increased soil bacterial diversity by 23.14 % and increased the potential for nitrogen fixation by 2.00 % and nitrification by 3.39 %, thus making it a relatively eco-friendly option. Our findings provide new insights into the potential ecological effects of halogenated pyrethroid pesticides on soil ecosystems.
Collapse
Affiliation(s)
- Binghai Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- Institute for Advanced Study, Shaoxing University, Shaoxing 312000, PR China; College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, PR China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Siqi Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Minglong Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
5
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Devi NN, Sapana Devi M, Thounaojam RS, Singh KB, Singh TB, Chanu LB, Gupta A. Toxic effects of chlorpyrifos on biochemical composition, enzyme activity and gill surface ultrastructure of three species of small fishes from India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35498-7. [PMID: 39547993 DOI: 10.1007/s11356-024-35498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
The effects of chlorpyrifos, a frequently detected organophosphate in aquatic ecosystems, on biochemical (protein and glycogen) contents and oxidative enzyme activities (catalase and lipid peroxidation) in liver, muscle and gill tissues of three freshwater fish Trichogaster fasciata, Mystus vittatus and Heteropneustes fossilis were evaluated after 21-day exposure to 1 and 10% of 96 h LC50 of this pesticide, which were 1.63 and 16.3 µg L-1; 5.87 and 58.7 µg L-1 and 2.12 and 21.2 µg L-1, respectively. On comparing with control, significant reductions in protein concentration were found in liver, muscle and gill of the three fishes treated with both higher as well as lower concentrations of the pesticide except in gill of M. vittatus and liver of H. fossilis treated with the lower concentrations. Glycogen content reductions were significant in the liver and muscle of the fishes, as well as gill tissue of T. fasciata treated with the two pesticide concentrations. Significant elevations of catalase activity were found in liver of the three fishes treated with the higher concentrations, in muscle tissues of both T. fasciata and M. vittatus treated with both the concentrations and in gills of the three fishes except H. fossilis treated with the lower concentration of the pesticide. Significant elevations of lipid peroxidation level were also found in liver of all the three fish species treated with the higher concentrations, in the muscle tissue of M. vittatus as well as in the gill of T. fasciata and H. fossilis treated with both the concentrations of the pesticide. Chlorpyrifos exposed gill ultrastructure of T. fasciata, M. vittatus and H. fossilis revealed concentration-dependent effects of the pesticide on gill surface ultrastructure which include distortion of primary and secondary lamellae, deterioration of pavement cell and microridge structures, extrusion of red blood cells (RBCs), secretion of mucous layer on filament, sloughing of primary lamellae and clumping of secondary lamellae. The present study parameters could serve as useful biomarkers for evaluating the risk of pesticide toxicity to fish. These findings also point out the possible health risks to the consumers of these fish captured from contaminated water bodies.
Collapse
Affiliation(s)
| | - Maisnam Sapana Devi
- Department of Environmental Science, Thambal Marik College, Oinam, 795134, Manipur, India.
| | | | | | | | - Laitonjam Bedabati Chanu
- Department of Environmental Science, Ng. Mani College, Khurai Chairenthong, Imphal East, 795010, Manipur, India
| | - Abhik Gupta
- Department of Ecology & Environmental Science, Assam University, Silchar, 788011, Assam, India
| |
Collapse
|
7
|
Ashesh A, Singh S, Devi NL. Unmasking the spread, carcinogenic-non carcinogenic risk characterization, and source fingerprinting of organochlorine pesticides (OCPs) in soil and vegetables of Gaya, Bihar, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:503. [PMID: 39508956 DOI: 10.1007/s10653-024-02282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
The use of organochlorine pesticides (OCPs) in specific regions is still prevalent. Moreover, the impact of past utilization can be observed in the present environmental matrices. The present study monitored the extent of contamination of OCPs in the soil and vegetable samples of Gaya, Bihar, India. For this, 63 soil and vegetable samples were collected from the vegetable cultivated area of Gaya. The collected samples were extracted using a Soxhlet extraction unit and OCPs were analysed with a gas chromatography-mass spectrometry detector. The concentration data generated from the analysis were interpreted using statistical tools and software. Mean concentration (μg/g) of Σ19OCPs in soil from residential, agricultural, commercial, and polyhouse sites were 0.69, 2.21, 0.17, and 0.72, respectively. Similarly, in vegetable samples, mean concentration (μg/g) of Σ19OCPs were 0.91, 0.96, 1.00, and 0.67, respectively. Among the monitored vegetable types, the concentration of OCPs increased in the order: pods > tubers > leaves > fruits > roots > stem. The bioconcentration factor of 19 OCPs showed that 61.90% of vegetable samples were hyperaccumulators. The results of molecular diagnostic ratio and positive matrix factorization reported the recent inputs of heptachlor, aldrin, endrin and methoxychlor; the past application of dichlorodimethyltrichloroethane (DDT), endosulfan, and chlordane; and the degradation of DDT to its metabolites and aldrin to dieldrin, which make up an overall source profile of OCPs in study area. The study found that incremental lifetime cancer risks and hazard quotients ranged from 6.98 × 10-8 to 1.31 × 10-5 and 4.25 × 10-2 to 4.63 × 10-1, respectively in vegetable samples which indicate low to high ILCR and low non-carcinogenic risk to populations exposed to OCPs. The study indicates the long lasting impact of past pesticide use by studying the contamination in soil and vegetables, and raises serious concerns about food safety. The contamination poses direct health risk to consumers related to potential carcinogenic and endocrine disrupting effects. Thus monitoring on the ground level could be a force to modify region specific policies, health, and remediation measures related to exposure to OCPs.
Collapse
Affiliation(s)
- Akriti Ashesh
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya Panchanpur road, Post- Fatehpur, P.S- Tekari, District-Gaya, 824236, India
| | - Shreya Singh
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya Panchanpur road, Post- Fatehpur, P.S- Tekari, District-Gaya, 824236, India
| | - Ningombam Linthoingambi Devi
- Department of Environmental Science, Central University of South Bihar, SH-7, Gaya Panchanpur road, Post- Fatehpur, P.S- Tekari, District-Gaya, 824236, India.
| |
Collapse
|
8
|
Shi T, Zhang Q, Chen X, Mao G, Feng W, Yang L, Zhao T, Wu X, Chen Y. Overview of deltamethrin residues and toxic effects in the global environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:271. [PMID: 38954040 DOI: 10.1007/s10653-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Pyrethroids are synthetic organic insecticides. Deltamethrin, as one of the pyrethroids, has high insecticidal activity against pests and parasites and is less toxic to mammals, and is widely used in cities and urban areas worldwide. After entering the natural environment, deltamethrin circulates between solid, liquid and gas phases and enters organisms through the food chain, posing significant health risks. Increasing evidence has shown that deltamethrin has varying degrees of toxicity to a variety of organisms. This review summarized worldwide studies of deltamethrin residues in different media and found that deltamethrin is widely detected in a range of environments (including soil, water, sediment, and air) and organisms. In addition, the metabolism of deltamethrin, including metabolites and enzymes, was discussed. This review shed the mechanism of toxicity of deltamethrin and its metabolites, including neurotoxicity, immunotoxicity, endocrine disruption toxicity, reproductive toxicity, hepatorenal toxicity. This review is aim to provide reference for the ecological security and human health risk assessment of deltamethrin.
Collapse
Affiliation(s)
- Tianli Shi
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Qinwen Zhang
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiangyu Chen
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Gong C, Chen S, Tang Y, Chen H, Xie J, Lv Y, Shen Z, Zhu Y, Wang S, Ge RS, Zhao J. Effects of organochlorine pesticides on human and rat 17β-hydroxysteroid dehydrogenase 1 activity: Structure-activity relationship and in silico docking analysis. J Steroid Biochem Mol Biol 2024; 240:106510. [PMID: 38508472 DOI: 10.1016/j.jsbmb.2024.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17β-HSD1 were 21.37, 73.25, 92.80, and 117.69 μM. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100 μM. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14 μM. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17β-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17β-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17β-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17β-HSD1, as well as their impact on hormone production.
Collapse
Affiliation(s)
- Chaochao Gong
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sailing Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huiqian Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianghuan Xie
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yanning Lv
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhefan Shen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, Zhejiang Province 325000, China.
| | - Junzhao Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
10
|
Gu Y, Li C, Jiang Q, Hua R, Wu X, Xue J. Efficient and practical in-jar silicone rubber based passive sampling for simultaneous monitoring of emerging fungicides in water and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173539. [PMID: 38806130 DOI: 10.1016/j.scitotenv.2024.173539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The occurrence and ecological impacts of emerging fungicides in the environment has gained increasing attention. This study applied an in-jar passive sampling device based on silicone rubber (SR) film to measuring the freely dissolved concentration (Cfree) of 6 current-use fungicides as a critical index of bioavailability in water and soils. The kinetics parameters including SR-water, soil-water, and organic carbon-water partition coefficients and sampling rates of the target fungicides were first attained and characterized well with their physicochemical properties. The in situ and ex situ field deployment in Hefei City provided the assessment of contaminated levels for these fungicides in rivers and soils. The Cfree of triadimefon and azoxystrobin was estimated at 0.54 ± 0.07-17.4 ± 2.5 ng L-1 in Nanfei River and Chao Lake, while triadimefon was only found in Dongpu Reservoir water with Cfree below 0.66 ± 0.04 ng L-1. The results exhibited that the equilibrium duration of 7 d was suitable for water application but a longer interval of 14 d was recommended for soil sampling. This work demonstrated the advantages of the proposed strategy in terms of fast monitoring within 2 weeks and high sensitivity down to detection limits in 0.5-5 ng L-1. The in-jar passive sampling device can be extrapolated to the evaluation for a wide coverage of organic pollutants in water and soils.
Collapse
Affiliation(s)
- Ying Gu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Ciyun Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Qingqing Jiang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
11
|
Zuo W, Zhao Y, Qi P, Zhang C, Zhao X, Wu S, An X, Liu X, Cheng X, Yu Y, Tang T. Current-use pesticides monitoring and ecological risk assessment in vegetable soils at the provincial scale. ENVIRONMENTAL RESEARCH 2024; 246:118023. [PMID: 38145733 DOI: 10.1016/j.envres.2023.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Pesticides represent one of the largest intentional inputs of potentially hazardous compounds into agricultural soils. However, as an important vegetable producing country, surveys on pesticide residues in soils of vegetable production areas are scarce in China. This study presented the occurrence, spatial distribution, correlation between vegetable types and pesticides, and ecological risk evaluation of 94 current-use pesticides in 184 soil samples from vegetable production areas of Zhejiang province (China). The ecological risks of pesticides to soil biota were evaluated with toxicity exposure ratios (TERs) and risk quotient (RQ). The pesticide concentrations varied largely from below the limit of quantification to 20703.06 μg/kg (chlorpyrifos). The situation of pesticide residues in Jiaxing is more serious than in other cities. Soils in the vegetable areas are highly diverse in pesticide combinations. Eisenia fetida suffered exposure risk from multiple pesticides. The risk posed by chlorpyrifos, which exhibited the highest RQs at all scenarios, was worrisome. Only a few pesticides accounted for the overall risk of a city, while the other pesticides make little or zero contribution. This work will guide the appropriate use of pesticides and manage soil ecological risks, achieving green agricultural production.
Collapse
Affiliation(s)
- Wei Zuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yijun Yu
- Zhejiang Cultivated Land Quality and Fertilizer Management Station, Hangzhou 310020, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
12
|
Chen F, Zhang T, Xiao P, Shao L, Zhang X, Wang L, Ren X, Qin C, Jiao Y. Occurrence and health risk of pesticide residues in Chinese herbal medicines from Shandong Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25940-25951. [PMID: 38491238 DOI: 10.1007/s11356-024-32693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Pesticide residue was one of the stress factors affecting quality and safety of Chinese herbal medicines (CHMs). The present study was designed to investigate the occurrence and dietary exposure of 70 pesticide residues in 307 samples of CHMs, including 104 American ginseng, 100 Ganoderma lucidum (G. lucidum), and 103 Dendrobium officinale (D. officinale) in Shandong Province, China. The study revealed that a total of 29 pesticides were detected in the majority (92.5%) of samples, and the pesticide residues of 85 (27.7%) samples exceeded the maximum residue levels (MRLs). Particularly, the maximum concentration of chlorpyrifos was 23.8 mg kg-1, almost 50 times of the MRLs in food in GB 2763-2021, while there's no standard restrictions specified in CHMs in China. The chronic, acute, and cumulative risk assessment results indicated that risk exposure of the three types of CHMs were unlikely to pose a health risk to consumers. However, more attention should be paid to the multiple residues with the presence of four or more pesticides in one sample and high over-standard rate of pesticides. The pesticide users and the government should pay more attention to the pesticides used in CHMs and regularly monitor the presence of these compounds. The study recommended the MRLs of these pesticides in CHMs should be established and perfected by the relevant departments in China.
Collapse
Affiliation(s)
- Fangfang Chen
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Tianliang Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Peirui Xiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lijun Shao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinxin Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Lin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaofei Ren
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China
| | - Chuan Qin
- School of Public Health, Shandong University, Jinan, People's Republic of China
| | - Yanni Jiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China.
- Academy of Preventive Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
13
|
Li X, Song S, Wei F, Huang X, Guo Y, Zhang T. Occurrence, distribution, and translocation of legacy and current-use pesticides in pomelo orchards in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169674. [PMID: 38160827 DOI: 10.1016/j.scitotenv.2023.169674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pomelo (Citrus grandis) is a highly popular and juicy member of the citrus family. However, little is known regarding the occurrence and distribution of pesticides in pomelo. In this study, we determined the levels of legacy (n = 25) and current-use pesticides (n = 2) in all parts of pomelo (i.e., epicarp, mesocarp, endocarp, pulp, and seed) and paired soil and leaf samples collected from two pomelo orchards in South China. At least one target pesticide was detected in the pomelo fruit, soil, and leaf samples, indicating that these pesticides were ubiquitous. The spatial distribution of the total concentration of pesticides in the pomelo parts was in the order of epicarp (216 ng/g) > mesocarp (9.50 ng/g) > endocarp (4.40 ng/g) > seed (3.80 ng/g) > pulp (1.10 ng/g), revealing different spatial distributions in pomelo. Principal component analysis was performed based on the concentrations of the target pesticides in the pulp and paired samples of epicarp, leaf, topsoil, and deep soil to examine the translocation pathway of the pesticides in pomelo. Close correlations were found among the target pesticides, and the pesticides in the pulp were mainly transferred from the epicarp, topsoil, or deep soil. We also explored the factors that affected such transport and found that the main translocation pathway of the non-systemic pesticide (i.e., buprofezin) into the pulp was the epicarp, whereas the systemic pesticide (i.e., pyriproxyfen) was mainly derived from the soil. The cumulative chronic dietary risks of all the pesticides resulting from pomelo consumption were much lower than the acceptable daily intake values for the general population. However, the prolonged risk of exposure to these pesticides should not be underestimated. The potential health risks posed by legacy and current-use pesticides, which are widely and frequently utilized, should be given increased attention.
Collapse
Affiliation(s)
- Xu Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Fenghua Wei
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuankai Guo
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China.
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
14
|
Ouhajjou M, Edahbi M, Hachimi H. First surveillance of pesticides in soils of the perimeter of Tadla, a Moroccan sugar beet intensive area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:28. [PMID: 38066302 DOI: 10.1007/s10661-023-12182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
With the long-term application of pesticides on sugar beet farms in the irrigated perimeter of Tadla in Morocco for over 50 years, pesticide monitoring is necessary to assess soil health. The objective of our study was to monitor multiple pesticide residues in topsoil samples collected from post-harvest sugar beet fields and verify their migration to deep soil layers. Topsoil and deep soil samples were collected from arbitrarily selected sugar beet fields in the IPT. In this study, a target-screening method was applied. All target pesticides were detected in soil samples, with tefluthrin being the most frequently detected pesticide. The residue with the highest concentration in soil samples was DDE. All the soil samples contained a mixture of pesticide residues, with a maximum of 13 residues per sample. The total pesticide content decreased toward more profound layers of soil, except in one field where it reached a concentration of 348 µg/kg at the deeper soil layer. For pesticides detected at the three soil depths, only tefluthrin concentration increased in the deep soil layer. The results provide comprehensive and precise information on the pesticide residue status in sugar beet soils warning against the multiple risks that this contamination can cause. This study indicates the need of regular monitoring of pesticides over a large area of the perimeter to enable decision-makers to pronounce the impacts of the extension and intensification of sugar beet cultivation at the irrigated perimeter of Tadla.
Collapse
Affiliation(s)
- Majda Ouhajjou
- Systems Engineering Laboratory (LGS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco.
| | - Mohamed Edahbi
- Higher School of Technology (ESTFBS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco
| | - Hanaa Hachimi
- Systems Engineering Laboratory (LGS), Sultan Moulay Slimane University of Beni Mellal, Beni Mellal, Morocco
| |
Collapse
|
15
|
Li T, Chen H, Xu B, Yu M, Li J, Shi Y, Xia S, Wu S. Deciphering the interplay between LPS/TLR4 pathways, neurotransmitter, and deltamethrin-induced depressive-like behavior: Perspectives from the gut-brain axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105697. [PMID: 38072552 DOI: 10.1016/j.pestbp.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
The improper use of deltamethrin (DM) can result in its accumulation in soil, water, food, and even the human body, which is associated with an elevated risk of neurotoxicity and behavioral abnormalities; however, the underlying mechanisms remain insufficiently investigated. Emerging evidence underscores the significance of the gut-brain axis in central nervous system (CNS) dysfunctions. Accordingly, this study investigates the role of the gut-brain axis in DM-induced behavioral anomalies in mice. The results showed that DM exposure induced depressive-like behavior, and the hippocampus, the region that is responsible for the modulation of emotional behavior, showed structural integrity disrupted (neuronal nuclear shrinkage and decreased tight junction protein expression). In addition, DM exposure led to compromised gut barrier integrity (disruptions on crypt surfaces and decreased tight junction protein expression), which might contribute to the gut bacterial-derived lipopolysaccharide (LPS) leakage into the bloodstream and reaching the brain, triggering LPS/toll-like receptor (TLR) 4 -mediated increases in brain pro-inflammatory cytokines. Subsequently, we observed a disturbance in neurotransmitter metabolic pathways following DM exposure, which inhibited the production of 5-hydroxytryptamine (5-HT). Additionally, DM exposure resulted in gut microbiota dysbiosis. Characteristic bacteria, such as Alistipes, Bifidobacterium, Gram-negative bacterium cTPY-13, and Odoribacter exhibited significant correlations with behavior, tight junction proteins, inflammatory response, and neurotransmitters. Further fecal microbiota transplantation (FMT) experiments suggested that DM-induced gut microbiota dysbiosis might contribute to depressive-like behavior. These results provide a new perspective on the toxicity mechanism of DM, indicating that its neurotoxicity may be partially regulated by the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengwei Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ying Shi
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shaohui Xia
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
16
|
Kumar P, Arshad M, Gacem A, Soni S, Singh S, Kumar M, Yadav VK, Tariq M, Kumar R, Shah D, Wanale SG, Al Mesfer MKM, Bhutto JK, Yadav KK. Insight into the environmental fate, hazard, detection, and sustainable degradation technologies of chlorpyrifos-an organophosphorus pesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108347-108369. [PMID: 37755596 DOI: 10.1007/s11356-023-30049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Pesticides play a critical role in terms of agricultural output nowadays. On top of that, pesticides provide economic support to our farmers. However, the usage of pesticides has created a public health issue and environmental hazard. Chlorpyrifos (CPY), an organophosphate pesticide, is extensively applied as an insecticide, acaricide, and termiticide against pests in various applications. Environmental pollution has occurred because of the widespread usage of CPY, harming several ecosystems, including soil, sediment, water, air, and biogeochemical cycles. While residual levels in soil, water, vegetables, foodstuffs, and human fluids have been discovered, CPY has also been found in the sediment, soil, and water. The irrefutable pieces of evidence indicate that CPY exposure inhibits the choline esterase enzyme, which impairs the ability of the body to use choline. As a result, neurological, immunological, and psychological consequences are seen in people and the natural environment. Several research studies have been conducted worldwide to identify and develop CPY remediation approaches and its derivatives from the environment. Currently, many detoxification methods are available for pesticides, such as CPY. However, recent research has shown that the breakdown of CPY using bacteria is the most proficient, cost-effective, and sustainable. This current article aims to outline relevant research events, summarize the possible breakdown of CPY into various compounds, and discuss analytical summaries of current research findings on bacterial degradation of CPY and the potential degradation mechanism.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Snigdha Singh
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Manoj Kumar
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Mohd Tariq
- Department of Life Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Deepankshi Shah
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | | | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, Madhya Pradesh, 462044, India.
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| |
Collapse
|
17
|
Liu G, Feng X, Guo Y, Wang X, An K, Dong J, Liu Y. Uptake and Biotransformation of Spirotetramat and Pymetrozine in Lettuce ( Lactuca sativa L. var. ramosa Hort.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8356-8366. [PMID: 37219541 DOI: 10.1021/acs.jafc.3c00998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we investigated the uptake, transport, and subcellular distribution of the pesticides pymetrozine and spirotetramat, and spirotetramat metabolites B-enol, B-glu, B-mono, and B-keto, under hydroponic conditions. Spirotetramat and pymetrozine exhibited high bioconcentrations in lettuce roots, with both having root concentration factor (RCF) values >1 after exposure for 24 h. The translocation of pymetrozine from roots to shoots was higher than that of spirotetramat. Pymetrozine is absorbed in roots mainly via the symplastic pathway and is primarily stored in the soluble fraction of lettuce root and shoot cells. The cell wall and soluble fractions were the major enrichment sites of spirotetramat and its metabolites in root cells. Spirotetramat and B-enol were mainly enriched in the soluble fractions of lettuce shoot cells, whereas B-keto and B-glu accumulated in cell walls and organelles, respectively. Both symplastic and apoplastic pathways were involved in spirotetramat absorption. Pymetrozine and spirotetramat uptake by lettuce roots was passive, with no aquaporin-mediated dissimilation or diffusion. The findings of this study enhance our understanding of the transfer of pymetrozine, spirotetramat, and spirotetramat metabolites from the environment to lettuce, and their subsequent bioaccumulation. This study describes a novel approach for the efficient management of lettuce pest control using spirotetramat and pymetrozine. At the same time, it is of great significance to evaluate the food safety and environmental risks of spirotetramat and its metabolites.
Collapse
Affiliation(s)
- Guoxin Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| | - Xiaoxiao Feng
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| | - Yajing Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| | - Xinyue Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| | - Kai An
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| | - Jingao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| | - Yingchao Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| |
Collapse
|
18
|
Li Y, Feng T, Mou L, Ou G, Hu D, Zhang Y. Identification and Quantification of Dimethachlon Degradation Products in Soils and Their Effects on Soil Enzyme Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1852-1861. [PMID: 36648153 DOI: 10.1021/acs.jafc.2c06648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS, Q-Exactive Orbitrap) and Compound Discoverer 3.3 were used to screen dimethachlon degradation products in soils. Four metabolites 4-(3,5-dichloroanilino)-4-oxobutanoic acid (DCBAA), 3,5-dichloroaniline (3,5-DCA), succinic acid, and muconic acid were confirmed by primary and secondary ion mass spectrometry comparisons between standards and samples. A quantitative analysis method of dimethachlon residues and four metabolites in soils was developed using HPLC-HRMS. Dimethachlon degradation in agricultural soil indoor unsterilized, sterilized, and field environments in three typical areas was measured. Dimethachlon degraded fast with a half-life of less than 1 day in three nonsterile soils. The maximum DCBAA and 3,5-DCA residues during degradation could reach 22.5-35.2% of the initial concentration of the parent dimethachlon. The metabolite DCBAA had a greater impact on soil enzyme activity than the parent dimethachlon.
Collapse
Affiliation(s)
- Yunfang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang550025, P. R. China
| | - Tianyou Feng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang550025, P. R. China
| | - Lianhong Mou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang550025, P. R. China
| | - Guipeng Ou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang550025, P. R. China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang550025, P. R. China
| | - Yuping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang550025, P. R. China
| |
Collapse
|
19
|
Yao R, Yao S, Ai T, Huang J, Liu Y, Sun J. Organophosphate Pesticides and Pyrethroids in Farmland of the Pearl River Delta, China: Regional Residue, Distributions and Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1017. [PMID: 36673774 PMCID: PMC9858657 DOI: 10.3390/ijerph20021017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
A regional-scale survey was conducted to assess the occurrence, distribution, and risk of two extensively used pesticides (organophosphate pesticides and pyrethroids) in agricultural soils from the Pearl River Delta (PRD), South China. All target organophosphate pesticides (OPPs) and pyrethroids (PYs) were detected in the soil samples and both with a detection rate of 100%. The residues of the sum of six OPPs and the sum of four PYs were in the range of LOD-991 ng/g and 8.76-2810 ng/g, respectively. Dimethoate was the dominant OPPs, and fenpropathrin was the predominant PYs in the soils of the PRD region. With intensive agricultural activities, higher residues of OPPs and PYs in soils were detected closer to the seaside, among which Zhuhai city and Huizhou city suffered more serious combined pesticide pollution. The vertical compositional profiles showed that dimethoate could be detected through each soil layer in the PRD region's nine cities. The human exposure estimation of OPPs showed insignificant risks to the local population. In contrast, cypermethrin and fenpropathrin showed a potential ecological risk of 2.5% and 3.75% of the sampling sites, respectively. These results can facilitate those commonly used pesticide controls and promote sustainable soil management.
Collapse
Affiliation(s)
- Runlin Yao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Siyu Yao
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Ai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
20
|
Inhibition of human and rat placental 3β-hydroxysteroid dehydrogenase/Δ 5,4-isomerase activities by insecticides and fungicides: Mode action by docking analysis. Chem Biol Interact 2023; 369:110292. [PMID: 36470526 DOI: 10.1016/j.cbi.2022.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Many insecticides and fungicides are endocrine-disrupting compounds, which possibly interfere with the placental endocrine system. In the placenta, 3β-hydroxysteroid dehydrogenase/Δ5,4-isomerase type 1 (HSD3B1) is the major steroidogenic enzyme, which makes progesterone from pregnenolone to support the placental stability. In this study, we screened 12 classes of insecticides and fungicides to inhibit placental HSD3B1 activity and compared them to the rat homolog type 4 (HSD3B4) isoform. Human HSD3B1 activity and rat HSD3B4 activity were measured in the presence of 200 nM pregnenolone and 0.2 mM NAD+ and 100 μM of test chemical. Triclosan, triflumizole, dichlone, and oxine at 100 μM significantly inhibited human HSD3B1 activity with the residual activity being less than 50% of the control. Further study showed that the half-maximal inhibitory concentration (IC50) values of triclosan, triflumizole, dichlone, and oxine were 85.53 ± 9.14, 73.75 ± 3.42, 2.54 ± 0.40, and 102.93 ± 6.10 μM, respectively. In the presence of pregnenolone, triclosan, triflumizole, and dichlone were mixed inhibitors of HSD3B1, while oxine was a noncompetitive inhibitor. In the presence of NAD+, triclosan exhibited competitive inhibition while triflumizole possessed uncompetitive inhibition. Docking analysis showed that triclosan bound NAD+-binding site, while triflumizole, dichlone, and oxine mostly bound steroid-binding site. When the effect of these insecticides on rat placental HSD3B4 activity was screened in the presence of 200 nM pregnenolone, atrazine, triclosan, triflumizole, oxine, cyprodinil, and diphenyltin at 100 μM significantly inhibited rat HSD3B4 activity, with IC50 values of triclosan, triflumizole, oxine, and cyprodinil were 82.99 ± 6.48, 35.45 ± 2.73, 105.59 ± 12.04, and 43.37 ± 3.00 μM, respectively. The mode action analysis showed that triflumizole and cyprodinil were almost competitive inhibitors, while triclosan and oxine were almost noncompetitive inhibitors of rat HSD3B4. Docking analysis showed that triclosan and oxine bound cofactor NAD+ binding residues more than steroid-binding residues of rat HSD3B4 while triflumizole and cyprodinil bound most pregnenolone-interactive residues. In conclusion, some insecticides such as triclosan, triflumizole, and oxine can effectively inhibit both human and rat placental HSD3B activity and they have unique mode action due to the structure difference.
Collapse
|
21
|
Zhou Y, Jing J, Yu R, Zhao Y, Gou Y, Tang H, Zhang H, Huang Y. Distribution of pesticide residues in agricultural topsoil of the Huangshui catchment, Qinghai Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7582-7592. [PMID: 36040693 DOI: 10.1007/s11356-022-22704-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
This study presents monitoring data on the spatial distribution and occurrence of pesticide residues of cultivated soil in the Huangshui catchment in the northeastern part of the Qinghai Tibet Plateau. We also provide factors that influence the distribution of pesticides, such as the properties of pesticides and soil and crop types. A total of 110 soil samples were collected in early April 2021, and 49 pesticides were analyzed. Only 3.6% of the samples contained no pesticide residues (concentrations < limit of quantitation or not detected [ND]), and the total pesticide concentration ranged from ND to 0.925 mg/kg. Most commonly, two to five pesticides were found in the soil samples (> 70.9%), and up to 10 pesticide residues were present in some samples. A total of 85 different pesticide combinations were observed in all the soil samples. Chlorpyrifos and difenoconazole were the dominant compounds. The levels of pesticide residues were mainly driven by their half-life values. Bulk density, along with soil water content and pH, also affected the retention of pesticides in the soil. The crop type played no role in the distribution of pesticides.
Collapse
Affiliation(s)
- Yang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jing Jing
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ruyue Yu
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunze Zhao
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuxuan Gou
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huaizhi Tang
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Yuanfang Huang
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
22
|
Schleiffer M, Speiser B. Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120116. [PMID: 36084735 DOI: 10.1016/j.envpol.2022.120116] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The use of synthetic pesticides is not allowed in organic production, but traces of synthetic pesticides are regularly detected in organic food. To safeguard the integrity of organic production, organic certifiers are obliged to investigate the causes for pesticide residues on organic food, entailing high costs to the organic sector. Such residues can have various origins, including both fraud and unintentional contamination from the environment. Because the knowledge about contamination from environmental sources is scattered, this review provides an overview of pathways for unintentional and technically unavoidable contamination of organic food with synthetic pesticides in Europe. It shows that synthetic pesticides are widely present in all environmental compartments. They originate from applications in the region, in distant areas or from historical use. Transition into the food chain has been demonstrated by various studies. However, large uncertainties remain regarding the true pesticide contamination of the environment, their dynamics and the contamination risks for the food chain. Organic operators can take certain measures to reduce the risks of pesticide contamination of their products, but a certain extent of pesticide contamination is technically unavoidable. The present paper indicates that (i) a potential risk for pesticide residues exists on all organic crops and thus organic operators cannot meet a 'zero-tolerance' approach regarding pesticide residues at the moment. (ii) Applying a residue concentration threshold to distinguish between cases of fraud and unavoidable contamination for all pesticides is not adequate given the variability of contamination. More reliable answers can be obtained with a case-by-case investigation, where evidence for all possible origins of pesticide residues is collected and the likelihood of unavoidable contamination and fraud are estimated. Ultimately, for organic certification bodies and control authorities it will remain a challenge to determine whether a pesticide residue is due to neglect of production rules or technically unavoidable.
Collapse
Affiliation(s)
- Mirjam Schleiffer
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland.
| | - Bernhard Speiser
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland.
| |
Collapse
|
23
|
Physiological and Biochemical Variations in Celery by Imidacloprid and Fenpyroximate. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Pesticides are one of the abiotic stresses that have had an impact on the quality of agricultural products, especially in China. This study was the first to explore the soluble protein (SP) accumulation, peroxidase (POD) activity, and superoxide dismutase (SOD) activity variations in the stem and leaf of celery plants in the field after 2 h, 1, 3, 5, 8, 10, 14, 21, 28-day of spraying imidacloprid (IMI) and fenpyroximate (FEN) at various doses. The findings demonstrated that there was no notable difference in ultimate residues between 1 F and 10 F, and even with the 10 F treatment, the residues were not a concern. The SP accumulation alterations were mainly provoked by residues, which dramatically boosted in stem and eventually declined in leaf. The POD activity in celery was a dynamic process with a marked shift (enhanced and declined) when compared with non-pesticide treatment after 28 days. The field trial exhibited that the SOD was principally positioned in leaf whether pesticides were applied or not, which might be due to the distinctive structure of the celery leaf compared with the stem. No obvious linear relation between application dose and SOD activity was observed.
Collapse
|
24
|
Liu YY, Zhang SD, Xiao JJ, Feng WZ, Wei D, Deng YJ, Cao HQ, Shi YH. Gut microbiota-involved metabolism and intestinal absorption mechanisms in decreasing bioaccessibility of triadimefon in strawberry and grape. Food Chem 2022; 373:131575. [PMID: 34801285 DOI: 10.1016/j.foodchem.2021.131575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022]
Abstract
Gut microbiota-involved metabolism and intestinal absorption affecting bioaccessibility of triadimefon in strawberry and grape were investigated for the first time by coupling the in vitro digestion model with the Caco-2 cell model. Results showed that the gut microbiota decreased the bioaccessibility of triadimefon in strawberry by 31.00% but failed in grape, probably due to a negative modulation of the colon bacterial activity by dietary components in grapes. A strain of triadimefon-degrading bacteria, Stenotrophomonas maltophilia, was isolated from the gut microbiota and its degradation products were profiled. This study also clarified a significant reduction in transepithelial transport (up to 32.81%) of triadimefon as a result of the barrier effect of gut microbiota. These findings provide new insights on the function of the gut microbiota in pesticide bioaccessibility and highlight the importance of including gut microbiota in pesticide residue risk assessments.
Collapse
Affiliation(s)
- Yu-Ying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Si-Dong Zhang
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Wen-Zhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Dong Wei
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ya-Jing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Yan-Hong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China.
| |
Collapse
|
25
|
Sabzevari S, Hofman J. A worldwide review of currently used pesticides' monitoring in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152344. [PMID: 34919921 DOI: 10.1016/j.scitotenv.2021.152344] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The adverse effects of pesticides on the agricultural ecosystem have been matter of concern in recent decades. However, attention has mostly been directed to highly persistent chemicals leading to underestimating currently used pesticides. In this review we present an overview of the studies on monitoring currently used pesticides in agricultural soils around the world published in the last 50 years. Furthermore, all data available in the articles has been integrated into one united data set. Finally, an overall meta-analysis on the prepared data set was performed. The result of the meta-analysis has been presented in this article. It was revealed that the occurrence of currently used pesticides in the soil of agricultural regions was alarming in many countries, establishing the need for long-term monitoring programs, especially in regions with intensive agricultural activities, in order to determine real-world currently used pesticides fate and accumulation in the soil.
Collapse
Affiliation(s)
- Shiva Sabzevari
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic.
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic.
| |
Collapse
|
26
|
Sumei Y, Xin L, Shuhong H, Hongchao Z, Maojun J, Yongquan Z, Luqing Z, Yunlong Y. Uptake and translocation of triadimefon by wheat (Triticum aestivum L.) grown in hydroponics and soil conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127011. [PMID: 34461532 DOI: 10.1016/j.jhazmat.2021.127011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Residual pesticides in soil may be taken in by plants and thus have a risk for plant growth and food safety. In this study, uptake of triadimefon and its subsequent translocation and accumulation were investigated with wheat as model plants. The results from hydroponics indicated that triadimefon was absorbed by wheat roots mainly through apoplastic pathway and predominantly distributed into the water soluble fractions (66.7-76.0%). After being uptaken by roots, triadimefon was easily translocated upward to wheat shoots and leaves. Interestingly, triadimefon in leaves was mainly distributed in the soluble fraction by 52.5% at the beginning, and gradually transferred into the cell wall by 47.2% at equilibrium. The uptake of triadimefon from soils by wheat plants was similar to that in hydroponics. Its accumulation were mainly governed by adsorption of the fungicide onto soils, and positively correlated with its concentration in in situ pore water (CIPW). Thus, CIPW can be suitable for predicting the uptake of triadimefon by wheat from soils. Accordingly, uptake of triadimefon by wheat was predicted well by using the partition-limited model. Our study provides valuable information for guiding the practical application and safety evaluation of triadimefon.
Collapse
Affiliation(s)
- Yu Sumei
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Li Xin
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - He Shuhong
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhang Hongchao
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Maojun
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng Yongquan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Zhang Luqing
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Yunlong
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
T. T. Luu H, Esteban GF, Butt AA, Green ID. Effects of Copper and the Insecticide Cypermethrin on a Soil Ciliate (Protozoa: Ciliophora) Community. Protist 2021; 173:125855. [DOI: 10.1016/j.protis.2021.125855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
|
28
|
Cui K, Wu X, Zhang Y, Cao J, Wei D, Xu J, Dong F, Liu X, Zheng Y. Cumulative risk assessment of dietary exposure to triazole fungicides from 13 daily-consumed foods in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117550. [PMID: 34126511 DOI: 10.1016/j.envpol.2021.117550] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The agroeconomic benefits of the routine use of triazole fungicides on crops have been evident for more than 40 years. However, increasing evidence shows that residues of triazoles are ubiquitous in various foods and thus could pose a potential health risk to humans. We analyzed 3406 samples of 13 food commodities that were collected from markets in 9 regions across China, and assessed the health risk of both chronic and acute exposure to the triazoles for Chinese children (1-6 years old) and the general population. Among all samples, 55.52% had triazoles in concentrations of 0.10-803.30 μg/kg, and 29.77% of samples contained a combination of 2-7 triazoles. Tebuconazole and difenoconazole were the most commonly found triazoles in the foods, being detected in 33.44% and 30.45% of samples, respectively. Chronic and acute cumulative risk assessment for total triazoles based on a relative potency factor method revealed that exposure to triazoles from these particular commodities was below the levels that might pose a health risk (chronic hazard index range, 5.90×10-7 to 1.83×10-3; acute hazard index range, 7.77×10-5 to 0.39, below 1). Notably, dietary exposure risk for children was greater than that for the general population-particularly for the acute intake of mandarin, grape, and cucumber (acute hazard index values of 0.35-0.39). Despite the low health risk, the potential hazards of exposure to triazoles should raise public concern owing to their ubiquitous presence in common foods and potential cumulative effects.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China.
| | - Ying Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Junli Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Dongmei Wei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Xingang Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural product Quality and Safety, Ministry of Agriculture, Beijing, 100193, People's Republic of China
| |
Collapse
|
29
|
da Silva KA, Nicola VB, Dudas RT, Demetrio WC, Maia LDS, Cunha L, Bartz MLC, Brown GG, Pasini A, Kille P, Ferreira NGC, de Oliveira CMR. Pesticides in a case study on no-tillage farming systems and surrounding forest patches in Brazil. Sci Rep 2021; 11:9839. [PMID: 33972553 PMCID: PMC8110586 DOI: 10.1038/s41598-021-88779-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/01/2021] [Indexed: 02/03/2023] Open
Abstract
With the growing global concern on pesticide management, the relationship between its environmental recalcitrance, food security and human health has never been more relevant. Pesticides residues are known to cause significant environmental contamination. Here, we present a case study on long-term no-tillage farming systems in Brazil, where Glyphosate (GLY) has been applied for more than 35 years. GLY and its main breakdown product, aminomethylphosphonic acid (AMPA) were determined in topsoil (0-10 cm) samples from no-tillage fields and nearby subtropical secondary forests by high-performance liquid chromatography coupled with a fluorescence detector. In addition, the presence of carbamates, organochlorines, organophosphates and triazines were also screened for. GLY and AMPA were present in all soil samples, reaching values higher than those described for soils so far in the literature. A significant decrease for AMPA was observed only between the secondary forest and the farm's middle slope for site B. GLY and AMPA were observed respectively at peak concentrations of 66.38 and 26.03 mg/kg soil. GLY was strongly associated with forest soil properties, while AMPA associated more with no-tillage soil properties. Soil texture was a significant factor contributing to discrimination of the results as clay and sand contents affect GLY and AMPA retention in soils. This was the first study to report DDT and metabolites in consolidated no-tillage soils in Brazil (a pesticide fully banned since 2009). Based on human risk assessment conducted herein and the potential risk of GLY to local soil communities, this study offers a baseline for future studies on potential adverse effects on soil biota, and mechanistic studies.
Collapse
Affiliation(s)
- Karlo Alves da Silva
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil
| | | | - Rafaela Tavares Dudas
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil
| | - Wilian Carlo Demetrio
- Programa de Pós-Graduação em Ciências do Solo, Universidade Federal do Paraná, Curitiba, 80035-050, Brasil
| | - Lilianne Dos Santos Maia
- Programa de Pós-Graduação em Ciências do Solo, Universidade Federal do Paraná, Curitiba, 80035-050, Brasil
| | - Luis Cunha
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 4BD, Wales, UK
| | - Marie Luise Carolina Bartz
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - George Gardner Brown
- Programa de Pós-Graduação em Ciências do Solo, Universidade Federal do Paraná, Curitiba, 80035-050, Brasil
- Embrapa Florestas, Colombo, Paraná, 83411-000, Brasil
| | - Amarildo Pasini
- Departamento de Agronomia, Universidade Estadual de Londrina, Londrina, 86057-970, Brasil
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Nuno G C Ferreira
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK.
| | - Cíntia Mara Ribas de Oliveira
- Programa de Pós-Graduação em Gestão Ambiental, Universidade Positivo, Curitiba, 81280-330, Brasil.
- Graduação em Biomedicina, Universidade Positivo, Curitiba, 81280-330, Brasil.
| |
Collapse
|
30
|
Le LHT, Tran-Lam TT, Cam TQ, Nguyen TN, Dao YH. Pesticides in edible mushrooms in Vietnam. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:139-148. [PMID: 33899691 DOI: 10.1080/19393210.2021.1908434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maximum residue limits (MRLs) for pesticides have been established for edible mushrooms in order to control quality and ensure benefits of consumers in numerous countries, especially areas comprising Europe. In this study, by means of optimising extract purification conditions, a high sensitivity and reliability method to simultaneously determine 180 pesticides in mushrooms has been proposed. Matrix effects were minimised by combining QuEChERS extraction and a mixed mode of SPE cleaned up with different adsorbent materials after sample preparation. The method was completely validated following the requirements of SANTE/12682/2019. The LOQs ranged from 2 to 5 μg/kg, well below the MRLs as regulated by the EU (10-50 μg/kg). Both relative standard deviation of repeatability (RSDr) and reproducibility (RSDR) were less than 20% and recoveries varied from 70 to 120%. Therefore, this method was considered to be suitable for routine analysis of multi-pesticide residues in edible mushrooms.
Collapse
Affiliation(s)
- Le Hai Thi Le
- Faculty of Environment, Hanoi University of Natural Resources and Environment, Ministry of Natural Resource and Environment (MONRE), Hanoi, Vietnam
| | - Thanh-Thien Tran-Lam
- Laboratory of Environmental and bioorganic chemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Department of Mechanics and Marine Environment, Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology, Ho Chi Minh city, Vietnam
| | - Thuy Quan Cam
- Department of Analytical Engineering, Viet Tri University of Industry (VUI), Viet TrI, Phu Tho, Vietnam
| | - Tung Ngoc Nguyen
- Technology Development and Measurement Services Department, Center for Research and Technology Transfer (CRETECH), Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Yen Hai Dao
- Laboratory of Environmental and bioorganic chemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
31
|
Wang F, Li X, Yu S, He S, Cao D, Yao S, Fang H, Yu Y. Chemical factors affecting uptake and translocation of six pesticides in soil by maize (Zea mays L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124269. [PMID: 33144009 DOI: 10.1016/j.jhazmat.2020.124269] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Uptake of residual pesticides in a soil by a certain crop plant may be governed by their physicochemical properties. Uptake and translocation of pesticides (imidacloprid, acetamiprid, tricyclazole, azoxystrobin, tebuconazole and difenoconazole) with the octanol/water partition coefficient (log Kow) ranging from 0.57 to 4.36 were investigated in soil with maize as a model plant. The results show that all tested pesticides in soil were uptaken by maize with accumulation amount of 27.73, 17.75, 18.96, 12.56, 10.66 and 2.13 μg for imidacloprid, acetamiprid, tricyclazole, azoxystrobin, tebuconazole and difenoconazole at 14 d, respectively. The accumulation amount was negatively correlated with adsorption coefficients and positively correlated with pesticide concentration in in situ pore water (CIPW). Root bioconcentration factor varied widely from 0.61 for imidacloprid to 974.64 for difenoconazole was positively correlated with log Kow and molecular weight but negatively with water solubility. Conversely, translocation factor varied from 0 for difenoconazole to 1.64 for imidacloprid was negatively correlated with log Kow but positively with water solubility. It determined that uptake, accumulation and translocation of the pesticides in soil by maize are governed by their physicochemical properties, especially log Kow. CIPW is an appropriate candidate to evaluate the accumulation of pesticides in maize from soil.
Collapse
Affiliation(s)
- Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sumei Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuhong He
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. TOXICS 2021; 9:42. [PMID: 33668829 PMCID: PMC7996329 DOI: 10.3390/toxics9030042] [Citation(s) in RCA: 491] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Environmental problems have always received immense attention from scientists. Toxicants pollution is a critical environmental concern that has posed serious threats to human health and agricultural production. Heavy metals and pesticides are top of the list of environmental toxicants endangering nature. This review focuses on the toxic effect of heavy metals (cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn)) and pesticides (insecticides, herbicides, and fungicides) adversely influencing the agricultural ecosystem (plant and soil) and human health. Furthermore, heavy metals accumulation and pesticide residues in soils and plants have been discussed in detail. In addition, the characteristics of contaminated soil and plant physiological parameters have been reviewed. Moreover, human diseases caused by exposure to heavy metals and pesticides were also reported. The bioaccumulation, mechanism of action, and transmission pathways of both heavy metals and pesticides are emphasized. In addition, the bioavailability in soil and plant uptake of these contaminants has also been considered. Meanwhile, the synergistic and antagonistic interactions between heavy metals and pesticides and their combined toxic effects have been discussed. Previous relevant studies are included to cover all aspects of this review. The information in this review provides deep insights into the understanding of environmental toxicants and their hazardous effects.
Collapse
Affiliation(s)
- Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Sundas Rana Qureshi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| |
Collapse
|
33
|
Acosta-Dacal A, Rial-Berriel C, Díaz-Díaz R, Bernal-Suárez MDM, Luzardo OP. Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142015. [PMID: 33207465 DOI: 10.1016/j.scitotenv.2020.142015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
A modified QuEChERS method was optimized, validated and verified for the extraction of 218 pesticide residues in agricultural soil samples. The 218 analytes are extracted using a single step, without clean-up, with matrix-matched calibration, and two complementary techniques: liquid and gas chromatography tandem triple quad mass spectrometry (LC-MS/MS and GC-MS/MS). Some of the parameters such as salts, acidity of the extraction solvent, sample moisture and some mechanical changes in the procedure were optimized to improve the overall performance for the target compounds and the soil matrix. The method was fully validated on a representative agricultural soil sample of the Canary Islands (clay loam soil) in terms of linearity, accuracy and precision. To avoid matrix effects, matrix-matched calibration curves (R2 ≥ 0.99) were used for all target analytes. 100% of the compounds can be quantified with limits of quantification (LOQ) lower than the limit typically used in soils (50 ng g-1), with 92% of compounds presenting a LOQ that is at least 10 times lower than that normally required. The limits of detection (LOD) ranged between 0.024 and 6.25 ng g-1. The validated method was applied to a series of actual samples of agricultural soil (n = 18). In addition, as a further verification of its potential, the results of the application of the method in the investigation of clay loam soil samples that were obtained from underneath wildlife carcasses in the context of an environmental forensic investigation are also presented.
Collapse
Affiliation(s)
- Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Ricardo Díaz-Díaz
- Department of Environmental Analysis, Technological Institute of the Canary Islands, C/Los Cactus no 68 35118, Polígono Industrial de Arinaga, Agüimes, Las Palmas, Canary Islands, Spain
| | - María Del Mar Bernal-Suárez
- Department of Environmental Analysis, Technological Institute of the Canary Islands, C/Los Cactus no 68 35118, Polígono Industrial de Arinaga, Agüimes, Las Palmas, Canary Islands, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
34
|
Li JY, Zhang L, Wang Q, Xu J, Yin J, Chen Y, Gong Y, Kelly BC, Jin L. Applicability of Equilibrium Sampling in Informing Tissue Residues and Dietary Risks of Legacy and Current-Use Organic Chemicals in Aquaculture. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:79-87. [PMID: 33090545 DOI: 10.1002/etc.4912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Equilibrium sampling based on silicone polydimethylsiloxane (PDMS) has been used to determine the concentrations of freely dissolved hydrophobic organic compounds (HOCs) and assess the thermodynamic potentials for bioaccumulation of these compounds in the aquatic environment. This allows the use of PDMS-based sampling techniques in assisting conventional sampling and extraction methods for the determination of the concentrations of HOCs in aquaculture products. The present study is an ex situ demonstration of how well PDMS can inform the tissue residues and dietary risks of legacy or current-use organic chemicals in aquaculture species from farm ponds in eastern China. For legacy contaminants such as polybrominated diphenyl ethers (PBDEs, n = 10), good agreement between the predicted concentrations based on PDMS and the measured lipid-normalized concentrations was observed for 60% of the studied biota, including both pelagic and benthic species. For pesticides currently used, such as pyrethroid (PE) (n = 4) and organophosphate pesticides (OPPs, n = 7), the measured tissue residues were consistently higher than those predicted by PDMS, possibly caused by the continuous input from the surroundings. For the organochlorine pesticides (OCPs, n = 5), the only detected chemical was also underestimated. Adjusted by ingestion rates of aquaculture products and toxicology data, the target hazard quotients of these chemicals predicted from PDMS were generally comparable to those derived from measured concentrations in tissue because of the predominance of PBDEs. Overall, PDMS-based equilibrium sampling offered an alternative approach for the prediction of tissue residues and dietary risks of PBDEs. Moreover, it should be applied with caution for PEs, OPPs, and OCPs. Improving the application of PDMS for these chemicals in farm ponds warrants future study. Environ Toxicol Chem 2021;40:79-87. © 2020 SETAC.
Collapse
Affiliation(s)
- Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Li Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Jiayan Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Yiqin Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Yiwen Gong
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Barry C Kelly
- Faculty of Environment, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
35
|
Sulaiman M, Maigari A, Ihedioha J, Lawal R, Gimba A, Shuaibu A. Levels and health risk assessment of organochlorine pesticide residues in vegetables from Yamaltu area in Gombe, Nigeria. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2021. [DOI: 10.17721/fujcv9i1p19-30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study determined the levels of organochlorine pesticides (OCPs) residues and assesses health risks linked with the consumption of vegetables cultivated in the Yamaltu area in Gombe, Nigeria. OCPs residues were solvent extracted and analyzed with a high performance liquid chromatography equipped with UV/VIS Detector. The mean concentrations of ten detected OCPs residues were almost all above the set limit of EU/WHOMRL. The estimated daily intake of OCPs from samples was below the acceptable daily intake, hazard index estimated were <1, indicated no probable non-carcinogenic health effect, while the carcinogenic health effect showed that children were more vulnerable for the consumption of the contaminated vegetables.
Collapse
|
36
|
Foong SY, Ma NL, Lam SS, Peng W, Low F, Lee BHK, Alstrup AKO, Sonne C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123006. [PMID: 32947729 DOI: 10.1016/j.jhazmat.2020.123006] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Pollution with pesticides is a widespread global problem and biomonitoring of the environment and human populations is necessary to assess potential harmful biological effects. One of the pesticides that are showing up in vegetables and fruit is chlorpyrifos (CPS). CPS is a nerve-poisoning organophosphorus insecticide, which is in up to 1/3 of all conventionally produced citrus fruits. Our review shows that CPS is a hazardous material that poses risks to human health and also pollutes the environment. There is numerous risk assessment of CPS reported, however, the assessment is easily affected by factors such as climate change, exposure period and CPS concentration. Therefore, rigorous update of the hazardous level of CPS is needed to determine the threshold level safe for humans and animals. There is a need for remediation using for example photoreactive nanoparticle methods and microbial degeneration possessing high degradation efficiency (73-97%). In addition, stringent biomonitoring of food, environment and human exposure should occur to avoid exposure to chemicals via citrus fruits and vegetables. This is necessary to assess health risks and socioeconomic impacts which also require collaboration between private and public sectors to facilitate the growth, sale and manufacturing of biopesticides.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Terengganu, Kuala Nerus, Malaysia
| | - Nyuk Ling Ma
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Terengganu, Kuala Nerus, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Felicia Low
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Terengganu, Kuala Nerus, Malaysia
| | - Bernard H K Lee
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Terengganu, Kuala Nerus, Malaysia
| | - Aage K O Alstrup
- Aarhus University, Department of Nuclear Medicine and PET Center, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Aarhus University, Department of Bioscience, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
37
|
Biochemical and Histopathological Alterations in Different Tissues of Rats Due to Repeated Oral Dose Toxicity of Cymoxanil. Animals (Basel) 2020; 10:ani10122205. [PMID: 33255611 PMCID: PMC7760546 DOI: 10.3390/ani10122205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cymoxanil is a broad-spectrum fungicide used to protect many fruits, vegetables, and field crops against several fungal diseases. Investigating the potential hazards and toxicological effects of this fungicide is very important as cymoxanil can be a major human health concern. The present study investigated the effect of repeated oral doses of cymoxanil on different tissues of treated rats by measuring different biochemical parameters and investigating the histopathological changes. Interestingly, our study reported a dose-dependent effect of cymoxanil that was combined with marked alteration on biochemical enzymes. Moreover, the alteration was combined with marked histopathological changes in various tissues of treated rats, mainly liver, brain, and kidney tissues. Our study collectively reveals that cymoxanil can be a source of major concern for human health with respect to long-term and low dose exposure. Abstract Evaluating potential adverse health impacts caused by pesticides is an important parameter in human toxicity. This study focuses on the importance of subchronic toxicity assessment of cymoxanil fungicide in rats with special reference to target biochemical enzymes and histopathological changes in different tissues. In this regard, a 21-day toxicity study with repeated cymoxanil oral doses was conducted. It has been shown that low doses (0.5 mg/kg) were less effective than medium (1 mg/kg) and high (2 mg/kg) doses. Moreover, high dose dose-treated rats showed piecemeal necrosis in the liver, interstitial nephritis and tubular degeneration in the kidneys, interstitial pneumonia and type II pneumocyte hyperplasia in the lungs, gliosis, spongiosis, and malacia in the brain, and testicular edema and degeneration in the testes. Cymoxanil significantly increased AST, ALT, and ALP in serum and liver, indicating tissue necrosis and possible leakage of these enzymes into the bloodstream. Creatinine levels increased, indicating renal damage. Similarly, significant inhibition was recorded in brain acetylcholinesterase, indicating that both synaptic transmission and nerve conduction were affected. Importantly, these histopathological and biochemical alterations were dose-dependent. Taken together, our study reported interesting biochemical and histopathological alterations in different rat tissues following repeated toxicity with oral doses of cymoxanil. Our study suggests future studies on different pesticides at different concentrations that would help urge governments to create more restrictive regulations concerning these compounds’ levels.
Collapse
|
38
|
Zhao L, Li Y, Ren W, Huang Y, Wang X, Fu Z, Ma W, Teng Y, Luo Y. Pesticide residues in soils planted with Panax notoginseng in south China, and their relationships in Panax notoginseng and soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110783. [PMID: 32534333 DOI: 10.1016/j.ecoenv.2020.110783] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, 73 samples from soils planted with Panax notoginseng and six P. notoginseng samples were collected in Yunnan Province to investigate the residual levels of six pesticides and their relationships with P. notoginseng and soil. All six pesticides were detected in the soils planted with P. notoginseng located in three regions of Shilin, Kaiyuan, and Yanshan. The detection frequencies of the pesticides in the soils followed the order: quintozene (100%) > iprodione (96%) > procymidone (69%) > chlorothalonil (51%) > pyrimethanil (49%) > pyraclostrobin (29%). The median concentrations of iprodione, pyraclostrobin, pyrimethanil, quintozene, procymidone, and chlorothalonil were 46.40, 6.4, 3.1, 2.86, 2.69, and 0.24 μg/kg, respectively. The mean concentrations of pesticides in the three regions followed the order: Kaiyuan > Shilin > Yanshan, except for iprodione. Furthermore, the concentrations of pesticide residues in soils in each region followed the order: soils never planted with P. notoginseng < soils previously planted with P. notoginseng < soils currently planted with P. notoginseng. The concentration of chlorothalonil in P. notoginseng followed the order: root > stem > leaf, whereas those of the other five pesticides followed the opposite order: root < stem < leaf. There were significant positive correlations between the mean concentrations of pesticides in P. notoginseng and those in the corresponding soils. These results indicate that the rational application of pesticides in P. notoginseng cultivation would be effective for reducing the accumulation of pesticides in P. notoginseng to protect people from the harmful effects of residual pesticides.
Collapse
Affiliation(s)
- Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaocong Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenting Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Fu D, Zhang S, Wang M, Liang X, Xie Y, Zhang Y, Zhang C. Dissipation behavior, residue distribution and dietary risk assessment of cyromazine, acetamiprid and their mixture in cowpea and cowpea field soil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4540-4548. [PMID: 32400002 DOI: 10.1002/jsfa.10495] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/02/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cyromazine and acetamiprid are widely applied as pesticides in agriculture, causing increasing concerns about their residues in crops. In this study, cyromazine, acetamiprid and their mixture were applied to cowpea to investigate their degradation dynamics and perform a dietary risk assessment. RESULTS The dissipation behavior of cyromazine and acetamiprid in the single- and mixed-pesticide groups followed first-order kinetics, with a linear correlation coefficient of 0.910 to 0.987. The half-lives of cyromazine and acetamiprid were 1.56-11.18 days in the four different matrices. The half-life of cyromazine in the mixed-pesticide group was similar to or even shorter than that in the single-pesticide group. The highest levels of cyromazine and acetamiprid in cowpea occurred with a preharvest interval of 7 days and after two or three applications. These levels are below the maximum residue limits recommended by the Chinese Ministry of Agriculture for cyromazine and acetamiprid in cowpea. The risk quotient of cyromazine and acetamiprid ranged from 0.0018 to 0.0418, and the national estimated short-term intake values of the cyromazine and acetamiprid were far below the acute reference dose as recommended by the European Food Safety Authority. CONCLUSION These results suggest that the use of cyromazine and acetamiprid and a cyromazine-acetamiprid mixture in cowpea is safe under the Good Agricultural Practices for Chinese fields, and the use of a cyromazine-acetamiprid mixture affords even better results than the application of cyromazine alone. Moreover, the residue dynamics information will support the label claims for the application of cyromazine, acetamiprid and a cyromazine-acetamiprid mixture to cowpea fruit. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duhan Fu
- College of Food Science and Engineering, Hainan University, No.38, Renming Road, Meilan District, Haikou, China
| | - Shanying Zhang
- College of Food Science and Engineering, Hainan University, No.38, Renming Road, Meilan District, Haikou, China
| | - Meng Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| | - Xiaoyu Liang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| | - Yanli Xie
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| | - Yu Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| | - Chenghui Zhang
- College of Food Science and Engineering, Hainan University, No.38, Renming Road, Meilan District, Haikou, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| |
Collapse
|
40
|
Zhou Y, Zhao W, Lai Y, Zhang B, Zhang D. Edible Plant Oil: Global Status, Health Issues, and Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:1315. [PMID: 32983204 PMCID: PMC7485320 DOI: 10.3389/fpls.2020.01315] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 05/13/2023]
Abstract
Edible plant oil (EPO) is an indispensable nutritional resource for human health. Various cultivars of oil-bearing plants are grown worldwide, and the chemical compositions of different plant oils are diverse. The extremely complex components in oils lead to diverse standards for evaluating the quality and safety of different EPOs. The environment poses great challenges to the EPO safety and quality during the entire industrial chain, including plant cultivation, harvesting, oil processing, and storage. Environmental risk factors include heavy metal or pesticide residue pollution, insect or harmful microbial infestation, and rancidity. Here, the diverse components in oil and various oil-producing processes are discussed, including plant species, oil yield, and composition complexity, environmental factors that degrade oil quality. Additionally, we propose a whole-industrial-chain monitoring system instead of current single-link-monitoring approach by monitoring and tracking the quality and safety of EPOs during the entire process of plant cultivation, raw materials harvest, oil process, and EPOs storage. This will provide guidance for monitoring the quality and safety of EPOs, which were challenged by the deteriorating environment.
Collapse
Affiliation(s)
- Ying Zhou
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Weiwei Zhao
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yong Lai
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
41
|
Deng F, Sun J, Dou R, Yu X, Wei Z, Yang C, Zeng X, Zhu L. Contamination of pyrethroids in agricultural soils from the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139181. [PMID: 32417481 DOI: 10.1016/j.scitotenv.2020.139181] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
This study focused on contamination levels and spatial distributions of four common pyrethroids found in agricultural soils of the Yangtze River Delta (YRD), China. Pyrethroids were detected in 241 soil samples (88.8% detection rate) with total concentrations ranging from <LOD to 53.5 ng/g dry weight. Mean concentrations of the four pyrethroids were measured in descending order as follows: fenpropathrin (4.92 ng/g) > cypermethrin (1.10 ng/g) > deltamethrin (0.89 ng/g) > cyhalothrin (0.20 ng/g). The highest concentration of fenpropathrin was recorded as 37.6 ng/g. The highest detection rate of 63.9% was found for cyhalothrin. A distinct pattern of spatial distribution was observed where high concentrations of pyrethroids were detected in sites around Taihu Lake. Potential sources of pyrethroids in agricultural soils from the YRD region include pyrethroids used for pest control and wastewater irrigation in the region. Redundancy and correlation analyses show that the soil TOC values have played a significant role in the behavior of pyrethroids in agricultural soils of the YRD region. Potential ecological risks of pyrethroids in agricultural soils of the YRD region are low. Cypermethrin and cyhalothrin showed potential toxic effects on the ecological conditions of agricultural soils in 4.6% and 2.9% of the sampling sites, respectively. Further studies should pay more attention to the potential human health risks posed by pyrethroids in agricultural soils for the protection of soil quality and food safety.
Collapse
Affiliation(s)
- Fucai Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Rongni Dou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Zi Wei
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
42
|
Luo L, Dong L, Huang Q, Ma S, Fantke P, Li J, Jiang J, Fitzgerald M, Yang J, Jia Z, Zhang J, Wang H, Dai Y, Zhu G, Xing Z, Liang Y, Li M, Wei G, Song J, Wei J, Peng C, Zhang H, Zhang W, Wang S, Mizuno K, Marco AAG, Wu L, Xu J, Xiong C, Chen S. Detection and risk assessments of multi-pesticides in 1771 cultivated herbal medicines by LC/MS-MS and GC/MS-MS. CHEMOSPHERE 2020; 262:127477. [PMID: 32799136 DOI: 10.1016/j.chemosphere.2020.127477] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 02/05/2023]
Abstract
Focus on the safety of herbal medicines has mainly been directed towards the presence of intrinsic toxicity, as found in the cases of renal and hepatic dysfunction caused by aristolochic acids. However, contamination from extrinsic hazards may impart an even greater reduction in their safety and efficacy. This study reveals that pesticides were present in the majority (88%) of a comprehensive cross-section (n = 1771) of herbal medicine samples. Alarmingly, more than half (59%) contained pesticides over the European Pharmacopoeia (EP) limit, and 43% of them contained 35 varieties of banned, extremely toxic pesticides, eight of which were detected at levels over 500 times higher than the default Maximum Residue Limit (MRL). DDTs, carbofuran, and mevinphos were confirmed as being among the most risk-inducing pesticides by three different risk assessment methods, reported to produce carcinogenic, genotoxic, reproductive, and developmental effects, in addition to carrying nephrotoxicity and hepatotoxicity. In light of these findings, and withstanding that extrinsic hazards can be controlled unlike intrinsic toxicity, the authors here strongly recommend the application of herbal medicine quality-control measures and solutions to safeguard against a neglected but certainly potentially serious health risk posed to the majority of the global population that consumes herbal medicines.
Collapse
Affiliation(s)
- Lu Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Linlin Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Qin Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, 100050, PR China
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs, Lyngby, Denmark
| | - Jianhui Li
- Waters Technologies Shanghai Limited, Block 13, City of Elite, 1000 Jinhai Road, Pu Dong New District, Shanghai, 201206, PR China
| | - Jingwen Jiang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Martin Fitzgerald
- Department of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, UK
| | - Jane Yang
- Waters Technologies Shanghai Limited, Block 13, City of Elite, 1000 Jinhai Road, Pu Dong New District, Shanghai, 201206, PR China
| | - Zhengwei Jia
- Waters Technologies Shanghai Limited, Block 13, City of Elite, 1000 Jinhai Road, Pu Dong New District, Shanghai, 201206, PR China
| | - Jiqing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Haifeng Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yuntao Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Guangwei Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Zhihan Xing
- College of Science and Mathematics, University of Massachusetts Boston, 100 William T. Morrissey Blvd, Boston, MA, 02125-3393, USA
| | - Yichuan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Mengzhi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Guangfei Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Wei Zhang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, Hunan, PR China
| | - Shumei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Kaito Mizuno
- Suzuka University of Medical Science, 1001-1, Kishioka, Suzuka, 510-0293, Japan
| | - Alarcon Arauco Gian Marco
- Intelligence of Science and Technology, School of Automation and Electrical Engineering, University of Science and Technology, Beijing, 100083, PR China
| | - Lan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Chao Xiong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
43
|
He B, Wang X, Jin X, Xue Z, Zhu J, Wang C, Jin Y, Fu Z. β -Cypermethrin promotes the adipogenesis of 3T3-L1 cells via inducing autophagy and shaping an adipogenesis-friendly microenvironment. Acta Biochim Biophys Sin (Shanghai) 2020; 52:821-831. [PMID: 32637997 DOI: 10.1093/abbs/gmaa049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/05/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
The toxicity of synthetic pyrethroids has garnered attention, and studies have revealed that pyrethroids promote fat accumulation and lead to obesity in mice. Nevertheless, the effect of β-cypermethrin (β-CYP) on adipogenesis and its underlying mechanism remains largely unknown. In this study, mouse embryo fibroblasts 3T3-L1 cells were exposed to β-CYP, and the cell viability, intracellular reactive oxygen species (ROS) level, autophagy, and adipogenesis were assessed to investigate the roles of oxidative stress and autophagy in the toxic effects of β-CYP on adipogenesis. The results demonstrated that treatment with 100 μΜ β-CYP elevated the ROS level, decreased mitochondrion membrane potential, stimulated autophagy, and enhanced the adipogenesis induced by the mixture of insulin, dexamethasone, and 3-isobutyl-1-methylxanthine. However, co-treatment with N-acetyl-L-cysteine partially blocked the abovementioned effects of β-CYP in 3T3-L1 cells. In addition, co-treatment with rapamycin, an autophagy agonist, enhanced the inductive effect of β-CYP on adipogenesis, whereas co-treatment with 3-methyladenine blocked the enhancement of adipogenesis caused by β-CYP. Moreover, β-CYP also altered the microenvironment of 3T3-L1 cells to an adipogenesis-friendly one by reducing the extracellular expression of miR-34a, suggesting that the culture media of β-CYP-treated 3T3-L1 cells could shift macrophages to M2 type. Taken together, the data obtained in the present study demonstrated that β-CYP promoted adipogenesis via oxidative stress-mediated autophagy disturbance, and it caused macrophage M2 polarization via the alteration of miR-34a level in the microenvironment. The study demonstrated the adipogenesis-promoting effect of β-CYP and unveiled the potential mechanism.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xini Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
44
|
Bhandari G, Atreya K, Scheepers PTJ, Geissen V. Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. CHEMOSPHERE 2020; 253:126594. [PMID: 32289601 DOI: 10.1016/j.chemosphere.2020.126594] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination by pesticide residues is a primary concern because of the high soil persistence of pesticides and their toxicity to humans. We investigated pesticide concentration and distribution at 3 soil depths in 147 soil samples from agricultural land and assessed potential health risks due to non-dietary human exposure to pesticides in Nepal. About sixty percent of the soil samples had pesticides (25% of the soil samples had single residue, 35% of the soil samples had mixtures of 2 or more residues) in 39 different pesticide combinations. Pesticide residues were found more frequently in topsoil. Overall, the concentration of pesticides ranged from 1.0 μg kg-1 to 251 μg kg-1, with a mean of 16 μg kg-1. The concentration of the primary group, organophosphates (OPs), ranged from 1.23 μg kg-1 to 239 μg kg-1, with a mean of 23 μg kg-1. Chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) were the predominant contaminants in soils. The ionic ratio of DDT and its degradation products suggested a continuing use of DDT in the area. Human health risk assessment of the observed pesticides in soil suggested negligible cancer risks and negligible non-cancer risks based on ingestion as the primary route of exposure. The predicted environmental concentrations (PECs) of pesticides were higher than the values found in the guidance for soil contamination used internationally. Low concentrations of residues in the soils from agricultural farms practicing integrated pest management (IPM) suggest that this farming system could reduce soil pollution in Nepal.
Collapse
Affiliation(s)
- Govinda Bhandari
- Soil Physics and Land Management (SLM), Wageningen University and Research, the Netherlands; Progressive Sustainable Developers Nepal (PSD-Nepal), P.O. Box 23883, Kathmandu 31, Nepal.
| | - Kishor Atreya
- PHASE Nepal, P.O. Box 12888, Suryabinayak 4, Dadhikot, Bhaktapur, Nepal
| | - Paul T J Scheepers
- Radboudumc, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management (SLM), Wageningen University and Research, the Netherlands
| |
Collapse
|
45
|
Yang C, Lim W, Song G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108758. [PMID: 32289527 DOI: 10.1016/j.cbpc.2020.108758] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Organophosphate and organochlorine pesticides are banned in most countries because they cause high toxicity and bioaccumulation in non-target organisms. Pyrethroid pesticides have been applied to agriculture and aquaculture since the 1970s to replace traditional pesticides. However, pyrethroids are approximately 1000 times more toxic to fish than to mammals and birds. Fish-specific organs such as the gills and their late metabolic action against this type of pesticide make fish highly susceptible to the toxicity of pyrethroid pesticides. Oxidative stress plays an important role in the neurological, reproductive, and developmental toxicity caused by pyrethroids. Deltamethrin, cypermethrin, and lambda-cyhalothrin are representative pyrethroid pesticides that induce oxidative stress in tissues such as the gills, liver, and muscles of fish and cause histopathological changes. Although they are observed in low concentrations in aquatic environments such as rivers, lakes, and surface water they induce DNA damage and apoptosis in fish. Pyrethroid pesticides cause ROS-mediated oxidative stress in fish species including carp, tilapia, and trout. They also cause lipid peroxidation and alter the state of DNA, proteins, and lipids in the cells of fish. Moreover, changes in antioxidant enzyme activity following pyrethroid pesticide exposure make fish more susceptible to oxidative stress caused by environmental pollutants. In this review, we examine the occurrence of pyrethroid pesticides in the aquatic environment and oxidative stress-induced toxicity in fish exposed to pyrethroids.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
46
|
Schwantes D, Celso Gonçalves A, Conradi Junior É, Campagnolo MA, Zimmermann J. Determination of CHLORPYRIFOS by GC/ECD in water and its sorption mechanism study in a RHODIC FERRALSOL. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:149-162. [PMID: 32399228 PMCID: PMC7203293 DOI: 10.1007/s40201-020-00448-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 01/14/2020] [Indexed: 05/28/2023]
Abstract
The validation of chromatographic methods is a costly process, however necessary, especially with regard to the validation of methods that accurately determine concentrations of pesticides in different environmental compartments. This research aimed at the development and validation of a simple and fast method for the determination of chlorpyrifos concentrations in water by means of a gas chromatograph with electron capture detection (GC/ECD), and to investigate chlorpyrifos dynamics of adsorption in a Rhodic Ferralsol in Southern Brazilian conditions. The developed chromatographic method was based in EPA 8141 method. Parameters to be checked for method validation were: Selectivity/specificity, linearity, precision, accuracy, robustness, limit of detection (LOD) and limit of quantitation (LOQ). Were employed the following methodologies for the validation process: ANVISA Resolution 899, DOQ-CGCRE-008 and FDA Bioanalytical Method Validation Guide. Also, through laboratory tests, the sorption dynamics of chlorpyrifos in Rhodic Ferralsol was evaluated. Thus, the soil was contaminated with increasing concentrations of chlorpyrifos, which were subjected to solid-liquid extraction with SPE cartridge Chromabond® C18 ec. The obtained results were submitted to the models of Langmuir, Freundlich, Dubinin-Radushkevich and Sips. By this method, chlorpyrifos peaks are obtained at 16.9 min, demonstrating practicality and low cost. This method exhibits precision and sensitivity, with satisfactory LQ and LQ values. The models of Langmuir, Freundlich, Dubinin-Radushkevich and Sips suggest the occurrence of simultaneous adsorption in mono and multilayer of chlorpyrifos in Rhodic Ferralsol colloids, as well as the predominance of a chemical, high energy binding process (irreversible). However, the chemisorption of chlorpyrifos is more related to the good fit found for Dubinin-Radushkevich sorption energy values (9.861 and 11.079 KJ mol-1) and Qm values estimated by Langmuir (485.55 and 389.61 μg g-1 for linear and nonlinear model).
Collapse
Affiliation(s)
- Daniel Schwantes
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Macul, Región Metropolitana Chile
| | - Affonso Celso Gonçalves
- Postgraduate Program in Agronomy, Universidade Estadual do Oeste do Paraná, Pernambuco Street, 1777, Centro, Marechal Cândido Rondon, State of Paraná 85960-000 Brazil
| | - Élio Conradi Junior
- Postgraduate Program in Agronomy, Universidade Estadual do Oeste do Paraná, Pernambuco Street, 1777, Centro, Marechal Cândido Rondon, State of Paraná 85960-000 Brazil
| | - Marcelo Angelo Campagnolo
- Faculdade Educacional de Medianeira (Centro Universitário Dinâmica das Cataratas), Rio Branco Street, 1820, Centro, Medianeira, State of Paraná 85884-000 Brazil
| | - Juliano Zimmermann
- Postgraduate Program in Agronomy, Universidade Estadual do Oeste do Paraná, Pernambuco Street, 1777, Centro, Marechal Cândido Rondon, State of Paraná 85960-000 Brazil
| |
Collapse
|
47
|
Khammanee N, Qiu Y, Kungskulniti N, Bignert A, Meng Y, Zhu Z, Lekew Teffera Z. Presence and Health Risks of Obsolete and Emerging Pesticides in Paddy Rice and Soil from Thailand and China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113786. [PMID: 32471043 PMCID: PMC7312988 DOI: 10.3390/ijerph17113786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023]
Abstract
Organochlorine (OCPs) and organophosphorus pesticides (OPPs) have been intensively applied in rice paddy field farming to control pest infestation and increase the yield. In this study, we investigated the presence of organochlorine and organophosphorus pesticides in paddy rice and soil from rice plantations in Thailand and China. According to concentration and distribution of OCPs, the most abundant OCPs residues in rice and soil from Thailand and China were dichlorodiphenyltrichloroethane and hexachlorocyclohexanes. The OPPs of methidathion, carbophenothion, chlorpyrifos, and diazinon were common to Thailand and China in both types of samples. The detection frequency of multiple types of these pesticides was greater than 50% of total samples. The relative concentration of some OPPs residues in rice and soil from Thailand and China were significantly different from each other (p < 0.0083), whereas, no significant difference was observed for the relative concentration of OCPs residues in rice and soil from both countries, except for HCHs (p < 0.05). Bioaccumulation factors of OCPs between rice and soil samples indicated that OCPs and OPPs in soil could accumulate in rice. The carcinogenic and non- carcinogenic risks of OCPs and OPPs seem to be in the safe range as recommended by the European Union.
Collapse
Affiliation(s)
- Naranun Khammanee
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (N.K.); (Y.M.); (Z.Z.)
- College of Environmental Science and Engineering, UNEP-Tongji Institute of Environment for Sustainable Development, Tongji University, Shanghai 200092, China;
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (N.K.); (Y.M.); (Z.Z.)
- Correspondence: ; Tel.: +86-133-0196-7857
| | - Nipapun Kungskulniti
- Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Anders Bignert
- Swedish Museum of Natural History, 10691 Stockholm, Sweden;
| | - Yuan Meng
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (N.K.); (Y.M.); (Z.Z.)
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (N.K.); (Y.M.); (Z.Z.)
| | - Zebene Lekew Teffera
- College of Environmental Science and Engineering, UNEP-Tongji Institute of Environment for Sustainable Development, Tongji University, Shanghai 200092, China;
| |
Collapse
|
48
|
Cheng B, Zhang H, Hu J, Peng Y, Yang J, Liao X, Liu F, Guo J, Hu C, Lu H. The immunotoxicity and neurobehavioral toxicity of zebrafish induced by famoxadone-cymoxanil. CHEMOSPHERE 2020; 247:125870. [PMID: 31931321 DOI: 10.1016/j.chemosphere.2020.125870] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
As a new protective and therapeutic fungicide, studies on famoxadone-cymoxanil are rare, and its toxicity to aquatic organisms has not been reported. In the present study, zabrafish embryos were exposed to several concentrations of famoxadone-cymoxanil at 10 hpf. Then, the changes of their shape, heart rate, development and function of innate and adaptive immune cells, oxidative stress, apoptosis, the expression of apoptosis-related genes and immune-related genes, the locomotor behavior were observed and detected in acute toxicity of famoxadone-cymoxanil. Our studies showed that, after exposure to famoxadone-cymoxanil, zebrafish embryos had decreased heart rate, shortened body length, swollen yolk sac. Secondly, the number of innate and adaptive immune cells was significantly reduced; and neutrophil migration and retention at the injury area were inhibited, indicating the developmental toxicity and immunotoxicity of famoxadone-cymoxanil on the zebrafish. We also found that the oxidative stress related indicators of embryos were changed significantly, and apoptosis were substantially increased. Further investigation of changes of some key genes in TLR signaling including TLR4, MYD88 and NF-κB p65 revealed that the mRNA expression of these genes was up-regulated. Meanwhile, the mRNA expression of some proinflammatory cytokines such as TNF-α, IFN-γ, IL6 and IL-1β was also up-regulated. In addition, the activity, the total distance, time and average speed were decreased along with the increase of exposure concentration. The absolute turn angle, sinuosity and the enzymatic activity of acetylcholinesterase (AChE) were also increased. These results suggested that famoxadone-cymoxanil can induce developmental toxicity, immunotoxicity and neurobehavioral toxicity in zebrafish larvae.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Hua Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jihuan Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yuyang Peng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatology Hospital of Nan Chang University, Nanchang, 330031, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Nan Chang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
49
|
Fu Y, Dou X, Lu Q, Qin J, Luo J, Yang M. Comprehensive assessment for the residual characteristics and degradation kinetics of pesticides in Panax notoginseng and planting soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136718. [PMID: 31982747 DOI: 10.1016/j.scitotenv.2020.136718] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Incorrect and excess usage of pesticides during crop cultivation poses a serious threat to human health and ecosystems. In this study, we tested for the presence of 201 pesticide residues in 90 batches of Panax notoginseng (P. notoginseng) and 10 batches of planting soil. Pesticide residue characteristics and the relationship between pesticides present in P. notoginseng and the soil were discussed. Twenty-nine pesticides were detected in P. notoginseng samples and 15 pesticides were found in the soil samples. In P. notoginseng samples, the 68.9% of the identified pesticides were fungicides, and six fungicides (procymidone, iprodione, pyrimethanil, propiconazole, dimethomorph and tebuconazole) were found in >90% of the samples. Nine insecticides were found, with one insecticide, chlorpyrifos, detected in 93.3% of the P. notoginseng samples. The residual concentrations of 17 pesticides were found at levels exceeded the "non-Chinese" maximum residue levels (MRLs) for Ginseng and 17 pesticides were found at levels exceeding the MRLs set by China for "pollution-free" P. notoginseng. We observed no significant differences in pesticide residues were found on P. notoginseng from different cultivation areas. We also analyzed the degradation kinetics of pesticides in the soil, as well as their bioconcentration factors (BCFs), and found that the fungicides iprodione and myclobutanil displayed strong uptake from the soil to the root of P. notoginseng. Together, our data suggest that fungicides should be considered as key monitoring substances in P. notoginseng and planting soil.
Collapse
Affiliation(s)
- Yanwei Fu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xiaowen Dou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
50
|
Fernandes CLF, Volcão LM, Ramires PF, Moura RRD, Da Silva Júnior FMR. Distribution of pesticides in agricultural and urban soils of Brazil: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:256-270. [PMID: 31984396 DOI: 10.1039/c9em00433e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The extensive use of pesticides leads to soil contamination and is harmful to environmental health. Brazil is considered the world's largest consumer of pesticides; however, there is no published review of the distribution and concentration of pesticides in the Brazilian soils. Thus, the objective of this study was to analyze the occurrence of pesticide residues in Brazilian soils through a systematic review of the data obtained from the official records of government agencies and scientific literature. Further, this review aims to estimate the risk quotient using the data extracted from these studies and compare it with the values from current legislation. The studies on pesticides were selected and screened, out of which 21 scientific articles were included in this review. The studies highlighted that 55 pesticides were detected in the soils in Brazil. Of these, 58% belonged to the chemical class of organochlorines and their concentration ranged from 0.0002-1243.68 mg kg-1. DDT (0.00002-1243.68 mg kg-1), HCH (0.00007-962.00 mg kg-1) and diuron (0.0031-4.16 mg kg-1) contributed to highest pesticide concentrations in soil. Residential soils had higher pesticide concentrations and greater risk factors than the agricultural soils. Moreover, 20% of the studies detected mixtures containing more than 10 types of pesticides. This study concluded that the specific scenarios evaluated by the reviewed studies do not reflect the current pesticide use and contamination in Brazil and there is a need for more information related to pesticide contamination in soils.
Collapse
Affiliation(s)
- Caroline Lopes Feijo Fernandes
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| | - Lisiane Martins Volcão
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| | - Paula Florêncio Ramires
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| | - Renata Rodrigues De Moura
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| | - Flavio Manoel Rodrigues Da Silva Júnior
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102 Bairro Centro, Rio Grande, 96200-190, Rio Grande do Sul, Brazil. and Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Laboratório de Ensaios Farmacológicos e Toxicológicos - LEFT, Av. Itália km 8 Bairro Carreiros, Rio Grande, 96203-900, Rio Grande do Sul, Brazil
| |
Collapse
|