1
|
Hernandez DF, Mojica L, Cervantes EL, Gonzalez de Mejia E. Common bean polyphenolic enriched extracts decrease reactive oxygen species induced by heavy metals and polycyclic aromatic hydrocarbons in Hs27 and Hs68 human fibroblasts. Food Chem 2024; 459:140371. [PMID: 39002333 DOI: 10.1016/j.foodchem.2024.140371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
The increase of coarse particulate matter (PM10) due to industrialization and urban sprawl has been identified as a significant contributor to air pollution and a threat to human skin health and premature aging. The objective was to analyze the antioxidant effect of phenolic-enriched extracts (PHE) obtained from black bean (BB) and pinto bean (PB) varieties (Phaseolus vulgaris L.) and pure phenolic compounds (rutin, catechin, and gallic acid) in two human dermal fibroblasts cell lines exposed to PM10. Petunidin-3-O-glucoside was the most abundant anthocyanin, with 57 ± 0.9 mg/g dry extract (DE) in PHE-BB. Gallic acid was the prevalent phenolic acid with 8.2 ± 2.8 mg/g DE in PHE-BB (p < 0.05). Hs27 and Hs68 cell lines were exposed to PM10 (100 μg/mL) to induce oxidative stress; PHE-BB reduced it by 69% ± 12 and PHE-PB by 80% ± 5 relative to PM10 treatment (p < 0.05). Delphinidin-3-O-glucoside showed the highest binding affinity in adenosine monophosphate-activated protein kinase (AMPK) with -9.0 kcal/mol and quercetin-3-D-galactoside with -6.9 kcal/mol in sirtuin 1 (Sirt1). Rutin increased the expression of Sirt1 by 30% (p < 0.05) in the Hs27 cell line treated with PM10. Common bean extracts can potentially reduce oxidative stress induced by PM10 in human dermal fibroblasts.
Collapse
Affiliation(s)
- David Fonseca Hernandez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico
| | - Eugenia Lugo Cervantes
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
2
|
López-Martín E, Sueiro-Benavides R, Leiro-Vidal JM, Rodríguez-González JA, Ares-Pena FJ. Redox cell signalling triggered by black carbon and/or radiofrequency electromagnetic fields: Influence on cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176023. [PMID: 39244061 DOI: 10.1016/j.scitotenv.2024.176023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The capacity of environmental pollutants to generate oxidative stress is known to affect the development and progression of chronic diseases. This scientific review identifies previously published experimental studies using preclinical models of exposure to environmental stress agents, such as black carbon and/or RF-EMF, which produce cellular oxidative damage and can lead to different types of cell death. We summarize in vivo and in vitro studies, which are grouped according to the mechanisms and pathways of redox activation triggered by exposure to BC and/or EMF and leading to apoptosis, necrosis, necroptosis, pyroptosis, autophagy, ferroptosis and cuproptosis. The possible mechanisms are considered in relation to the organ, cell type and cellular-subcellular interaction with the oxidative toxicity caused by BC and/or EMF at the molecular level. The actions of these environmental pollutants, which affect everyday life, are considered separately and together in experimental preclinical models. However, for overall interpretation of the data, toxicological studies must first be conducted in humans, to enable possible risks to human health to be established in relation to the progression of chronic diseases. Further actions should take pollution levels into account, focusing on the most vulnerable populations and future generations.
Collapse
Affiliation(s)
- Elena López-Martín
- Department of Morphological Sciences, Santiago de Compostela, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rosana Sueiro-Benavides
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José M Leiro-Vidal
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan A Rodríguez-González
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
4
|
Vicente ED, Figueiredo D, Alves C. Toxicity of particulate emissions from residential biomass combustion: An overview of in vitro studies using cell models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171999. [PMID: 38554951 DOI: 10.1016/j.scitotenv.2024.171999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This article aims to critically review the current state of knowledge on in vitro toxicological assessments of particulate emissions from residential biomass heating systems. The review covers various aspects of particulate matter (PM) toxicity, including oxidative stress, inflammation, genotoxicity, and cytotoxicity, all of which have important implications for understanding the development of diseases. Studies in this field have highlighted the different mechanisms that biomass combustion particles activate, which vary depending on the combustion appliances and fuels. In general, particles from conventional combustion appliances are more potent in inducing cytotoxicity, DNA damage, inflammatory responses, and oxidative stress than those from modern appliances. The sensitivity of different cell lines to the toxic effects of biomass combustion particles is also influenced by cell type and culture conditions. One of the main challenges in this field is the considerable variation in sampling strategies, sample processing, experimental conditions, assays, and extraction techniques used in biomass burning PM studies. Advanced culture systems, such as co-cultures and air-liquid interface exposures, can provide more accurate insights into the effects of biomass combustion particles compared to simpler submerged monocultures. This review provides critical insights into the complex field of toxicity from residential biomass combustion emissions, underscoring the importance of continued research and standardisation of methodologies to better understand the associated health hazards and to inform targeted interventions.
Collapse
Affiliation(s)
- E D Vicente
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - D Figueiredo
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - C Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Novo-Quiza N, Sánchez-Piñero J, Moreda-Piñeiro J, Turnes-Carou I, Muniategui-Lorenzo S, López-Mahía P. Oxidative potential of the inhalation bioaccessible fraction of PM 10 and bioaccessible concentrations of polycyclic aromatic hydrocarbons and metal(oid)s in PM 10. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31862-31877. [PMID: 38637483 PMCID: PMC11133103 DOI: 10.1007/s11356-024-33331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Atmospheric particulate matter (PM) has been related to numerous adverse health effects in humans. Nowadays, it is believed that one of the possible mechanisms of toxicity could be the oxidative stress, which involves the development of reactive oxygen species (ROS). Different assays have been proposed to characterize oxidative stress, such as dithiothreitol (DTT) and ascorbic acid (AA) acellular assays (OPDTT and OPAA), as a metric more relevant than PM mass measurement for PM toxicity. This study evaluates the OP of the bioaccessible fraction of 65 PM10 samples collected at an Atlantic Coastal European urban site using DTT and AA assays. A physiologically based extraction (PBET) using Gamble's solution (GS) as a simulated lung fluid (SLF) was used for the assessment of the bioaccessible fraction of PM10. The use of the bioaccessible fraction, instead of the fraction assessed using conventional phosphate buffer and ultrasounds assisted extraction (UAE), was compared for OP assessment. Correlations between OPDTT and OPAA, as well as total and bioaccessible concentrations of polycyclic aromatic hydrocarbons (PAHs) and metal(oid)s, were investigated to explore the association between those compounds and OP. A correlation was found between both OP (OPDTT and OPAA) and total and bioaccessible concentrations of PAHs and several metal(oid)s such as As, Bi, Cd, Cu, Ni, and V. Additionally, OPDTT was found to be related to the level of K+.
Collapse
Affiliation(s)
- Natalia Novo-Quiza
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Joel Sánchez-Piñero
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain.
| | - Isabel Turnes-Carou
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Purificación López-Mahía
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| |
Collapse
|
6
|
Melzi G, Massimi L, Frezzini MA, Iulini M, Tarallo N, Rinaldi M, Paglione M, Nozza E, Crova F, Valentini S, Valli G, Costabile F, Canepari S, Decesari S, Vecchi R, Marinovich M, Corsini E. Redox-activity and in vitro effects of regional atmospheric aerosol pollution: Seasonal differences and correlation between oxidative potential and in vitro toxicity of PM 1. Toxicol Appl Pharmacol 2024; 485:116913. [PMID: 38522584 DOI: 10.1016/j.taap.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Particulate Matter (PM) is a complex and heterogeneous mixture of atmospheric particles recognized as a threat to human health. Oxidative Potential (OP) measurement is a promising and integrative method for estimating PM-induced health impacts since it is recognized as more closely associated with adverse health effects than ordinarily used PM mass concentrations. OP measurements could be introduced in the air quality monitoring, along with the parameters currently evaluated. PM deposition in the lungs induces oxidative stress, inflammation, and DNA damage. The study aimed to compare the OP measurements with toxicological effects on BEAS-2B and THP-1 cells of winter and summer PM1 collected in the Po Valley (Italy) during 2021. PM1 was extracted in deionized water by mechanical agitation and tested for OP and, in parallel, used to treat cells. Cytotoxicity, genotoxicity, oxidative stress, and inflammatory responses were assessed by MTT test, DCFH-DA assay, micronucleus, γ-H2AX, comet assay modified with endonucleases, ELISA, and Real-Time PCR. The evaluation of OP was performed by applying three different assays: dithiothreitol (OPDTT), ascorbic acid (OPAA), and 2',7'-dichlorofluorescein (OPDCFH), in addition, the reducing potential was also analysed (RPDPPH). Seasonal differences were detected in all the parameters investigated. The amount of DNA damage detected with the Comet assay and ROS formation highlights the presence of oxidative damage both in winter and in summer samples, while DNA damage (micronucleus) and genes regulation were mainly detected in winter samples. A positive correlation with OPDCFH (Spearman's analysis, p < 0.05) was detected for IL-8 secretion and γ-H2AX. These results provide a biological support to the implementation in air quality monitoring of OP measurements as a useful proxy to estimate PM-induced cellular toxicological responses. In addition, these results provide new insights for the assessment of the ability of secondary aerosol in the background atmosphere to induce oxidative stress and health effects.
Collapse
Affiliation(s)
- Gloria Melzi
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Institute of Atmospheric Pollution Research, National Research Council, Via Salaria, Km 29,300, Monterotondo St., 00015 Rome, Italy
| | - Maria Agostina Frezzini
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; ARPA Lazio, Regional Environmental Protection Agency, Via Boncompagni 101, 00187 Rome, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Naima Tarallo
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Matteo Rinaldi
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Marco Paglione
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Emma Nozza
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Experimental Medicine, Università degli Studi di Milano, Via L. Vanvitelli 32, 20129 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via della Commenda 19, 20122 Milan, Italy
| | - Federica Crova
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Sara Valentini
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Gianluigi Valli
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Francesca Costabile
- National Biodiversity Future Center, NBFC, 90133 Palermo, Italy; Institute of Atmospheric Sciences and Climate, National Research Council, Via Fosso del Cavaliere 100, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; Institute of Atmospheric Pollution Research, National Research Council, Via Salaria, Km 29,300, Monterotondo St., 00015 Rome, Italy
| | - Stefano Decesari
- Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy; National Biodiversity Future Center, NBFC, 90133 Palermo, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano & INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Science (DiSFeB) "Rodolfo Paoletti", Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
7
|
Paes LT, D'Almeida CTDS, do Carmo MAV, da Silva Cruz L, Bubula de Souza A, Viana LM, Gonçalves Maltarollo V, Martino HSD, Domingues de Almeida Lima G, Larraz Ferreira MS, Azevedo L, Barros FARD. Phenolic-rich extracts from toasted white and tannin sorghum flours have distinct profiles influencing their antioxidant, antiproliferative, anti-adhesive, anti-invasive, and antimalarial activities. Food Res Int 2024; 176:113739. [PMID: 38163694 DOI: 10.1016/j.foodres.2023.113739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Sorghum is a gluten-free cereal commonly used in foods, and its consumption has been associated with the prevention of human chronic conditions such as obesity and cancer, due to the presence of dietary fiber and phenolic compounds. This study aimed to evaluate, for the first time, the antiproliferative, antioxidant, anti-adhesion, anti-invasion, and antimalarial activities of phenolic extracts from toasted white and tannin sorghum flours to understand how different phenolic profiles contribute to sorghum biological activities. Water and 70 % ethanol/water (v/v), eco-friendly solvents, were used to obtain the phenolic extracts of toasted sorghum flours, and their phenolic profile was analyzed by UPLC-MSE. One hundred forty-five (145) phenolic compounds were identified, with 23 compounds common to all extracts. The solvent type affected the phenolic composition, with aqueous extract of both white sorghum (WSA) and tannin sorghum (TSA) containing mainly phenolic acids. White sorghum (WSE) and tannin sorghum (TSE) ethanolic extracts exhibited a higher abundance of flavonoids. WSE demonstrated the lowest IC50 on EA.hy926 (IC50 = 46.6 µg/mL) and A549 cancer cells (IC50 = 33.1 µg/mL), while TSE showed the lowest IC50 (IC50 = 70.8 µg/mL) on HCT-8 cells (human colon carcinoma). Aqueous extracts also demonstrated interesting results, similar to TSE, showing selectivity for cancer cells at higher IC50 concentrations. All sorghum extracts also reduced the adhesion and invasion of HCT-8 cells, suggesting antimetastatic potential. WSE, rich in phenolic acids and flavonoids, exhibited greater toxicity to both the W2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) strains of Plasmodium falciparum (IC50 = 8 µg GAE/mL and 22.9 µg GAE/mL, respectively). These findings underscore the potential health benefits of toasted sorghum flours, suggesting diverse applications in the food industry as a functional ingredient or even as an antioxidant supplement. Moreover, it is suggested that, besides the phenolic concentration, the phenolic profile is important to understand the health benefits of sorghum flours.
Collapse
Affiliation(s)
- Laise Trindade Paes
- Department of Food Technology, Federal University of Vicosa, Vicosa, MG, Brazil
| | | | | | | | | | | | - Vinicius Gonçalves Maltarollo
- Pharmaceutical Products Department, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
8
|
de Lagarde VM, Chevalier L, Méausoone C, Cazier F, Dewaele D, Cazier-Dennin F, Janona M, Logie C, Achard S, André V, Rogez-Florent T, Monteil C, Corbiere C. Acute and repeated exposures of normal human bronchial epithelial (NHBE) cells culture to particles from a coloured pyrotechnic smoke. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104327. [PMID: 38006978 DOI: 10.1016/j.etap.2023.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Coloured pyrotechnic smokes are frequently used in the military field and occasionally by civilians, but their health hazards have been little studied. The main concern could rise from inhalation of smoke particles. Our previous study showed that acute exposure to particles from a red signalling smoke (RSS) induced an antioxidant and inflammatory responses in small airway epithelial cells. The aim of this study was to further explore the toxicity of RSS particles at a more proximal level of the respiratory tract, using normal human bronchial epithelial cells grown at the Air-Liquid Interface. Acute exposure (24 h) induced an oxidative stress that persisted 24 h post-exposure, associated with particle internalization and epithelium morphological changes (cuboidal appearance and loss of cilia). Repeated exposures (4×16h) to RSS particles did not trigger oxidative stress but cell morphological changes occurred. Overall, this study provides a better overview of the toxic effects of coloured smoke particles.
Collapse
Affiliation(s)
| | - Laurence Chevalier
- Université de Rouen Normandie, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - Clémence Méausoone
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Fabrice Cazier
- Université du Littoral Côte d'Opale, CCM - Centre Commun de Mesures, 59 375 Dunkerque, France
| | - Dorothée Dewaele
- Université du Littoral Côte d'Opale, CCM - Centre Commun de Mesures, 59 375 Dunkerque, France
| | - Francine Cazier-Dennin
- Université du Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 417, 59 375 Dunkerque, France
| | - Marion Janona
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Cathy Logie
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Sophie Achard
- Université de Paris, Faculté de Pharmacie, Inserm UMR1153 - CRESS, HERA " Health Environmental Risk Assessment ", 75005 Paris, France
| | - Véronique André
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Tiphaine Rogez-Florent
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Christelle Monteil
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Cécile Corbiere
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France.
| |
Collapse
|
9
|
Silva TD, Alves C, Oliveira H, Duarte IF. Biological Impact of Organic Extracts from Urban-Air Particulate Matter: An In Vitro Study of Cytotoxic and Metabolic Effects in Lung Cells. Int J Mol Sci 2023; 24:16896. [PMID: 38069233 PMCID: PMC10706705 DOI: 10.3390/ijms242316896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Atmospheric particulate matter (PM) with diameters below 10 µm (PM10) may enter the lungs through inhalation and are linked to various negative health consequences. Emergent evidence emphasizes the significance of cell metabolism as a sensitive target of PM exposure. However, the current understanding of the relationship between PM composition, conventional toxicity measures, and the rewiring of intracellular metabolic processes remains limited. In this work, PM10 sampled at a residential area (urban background, UB) and a traffic-impacted location (roadside, RS) of a Portuguese city was comprehensively characterized in terms of polycyclic aromatic hydrocarbons and plasticizers. Epithelial lung cells (A549) were then exposed for 72 h to PM10 organic extracts and different biological outcomes were assessed. UB and RS PM10 extracts dose-dependently decreased cell viability, induced reactive oxygen species (ROS), decreased mitochondrial membrane potential, caused cell cycle arrest at the G0/G1 phase, and modulated the intracellular metabolic profile. Interestingly, the RS sample, richer in particularly toxic PAHs and plasticizers, had a greater metabolic impact than the UB extract. Changes comprised significant increases in glutathione, reflecting activation of antioxidant defences to counterbalance ROS production, together with increases in lactate, NAD+, and ATP, which suggest stimulation of glycolytic energy production, possibly to compensate for reduced mitochondrial activity. Furthermore, a number of other metabolic variations hinted at changes in membrane turnover and TCA cycle dynamics, which represent novel clues on potential PM10 biological effects.
Collapse
Affiliation(s)
- Tatiana D. Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Célia Alves
- Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Helena Oliveira
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
10
|
Vaccarella E, Piacentini D, Falasca G, Canepari S, Massimi L. In-vivo exposure of a plant model organism for the assessment of the ability of PM samples to induce oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165694. [PMID: 37516174 DOI: 10.1016/j.scitotenv.2023.165694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
This study aims to propose an innovative, simple, rapid, and cost-effective method to study oxidative stress induced by PM through in-vivo exposure of the plant model organism Arabidopsis thaliana. A. thaliana seedlings were exposed to urban dust certified for its elemental content and to PM2.5 samples collected in an urban-industrial area of Northern Italy. An innovative technique for the detachment and suspension in water of the whole intact dust from membrane filters was applied to expose the model organism to both the soluble and insoluble fractions of PM2.5, which were analyzed for 34 elements by ICP-MS. Oxidative stress induced by PM on A. thaliana was assessed by light microscopic localization and UV-Vis spectrophotometric determination of superoxide anion (O2-) content on the exposed seedlings by using the nitro blue tetrazole (NBT) assay. The results showed a good efficiency and sensitivity of the method for PM mass concentrations >20 μg m-3 and an increase in O2- content in all exposed seedlings, which mainly depends on the concentration, chemical composition, and sources of the PM administered to the model organism. Particles released by biomass burning appeared to contribute more to the overall toxicity of PM. This method was found to be cost-effective and easy to apply to PM collected on membrane filters in intensive monitoring campaigns in order to obtain valuable information on the ability of PM to generate oxidative stress in living organisms.
Collapse
Affiliation(s)
- Emanuele Vaccarella
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome 00015, Italy
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome 00015, Italy.
| |
Collapse
|
11
|
Nazzal Y, Bărbulescu A, Sharma M, Howari F, Naseem M. Evaluating the Contamination by Indoor Dust in Dubai. TOXICS 2023; 11:933. [PMID: 37999585 PMCID: PMC10674184 DOI: 10.3390/toxics11110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Nowadays, people spend most of their time indoors. Despite constantly cleaning these spaces, dust apparition cannot be avoided. Since dust can contain chemical elements that negatively impact people's health, we propose the analysis of the metals from the indoor dust component collected in different locations in Dubai, UAE. Multivariate statistics (correlation matrix, clustering) and quality indicators (QI)-Igeo, PI, EF, PLI, Nemerow-were used to assess the contamination level with different metals in the dust. We proposed two new QIs (CPI and AQI) and compared the results with those provided by the most used indices-PLI and Nemerow. It is shown that high concentrations of some elements (Ca in this case) can significantly increase the values of the Nemerow index, CPI, and AQI. In contrast, the existence of low concentrations leads to the decrement of the PLI.
Collapse
Affiliation(s)
- Yousef Nazzal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates; (Y.N.); (M.S.); (M.N.)
| | - Alina Bărbulescu
- Department of Civil Engineering, Transilvania University of Brașov, 5 Turnului Str., 900152 Brasov, Romania
| | - Manish Sharma
- College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates; (Y.N.); (M.S.); (M.N.)
| | - Fares Howari
- College of Arts and Sciences, Fort Valley State University, Fort Valley, GA 31030, USA;
| | - Muhammad Naseem
- College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates; (Y.N.); (M.S.); (M.N.)
| |
Collapse
|
12
|
Jiao F, Zhao Y, Limbu SM, Kong L, Zhang D, Liu X, Yang S, Gui W, Rong H. Cyhexatin causes developmental toxic effects by disrupting endocrine system and inducing behavioral inhibition, apoptosis and DNA hypomethylation in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2023; 339:139769. [PMID: 37562506 DOI: 10.1016/j.chemosphere.2023.139769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Cyhexatin (CYT), an organotin acaricide, is extensively utilized in developing countries to mitigate plant diseases caused by mites and minimize agricultural crop losses. However, the comprehensive mechanisms underlying the developmental stage of non-target organisms remain largely unexplored. In this study, zebrafish embryos were firstly exposed to CYT (0.06, 0.12, and 0.20 ng/mL, referred to as CYTL, CYTM, and CYTH, respectively) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization). No developmental toxicity was observed in the CYTL and CYTM groups, except for induced deformed phenotypes in the CYTM group at 120 hpf. However, exposure to CYTH resulted in significant reductions in spontaneous movement (24 hpf), heart rate (48 hpf), hatching rate (48 and 72 hpf), body weight (30 dpf), whole body length (30 dpf), and locomotion (30 dpf). Additionally, CYTH exposure induced morphological malformations, including spinal curvature, pericardial edema, and tail curvature in zebrafish larvae. Moreover, CYTH treatment induced apoptosis, increased reactive oxygen species (ROS) production, and resulted in significant reductions in free T3, cholesterol, estradiol, and testosterone levels in zebrafish larvae, while free T4 levels were increased. RNA-Seq analysis indicated that CYTH exposure led to significant alterations in the genome-wide gene expression profiles of zebrafish, particularly in the thyroid hormone and steroid biosynthesis signaling pathways, indicating endocrine disruption. Furthermore, CYTH exposure induced global DNA hypomethylation, reduced S-adenosylmethionine (SAM) levels and the SAM/S-adenosylhomocysteine (SAH) ratio, elevated SAH levels, and suppressed the mRNA expression of DNA methyltransferases (DNMTs) while also downregulating DNMT1 at both the gene and protein levels in zebrafish larvae. Overall, this study partially elucidated the developmental toxicity and endocrine disruption caused by CYT in zebrafish, providing evidence of the environmental hazards associated with this acaricide.
Collapse
Affiliation(s)
- Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Yang Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, PR China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Lingfu Kong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Daitao Zhang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Xianghe Liu
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Sha Yang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China; Xiangyang Polytechnic, Xiangyang, 441050, PR China.
| |
Collapse
|
13
|
Gupta AD, Gupta T. A review on potential approach for in silico toxicity analysis of respirable fraction of ambient particulate matter. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1216. [PMID: 37715017 DOI: 10.1007/s10661-023-11859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Epidemiological and toxicological studies have shown the adverse effect of ambient particulate matter (PM) on respiratory and cardiovascular systems inside the human body. Various cellular and acellular assays in literature use indicators like ROS generation, cell inflammation, mutagenicity, etc., to assess PM toxicity and associated health effects. The presence of toxic compounds in respirable PM needs detailed studies for proper understanding of absorption, distribution, metabolism, and excretion mechanisms inside the body as it is difficult to accurately imitate or simulate these mechanisms in lab or animal models. The leaching kinetics of the lung fluid, PM composition, retention time, body temperature, etc., are hard to mimic in an artificial experimental setup. Moreover, the PM size fraction also plays an important role. For example, the ultrafine particles may directly enter systemic circulations while coarser PM10 may be trapped and deposited in the tracheo-bronchial region. Hence, interpretation of these results in toxicity models should be done judiciously. Computational models predicting PM toxicity are rare in the literature. The variable composition of PM and lack of proper understanding for their synergistic role inside the body are prime reasons behind it. This review explores different possibilities of in silico modeling and suggests possible approaches for the risk assessment of PM particles. The toxicity testing approach for engineered nanomaterials, drugs, food industries, etc., have also been investigated for application in computing PM toxicity.
Collapse
Affiliation(s)
- Aman Deep Gupta
- Atmospheric Particle Technology Lab at Centre for Environmental Science and Engineering and Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Pin-208016, India
| | - Tarun Gupta
- Atmospheric Particle Technology Lab at Centre for Environmental Science and Engineering and Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Pin-208016, India.
| |
Collapse
|
14
|
Gea M, Macrì M, Marangon D, Pitasi FA, Fontana M, Bonetta S, Schilirò T. Can oestrogenic activity in air contribute to the overall body burden of endocrine disruptors? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104232. [PMID: 37459960 DOI: 10.1016/j.etap.2023.104232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Endocrine disruptors (EDCs) are emerging contaminants that are harmful to health. Human exposure occurs mainly through ingestion or dermal contact, but inhalation could be an additional exposure route; therefore, this study was conducted to evaluate the oestrogenic activity of airborne particulate matter (PM). Outdoor PM was collected for a year in five Italian sites and extracted with organic solvents (four seasonal extracts/site). The oestrogenic activity was assessed using a gene reporter assay (MELN), and the risk to human health through inhalation was quantified using the results. Moreover, extracts were analysed to assess cytotoxicity (WST-1 and LDH assays) on human bronchial cells (BEAS-2B). The extracts induced a significant cytotoxicity and oestrogenic activity. Oestrogenic activity showed a seasonal trend and was correlated with concentrations of benzo(a)pyrene and toxic equivalency factor. Although a low inhalation cancer risk was found, this study confirmed that oestrogenic activity in air could contribute to overall health risks due to EDC exposure.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy.
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Daniele Marangon
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Grugliasco, TO, Italy
| | | | - Marco Fontana
- Regional Agency for Environmental Protection of Piedmont (ARPA Piemonte), Grugliasco, TO, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Hu J, Yu L, Yang Z, Qiu J, Li J, Shen P, Lin H, Shui L, Tang M, Jin M, Chen K, Wang J. Long-Term Exposure to PM 2.5 and Mortality: A Cohort Study in China. TOXICS 2023; 11:727. [PMID: 37755738 PMCID: PMC10534778 DOI: 10.3390/toxics11090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
We investigated the association of long-term exposure to atmospheric PM2.5 with non-accidental and cause-specific mortality in Yinzhou, China. From July 2015 to January 2018, a total of 29,564 individuals aged ≥ 40 years in Yinzhou were recruited for a prospective cohort study. We used the Cox proportional-hazards model to analyze the relationship of the 2-year average concentration of PM2.5 prior to the baseline with non-accidental and cause-specific mortality. The median PM2.5 concentration was 36.51 μg/m3 (range: 25.57-45.40 μg/m3). In model 4, the hazard ratios per 10 μg/m3 increment in PM2.5 were 1.25 (95%CI: 1.04-1.50) for non-accidental mortality and 1.38 (95%CI:1.02-1.86) for cardiovascular disease mortality. We observed no associations between PM2.5 and deaths from respiratory disease or cancer. In the subgroup analysis, interactions were observed between PM2.5 and age, as well as preventive measures on hazy days. The observed association between long-term exposure to atmospheric PM2.5 at a relatively moderate concentration and the risk of non-accidental and cardiovascular disease mortality among middle-aged and elderly Chinese adults could provide evidence for government decision-makers to revise environmental policies towards a more stringent standard.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Public Health, and Department of Endocrinology of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou 310058, China
| | - Luhua Yu
- Department of Public Health, and Department of Endocrinology of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou 310058, China
| | - Zongming Yang
- Department of Public Health, and Department of Endocrinology of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou 310058, China
| | - Jie Qiu
- Department of Public Health, and Department of Endocrinology of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou 310058, China
| | - Jing Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Hongbo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Liming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo 315040, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianbing Wang
- Department of Public Health, and Department of Endocrinology of the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children’s Health, Hangzhou 310058, China
| |
Collapse
|
16
|
Giordano ME, Udayan G, Guascito MR, De Bartolomeo AR, Carlino A, Conte M, Contini D, Lionetto MG. Apoptotic volume decrease (AVD) in A 549 cells exposed to water-soluble fraction of particulate matter (PM 10). Front Physiol 2023; 14:1218687. [PMID: 37492639 PMCID: PMC10364053 DOI: 10.3389/fphys.2023.1218687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Exposure to atmospheric particulate matter (PM) is recognized as a human health risk factor of great concern. The present work aimed to study the cellular mechanisms underlying cytotoxic effects of airborne particulate matter <10 µm in size (PM10), sampled in an urban background site from January to May 2020, on A549 cells. In particular, the study addressed if PM10 exposure can be a main factor in the induction of the Apoptotic Volume Decrease (AVD), which is one of the first events of apoptosis, and if the generation of intracellular oxidative stress can be involved in the PM10 induction of apoptosis in A549 cells. The cytotoxicity of PM10 samples was measured by MTT test on cells exposed for 24 h to the PM10 aqueous extracts, cell volume changes were monitored by morphometric analysis of the cells, apoptosis appearance was detected by annexin V and the induction of intracellular oxidative stress was evaluated by the ROS sensitive CM-H2DCFDA fluorescent probe. The results showed cytotoxic effects ascribable to apoptotic death in A549 cells exposed for 24 h to aqueous extracts of airborne winter PM10 samples characterized by high PM10 value and organic carbon content. The detected reduced cell viability in winter samples ranged from 55% to 100%. Normotonic cell volume reduction (ranging from about 60% to 30% cell volume decrease) after PM10 exposure was already detectable after the first 30 min clearly indicating the ability of PM10, mainly arising from biomass burning, to induce Apoptotic Volume Decrease (AVD) in A549 cells. AVD was prevented by the pre-treatment with 0.5 mM SITS indicating the activation of Cl- efflux presumably through the activation of VRAC channels. The exposure of A549 cells to PM10 aqueous extracts was able to induce intracellular oxidative stress detected by using the ROS-sensitive probe CM-H2DCFDA. The PM10-induced oxidative stress was statistically significantly correlated with cell viability inhibition and with apoptotic cell shrinkage. It was already evident after 15 min exposure representing one of the first cellular effects caused by PM exposure. This result suggests the role of oxidative stress in the PM10 induction of AVD as one of the first steps in cytotoxicity.
Collapse
Affiliation(s)
- M E Giordano
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - G Udayan
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - M R Guascito
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - A R De Bartolomeo
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - A Carlino
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
| | - M Conte
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Rome, Italy
| | - D Contini
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Lecce, Italy
| | - M G Lionetto
- Department Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Lecce, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
17
|
Klimkaite L, Liveikis T, Kaspute G, Armalyte J, Aldonyte R. Air pollution-associated shifts in the human airway microbiome and exposure-associated molecular events. Future Microbiol 2023; 18:607-623. [PMID: 37477532 DOI: 10.2217/fmb-2022-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Publications addressing air pollution-induced human respiratory microbiome shifts are reviewed in this article. The healthy respiratory microbiota is characterized by a low density of bacteria, fungi and viruses with high diversity, and usually consists of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria, viruses and fungi. The air's microbiome is highly dependent on air pollution levels and is directly reflected within the human respiratory microbiome. In addition, pollutants indirectly modify the local environment in human respiratory organs by reducing antioxidant capacity, misbalancing proteolysis and modulating inflammation, all of which regulate local microbiomes. Improving air quality leads to more diverse and healthy microbiomes of the local air and, subsequently, residents' airways.
Collapse
Affiliation(s)
| | | | - Greta Kaspute
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | | | - Ruta Aldonyte
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
18
|
Garcia A, Santa-Helena E, De Falco A, de Paula Ribeiro J, Gioda A, Gioda CR. Toxicological Effects of Fine Particulate Matter (PM 2.5): Health Risks and Associated Systemic Injuries-Systematic Review. WATER, AIR, AND SOIL POLLUTION 2023; 234:346. [PMID: 37250231 PMCID: PMC10208206 DOI: 10.1007/s11270-023-06278-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/29/2023] [Indexed: 05/31/2023]
Abstract
Previous studies focused on investigating particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) have shown the risk of disease development, and association with increased morbidity and mortality rates. The current review investigate epidemiological and experimental findings from 2016 to 2021, which enabled the systemic overview of PM2.5's toxic impacts on human health. The Web of Science database search used descriptive terms to investigate the interaction among PM2.5 exposure, systemic effects, and COVID-19 disease. Analyzed studies have indicated that cardiovascular and respiratory systems have been extensively investigated and indicated as the main air pollution targets. Nevertheless, PM2.5 reaches other organic systems and harms the renal, neurological, gastrointestinal, and reproductive systems. Pathologies onset and/or get worse due to toxicological effects associated with the exposure to this particle type, since it can trigger several reactions, such as inflammatory responses, oxidative stress generation and genotoxicity. These cellular dysfunctions lead to organ malfunctions, as shown in the current review. In addition, the correlation between COVID-19/Sars-CoV-2 and PM2.5 exposure was also assessed to help better understand the role of atmospheric pollution in the pathophysiology of this disease. Despite the significant number of studies about PM2.5's effects on organic functions, available in the literature, there are still gaps in knowledge about how this particulate matter can hinder human health. The current review aimed to approach the main findings about the effect of PM2.5 exposure on different systems, and demonstrate the likely interaction of COVID-19/Sars-CoV-2 and PM2.5.
Collapse
Affiliation(s)
- Amanda Garcia
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Eduarda Santa-Helena
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Anna De Falco
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Joaquim de Paula Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departmento de Química, Rio de Janeiro, Brazil
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS Brazil
- Programa de Pós Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Campus Carreiros, Rio Grande, RS 96203-900 Brazil
| |
Collapse
|
19
|
Melzi G, Nozza E, Frezzini MA, Canepari S, Vecchi R, Cremonesi L, Potenza M, Marinovich M, Corsini E. Toxicological Profile of PM from Different Sources in the Bronchial Epithelial Cell Line BEAS-2B. TOXICS 2023; 11:toxics11050413. [PMID: 37235228 DOI: 10.3390/toxics11050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The toxicity of particulate matter (PM) is strictly associated with its physical-chemical characteristics, such as size or chemical composition. While these properties depend on the origin of the particles, the study of the toxicological profile of PM from single sources has rarely been highlighted. Hence, the focus of this research was to investigate the biological effects of PM from five relevant sources of atmospheric PM: diesel exhaust particles, coke dust, pellet ashes, incinerator ashes, and brake dust. Cytotoxicity, genotoxicity, oxidative, and inflammatory response were assessed in a bronchial cell line (BEAS-2B). BEAS-2B cells were exposed to different concentrations (25, 50, 100, and 150 μg/mL medium) of particles suspended in water. The exposure lasted 24 h for all the assays performed, except for reactive oxygen species, which were evaluated after 30 min, 1 h, and 4 h of treatment. The results showed a different action of the five types of PM. All the tested samples showed a genotoxic action on BEAS-2B, even in the absence of oxidative stress induction. Pellet ashes seemed to be the only ones able to induce oxidative stress by boosting the formation of reactive oxygen species, while brake dust resulted in the most cytotoxic. In conclusion, the study elucidated the differential response of bronchial cells to PM samples generated by different sources. The comparison could be a starting point for a regulatory intervention since it highlighted the toxic potential of each type of PM tested.
Collapse
Affiliation(s)
- Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emma Nozza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- PhD Program in Experimental Medicine, Università degli Studi di Milano, Via L. Vanvitelli 32, 20129 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via della Commenda 19, 20122 Milan, Italy
| | - Maria Agostina Frezzini
- Department of Environmental Biology, Sapienza University of Rome, Via C. De Lollis 21, 00185 Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, Via C. De Lollis 21, 00185 Rome, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Llorenç Cremonesi
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marco Potenza
- Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
20
|
Macrì M, Gea M, Piccini I, Dessì L, Santovito A, Bonelli S, Schilirò T, Bonetta S. Cabbage butterfly as bioindicator species to investigate the genotoxic effects of PM 10. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45285-45294. [PMID: 36705823 DOI: 10.1007/s11356-023-25510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric pollution poses a serious threat to environment and human health, and particulate matter (PM) is one of the major contributors. Biological effects induced by PM are investigated through in vitro assays using cells and by in vivo tests with laboratory model animals. However, also the estimation of adverse effects of pollutants, including airborne ones, on wild animals, such as insects, is an essential component of environmental risk assessment. Among insects, butterflies are sensitive to environmental changes and are important wild pollinators, so they might be suitable as environmental bioindicator species. The aim of this study was to evaluate the suitability of a wild cabbage butterfly species (Pieris brassicae) as a bioindicator organism to assess the genotoxic effects of PM10 collected in different sites. PM10 was collected from April to September in urban, suburban, and rural sites. P. brassicae larvae were reared in laboratory under controlled conditions on cabbage plants and exposed to PM10 organic extracts or dimethyl sulfoxide (controls) through vaporization. After exposure, larvae were dissected, and cells were used for comet assay. All PM extracts induced significant DNA damage in exposed larvae compared to controls and the extract collected in the most polluted site caused the highest genotoxic effect. In conclusion, the study suggested that butterflies, such as P. brassicae, could be applied as sensitive and promising bioindicators to investigate air quality and PM genotoxicity. Indeed, the use of these organisms allows the detection of genotoxic effects induced by PM sampled also in low-polluted areas.
Collapse
Affiliation(s)
- Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126, Torino, Italy
| | - Irene Piccini
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Luca Dessì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Simona Bonelli
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126, Torino, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 Bis, 10126, Torino, Italy.
| |
Collapse
|
21
|
Liu F, Xu T, Ng NL, Lu H. Linking Cell Health and Reactive Oxygen Species from Secondary Organic Aerosols Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1039-1048. [PMID: 36580374 DOI: 10.1021/acs.est.2c05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidative stress is a possible mechanism by which ambient fine particulate matter (PM) exerts adverse biological effects. While multiple biological effects and reactive oxygen species (ROS) production have been observed upon PM exposure, whether the biological effects are ROS-mediated remains unclear. Secondary organic aerosols (SOA) constitute a major fraction of fine PM and can contribute substantially to its toxicity. In this work, we measured three types of cell responses (mitochondrial membrane potential (MMP), caspase 3/7 activity, and ROS) and investigated their associations upon exposure to SOA formed from anthropogenic (naphthalene) and biogenic (α-pinene) precursors. MMP and caspase 3/7 activity (an early indicator of apoptosis) are key indicators of cell health, and changes of them could occur downstream of ROS-mediated pathways. We observed a significant increase in caspase 3/7 activity after SOA exposure, suggesting that apoptosis is an important pathway of cell death induced by SOA. We further found strong associations between a decrease in MMP and increase in caspase 3/7 activity with an increase in cellular ROS level. These results suggest that cell health is largely dependent on the cellular ROS level, highlighting oxidative stress as a key mechanism for biological effects from SOA exposure. Linear regression analyses reveal greater changes of the three cellular responses with increasing carbon oxidation state (OSc) of SOA, suggesting that SOA are more toxic when they are more oxidized. Overall, our work provides critical insights into the associations between cell health and ROS level upon SOA exposure and proposes that OSc could be a suitable proxy to assess the overall SOA toxicity.
Collapse
Affiliation(s)
- Fobang Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, China
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, Guangdong511443, China
| | - Tianchang Xu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Nga Lee Ng
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
22
|
Santibáñez-Andrade M, Quezada-Maldonado EM, Rivera-Pineda A, Chirino YI, García-Cuellar CM, Sánchez-Pérez Y. The Road to Malignant Cell Transformation after Particulate Matter Exposure: From Oxidative Stress to Genotoxicity. Int J Mol Sci 2023; 24:ijms24021782. [PMID: 36675297 PMCID: PMC9860989 DOI: 10.3390/ijms24021782] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
In cells, oxidative stress is an imbalance between the production/accumulation of oxidants and the ability of the antioxidant system to detoxify these reactive products. Reactive oxygen species (ROS), cause multiple cellular damages through their interaction with biomolecules such as lipids, proteins, and DNA. Genotoxic damage caused by oxidative stress has become relevant since it can lead to mutation and play a central role in malignant transformation. The evidence describes chronic oxidative stress as an important factor implicated in all stages of the multistep carcinogenic process: initiation, promotion, and progression. In recent years, ambient air pollution by particulate matter (PM) has been cataloged as a cancer risk factor, increasing the incidence of different types of tumors. Epidemiological and toxicological evidence shows how PM-induced oxidative stress could mediate multiple events oriented to carcinogenesis, such as proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, and activation of invasion/metastasis pathways. In this review, we summarize the findings regarding the involvement of oxidative and genotoxic mechanisms generated by PM in malignant cell transformation. We also discuss the importance of new approaches oriented to studying the development of tumors associated with PM with more accuracy, pursuing the goal of weighing the impact of oxidative stress and genotoxicity as one of the main mechanisms associated with its carcinogenic potential.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Andrea Rivera-Pineda
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla CP 54090, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| |
Collapse
|
23
|
Choi S, Kim EM, Kim SY, Choi Y, Choi S, Cho N, Park HJ, Kim KK. Particulate matter exposure exacerbates cellular damage by increasing stress granule formation in respiratory syncytial virus-infected human lung organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120439. [PMID: 36257563 DOI: 10.1016/j.envpol.2022.120439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Exposure to atmospheric particulate matter (PM) increases morbidity and mortality in respiratory diseases by causing various adverse health effects; however, the effects of PM exposure on cellular stress under virus-infected conditions remain unclear. The effects of PM under 10 μm (PM10) and diesel PM (DPM) on respiratory syncytial virus (RSV) infection were investigated in human two-dimensional lung epithelial cells and human three-dimensional lung organoids mimicking the lung tissue. We evaluated the formation of stress granules, which are important in cellular adaptation to various stress conditions. Furthermore, we investigated the effects of repeated exposure to PM10 and DPM on DNA damage and cell death during viral infection. PM10 and DPM did not cause stress granule formation in the absence of RSV infection but drastically increased stress granule formation and signal transduction during RSV infection in human lung epithelial cells and human lung organoids. Further, repeated exposure to PM10 and DPM caused cell death by severely damaging DNA under RSV infection conditions. Thus, PM10 and DPM induce severe lung toxicity under stress conditions, such as viral infection, suggesting that the effects of PMs under various stressful conditions should be examined to accurately predict the lung toxicity of PM.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yeongsoo Choi
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seri Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
24
|
Huber EA, Cerreta JM. Mechanisms of cell injury induced by inhaled molybdenum trioxide nanoparticles in Golden Syrian Hamsters. Exp Biol Med (Maywood) 2022; 247:2067-2080. [PMID: 35757989 PMCID: PMC9837300 DOI: 10.1177/15353702221104033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Molybdenum trioxide nanoparticles (MoO3 NPs) are extensively used in the biomedical, agricultural, and engineering fields that may increase exposure and adverse health effects to the human population. The purpose of this study is to evaluate a possible molecular mechanism leading to cell damage and death following pulmonary exposure to inhaled MoO3 NPs. Animals were separated into four groups: two control groups exposed to room air or aerosolized water and two treated groups exposed to aerosolized MoO3 NPs with a concentration of 5 mg/m3 NPs (4 h/day for eight days) and given a one-day (T-1) or seven-day (T-7) recovery period post exposure. Pulmonary toxicity was evaluated with total and differential cell counts. Increases were seen in total cell numbers, neutrophils, and multinucleated macrophages in the T-1 group, with increases in lymphocytes in the T-7 group (*P < 0.05). To evaluate the mechanism of toxicity, protein levels of Beclin-1, light chain 3 (LC3)-I/II, P-62, cathepsin B, NLRP3, ASC, caspase-1, interleukin (IL)-1β, and tumor necrosis factor-α (TNF-α) were assessed in lung tissue. Immunoblot analyses indicated 1.4- and 1.8-fold increases in Beclin-1 in treated groups (T-1 and T-7, respectively, *P < 0.05), but no change in protein levels of LC3-I/II in either treated group. The levels of cathepsin B were 2.8- and 2.3-fold higher in treated lungs (T-1 and T-7, respectively, *P < 0.05), the levels of NLRP3 had a fold increase of 2.5 and 3.6 (T-1 *P < 0.05, T-7 **P < 0.01, respectively), and the levels of caspase-1 indicated a 3.8- and 3.0-fold increase in treated lungs (T-1 and T-7, respectively, *P < 0.05). Morphological changes were studied using light and electron microscopy showing alterations to airway epithelium and the alveoli, along with particle internalization in macrophages. The results from this study may indicate that inhalation exposure to MoO3 NPs may interrupt the autophagic flux and induce cytotoxicity and lung injury through pyroptosis cell death and activation of caspase-1.
Collapse
|
25
|
Salmón P, Burraco P. Telomeres and anthropogenic disturbances in wildlife: A systematic review and meta-analysis. Mol Ecol 2022; 31:6018-6039. [PMID: 35080073 PMCID: PMC9790527 DOI: 10.1111/mec.16370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 01/31/2023]
Abstract
Human-driven environmental changes are affecting wildlife across the globe. These challenges do not influence species or populations to the same extent and therefore a comprehensive evaluation of organismal health is needed to determine their ultimate impact. Evidence suggests that telomeres (the terminal chromosomal regions) are sensitive to environmental conditions and have been posited as a surrogate for animal health and fitness. Evaluation of their use in an applied ecological context is still scarce. Here, using information from molecular and occupational biomedical studies, we aim to provide ecologists and evolutionary biologists with an accessible synthesis of the links between human disturbances and telomere length. In addition, we perform a systematic review and meta-analysis on studies measuring telomere length in wild/wild-derived animals facing anthropogenic disturbances. Despite the relatively small number of studies to date, our meta-analysis revealed a significant small negative association between disturbances and telomere length (-0.092 [-0.153, -0.031]; n = 28; k = 159). Yet, our systematic review suggests that the use of telomeres as a biomarker to understand the anthropogenic impact on wildlife is limited. We propose some research avenues that will help to broadly evaluate their suitability: (i) further causal studies on the link between human disturbances and telomeres; (ii) investigating the organismal implications, in terms of fitness and performance, of a given telomere length in anthropogenically disturbed scenarios; and (iii) better understanding of the underlying mechanisms of telomere dynamics. Future studies in these facets will help to ultimately determine their role as markers of health and fitness in wildlife facing anthropogenic disturbances.
Collapse
Affiliation(s)
- Pablo Salmón
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK,Department of Plant Biology and EcologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Pablo Burraco
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
26
|
Qi Y, Chen Y, Yan X, Liu W, Ma L, Liu Y, Ma Q, Liu S. Co-Exposure of Ambient Particulate Matter and Airborne Transmission Pathogens: The Impairment of the Upper Respiratory Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15892-15901. [PMID: 36240448 PMCID: PMC9670849 DOI: 10.1021/acs.est.2c03856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Recent evidence has pinpointed the positive relevance between air particulate matter (PM) pollution and epidemic spread. However, there are still significant knowledge gaps in understanding the transmission and infection of pathogens loaded on PMs, for example, the interactions between pathogens and pre-existing atmospheric PM and the health effects of co-exposure on the inhalation systems. Here, we unraveled the interactions between fine particulate matter (FPM) and Pseudomonas aeruginosa (P. aeruginosa) and evaluated the infection and detrimental effects of co-exposure on the upper respiratory systems in both in vitro and in vivo models. We uncovered the higher accessibility and invasive ability of pathogens to epithelial cells after loading on FPMs, compared with the single exposure. Furthermore, we designed a novel laboratory exposure model to simulate a real co-exposure scenario. Intriguingly, the co-exposure induced more serious functional damage and longer inflammatory reactions to the upper respiratory tract, including the nasal cavity and trachea. Collectively, our results provide a new point of view on the transmission and infection of pathogens loaded on FPMs and uncover the in vivo systematic impairments of the inhalation tract under co-exposure through a novel laboratory exposure model. Hence, this study sheds light on further investigations of the detrimental effects of air pollution and epidemic spread.
Collapse
Affiliation(s)
- Yu Qi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucai Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Yan
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ma
- Aerosol
and Haze Laboratory, Advanced Innovation Center for Soft Matter Science
and Engineering, Beijing University of Chemical
Technology, Beijing 100029, China
| | - Yongchun Liu
- Aerosol
and Haze Laboratory, Advanced Innovation Center for Soft Matter Science
and Engineering, Beijing University of Chemical
Technology, Beijing 100029, China
| | - Qingxin Ma
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Vanka KS, Shukla S, Gomez HM, James C, Palanisami T, Williams K, Chambers DC, Britton WJ, Ilic D, Hansbro PM, Horvat JC. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev 2022; 31:31/165/210250. [PMID: 35831008 DOI: 10.1183/16000617.0250-2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/20/2022] [Indexed: 01/15/2023] Open
Abstract
Workers in the mining and construction industries are at increased risk of respiratory and other diseases as a result of being exposed to harmful levels of airborne particulate matter (PM) for extended periods of time. While clear links have been established between PM exposure and the development of occupational lung disease, the mechanisms are still poorly understood. A greater understanding of how exposures to different levels and types of PM encountered in mining and construction workplaces affect pathophysiological processes in the airways and lungs and result in different forms of occupational lung disease is urgently required. Such information is needed to inform safe exposure limits and monitoring guidelines for different types of PM and development of biomarkers for earlier disease diagnosis. Suspended particles with a 50% cut-off aerodynamic diameter of 10 µm and 2.5 µm are considered biologically active owing to their ability to bypass the upper respiratory tract's defences and penetrate deep into the lung parenchyma, where they induce potentially irreversible damage, impair lung function and reduce the quality of life. Here we review the current understanding of occupational respiratory diseases, including coal worker pneumoconiosis and silicosis, and how PM exposure may affect pathophysiological responses in the airways and lungs. We also highlight the use of experimental models for better understanding these mechanisms of pathogenesis. We outline the urgency for revised dust control strategies, and the need for evidence-based identification of safe level exposures using clinical and experimental studies to better protect workers' health.
Collapse
Affiliation(s)
- Kanth Swaroop Vanka
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Division of Pulmonary, Allergy, and Critical Care Medicine, Dept of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shakti Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Carole James
- School of Health Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CERSE), The University of Newcastle, Newcastle, NSW, Australia
| | - Kenneth Williams
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Daniel C Chambers
- School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant Program, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Dept of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Dusan Ilic
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Michael Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| | - Jay Christopher Horvat
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia .,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| |
Collapse
|
28
|
Gajski G, Gerić M, Pehnec G, Matković K, Rinkovec J, Jakovljević I, Godec R, Žužul S, Bešlić I, Cvitković A, Wild P, Guseva Canu I, Hopf NB. Associating Air Pollution with Cytokinesis-Block Micronucleus Assay Parameters in Lymphocytes of the General Population in Zagreb (Croatia). Int J Mol Sci 2022; 23:ijms231710083. [PMID: 36077482 PMCID: PMC9455971 DOI: 10.3390/ijms231710083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Air pollution is recognized as one of the most serious public health issues worldwide and was declared to be a leading environmental cause of cancer deaths. At the same time, the cytokinesis-block micronucleus (CBMN) assay serves as a cancer predictive method that is extensively used in human biomonitoring for populations exposed to environmental contamination. The objective of this cross-sectional study is two-fold: to evaluate genomic instability in a sample (N = 130) of healthy, general population residents from Zagreb (Croatia), chronically exposed to different levels of air pollution, and to relate them to air pollution levels in the period from 2011 to 2015. Measured frequencies of CBMN assay parameters were in agreement with the baseline data for the general population of Croatia. Air pollution exposure was based on four factors obtained from a factor analysis of all exposure data obtained for the examined period. Based on the statistical results, we did not observe a significant positive association between any of the CBMN assay parameters tested and measured air pollution parameters for designated time windows, except for benzo(a)pyrene (B[a]P) that showed significant negative association. Our results show that measured air pollution parameters are largely below the regulatory limits, except for B[a]P, and as such, they do not affect CBMN assay parameters’ frequency. Nevertheless, as air pollution is identified as a major health threat, it is necessary to conduct prospective studies investigating the effect of air pollution on genome integrity and human health.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1468-2500
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Gordana Pehnec
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Katarina Matković
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Jasmina Rinkovec
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Jakovljević
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ranka Godec
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Silva Žužul
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivan Bešlić
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ante Cvitković
- Teaching Institute of Public Health Brod-Posavina County, 35000 Slavonski Brod, Croatia
- Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1011 Lausanne, Switzerland
- PW Statistical Consulting, 54520 Laxou, France
| | - Irina Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1011 Lausanne, Switzerland
| | - Nancy B. Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
29
|
Chin WS, Pan SC, Huang CC, Chen PJ, Guo YL. Exposure to Air Pollution and Survival in Follow-Up after Hepatocellular Carcinoma. Liver Cancer 2022; 11:474-482. [PMID: 36158593 PMCID: PMC9485987 DOI: 10.1159/000525346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Air pollutants are classified as carcinogens by the International Agency for Research on Cancer. Long-term exposure to ambient particulate matter with an aerodiameter of 2.5 μm or lower (PM2.5) has been reported to be linked with increased mortality due to hepatocellular carcinoma (HCC). However, the effects of air pollutants other than PM2.5 on HCC-related mortality have not been fully investigated. Accordingly, we conducted this study to assess the effect of long-term exposure to air pollutants (PM2.5 and nitrogen dioxide [NO2]) on HCC-related mortality. Method In 2005, the Taiwan Liver Cancer Network (TLCN) was established by the National Research Program for Genomic Medicine to recruit liver cancer patients from 5 major medical centers in northern, central, and southern Taiwan. The TLCN had successfully recruited 9,344 patients by the end of 2018. In this study, we included 1,000 patients randomly sampled from the TLCN to assess the effect of exposure to air pollutants on HCC mortality after HCC diagnosis. Daily averages of PM2.5 and NO2 concentrations were retrieved from 77 air quality-monitoring stations and interpolated to the townships of patients' residences by using the Kriging method. The effect of air pollutants on HCC survival was assessed using a Cox proportional hazards model. Results A total of 940 patients were included in the analysis. After adjusting for potential confounders and mutually adjusting for co-pollutants, we observed that the hazards ratio (95% confidence interval) for HCC-related mortality for every 1-μg/m3 increase in PM2.5 concentration was 1.11 (1.08-1.14) and that for every 1-ppb increase in NO2 concentration was 1.08 (1.03-1.13). Conclusion Our study suggests that long-term exposure to PM2.5 and NO2 was associated with decreased survival time in patients with HCC in Taiwan.
Collapse
Affiliation(s)
- Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan
| | - Shin-Chun Pan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Chun Huang
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Microbiology, NTU College of Medicine, Taipei, Taiwan
- Department of Gastroenterology, NTU Hospital, Taipei, Taiwan
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| |
Collapse
|
30
|
Kang D, Lee H, Jung S. Use of a 3D inkjet-printed model to access dust particle toxicology in the human alveolar barrier. Biotechnol Bioeng 2022; 119:3668-3677. [PMID: 36043483 DOI: 10.1002/bit.28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/20/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
Abstract
Fine dust particles in the air travel into our body via the airway tract and cause severe respiratory diseases. Thus, the analysis of the effects of dust particles on the respiratory system has been receiving significant research interest. However, most studies on the toxicity of dust particles involve two-dimensional (2D) cell cultures, animal models, and epidemiology. Here, we inkjet-printed an three-dimensional (3D) alveolar barrier model to study how dust particles cause respiratory diseases. The three-layered in vitro model was exposed to A2 fine test dust with varying concentrations and exposure durations. The results highlighted the destruction of the tissue architecture along with apoptosis in the bioprinted alveolar barrier. The damage at the cellular level induced an increase in the amount of pro-inflammatory cytokines secreted, followed by triggering of the signal transduction pathway and activation of transcription factors. As a consequence of the release of cytokines, the extracellular matrix was degraded, which led to the collapse of the cell structure, loss of cell polarity, and a decrease in the barrier tightness. Further, the pulmonary surfactant protein-related genes in the dust-treated alveolar tissue were investigated to evaluate the possible role of dust particles in pulmonary surfactant dysfunction. This study demonstrated the use of 3D-printed tissue model to evaluate the physiological impact of fine dust particles on cytotoxicity, alveolar barrier rigidity, and surfactant secretion of an alveolar barrier. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dayoon Kang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sungjune Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
31
|
Gene Expression Changes Induced by Exposure of RAW 264.7 Macrophages to Particulate Matter of Air Pollution: The Role of Endotoxins. Biomolecules 2022; 12:biom12081100. [PMID: 36008994 PMCID: PMC9405577 DOI: 10.3390/biom12081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the variable chemical and physical characteristics of particulate air pollutants, inflammation and oxidative stress have been identified as common mechanisms for cell damage and negative health influences. These effects are produced by organic components, especially by endotoxins. This study analyzed the gene expression profile after exposure of RAW 264.7 cells to the standard particulate matter (PM) material, NIST1648a, and PM with a reduced organic matter content, LAp120, in comparison to the effects of lipopolysaccharide (LPS). The selected parameters of cell viability, cell cycle progression, and metabolic and inflammatory activity were also investigated. Both forms of PM negatively influenced the parameters of cell activity. These results were generally reflected in the gene expression profile. Only NIST1648a, excluding LAp120, contained endotoxins and showed small but statistically significant pro-inflammatory activity. However, the gene expression profiling revealed strong pro-inflammatory cell activation induced by NIST1648a that was close to the effects of LPS. Changes in gene expression triggered by LAp120 were relatively small. The observed differences in the effects of NIST1648a and LAp120 were related to the content of organic matter in which bacterial endotoxins play an important role. However, other organic compounds and their interactions with other PM components also appear to be of significant importance.
Collapse
|
32
|
Effects of Particulate Matter on Inflammation and Thrombosis: Past Evidence for Future Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148771. [PMID: 35886623 PMCID: PMC9317970 DOI: 10.3390/ijerph19148771] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023]
Abstract
Ambient air pollution has become a common problem worldwide. Exposure to pollutant particles causes many health conditions, having a particular impact on pulmonary and cardiovascular disease. Increased understanding of the pathological processes related to these conditions may facilitate the prevention of the adverse impact of air pollution on our physical health. Evidence from in vitro, in vivo, and clinical studies has consistently shown that exposure to particulate matter could induce the inflammatory responses such as IL-6, TNF-α, IL-1β, as well as enhancing the oxidative stress. These result in vascular injury, adhesion molecule release, platelet activation, and thrombin generation, ultimately leading to a prothrombotic state. In this review, evidence on the effects of particulate matter on inflammation, oxidative stress, adhesion molecules, and coagulation pathways in enhancing the risk of thrombosis is comprehensively summarized and discussed. The currently available outcomes of interventional studies at a cellular level and clinical reports are also presented and discussed.
Collapse
|
33
|
Wei S, Wei Y, Gong Y, Chen Y, Cui J, Li L, Yan H, Yu Y, Lin X, Li G, Yi L. Metabolomics as a valid analytical technique in environmental exposure research: application and progress. Metabolomics 2022; 18:35. [PMID: 35639180 DOI: 10.1007/s11306-022-01895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. It is a crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology, and biomarker discovery. AIM OF REVIEW Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after environmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify potential biomarkers and biological mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on the application of metabolomics to understand the biological effects of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers and toxicity mechanisms.
Collapse
Affiliation(s)
- Shuang Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyun Wei
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yaqi Gong
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yonglin Chen
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jian Cui
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Linwei Li
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Hongxia Yan
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Yueqiu Yu
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiang Lin
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guoqing Li
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Education, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
34
|
Miller JG, Dennis EL, Heft-Neal S, Jo B, Gotlib IH. Fine Particulate Air Pollution, Early Life Stress, and Their Interactive Effects on Adolescent Structural Brain Development: A Longitudinal Tensor-Based Morphometry Study. Cereb Cortex 2022; 32:2156-2169. [PMID: 34607342 PMCID: PMC9113318 DOI: 10.1093/cercor/bhab346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/13/2022] Open
Abstract
Air pollution is a major environmental threat to public health; we know little, however, about its effects on adolescent brain development. Exposure to air pollution co-occurs, and may interact, with social factors that also affect brain development, such as early life stress (ELS). Here, we show that severity of ELS and fine particulate air pollution (PM2.5) are associated with volumetric changes in distinct brain regions, but also uncover regions in which ELS moderates the effects of PM2.5. We interviewed adolescents about ELS events, used satellite-derived estimates of ambient PM2.5 concentrations, and conducted longitudinal tensor-based morphometry to assess regional changes in brain volume over an approximately 2-year period (N = 115, ages 9-13 years at Time 1). For adolescents who had experienced less severe ELS, PM2.5 was associated with volumetric changes across several gray and white matter regions. Fewer effects of PM2.5 were observed for adolescents who had experienced more severe ELS, although occasionally they were in the opposite direction. This pattern of results suggests that for many brain regions, moderate to severe ELS largely constrains the effects of PM2.5 on structural development. Further theory and research is needed on the joint effects of ELS and air pollution on the brain.
Collapse
Affiliation(s)
- Jonas G Miller
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sam Heft-Neal
- Center for Food Security and the Environment, Stanford University, Stanford, CA 94305, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Vicente ED, Figueiredo D, Gonçalves C, Lopes I, Oliveira H, Kováts N, Pinheiro T, Alves CA. In vitro toxicity of particulate matter emissions from residential pellet combustion. J Environ Sci (China) 2022; 115:215-226. [PMID: 34969449 DOI: 10.1016/j.jes.2021.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 06/14/2023]
Abstract
Particulate matter emissions (PM10) from the combustion, in a residential stove, of two commercial brands of certified (ENplus A1) pellets, a non-certified brand and laboratory made pellets of acacia were tested for their ability to induce ecotoxic, cytotoxic, and mutagenic responses in unicellular organisms and a human cell line. Ecotoxicity was evaluated through the Vibrio fischeri bioluminescence inhibition assay. Moreover, cytotoxicity was assessed at two time points (24- and 48-hr) through two complementary techniques in order to evaluate the cellular metabolic activity and membrane integrity of human lung epithelial cells A549. The Ames test using two Salmonella typhimurium strains (TA100 and TA98) was employed to assess the mutagenic potential of the polycyclic aromatic hydrocarbon fraction extracted from the PM10 samples. Results obtained with the bioluminescent bacteria indicated that only particles from the combustion of acacia pellets were toxic. All samples induced impairment on the A549 cells metabolic activity, while no significant release of lactate dehydrogenase was recorded. PM10 emissions from acacia pellets were the most cytotoxic, while samples from both certified pellets evoked significant cytotoxicity at lower doses. Cytotoxicity time-dependency was only observed for PM10 from the combustion of acacia pellets and one of the brands of certified pellets. Mutagenic activity was not detected in both S. typhimurium strains. This study emphasises the role of the raw material for pellet manufacturing on the toxicological profile of PM emissions. Alternative raw materials should be deeply investigated before their use in pelletisation and combustion in residential appliances.
Collapse
Affiliation(s)
- Estela D Vicente
- Department of Environment and Planning and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Figueiredo
- Department of Environment and Planning and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Gonçalves
- Department of Environment and Planning and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nora Kováts
- Centre of Natural Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Teresa Pinheiro
- Instituto de Bioengenharia e Biociências, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Célia A Alves
- Department of Environment and Planning and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
36
|
Assessment of Physicochemical, Microbiological and Toxicological Hazards at an Illegal Landfill in Central Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084826. [PMID: 35457694 PMCID: PMC9027659 DOI: 10.3390/ijerph19084826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to assess the physicochemical, microbiological and toxicological hazards at an illegal landfill in central Poland. The research included the analysis of airborne dust (laser photometer), the number of microorganisms in the air, soil and leachate (culture method) and the microbial diversity in the landfill environment (high-throughput sequencing on the Illumina Miseq); the cytotoxicity (PrestoBlue) and genotoxicity (alkaline comet assay) of soil and leachate were tested. Moreover, an analysis of UHPLC-Q-ToF-UHRMS (ultra-high-performance liquid chromatography-quadrupole-time-of-flight ultrahigh-resolution mass spectrometry) was performed to determine the toxic compounds and microbial metabolites. The PM1 dust fraction constituted 99.89% and 99.99% of total dust and exceeded the threshold of 0.025 mg m−3 at the tested locations. In the air, the total number of bacteria was 9.33 × 101–1.11 × 103 CFU m−3, while fungi ranged from 1.17 × 102 to 4.73 × 102 CFU m−3. Psychrophilic bacteria were detected in the largest number in leachates (3.3 × 104 to 2.69 × 106 CFU mL−1) and in soil samples (8.53 × 105 to 1.28 × 106 CFU g−1). Bacteria belonging to Proteobacteria (42–64.7%), Bacteroidetes (4.2–23.7%), Actinobacteria (3.4–19.8%) and Firmicutes (0.7–6.3%) dominated. In the case of fungi, Basidiomycota (23.3–27.7%), Ascomycota (5.6–46.3%) and Mortierellomycota (3.1%) have the highest abundance. Bacteria (Bacillus, Clostridium, Cellulosimicrobium, Escherichia, Pseudomonas) and fungi (Microascus, Chrysosporium, Candida, Malassezia, Aspergillus, Alternaria, Fusarium, Stachybotrys, Cladosporium, Didymella) that are potentially hazardous to human health were detected in samples collected from the landfill. Tested leachates and soils were characterised by varied cyto/genotoxins. Common pesticides (carbamazepine, prometryn, terbutryn, permethrin, carbanilide, pyrethrin, carbaryl and prallethrin), quaternary ammonium compounds (benzalkonium chlorides), chemicals and/or polymer degradation products (melamine, triphenylphosphate, diphenylphtalate, insect repellent diethyltoluamide, and drugs (ketoprofen)) were found in soil and leachate samples. It has been proven that the tested landfill is the source of the emission of particulate matter; microorganisms (including potential pathogens) and cyto/genotoxic compounds.
Collapse
|
37
|
Unveiling the Toxicity of Fine and Nano-Sized Airborne Particles Generated from Industrial Thermal Spraying Processes in Human Alveolar Epithelial Cells. Int J Mol Sci 2022; 23:ijms23084278. [PMID: 35457096 PMCID: PMC9025379 DOI: 10.3390/ijms23084278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 02/04/2023] Open
Abstract
High-energy industrial processes have been associated with particle release into workplace air that can adversely affect workers’ health. The present study assessed the toxicity of incidental fine (PGFP) and nanoparticles (PGNP) emitted from atmospheric plasma (APS) and high-velocity oxy-fuel (HVOF) thermal spraying. Lactate dehydrogenase (LDH) release, 2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) metabolisation, intracellular reactive oxygen species (ROS) levels, cell cycle changes, histone H2AX phosphorylation (γ-H2AX) and DNA damage were evaluated in human alveolar epithelial cells at 24 h after exposure. Overall, HVOF particles were the most cytotoxic to human alveolar cells, with cell viability half-maximal inhibitory concentration (IC50) values of 20.18 µg/cm2 and 1.79 µg/cm2 for PGFP and PGNP, respectively. Only the highest tested concentration of APS-PGFP caused a slight decrease in cell viability. Particle uptake, cell cycle arrest at S + G2/M and γ-H2AX augmentation were observed after exposure to all tested particles. However, higher levels of γ-H2AX were found in cells exposed to APS-derived particles (~16%), while cells exposed to HVOF particles exhibited increased levels of oxidative damage (~17% tail intensity) and ROS (~184%). Accordingly, APS and HVOF particles seem to exert their genotoxic effects by different mechanisms, highlighting that the health risks of these process-generated particles at industrial settings should not be underestimated.
Collapse
|
38
|
Souza IDC, Morozesk M, Siqueira P, Zini E, Galter IN, Moraes DAD, Matsumoto ST, Wunderlin DA, Elliott M, Fernandes MN. Metallic nanoparticle contamination from environmental atmospheric particulate matter in the last slab of the trophic chain: Nanocrystallography, subcellular localization and toxicity effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152685. [PMID: 34974021 DOI: 10.1016/j.scitotenv.2021.152685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Atmospheric particulate material (PM) from mining and steel industries comprises several metallic contaminants. PM10 samples collected in a Brazilian region with a recognized influence of the steel and iron pelletizing industries were used to investigate metallic nanoparticle incorporation into human fibroblast cells (MRC-5). MRC-5 cells were exposed to 0 (control, ultrapure water), 2.5, 5, 10, 20 and 40 μg PM10 mL-1, for 24 h. Cytotoxic and genotoxic dose-response effects were observed on lysosome and DNA structure, and concentrations high as 20 and 40 μg PM10 mL-1 induced elevated cell death. Ultrastructure analyses showed aluminosilicate, iron, and the emerging metallic contaminants titanium, bismuth, and cerium nanoparticles were incorporated into lung cells, in which the nanocrystallography analysis indicated the bismuth as Bi2O3. All internalized metallic nanoparticles were free and unbound in the cytoplasm and nucleus thereby indicating bioavailability and potential interaction to biological processes and cellular structures. Pearson's correlation analysis showed Fe, Ni, Al, Cr, Pb and Hg as the main cytotoxic elements which are associated with the stainless steel production. The presence of internalized nanoparticles in human lung cells exposed to environmental atmospheric matter highlights the need for a greater effort by regulatory agencies to understand their potential damage and hence the need for future regulation, especially of emerging metallic contaminants.
Collapse
Affiliation(s)
- Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Priscila Siqueira
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Enzo Zini
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Iasmini N Galter
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A de Moraes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Michael Elliott
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK; International Estuarine & Coastal Specialists Ltd., Leven HU17 5LQ, UK
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
39
|
Phairuang W, Inerb M, Hata M, Furuuchi M. Characteristics of trace elements bound to ambient nanoparticles (PM 0.1) and a health risk assessment in southern Thailand. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127986. [PMID: 34902726 DOI: 10.1016/j.jhazmat.2021.127986] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Ambient nanoparticles, or PM0.1 and thirteen trace elements (Al, Ba, K, Fe, Cr, Cu, Ni, Na, Mn, Mg, Ti, Pb, and Zn) were studied in Hat Yai, Thailand during the year 2018. The annual average PM0.1 mass concentration was 8.45 ± 1.93 µg/m3. The PM0.1 levels in Hat Yai were similar to those in large cities in South East Asia, such as Hanoi and North Sumatra, but lower than other cities in Thailand. The sum of thirteen trace elements was 207.83 ± 17.06 ng/m3 and was dominated by Na, Zn, K, Mg, and Al. The highest concentration of elements occurred in the pre-monsoon season followed by the dry and monsoon seasons. A principal component analysis (PCA) indicated that PM0.1 comes from motor vehicles, crustal dust, industrial and biomass burning. The PM0.1 was dominated in the pre-monsoon season, suggesting that biomass burning from the southwest direction could cause an increase in the levels of Cr, Ti, and Ni. The total cancer risk from all the carcinogenic elements was 1.98 × 10-6 in adults, indicating that the carcinogenic risk is in a tolerable risk assessment range. The increasing levels of PM0.1 during transboundary haze pollution and local source emissions are a concern.
Collapse
Affiliation(s)
- Worradorn Phairuang
- Department of Geography, Faculty of Social Sciences, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.
| | - Muanfun Inerb
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Mitsuhiko Hata
- Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Masami Furuuchi
- Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
40
|
Integration of Genotoxic Biomarkers in Environmental Biomonitoring Analysis Using a Multi-Biomarker Approach in Three-Spined Stickleback (Gasterosteus aculeatus Linnaeus, 1758). TOXICS 2022; 10:toxics10030101. [PMID: 35324726 PMCID: PMC8950626 DOI: 10.3390/toxics10030101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Water is impacted by a variety of increasing pressures, such as contaminants, including genotoxic pollutants. The proposed multi-biomarker approach at a sub-individual level gives a complementary indicator to the chemical and ecological parameters of the Water Framework Directive (WFD, 2000/60/EC). By integrating biomarkers of genotoxicity and erythrocyte necrosis in the sentinel fish species the three-spined stickleback (Gasterosteus aculeatus) through active biomonitoring of six stations of the Artois-Picardie watershed, north France, our work aimed to improve the already existing biomarker approach. Even if fish in all stations had high levels of DNA strand breaks, the multivariate analysis (PCA), followed by hierarchical agglomerative clustering (HAC), improved discrimination among stations by detecting an increase of nuclear DNA content variation (Etaing, St Rémy du Nord, Artres and Biache-St-Vaast) and erythrocyte necrosis (Etaing, St Rémy du Nord). The present work highlighted that the integration of these biomarkers of genotoxicity in a multi-biomarker approach is appropriate to expand physiological parameters which allow the targeting of new potential effects of contaminants.
Collapse
|
41
|
Abstract
Air pollution is associated with increased morbidity and mortality and with cell death at a cellular level. However, the exact mechanism of particulate matter-induced cell death remains to be elucidated. The aim of the present in vitro study using human alveolar epithelial cells (A549) was to determine the cell death pathway(s) induced by black carbon (BC) and ozone oxidized-black carbon (O-BC). BC and O-BC induced A549 cell death and the cytotoxic effect was dose-dependent. Cell death was significantly abrogated by inhibitor of receptor protein interacting kinase 1 (RIPK1) but only mildly inhibited by apoptosis inhibitor and RIPK3. BC- and O-BC-treated cells showed RIPK1 and RIPK3 protein overexpression and high phosphorylated levels of these proteins, as well as detectable levels of caspase-8 active form. BC- and O-BC-triggered cell death was also fully rescued in A549 cells that under-expressed RIPK1 with RIPK1 siRNA. Our results indicated that BC and O-BC could induce cell death through a multitude of pathways including apoptotic and necroptotic pathways and that RIPK1 is the upstream signal protein of these cell death pathways, with an important role in the regulation of BC-induced cell death.
Collapse
Affiliation(s)
- Xianyan Xu
- Department of Anatomy, Quanzhou Medical College
| | - Zhaojun Xu
- Department of Environmental Medicine, Quanzhou Medical College
| | - Shiyong Zeng
- Department of Environmental Medicine, Quanzhou Medical College
| | - Yuhui Ouyang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy, Beijing TongRen Hospital, Affiliated with the Capital University of Medical Science
| |
Collapse
|
42
|
Wang J, Zhang Y, Zhang Z, Yu W, Li A, Gao X, Lv D, Zheng H, Kou X, Xue Z. Toxicology of respiratory system: Profiling chemicals in PM 10 for molecular targets and adverse outcomes. ENVIRONMENT INTERNATIONAL 2022; 159:107040. [PMID: 34922181 DOI: 10.1016/j.envint.2021.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/13/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that the increasing trend of respiratory diseases have been closely associated with the endogenous toxic chemicals (polycyclic aromatic hydrocarbons, heavy metal ions, etc.) in PM10. In the present study, we aim to determine the strong correlations between the chemicals in PM10 and the adverse consequences. We used the ChemView DB, the ToxRef DB and a comprehensive literature analysis to collect, identify, and evaluate the chemicals in PM10 and their adverse effects on respiratory system, and then used the ToxCast DB to analyze their bioactivity and key targets through 1192 molecular targets and cell characteristic endpoints. Meanwhile, the bioinformatics analysis were carried out on the molecular targets to screen out prevention and treatment targets. A total of 310 chemicals related to the respiratory system were identified. An unsupervised two-directional heatmap was constructed based on hierarchical clustering of 227 chemicals by their effect scores. A subset of 253 chemicals with respiratory system toxicity had in vitro bioactivity on 318 molecular targets that could be described, clustered and annotated in the heatmap and bipartite network, which were analyzed based on the protein information in UniProt KB database and the software of GO, STRING, and KEGG. These results showed that the chemicals in PM10 have strong correlation with different types of respiratory system injury. The main pathways of respiratory system injury caused by PM10 are the Calcium signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway, and the core proteins in which are likely to be the molecular targets for the prevention and treatment of damage caused by PM10.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Danyu Lv
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Huaize Zheng
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
43
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
44
|
Abstract
Ferroptosis, an iron-dependent form of programmed cell death, is characterized by iron overload, increased reactive oxygen species (ROS) generation, and depletion of glutathione (GSH) and lipid peroxidation. Lipophilic antioxidants and iron chelators can prevent ferroptosis. GSH-dependent glutathione peroxidase 4 (GPX4) prevents lipid ROS accumulation. Ferroptosis is thought to be initiated through GPX4 inactivation. Moreover, mitochondrial iron overload derived from the degradation of ferritin is involved in increasing ROS generation. Ferroptosis has been suggested to explain the mechanism of action of organ toxicity induced by several drugs and chemicals. Inhibition of ferroptosis may provide novel therapeutic opportunities for treatment and even prevention of such organ toxicities.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, 27117University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, 27117Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Favor OK, Pestka JJ, Bates MA, Lee KSS. Centrality of Myeloid-Lineage Phagocytes in Particle-Triggered Inflammation and Autoimmunity. FRONTIERS IN TOXICOLOGY 2021; 3:777768. [PMID: 35295146 PMCID: PMC8915915 DOI: 10.3389/ftox.2021.777768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to exogenous particles found as airborne contaminants or endogenous particles that form by crystallization of certain nutrients can activate inflammatory pathways and potentially accelerate autoimmunity onset and progression in genetically predisposed individuals. The first line of innate immunological defense against particles are myeloid-lineage phagocytes, namely macrophages and neutrophils, which recognize/internalize the particles, release inflammatory mediators, undergo programmed/unprogrammed death, and recruit/activate other leukocytes to clear the particles and resolve inflammation. However, immunogenic cell death and release of damage-associated molecules, collectively referred to as "danger signals," coupled with failure to efficiently clear dead/dying cells, can elicit unresolved inflammation, accumulation of self-antigens, and adaptive leukocyte recruitment/activation. Collectively, these events can promote loss of immunological self-tolerance and onset/progression of autoimmunity. This review discusses critical molecular mechanisms by which exogenous particles (i.e., silica, asbestos, carbon nanotubes, titanium dioxide, aluminum-containing salts) and endogenous particles (i.e., monosodium urate, cholesterol crystals, calcium-containing salts) may promote unresolved inflammation and autoimmunity by inducing toxic responses in myeloid-lineage phagocytes with emphases on inflammasome activation and necrotic and programmed cell death pathways. A prototypical example is occupational exposure to respirable crystalline silica, which is etiologically linked to systemic lupus erythematosus (SLE) and other human autoimmune diseases. Importantly, airway instillation of SLE-prone mice with crystalline silica elicits severe pulmonary pathology involving accumulation of particle-laden alveolar macrophages, dying and dead cells, nuclear and cytoplasmic debris, and neutrophilic inflammation that drive cytokine, chemokine, and interferon-regulated gene expression. Silica-induced immunogenic cell death and danger signal release triggers accumulation of T and B cells, along with IgG-secreting plasma cells, indicative of ectopic lymphoid tissue neogenesis, and broad-spectrum autoantibody production in the lung. These events drive early autoimmunity onset and accelerate end-stage autoimmune glomerulonephritis. Intriguingly, dietary supplementation with ω-3 fatty acids have been demonstrated to be an intervention against silica-triggered murine autoimmunity. Taken together, further insight into how particles drive immunogenic cell death and danger signaling in myeloid-lineage phagocytes and how these responses are influenced by the genome will be essential for identification of novel interventions for preventing and treating inflammatory and autoimmune diseases associated with these agents.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
46
|
In Vitro Effects of Particulate Matter Associated with a Wildland Fire in the North-West of Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010812. [PMID: 34682553 PMCID: PMC8535364 DOI: 10.3390/ijerph182010812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/09/2021] [Indexed: 11/27/2022]
Abstract
Wildland fires, increasing in recent decades in the Mediterranean region due to climate change, can contribute to PM levels and composition. This study aimed to investigate biological effects of PM2.5 (Ø < 2.5 µm) and PM10 (Ø < 10 µm) collected near a fire occurred in the North-West of Italy in 2017 and in three other areas (urban and rural areas). Organic extracts were assessed for mutagenicity using Ames test (TA98 and TA100 strains), cell viability (WST-1 and LDH assays) and genotoxicity (Comet assay) with human bronchial cells (BEAS-2B) and estrogenic activity using a gene reporter assay (MELN cells). In all sites, high levels of PM10 and PM2.5 were measured during the fire suggesting that near and distant sites were influenced by fire pollutants. The PM10 and PM2.5 extracts induced a significant mutagenicity in all sites and the mutagenic effect was increased with respect to historical data. All extracts induced a slight increase of the estrogenic activity but a possible antagonistic activity of PM samples collected near fire was observed. No cytotoxicity or DNA damage was detected. Results confirm that fires could be relevant for human health, since they can worsen the air quality increasing PM concentrations, mutagenic and estrogenic effects.
Collapse
|
47
|
In vitro impact preliminary assessment of airborne particulate from metalworking and woodworking industries. Sci Rep 2021; 11:20181. [PMID: 34642423 PMCID: PMC8511069 DOI: 10.1038/s41598-021-99815-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023] Open
Abstract
Inhalation is the main route of exposure to airborne pollutants. To evaluate the safety and assess the risks of occupational hazards different testing approaches are used. 3D airway epithelial tissues allow to mimic exposure conditions in vitro, generates human-relevant toxicology data, allows to elucidate the mode of action of pollutants. Gillian3500 pumps were used to collect the airborne particulate from woodworking and metalworking environments. EpiAirway tissues were used to model half working day (4 h), full working day (8 h), and 3 working day exposures to occupational pollutants. Tissue viability was assessed using an MTT assay. For preliminary assessment, RT-qPCR analyses were performed to analyze the expression of gelsolin, caspase-3, and IL-6. Tissue morphology was assessed by hematoxylin/eosin staining. An effect on the proliferation of lung epithelial cell line A549 was assessed. Acute exposure to workspace pollutants slightly affected tissue viability and did not change the morphology. No inhibiting effect was observed on the proliferation of A549 cells. Preliminary analysis showed that both types of particles suppressed the expression of gelsolin, with the effect of metalworking samples being more pronounced. A slight reduction in caspase-3 expression was observed. Particles from metalworking suppressed IL-6 expression.
Collapse
|
48
|
Wang L, Zhou L, Zhou Y, Liu L, Jiang W, Zhang H, Liu H. Necroptosis in Pulmonary Diseases: A New Therapeutic Target. Front Pharmacol 2021; 12:737129. [PMID: 34594225 PMCID: PMC8476758 DOI: 10.3389/fphar.2021.737129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decades, apoptosis has been the most well-studied regulated cell death (RCD) that has essential functions in tissue homeostasis throughout life. However, a novel form of RCD called necroptosis, which requires receptor-interacting protein kinase-3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), has recently been receiving increasing scientific attention. The phosphorylation of RIPK3 enables the recruitment and phosphorylation of MLKL, which oligomerizes and translocates to the plasma membranes, ultimately leading to plasma membrane rupture and cell death. Although apoptosis elicits no inflammatory responses, necroptosis triggers inflammation or causes an innate immune response to protect the body through the release of damage-associated molecular patterns (DAMPs). Increasing evidence now suggests that necroptosis is implicated in the pathogenesis of several human diseases such as systemic inflammation, respiratory diseases, cardiovascular diseases, neurodegenerative diseases, neurological diseases, and cancer. This review summarizes the emerging insights of necroptosis and its contribution toward the pathogenesis of lung diseases.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiling Jiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Kermani M, Rahmatinia T, Oskoei V, Norzaee S, Shahsavani A, Farzadkia M, Kazemi MH. Potential cytotoxicity of trace elements and polycyclic aromatic hydrocarbons bounded to particulate matter: a review on in vitro studies on human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55888-55904. [PMID: 34490568 DOI: 10.1007/s11356-021-16306-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies have been conducted for clarifying toxicological mechanisms of particulate matter (PM) aimed to investigate the physicochemical properties of PM and providing biological endpoints such as inflammation, perturbation of cell cycle, oxidative stress, or DNA damage. However, although several studies have presented some effects, there is still no consensus on the determinants of biological responses. This review attempts to summarize all past research conducted in recent years on the physicochemical properties of environmental PM in different places and the relationship between different PM components and PM potential cytotoxicity on the human lung epithelial cells. Among 447 papers with our initial principles, a total of 50 articles were selected from 1986 to April 2020 based on the chosen criteria for review. According to the results of selected studies, it is obvious that cytotoxicity in human lung epithelial cells is created both directly or indirectly by transition metals (such as Cu, Cr, Fe, Zn), polycyclic aromatic hydrocarbons (PAH), and ions that formed on the surface of particles. In the selected studies, the findings of the correlation analysis indicate that there is a significant relationship between cell viability reduction and secretion of inflammatory mediators. As a result, it seems that the observed biological responses are related to the composition and the physicochemical properties of the PMs. Therefore, the physicochemical properties of PM should be considered when explaining PM cytotoxicity, and long-term research data will lead to improved strategies to reduce air pollution.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Tahere Rahmatinia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Oskoei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahsavani
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Metabolic Response of RAW 264.7 Macrophages to Exposure to Crude Particulate Matter and a Reduced Content of Organic Matter. TOXICS 2021; 9:toxics9090205. [PMID: 34564356 PMCID: PMC8472964 DOI: 10.3390/toxics9090205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
Exposure to air pollution from various airborne particulate matter (PM) is regarded as a potential health risk. Airborne PM penetrates the lungs, where it is taken up by macrophages, what results in macrophage activation and can potentially lead to negative consequences for the organism. In the present study, we assessed the effects of direct exposure of RAW 264.7 macrophages to crude PM (NIST1648a) and to a reduced content of organic matter (LAp120) for up to 72 h on selected parameters of metabolic activity. These included cell viability and apoptosis, metabolic activity and cell number, ROS synthesis, nitric oxide (NO) release, and oxidative burst. The results indicated that both NIST1648a and LAp120 negatively influenced the parameters of cell viability and metabolic activity due to increased ROS synthesis. The negative effect of PM was concentration-dependent; i.e., it was the most pronounced for the highest concentration applied. The impact of PM also depended on the time of exposure, so at respective time points, PM induced different effects. There were also differences in the impact of NIST1648a and LAp120 on almost all parameters tested. The negative effect of LAp120 was more pronounced, what appeared to be associated with an increased content of metals.
Collapse
|