1
|
Bhaskar M, Satheesan A, Basu A. Low-density Lipoprotein Receptor is an important host factor in flaviviral entry and replication in neurons. Biochem Biophys Res Commun 2025; 743:151160. [PMID: 39689643 DOI: 10.1016/j.bbrc.2024.151160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Flaviviruses, which are transmitted by mosquitoes, are arthropod-borne infections that are pathogenic to both humans and animals, posing a significant global threat to public health. So far, various endocytic pathways have been reported for flaviviral entry; however, the role of cellular factors in viral replication and entry remains uncertain. Here in this study, we identified the role of Low-density lipoprotein receptor, which has long been established as a cholesterol carrier for neurons but remained unexplored as an essential host factor for JEV/WNV replication. To explore this, we utilized 10-day old BALB/c pups and two neuronal cell lines, NSC34 and HT22, both of different origin, as experimental models. Transient knockdown of LDLR gene in vitro using siRNA-mediated gene silencing drastically reduced viral specific transcripts and proteins upon viral incubation. Moreover, flaviviral binding and internalization were significantly compromised upon infection in LDLR-transfected cells when compared with non-specific eGFP-transfected cells. Antibody neutralization experiments using LDLR-specific polyclonal antibody significantly reduced viral entry in vitro, suggesting the role of LDLR as an important cell attachment factor for JEV and WNV uptake. Furthermore, ectopic expression of LDLR via plasmid transfection led to significant increase in virus replication in cells, indicating significant role of LDLR in flavivirus replication beside acting as an active attachment factor for JEV and WNV. Overall, our results indicate that LDLR act as novel host factor involved in both flaviviral entry and replication, thus serving as a suitable candidate for antiviral research.
Collapse
Affiliation(s)
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
2
|
Schöbel A, Pinho Dos Reis V, Burkhard R, Hehner J, Schneider L, Schauflinger M, Vieyres G, Herker E. Inhibition of sterol O-acyltransferase 1 blocks Zika virus infection in cell lines and cerebral organoids. Commun Biol 2024; 7:1089. [PMID: 39237833 PMCID: PMC11377701 DOI: 10.1038/s42003-024-06776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
Viruses depend on host metabolic pathways and flaviviruses are specifically linked to lipid metabolism. During dengue virus infection lipid droplets are degraded to fuel replication and Zika virus (ZIKV) infection depends on triglyceride biosynthesis. Here, we systematically investigated the neutral lipid-synthesizing enzymes diacylglycerol O-acyltransferases (DGAT) and the sterol O-acyltransferase (SOAT) 1 in orthoflavivirus infection. Downregulation of DGAT1 and SOAT1 compromises ZIKV infection in hepatoma cells but only SOAT1 and not DGAT inhibitor treatment reduces ZIKV infection. DGAT1 interacts with the ZIKV capsid protein, indicating that protein interaction might be required for ZIKV replication. Importantly, inhibition of SOAT1 severely impairs ZIKV infection in neural cell culture models and cerebral organoids. SOAT1 inhibitor treatment decreases extracellular viral RNA and E protein level and lowers the specific infectivity of virions, indicating that ZIKV morphogenesis is compromised, likely due to accumulation of free cholesterol. Our findings provide insights into the importance of cholesterol and cholesterol ester balance for efficient ZIKV replication and implicate SOAT1 as an antiviral target.
Collapse
Affiliation(s)
- Anja Schöbel
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | | | - Rabea Burkhard
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Julia Hehner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | | | - Gabrielle Vieyres
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Lau MJ, Nie S, Ross PA, Endersby-Harshman NM, Hoffmann AA. Long-term impacts of egg quiescence and Wolbachia infection on lipid profiles in Aedes aegypti: Ovarian roles in lipid synthesis during reproduction. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104674. [PMID: 38997103 DOI: 10.1016/j.jinsphys.2024.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Wolbachia, an endosymbiotic bacterium, relies on nutrients from its host to complete its life cycle. The presence of Wolbachia strain wAlbB in the mosquito Aedes aegypti during egg or larval stages affects the host's development, leading to the absence of developed and visible ovaries in adult mosquito females. In this study, we investigated the impacts of egg quiescence and Wolbachia infection on lipid profiles of adult Ae. aegypti females, and discerned the role of ovaries in lipid synthesis in the reproductive process. The lipidomes of Wolbachia infected and uninfected female individuals at various developmental stages were quantitatively analyzed by LC-MS/MS. Lipidomic change patterns were systematically further investigated in wAlbB-infected fertile females and infertile females following blood feeding. Prolonged egg quiescence induced a shortage of acyl-carnitine (CAR) and potentially impacted some molecules of diacyl-phospholipid (diacyl-PL) and sphingolipid (SL) in young adult mosquitoes. After the first gonotrophic cycle, infertile females accumulated more CAR and lyso-phospholipid (lyso-PL) than fertile females. Then in the second gonotrophic cycle, the patterns of different lipid groups remained similar between fertile and infertile females. Only a small proportion of molecules of triglyceride (TG), phospholipid (lyso-PL and diacyl-PL) and ceramide (Cer) increased exclusively in fertile females from 0 h to 16 h post blood meal, suggesting that the generation or prescence of these lipids rely on ovaries. In addition, we found cardiolipins (CL) might be impacted by Wolbachia infection at the egg stage, and infected mosquitoes also showed distinct patterns between fertile and infertile females at their second gonotrophic cycle. Our study provides new insights into the long-term influence of Wolbachia on lipid profiles throughout various life stages of mosquitoes. Additionally, it suggests a role played by ovaries in lipid synthesis during mosquito reproduction.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nancy M Endersby-Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Farías MA, Diethelm-Varela B, Kalergis AM, González PA. Interplay between lipid metabolism, lipid droplets and RNA virus replication. Crit Rev Microbiol 2024; 50:515-539. [PMID: 37348003 DOI: 10.1080/1040841x.2023.2224424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/20/2022] [Accepted: 01/29/2023] [Indexed: 06/24/2023]
Abstract
Lipids play essential roles in the cell as components of cellular membranes, signaling molecules, and energy storage sources. Lipid droplets are cellular organelles composed of neutral lipids, such as triglycerides and cholesterol esters, and are also considered as cellular energy reserves, yet new functions have been recently associated with these structures, such as regulators of oxidative stress and cellular lipotoxicity, as well as modulators of pathogen infection through immune regulation. Lipid metabolism and lipid droplets participate in the infection process of many RNA viruses and control their replication and assembly, among others. Here, we review and discuss the contribution of lipid metabolism and lipid droplets over the replication cycle of RNA viruses, altogether pointing out potentially new pharmacological antiviral targets associated with lipid metabolism.
Collapse
Affiliation(s)
- Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Stancheva VG, Sanyal S. Positive-strand RNA virus replication organelles at a glance. J Cell Sci 2024; 137:jcs262164. [PMID: 39254430 PMCID: PMC11423815 DOI: 10.1242/jcs.262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.
Collapse
Affiliation(s)
- Viktoriya G. Stancheva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
6
|
Naveed A, Eertink LG, Wang D, Li F. Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches. Viruses 2024; 16:781. [PMID: 38793662 PMCID: PMC11125849 DOI: 10.3390/v16050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; (A.N.); (L.G.E.); (D.W.)
| |
Collapse
|
7
|
O'Carroll SM, Henkel FDR, O'Neill LAJ. Metabolic regulation of type I interferon production. Immunol Rev 2024; 323:276-287. [PMID: 38465724 DOI: 10.1111/imr.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Over the past decade, there has been a surge in discoveries of how metabolic pathways regulate immune cell function in health and disease, establishing the field of immunometabolism. Specifically, pathways such as glycolysis, the tricarboxylic acid (TCA) cycle, and those involving lipid metabolism have been implicated in regulating immune cell function. Viral infections cause immunometabolic changes which lead to antiviral immunity, but little is known about how metabolic changes regulate interferon responses. Interferons are critical cytokines in host defense, rapidly induced upon pathogen recognition, but are also involved in autoimmune diseases. This review summarizes how metabolic change impacts interferon production. We describe how glycolysis, lipid metabolism (specifically involving eicosanoids and cholesterol), and the TCA cycle-linked intermediates itaconate and fumarate impact type I interferons. Targeting these metabolic changes presents new therapeutic possibilities to modulate type I interferons during host defense or autoimmune disorders.
Collapse
Affiliation(s)
- Shane M O'Carroll
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fiona D R Henkel
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
8
|
Singh S, Wright RE, Giri S, Arumugaswami V, Kumar A. Targeting ABCG1 and SREBP-2 mediated cholesterol homeostasis ameliorates Zika virus-induced ocular pathology. iScience 2024; 27:109088. [PMID: 38405605 PMCID: PMC10884761 DOI: 10.1016/j.isci.2024.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Zika virus (ZIKV) infection during pregnancy causes severe neurological and ocular abnormalities in infants, yet no vaccine or antivirals are available. Our transcriptomic analysis of ZIKV-infected retinal pigment epithelial (RPE) cells revealed alterations in the cholesterol pathway. Thus, we investigated the functional roles of ATP binding cassette transporter G1 (ABCG1) and sterol response element binding protein 2 (SREPB-2), two key players in cholesterol metabolism, during ocular ZIKV infection. Our in vitro data showed that increased ABCG1 activity via liver X receptors (LXRs), reduced ZIKV replication, while ABCG1 knockdown increased replication with elevated intracellular cholesterol. Conversely, inhibiting SREBP-2 or its knockdown reduced ZIKV replication by lowering cholesterol levels. In vivo, LXR agonist or SREBP-2 inhibitor treatment mitigated ZIKV-induced chorioretinal lesions in mice, concomitant with decreased expression of inflammatory mediators and increased activation of antiviral response genes. In summary, our study identifies ABCG1's antiviral role and SREBP-2's proviral effects in ocular ZIKV infection, offering cholesterol metabolism as a potential target to develop antiviral therapies.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert E. Wright
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | | | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences/ Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
Wang Y, Gao L. Cholesterol: A friend to viruses. Int Rev Immunol 2024; 43:248-262. [PMID: 38372266 DOI: 10.1080/08830185.2024.2314577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
10
|
Ding C, Chen Y, Miao G, Qi Z. Research Advances on the Role of Lipids in the Life Cycle of Human Coronaviruses. Microorganisms 2023; 12:63. [PMID: 38257890 PMCID: PMC10820681 DOI: 10.3390/microorganisms12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) are emerging pathogens with a significant potential to cause life-threatening harm to human health. Since the beginning of the 21st century, three highly pathogenic and transmissible human CoVs have emerged, triggering epidemics and posing major threats to global public health. CoVs are enveloped viruses encased in a lipid bilayer. As fundamental components of cells, lipids can play an integral role in many physiological processes, which have been reported to play important roles in the life cycle of CoVs, including viral entry, uncoating, replication, assembly, and release. Therefore, research on the role of lipids in the CoV life cycle can provide a basis for a better understanding of the infection mechanism of CoVs and provide lipid targets for the development of new antiviral strategies. In this review, research advances on the role of lipids in different stages of viral infection and the possible targets of lipids that interfere with the viral life cycle are discussed.
Collapse
Affiliation(s)
- Cuiling Ding
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Yibo Chen
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Gen Miao
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| |
Collapse
|
11
|
Sotorilli GE, Gravina HD, de Carvalho AC, Shimizu JF, Fontoura MA, Melo-Hanchuk TD, Cordeiro AT, Marques RE. Phenotypical Screening of an MMV Open Box Library and Identification of Compounds with Antiviral Activity against St. Louis Encephalitis Virus. Viruses 2023; 15:2416. [PMID: 38140657 PMCID: PMC10747599 DOI: 10.3390/v15122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne Flavivirus that may cause severe neurological disease in humans and other animals. There are no specific treatments against SLEV infection or disease approved for human use, and drug repurposing may represent an opportunity to accelerate the development of treatments against SLEV. Here we present a scalable, medium-throughput phenotypic cell culture-based screening assay on Vero CCL81 cells to identify bioactive compounds that could be repurposed against SLEV infection. We screened eighty compounds from the Medicines for Malaria Venture (MMV) COVID Box library to identify nine (11%) compounds that protected cell cultures from SLEV-induced cytopathic effects, with low- to mid-micromolar potencies. We validated six hit compounds using viral plaque-forming assays to find that the compounds ABT-239, Amiodarone, Fluphenazine, Posaconazole, Triparanol, and Vidofludimus presented varied levels of antiviral activity and selectivity depending on the mammalian cell type used for testing. Importantly, we identified and validated the antiviral activity of the anti-flavivirus nucleoside analog 7DMA against SLEV. Triparanol and Fluphenazine reduced infectious viral loads in both Vero CCL81 and HBEC-5i cell cultures and, similar to the other validated compounds, are likely to exert antiviral activity through a molecular target in the host.
Collapse
Affiliation(s)
- Giuliana Eboli Sotorilli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
- Department of Genetics, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-100, Brazil
| | - Humberto Doriguetto Gravina
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Ana Carolina de Carvalho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
- Department of Genetics, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-100, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
- Department of Cellular and Structural Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-100, Brazil
| | - Talita Diniz Melo-Hanchuk
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Artur Torres Cordeiro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| |
Collapse
|
12
|
Edwards B, Ghedin E, Voronin D. Wolbachia interferes with Zika virus replication by hijacking cholesterol metabolism in mosquito cells. Microbiol Spectr 2023; 11:e0218023. [PMID: 37811984 PMCID: PMC10715073 DOI: 10.1128/spectrum.02180-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Arthropod-borne viruses are emerging pathogens that are spread widely by mosquitos. Zika virus is an arbovirus that can infect humans and be transmitted from an infected mother to the fetus, potentially leading to microcephaly in infants. One promising strategy to prevent disease caused by arboviruses is to target the insect vector population. Recent field studies have shown that mosquito populations infected with Wolbachia bacteria suppress arbovirus replication and transmission. Here, we describe how intracellular bacteria redirect resources within their host cells and suppress Zika virus replication at the cellular level. Understanding the mechanism behind Wolbachia-induced interference of arbovirus replication could help advance strategies to control arbovirus pathogens in insect vectors and human populations.
Collapse
Affiliation(s)
- Brent Edwards
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Hou Y, Wang Z, Liu P, Wei X, Zhang Z, Fan S, Zhang L, Han F, Song Y, Chu L, Zhang C. SMPDL3A is a cGAMP-degrading enzyme induced by LXR-mediated lipid metabolism to restrict cGAS-STING DNA sensing. Immunity 2023; 56:2492-2507.e10. [PMID: 37890481 DOI: 10.1016/j.immuni.2023.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Lipid metabolism has been associated with the cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) stimulator of interferon genes (STING) DNA-sensing pathway, but our understanding of how these signals are integrated into a cohesive immunometabolic program is lacking. Here, we have identified liver X receptor (LXR) agonists as potent inhibitors of STING signaling. We show that stimulation of lipid metabolism by LXR agonists specifically suppressed cyclic GMP-AMP (cGAMP)-STING signaling. Moreover, we developed cyclic dinucleotide-conjugated beads to biochemically isolate host effectors for cGAMP inhibition, and we found that LXR ligands stimulated the expression of sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A), which is a 2'3'-cGAMP-degrading enzyme. Results of crystal structures suggest that cGAMP analog induces dimerization of SMPDL3A, and the dimerization is critical for cGAMP degradation. Additionally, we have provided evidence that SMPDL3A cleaves cGAMP to restrict STING signaling in cell culture and mouse models. Our results reveal SMPDL3A as a cGAMP-specific nuclease and demonstrate a mechanism for how LXR-associated lipid metabolism modulates STING-mediated innate immunity.
Collapse
Affiliation(s)
- Yanfei Hou
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhimeng Wang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peiyuan Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xubiao Wei
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhengyin Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Shilong Fan
- Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Lulu Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Fangping Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yikang Song
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Chu
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Conggang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
14
|
Elliott K, Caicedo PA, Haunerland NH, Lowenberger C. Profiling lipidomic changes in dengue-resistant and dengue-susceptible strains of Colombian Aedes aegypti after dengue virus challenge. PLoS Negl Trop Dis 2023; 17:e0011676. [PMID: 37847671 PMCID: PMC10581493 DOI: 10.1371/journal.pntd.0011676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
The mosquito Aedes aegypti is the primary vector for all four serotypes of dengue viruses (DENV1-4), which infect millions across the globe each year. Traditional insecticide programs have been transiently effective at minimizing cases; however, insecticide resistance and habitat expansion have caused cases of DENV to surge over the last decade. There is an urgent need to develop novel vector control measures, but these are contingent on a detailed understanding of host-parasite interactions. Here, we have utilized lipidomics to survey the profiles of naturally DENV-resistant (Cali-MIB) or susceptible (Cali-S) populations of Ae. aegypti, isolated from Cali, Colombia, when fed on blood meals containing DENV. Control insects were fed on a DENV-free blood meal. Midguts were dissected from Cali-MIB and Cali-S females at three time points post-infectious blood meal, 18, 24 and 36h, to identify changes in the lipidome at key times associated with the entry, replication and exit of DENV from midgut cells. We used principal component analysis to visualize broad patterns in lipidomic profiles between the treatment groups, and significance analysis of microarray to determine lipids that were altered in response to viral challenge. These data can be used to identify molecules or metabolic pathways particular to the susceptible or refractory phenotypes, and possibly lead to the generation of stable, DENV-resistant strains of Ae. aegypti.
Collapse
Affiliation(s)
- Keenan Elliott
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| | - Paola A. Caicedo
- Universidad Icesi, Natural Science Faculty, Department of Biology, Cali, Colombia
| | - Norbert H. Haunerland
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| | - Carl Lowenberger
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| |
Collapse
|
15
|
Zhang J, Zhu Y, Wang X, Wang J. 25-hydroxycholesterol: an integrator of antiviral ability and signaling. Front Immunol 2023; 14:1268104. [PMID: 37781400 PMCID: PMC10533924 DOI: 10.3389/fimmu.2023.1268104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Cholesterol, as an important component in mammalian cells, is efficient for viral entry, replication, and assembly. Oxysterols especially hydroxylated cholesterols are recognized as novel regulators of the innate immune response. The antiviral ability of 25HC (25-Hydroxycholesterol) is uncovered due to its role as a metabolic product of the interferon-stimulated gene CH25H (cholesterol-25-hydroxylase). With the advancement of research, the biological functions of 25HC and its structural functions have been interpreted gradually. Furthermore, the underlying mechanisms of antiviral effect of 25HC are not only limited to interferon regulation. Taken up by the special biosynthetic ways and structure, 25HC contributes to modulate not only the cholesterol metabolism but also autophagy and inflammation by regulating signaling pathways. The outcome of modulation by 25HC seems to be largely dependent on the cell types, viruses and context of cell microenvironments. In this paper, we review the recent proceedings on the regulatory effect of 25HC on interferon-independent signaling pathways related to its antiviral capacity and its putative underlying mechanisms.
Collapse
Affiliation(s)
- Jialu Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Xiaojia Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
16
|
Yousefi P, Gholami A, Mehrjo M, Razizadeh MH, Akhavan M, Karampoor S, Tabibzadeh A. The role of cholesterol 25-hydroxylase in viral infections: Mechanisms and implications. Pathol Res Pract 2023; 249:154783. [PMID: 37660656 DOI: 10.1016/j.prp.2023.154783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Viral infections pose significant threats to human health, causing various diseases with varying severity. The intricate interactions between viruses and host cells determine the outcome of infection, including viral replication, immune responses, and disease progression. Cholesterol 25-hydroxylase (CH25H) is an enzyme that catalyzes the conversion of cholesterol to 25-hydroxycholesterol (25HC), a potent antiviral molecule. In recent years, increasing evidence has highlighted the critical involvement of CH25H in modulating immune responses and influencing viral infections. Notably, the review discusses the implications of CH25H in viral pathogenesis and the development of therapeutic strategies. It examines the interplay between CH25H and viral immune evasion mechanisms, highlighting the potential of viral antagonism of CH25H to enhance viral replication and pathogenesis. Furthermore, it explores the therapeutic potential of targeting CH25H or modulating its downstream signaling pathways as a strategy to control viral infections and enhance antiviral immune responses. This comprehensive review demonstrates the crucial role of CH25H in viral infections, shedding light on its mechanisms of action in viral entry, replication, and immune modulation. Understanding the complex interplay between CH25H and viral infections may pave the way for novel therapeutic approaches and the development of antiviral strategies aimed at exploiting the antiviral properties of CH25H and enhancing host immune responses against viral pathogens. In the current review, we tried to provide an overview of the antiviral activity and importance of CH25H in viral pathogenesis.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gholami
- School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohsen Mehrjo
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mandana Akhavan
- Department of Microbiology, Faculty of Medical Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Song YJ, Zhang J, Xiao J, Feng H, Xu Z, Nie P, Chang MX. Piscine Vitamin D Receptors Vdra/Vdrb in the Absence of Vitamin D Are Utilized by Grass Carp Reovirus for Promoting Viral Replication. Microbiol Spectr 2023; 11:e0128723. [PMID: 37466438 PMCID: PMC10433867 DOI: 10.1128/spectrum.01287-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The vitamin D receptor (VDR) plays a pivotal role in the biological actions of vitamin D (VitD). However, little is known about the functions of VDR in the production of viral inclusion bodies (VIBs). Using a representative strain of grass carp reovirus (GCRV) genotype I, GCRV-873, we show that GCRV-873 recruits grass carp Vdrs for promoting the production of VIBs in the absence of VitD. Inhibition of cholesterol synthesis by lovastatin impairs the production of VIBs and blocks the effects of grass carp Vdrs in promoting the production of VIBs in the absence of VitD. Furthermore, grass carp Vdrs are found to form the Vdra-Vdrb heterodimer, which is vital for 3-hydroxy-3-methylglutaryl-coenzyme A reductase (hmgcr)-dependent cholesterol synthesis and GCRV replication. Intriguingly in the presence of VitD, grass carp Vdra but not Vdrb forms the heterodimer with the retinoid X receptor beta b (Rxrbb), which induces the transcription of those genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway for inhibiting GCRV infection. Furthermore, the VitD-activated Vdra-Vdrb heterodimer attenuates the transcription of the RLR antiviral signaling pathway induced by VitD. In the presence of VitD, a balance between the Vdra-Rxrbb heterodimers as coactivators and Vdra-Vdrb heterodimers as corepressors in affecting the transcriptional regulation of the RLR antiviral signaling pathway may eventually determine the outcome of GCRV infection. Transfection with VitD can abolish the effect of grass carp Vdrs in promoting GCRV replication in a dose-dependent manner. Taken together, these findings demonstrate that GCRV utilizes host Vdrs to increase hmgcr-dependent cholesterol synthesis for promoting its replication, which can be prevented by VitD treatment. IMPORTANCE Grass carp reovirus (GCRV) is the causative agent of grass carp hemorrhagic disease, which seriously harms freshwater fish. Although many positive or negative regulators of GCRV infection have been identified in teleosts, little is known about the molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection. Here, we show that in the absence of VitD, the GCRV-873 strain utilizes host vitamin D receptors Vdra/Vdrb to increase hmgcr-dependent cholesterol synthesis for promoting the production of VIBs, which are important functional sites for aquareovirus replication and assembly. The negative regulation of Vdrs during viral infection can be prevented by VitD treatment. Thus, this present work broadens understanding of the pivotal roles of Vdrs in the interaction between the host and GCRV in the absence or presence of VitD, which might provide a rational basis for developing novel anti-GCRV strategies.
Collapse
Affiliation(s)
- Yun Jie Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
18
|
Peruzzu D, Fecchi K, Venturi G, Gagliardi MC. Repurposing Amphotericin B and Its Liposomal Formulation for the Treatment of Human Mpox. Int J Mol Sci 2023; 24:ijms24108896. [PMID: 37240241 DOI: 10.3390/ijms24108896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Mpox (monkeypox) is a zoonotic viral disease caused by the mpox virus (MPXV). Recently in 2022, a multi-country Mpox outbreak has determined great concern as the disease rapidly spreads. The majority of cases are being noticed in European regions and are unrelated to endemic travel or known contact with infected individuals. In this outbreak, close sexual contact appears to be important for MPXV transmission, and an increasing prevalence in people with multiple sexual partners and in men who have sex with men has been observed. Although Vaccinia virus (VACV)-based vaccines have been shown to induce a cross-reactive and protective immune response against MPXV, limited data support their efficacy against the 2022 Mpox outbreak. Furthermore, there are no specific antiviral drugs for Mpox. Host-cell lipid rafts are small, highly dynamic plasma-membrane microdomains enriched in cholesterol, glycosphingolipids and phospholipids that have emerged as crucial surface-entry platforms for several viruses. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) inhibits fungal, bacterial and viral infection of host cells through its capacity to sequester host-cell cholesterol and disrupt lipid raft architecture. In this context, we discuss the hypothesis that AmphB could inhibit MPXV infection of host cells through disruption of lipid rafts and eventually through redistribution of receptors/co-receptors mediating virus entry, thus representing an alternative or additional therapeutic tool for human Mpox.
Collapse
Affiliation(s)
- Daniela Peruzzu
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Katia Fecchi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giulietta Venturi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Cristina Gagliardi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
19
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
20
|
Wang H, Cui B, Yan H, Wu S, Wang K, Yang G, Jiang J, Li Y. Targeting 7-dehydrocholesterol reductase against EV-A71 replication by upregulating interferon response. Antiviral Res 2023; 209:105497. [PMID: 36528172 DOI: 10.1016/j.antiviral.2022.105497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Recent studies have shown a close link between viral infections and cholesterol metabolism. Here, we reported that 7-dehydrocholesterol reductase (DHCR7), a terminal enzyme for catalyzing cholesterol synthesis in the Kandutsch-Russell pathway, is harnessed by enterovirus A71 (EV-A71) benefitting for its replication. Overexpression of DHCR7 resulted in upregulating of EV-A71 replication, while the S14A mutation, which reduces DHCR7 enzyme activity, has no effect on EV-A71 replication. Knockdown of DHCR7 expression with small interfering RNA (siRNA) or enzyme activity inhibition with pharmacological inhibitor AY9944 could significantly inhibit EV-A71 replication. Adding cholesterol to DHCR7 knockdown cells or AY9944-treated cells could rescue EV-A71 replication. More importantly, prophylactic administration of AY9944 effectively protected mice from lethal EV-A71 infection. In addition, the natural cholesterol precursor 7-dehydrocholesterol (7-DHC), which is converted to cholesterol by DHCR7, has a similar effect against EV-A71 infection. Mechanistically, AY9944 or 7-DHC treatment can specifically promote IRF3 phosphorylation to activate interferon response. Moreover, AY9944 effectively cleared coxsackievirus B3 (CVB3) and coxsackievirus A16 (CVA16) infections in vitro. In conclusion, pharmacological modulation of DHCR7 might provide a chance for treatment of enterovirus infection, including EV-A71.
Collapse
Affiliation(s)
- Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Boming Cui
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
21
|
Augmentation of 3β-hydroxysteroid-Δ24 Reductase (DHCR24) Expression Induced by Bovine Viral Diarrhea Virus Infection Facilitates Viral Replication via Promoting Cholesterol Synthesis. J Virol 2022; 96:e0149222. [PMID: 36468862 PMCID: PMC9769396 DOI: 10.1128/jvi.01492-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the etiologic agent of bovine viral diarrhea-mucosal disease, one of the most important viral diseases of cattle, leading to numerous losses to the cattle rearing industry worldwide. The pathogenicity of BVDV is extremely complex, and many underlying mechanisms involved in BVDV-host interactions are poorly understood, especially how BVDV utilizes host metabolism pathway for efficient viral replication and spread. In our previous study, using an integrative analysis of transcriptomics and proteomics, we found that DHCR24 (3β-hydroxysteroid-Δ24 reductase), a key enzyme in regulating cholesterol synthesis, was significantly upregulated at both gene and protein levels in the BVDV-infected bovine cells, indicating that cholesterol is important for BVDV replication. In the present study, the effects of DHCR24-mediated cholesterol synthesis on BVDV replication was explored. Our results showed that overexpression of the DHCR24 effectively promoted cholesterol synthesis, as well as BVDV replication, while acute cholesterol depletion in the bovine cells by treating cells with methyl-β-cyclodextrin (MβCD) obviously inhibited BVDV replication. In addition, knockdown of DHCR24 (gene silencing with siRNA targeting DHCR24, siDHCR24) or chemical inhibition (treating bovine cells with U18666A, an inhibitor of DHCR24 activity and cholesterol synthesis) significantly suppressed BVDV replication, whereas supplementation with exogenous cholesterol to the siDHCR24-transfected or U18666A-treated bovine cells remarkably restored viral replication. We further confirmed that BVDV nonstructural protein NS5A contributed to the augmentation of DHCR24 expression. Conclusively, augmentation of the DHCR24 induced by BVDV infection plays an important role in BVDV replication via promoting cholesterol production. IMPORTANCE Bovine viral diarrhea virus (BVDV), an important pathogen of cattle, is the causative agent of bovine viral diarrhea-mucosal disease, which causes extensive economic losses in both cow- and beef-rearing industry worldwide. The molecular interactions between BVDV and its host are extremely complex. In our previous study, we found that an essential host factor 3β-hydroxysteroid-δ24 reductase (DHCR24), a key enzyme involved in cholesterol synthesis, was significantly upregulated at both gene and protein levels in BVDV-infected bovine cells. Here, we experimentally explored the function of the DHCR24-mediated cholesterol synthesis in regulating BVDV replication. We elucidated that the augmentation of the DHCR24 induced by BVDV infection played a significant role in viral replication via promoting cholesterol synthesis. Our data provide evidence that BVDV utilizes a host metabolism pathway to facilitate its replication and spread.
Collapse
|
22
|
25-Hydroxycholesterol Mediates Cholesterol Metabolism to Restrict Porcine Deltacoronavirus Infection via Suppression of Transforming Growth Factor β1. Microbiol Spectr 2022; 10:e0219822. [PMID: 36314946 PMCID: PMC9769798 DOI: 10.1128/spectrum.02198-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus in pigs, is one of the major pathogens for lethal watery diarrhea in piglets and poses a threat to public health because of its potential for interspecies transmission to humans. 25-Hydroxycholesterol (25HC), a derivative of cholesterol, exhibits multiple potential modulating host responses to pathogens, including viruses and bacteria, as well as pathogen-induced inflammation, while its antiviral effect on PDCoV and how it mediates the biological process of host cells to counter against infections remain poorly understood. Here, we thoroughly explored the antiviral effect of 25HC on PDCoV infection and tried to elucidate the underlying mechanisms. 25HC showed no toxic effect in LLC-PK1 cells and exerted antiviral ability against PDCoV infection in vitro. The viral cycle and time-of-addition analyses showed that 25HC mainly restricted the early and middle periods of the PDCoV postentry stage to inhibit infection. 25HC regulated disordered cholesterol metabolism induced by PDCoV infection and stimulated interferon-related lipid droplet accumulation. Transforming growth factor β1 (TGF-β1), screened by bioinformatic analyses, seemed to play an important role in PDCoV infection and was downregulated by 25HC. One interesting finding is that inhibition of TGF-β1 with the inhibitor asiaticoside exhibited a similar antiviral capacity to 25HC and demonstrated regulation of cholesterol metabolism. Taking all of the findings together, we verified the antiviral effect of 25HC on PDCoV through interference with cholesterol metabolism, which may be related to its suppression of TGFβ1. IMPORTANCE As an emerging enteropathogenic coronavirus in pigs, porcine deltacoronavirus (PDCoV) causes giant economic loss in the pig industry because of lethal diarrhea and possesses the potential for transmission from animals to humans. Several pieces of evidence have suggested the antiviral potential of cholesterol-25-hydroxylase and importance of cholesterol in viral infection. This study reports that 25-hydroxycholesterol (25HC) significantly restricted PDCoV infection through modulation of cholesterol metabolism, and we identified that lipid droplets play important roles in interferon response against virus infection. Moreover, this study identified the importance of TGF-β1 in CoV infection by bioinformatic analysis and verified that the inhibition of TGF-β1 showed anti-PDCoV capacity. Moreover, we uncovered the relationship between TGF-β and cholesterol metabolism initially. Given that the importance of cholesterol in viral infection, 25HC has a great potential to treat PDCoV infection and TGF-β1 can be a crucial antiviral target.
Collapse
|
23
|
An N, Ge Q, Shao H, Li Q, Guo F, Liang C, Li X, Yi D, Yang L, Cen S. Interferon-inducible SAMHD1 restricts viral replication through downregulation of lipid synthesis. Front Immunol 2022; 13:1007718. [PMID: 36532074 PMCID: PMC9755837 DOI: 10.3389/fimmu.2022.1007718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Background Type I interferon (IFN) inhibits virus infection through multiple processes. Recent evidence indicates that IFN carries out its antiviral activity through readjusting of the cellular metabolism. The sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1), as an interferon-stimulated gene (ISG), has been reported to inhibit a number of retroviruses and DNA viruses, by depleting dNTPs indispensable for viral DNA replication. Here we report a new antiviral activity of SAMHD1 against RNA viruses including HCV and some other flaviviruses infection. Methods Multiple cellular and molecular biological technologies have been used to detect virus infection, replication and variation of intracellular proteins, including western blotting, qRT-PCR, Gene silencing, immunofluorescence, etc. Besides, microarray gene chip technology was applied to analyze the effects of SAMHD1 overexpression on total expressed genes. Results Our data show that SAMHD1 down-regulates the expression of genes related to lipid bio-metabolic pathway, accompanied with impaired lipid droplets (LDs) formation, two events important for flaviviruses infection. Mechanic study reveals that SAMHD1 mainly targets on HCV RNA replication, resulting in a broad inhibitory effect on the infectivity of flaviviruses. The C-terminal domain of SAMHD1 is showed to determine its antiviral function, which is regulated by the phosphorylation of T592. Restored lipid level by overexpression of SREBP1 or supplement with LDs counteracts with the antiviral activity of SAMHD1, providing evidence supporting the role of SAMHD1-mediated down-regulation of lipid synthesis in its function to inhibit viral infection. Conclusion SAMHD1 plays an important role in IFN-mediated blockade of flaviviruses infection through targeting lipid bio-metabolic pathway.
Collapse
Affiliation(s)
- Ni An
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Qinghua Ge
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Huihan Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Chen Liang
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China,*Correspondence: Dongrong Yi, ; Long Yang, ; Shan Cen,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China,*Correspondence: Dongrong Yi, ; Long Yang, ; Shan Cen,
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China,*Correspondence: Dongrong Yi, ; Long Yang, ; Shan Cen,
| |
Collapse
|
24
|
Wang Y, Wang Y, Ding L, Ren X, Wang B, Wang L, Zhao S, Yue X, Wu Z, Li C, Liang X, Ma C, Gao L. Tim-4 reprograms cholesterol metabolism to suppress antiviral innate immunity by disturbing the Insig1-SCAP interaction in macrophages. Cell Rep 2022; 41:111738. [PMID: 36450259 DOI: 10.1016/j.celrep.2022.111738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Accumulating evidence indicates that macrophages reshape their cholesterol metabolism in response to pathogens to support host defense. Intervention of host cholesterol homeostasis has emerged as a promising strategy for antiviral therapy. T cell immunoglobulin and mucin domain-containing molecule 4 (Tim-4) is indispensable in maintaining the homeostasis of macrophages. However, its role in antiviral innate immunity and cholesterol metabolism remains unknown. Here, we report that Tim-4 deficiency results in boosted interferon (IFN) signaling and decreased viral load. Mechanistically, Tim-4 disturbs the Insig1-SCAP interaction and promotes SCAP-SREBP2 complex translocation to the Golgi apparatus, eventually leading to the upregulation of cholesterol biosynthesis in macrophages, which limits the type I IFN response. Our findings demonstrate that Tim-4 suppresses type I IFN signaling by enhancing SREBP2 activation, delineating the role of Tim-4 in antiviral innate immunity and cholesterol metabolism, which sheds light on the mechanism by which Tim-4 orchestrates macrophage homeostasis.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Ding
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Songbo Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
25
|
Ding W, Xu S, Zhou B, Zhou R, Liu P, Hui X, Long Y, Su L. Dynamic Plasma Lipidomic Analysis Revealed Cholesterol Ester and Amides Associated with Sepsis Development in Critically Ill Patients after Cardiovascular Surgery with Cardiopulmonary Bypass. J Pers Med 2022; 12:jpm12111838. [PMID: 36579569 PMCID: PMC9693300 DOI: 10.3390/jpm12111838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Sepsis in patients after cardiovascular surgery with cardiopulmonary bypass (CPB) has a high rate of mortality. We sought to determine whether changes in lipidomics can predict sepsis after cardiac surgery. Methods: We used high-performance liquid chromatography coupled to tandem mass spectrometry to explore global lipidome changes in samples from a prospective case-control cohort (30 sepsis vs. 30 nonsepsis) hospitalized with cardiovascular surgery. All patients were sampled before and within 48−72 h after surgery. A bioinformatic pipeline was applied to acquire reliable features and MS/MS-driven identifications. Furthermore, a multiple-step machine learning framework was performed for signature discovery and performance evaluation. Results: Compared with preoperative samples, 94 features were upregulated and 282 features were downregulated in the postoperative samples of the sepsis group, and 73 features were upregulated and 265 features were downregulated in the postoperative samples of the nonsepsis group. “Autophagy”, “pathogenic Escherichia coli infection” and “glycosylphosphatidylinositol-anchor biosynthesis” pathways were significantly enriched in the pathway enrichment analysis. A multistep machine learning framework further confirmed that two cholesterol esters, CE (18:0) and CE (16:0), were significantly decreased in the sepsis group (p < 0.05). In addition, oleamide and stearamide were increased significantly in the postoperative sepsis group (p < 0.001). Conclusions: This study revealed characteristic lipidomic changes in the plasma of septic patients before and after cardiac surgery with CPB. We discovered two cholesterol esters and two amides from peripheral blood that could be promising signatures for sepsis within a dynamic detection between the preoperative and postoperative groups.
Collapse
Affiliation(s)
- Wenyan Ding
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shaohang Xu
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Baojin Zhou
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Ruo Zhou
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Peng Liu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiangyi Hui
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Correspondence: (Y.L.); (L.S.)
| | - Longxiang Su
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Correspondence: (Y.L.); (L.S.)
| |
Collapse
|
26
|
McNew SM, Loyola DC, Yepez J, Andreadis C, Gotanda K, Saulsberry A, Fessl B. Transcriptomic responses of Galápagos finches to avian poxvirus infection. Mol Ecol 2022; 31:5552-5567. [PMID: 36086992 DOI: 10.1111/mec.16690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
Emerging pathogens can have devastating effects on naïve hosts, but disease outcomes often vary among host species. Comparing the cellular response of different hosts to infection can provide insight into mechanisms of host defence. Here, we used RNA-seq to characterize the transcriptomic response of Darwin's finches to avian poxvirus, a disease of concern in the Galápagos Islands. We tested whether gene expression differs between infected and uninfected birds, and whether transcriptomic differences were related either to known antiviral mechanisms and/or the co-option of the host cellular environment by the virus. We compared two species, the medium ground finch (Geospiza fortis) and the vegetarian finch (Platyspiza crassirostris), to determine whether endemic Galápagos species differ in their response to pox. We found that medium ground finches had a strong transcriptomic response to infection, upregulating genes involved in the innate immune response including interferon production, inflammation, and other immune signalling pathways. In contrast, vegetarian finches had a more limited response, and some changes in this species were consistent with viral manipulation of the host's cellular function and metabolism. Many of the transcriptomic changes mirrored responses documented in model and in vitro studies of poxviruses. Our results thus indicate that many pathways of host defence against poxviruses are conserved among vertebrates and present even in hosts without a long evolutionary history with the virus. At the same time, the differences we observed between closely related species suggests that some endemic species of Galápagos finch could be more susceptible to avian pox than others.
Collapse
Affiliation(s)
- Sabrina M McNew
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Janaí Yepez
- Charles Darwin Foundation, Santa Cruz, Galápagos, Ecuador
| | - Catherine Andreadis
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
| | - Kiyoko Gotanda
- Department of Biological Sciences, Brock University, St. Catherines, Ontario, Canada.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Birgit Fessl
- Charles Darwin Foundation, Santa Cruz, Galápagos, Ecuador
| |
Collapse
|
27
|
Branche E, Wang YT, Viramontes KM, Valls Cuevas JM, Xie J, Ana-Sosa-Batiz F, Shafee N, Duttke SH, McMillan RE, Clark AE, Nguyen MN, Garretson AF, Crames JJ, Spann NJ, Zhu Z, Rich JN, Spector DH, Benner C, Shresta S, Carlin AF. SREBP2-dependent lipid gene transcription enhances the infection of human dendritic cells by Zika virus. Nat Commun 2022; 13:5341. [PMID: 36097162 PMCID: PMC9465152 DOI: 10.1038/s41467-022-33041-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/29/2022] [Indexed: 02/07/2023] Open
Abstract
The emergence of Zika virus (ZIKV) as a global health threat has highlighted the unmet need for ZIKV-specific vaccines and antiviral treatments. ZIKV infects dendritic cells (DC), which have pivotal functions in activating innate and adaptive antiviral responses; however, the mechanisms by which DC function is subverted to establish ZIKV infection are unclear. Here we develop a genomics profiling method that enables discrete analysis of ZIKV-infected versus neighboring, uninfected primary human DCs to increase the sensitivity and specificity with which ZIKV-modulated pathways can be identified. The results show that ZIKV infection specifically increases the expression of genes enriched for lipid metabolism-related functions. ZIKV infection also increases the recruitment of sterol regulatory element-binding protein (SREBP) transcription factors to lipid gene promoters, while pharmacologic inhibition or genetic silencing of SREBP2 suppresses ZIKV infection of DCs. Our data thus identify SREBP2-activated transcription as a mechanism for promoting ZIKV infection amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Emilie Branche
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Joan M Valls Cuevas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Jialei Xie
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Fernanda Ana-Sosa-Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Rachel E McMillan
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, CA, 92093, USA
| | - Alex E Clark
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Aaron F Garretson
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jan J Crames
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Nathan J Spann
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Deborah H Spector
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
Shi X, Zhang Q, Wang J, Zhang Y, Yan Y, Liu Y, Yang N, Wang Q, Xu X. Differential expression analysis of mRNAs, lncRNAs, and miRNAs expression profiles and construction of ceRNA networks in PEDV infection. BMC Genomics 2022; 23:586. [PMID: 35964002 PMCID: PMC9375197 DOI: 10.1186/s12864-022-08805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine Epidemic Diarrhea Virus (PEDV) is a coronavirus that seriously affects the swine industry. MicroRNAs and long noncoding RNAs are two relevant non-coding RNAs (ncRNAs) class and play crucial roles in a variety of physiological processes. Increased evidence indicates a complex interaction between mRNA and ncRNA. However, our understanding of the function of ncRNA involved in host-PEDV interaction is limited. RESULTS A total of 1,197 mRNA transcripts, 539 lncRNA transcripts, and 208 miRNA transcripts were differentially regulated at 24 h and 48 h post-infection. Gene ontology (GO) and KEGG pathway enrichment analysis showed that DE mRNAs and DE lncRNAs were mainly involved in biosynthesis, innate immunity, and lipid metabolism. Moreover, we constructed a miRNA-mRNA-pathway network using bioinformatics, including 12 DE mRNAs, 120 DE miRNAs, and 11 pathways. Finally, the target genes of DE miRNAs were screened by bioinformatics, and we constructed immune-related lncRNA-miRNA-mRNA ceRNA networks. Then, the selected DE genes were validated by qRT-PCR, which were consistent with the results from RNA-Seq data. CONCLUSIONS This study provides the comprehensive analysis of the expression profiles of mRNAs, lncRNAs, and miRNAs during PEDV infection. We characterize the ceRNA networks which can provide new insights into the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jingjing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yuting Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
29
|
Liu C, Yan W, Shi J, Wang S, Peng A, Chen Y, Huang K. Biological Actions, Implications, and Cautions of Statins Therapy in COVID-19. Front Nutr 2022; 9:927092. [PMID: 35811982 PMCID: PMC9257176 DOI: 10.3389/fnut.2022.927092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) showed worse prognosis and higher mortality in individuals with obesity. Dyslipidemia is a major link between obesity and COVID-19 severity. Statins as the most common lipid regulating drugs have shown favorable effects in various pathophysiological states. Importantly, accumulating observational studies have suggested that statin use is associated with reduced risk of progressing to severe illness and in-hospital death in COVID-19 patients. Possible explanations underlie these protective impacts include their abilities of reducing cholesterol, suppressing viral entry and replication, anti-inflammation and immunomodulatory effects, as well as anti-thrombosis and anti-oxidative properties. Despite these benefits, statin therapies have side effects that should be considered, such as elevated creatinine kinase, liver enzyme and serum glucose levels, which are already elevated in severe COVID-19. Concerns are also raised whether statins interfere with the efficacy of COVID-19 vaccines. Randomized controlled trials are being conducted worldwide to confirm the values of statin use for COVID-19 treatment. Generally, the results suggest no necessity to discontinue statin use, and no evidence suggesting interference between statins and COVID-19 vaccines. However, concomitant administration of statins and COVID-19 antiviral drug Paxlovid may increase statin exposure and the risk of adverse effects, because most statins are metabolized mainly through CYP3A4 which is potently inhibited by ritonavir, a major component of Paxlovid. Therefore, more clinical/preclinical studies are still warranted to understand the benefits, harms and mechanisms of statin use in the context of COVID-19.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Wang
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anlin Peng
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13:791267. [PMID: 35529872 PMCID: PMC9069556 DOI: 10.3389/fimmu.2022.791267] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.
Collapse
Affiliation(s)
- Jun Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi City, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| |
Collapse
|
31
|
Morana O, Nieto‐Garai JA, Björkholm P, Bernardino de la Serna J, Terrones O, Arboleya A, Ciceri D, Rojo‐Bartolomé I, Blouin CM, Lamaze C, Lorizate M, Contreras F. Identification of a New Cholesterol-Binding Site within the IFN-γ Receptor that is Required for Signal Transduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105170. [PMID: 35166455 PMCID: PMC9008429 DOI: 10.1002/advs.202105170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Indexed: 05/05/2023]
Abstract
The cytokine interferon-gamma (IFN-γ) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-γ exerts it signaling action by binding to a specific cell surface receptor, the IFN-γ receptor (IFN-γR), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-γR signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-γR2 chains into plasma membrane lipid nanodomains, orchestrating IFN-γR oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-γR transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFNγR2 interaction may represent a potential therapeutic strategy for various IFN-γ-dependent diseases.
Collapse
Affiliation(s)
- Ornella Morana
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Jon Ander Nieto‐Garai
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Patrik Björkholm
- Center for Biomembrane ResearchDepartment of Biochemistry and BiophysicsStockholm UniversityStockholmSE‐106 91Sweden
- Science for Life LaboratoryStockholm UniversitySolnaSE‐171 21Sweden
| | - Jorge Bernardino de la Serna
- National Heart and Lung InstituteFaculty of MedicineImperial College LondonSouth KensingtonSir Alexander Fleming BuildingLondonSW7 2AZUK
- Central Laser FacilityRutherford Appleton LaboratoryMRC‐Research Complex at HarwellScience and Technology Facilities CouncilHarwellOX11 0QXUK
- NIHR Imperial Biomedical Research CentreLondonSW7 2AZUK
| | - Oihana Terrones
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Aroa Arboleya
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Dalila Ciceri
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Iratxe Rojo‐Bartolomé
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Cédric M. Blouin
- Institut Curie ‐ Centre de RecherchePSL Research UniversityMembrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParis75248France
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisU1143France
- Centre National de la Recherche Scientifique (CNRS)UMR 3666Paris75248France
| | - Christophe Lamaze
- Institut Curie ‐ Centre de RecherchePSL Research UniversityMembrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParis75248France
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisU1143France
- Centre National de la Recherche Scientifique (CNRS)UMR 3666Paris75248France
| | - Maier Lorizate
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Francesc‐Xabier Contreras
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena s/nLeioaE‐48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48011Spain
| |
Collapse
|
32
|
Bezemer B, van Cleef KW, Overheul GJ, Miesen P, van Rij RP. The calcium channel inhibitor lacidipine inhibits Zika virus replication in neural progenitor cells. Antiviral Res 2022; 202:105313. [DOI: 10.1016/j.antiviral.2022.105313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 01/04/2023]
|
33
|
Wald ME, Sieg M, Schilling E, Binder M, Vahlenkamp TW, Claus C. The Interferon Response Dampens the Usutu Virus Infection-Associated Increase in Glycolysis. Front Cell Infect Microbiol 2022; 12:823181. [PMID: 35186796 PMCID: PMC8855070 DOI: 10.3389/fcimb.2022.823181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 01/05/2023] Open
Abstract
The mosquito-borne Usutu virus (USUV) is a zoonotic flavivirus and an emerging pathogen. So far therapeutical options or vaccines are not available in human and veterinary medicine. The bioenergetic profile based on extracellular flux analysis revealed an USUV infection-associated significant increase in basal and stressed glycolysis on Vero and with a tendency for basal glycolysis on the avian cell line TME-R derived from Eurasian blackbirds. On both cell lines this was accompanied by a significant drop in the metabolic potential of glycolysis. Moreover, glycolysis contributed to production of virus progeny, as inhibition of glycolysis with 2-deoxy-D-glucose reduced virus yield on Vero by one log10 step. Additionally, the increase in glycolysis observed on Vero cells after USUV infection was lost after the addition of exogenous type I interferon (IFN) β. To further explore the contribution of the IFN response pathway to the impact of USUV on cellular metabolism, USUV infection was characterized on human A549 respiratory cells with a knockout of the type I IFN receptor, either solely or together with the receptor of type III IFN. Notably, only the double knockout of types I and III IFN receptor increased permissiveness to USUV and supported viral replication together with an alteration of the glycolytic activity, namely an increase in basal glycolysis to an extent that a further increase after injection of metabolic stressors during extracellular flux analysis was not noted. This study provides evidence for glycolysis as a possible target for therapeutic intervention of USUV replication. Moreover, presented data highlight type I and type III IFN system as a determinant for human host cell permissiveness and for the infection-associated impact on glycolysis.
Collapse
Affiliation(s)
- Maria Elisabeth Wald
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Erik Schilling
- Institute of Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marco Binder
- Research Group “Dynamics of early viral infection and the innate antiviral response”, Division “Virus-Associated Carcinogenesis”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Claudia Claus
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, Leipzig, Germany
- *Correspondence: Claudia Claus,
| |
Collapse
|
34
|
Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front Immunol 2022; 13:829433. [PMID: 35154151 PMCID: PMC8835115 DOI: 10.3389/fimmu.2022.829433] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the host’s first line of defense against the invasion of pathogens including flavivirus. The programmed cell death controlled by genes plays an irreplaceable role in resisting pathogen invasion and preventing pathogen infection. However, the inflammatory cell death, which can trigger the overflow of a large number of pro-inflammatory cytokines and cell contents, will initiate a severe inflammatory response. In this review, we summarized the current understanding of the innate immune response, inflammatory cell death pathway and cytokine secretion regulation during Dengue virus, West Nile virus, Zika virus, Japanese encephalitis virus and other flavivirus infections. We also discussed the impact of these flavivirus and viral proteins on these biological processes. This not only provides a scientific basis for elucidating the pathogenesis of flavivirus, but also lays the foundation for the development of effective antiviral therapies.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| |
Collapse
|
35
|
Ding S, Yu B, van Vuuren AJ. Statins significantly repress rotavirus replication through downregulation of cholesterol synthesis. Gut Microbes 2021; 13:1955643. [PMID: 34369301 PMCID: PMC8354672 DOI: 10.1080/19490976.2021.1955643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rotavirus is the most common cause of severe diarrhea among infants and young children and is responsible for more than 200,000 pediatric deaths per year. There is currently no pharmacological treatment for rotavirus infection in clinical activity. Although cholesterol synthesis has been proven to play a key role in the infections of multiple viruses, little is known about the relationship between cholesterol biosynthesis and rotavirus replication. The models of rotavirus infected two cell lines and a human small intestinal organoid were used. We investigated the effects of cholesterol biosynthesis, including inhibition, enhancement, and their combinations on rotavirus replication on these models. The knockdown of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was built by small hairpin RNAs in Caco2 cells. In all these models, inhibition of cholesterol synthesis by statins or HMGCR knockdown had a significant inhibitory effect on rotavirus replication. The result was further confirmed by the other inhibitors: 6-fluoromevalonate, Zaragozic acid A and U18666A, in the cholesterol biosynthesis pathway. Conversely, enhancement of cholesterol production increased rotavirus replication, suggesting that cholesterol homeostasis is relevant for rotavirus replication. The effects of all these compounds toward rotavirus were further confirmed with a clinical rotavirus isolate. We concluded that rotavirus replication is dependent on cholesterol biosynthesis. To be specific, inhibition of cholesterol synthesis can downregulate rotavirus replication; on the contrary, rotavirus replication is upregulated. Statin treatment is potentially an effective novel clinical anti-rotavirus strategy.
Collapse
Affiliation(s)
- Shihao Ding
- Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands,CONTACT Shihao Ding Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands
| | - Bingting Yu
- Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands
| | - Anneke J. van Vuuren
- Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands
| |
Collapse
|
36
|
Ke W, Zhou Y, Lai Y, Long S, Fang L, Xiao S. Porcine reproductive and respiratory syndrome virus nsp4 positively regulates cellular cholesterol to inhibit type I interferon production. Redox Biol 2021; 49:102207. [PMID: 34911669 PMCID: PMC8758914 DOI: 10.1016/j.redox.2021.102207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular cholesterol plays an important role in the life cycles of enveloped viruses. Previous studies by our group and other groups have demonstrated that the depletion of cellular cholesterol by methyl-β-cyclodextrin (MβCD) reduces the proliferation of porcine reproductive and respiratory syndrome virus (PRRSV), a porcine Arterivirus that has been devastating the swine industry worldwide for over two decades. However, how PRRSV infection regulates cholesterol synthesis is not fully understood. In this study, we showed that PRRSV infection upregulated the activity of protein phosphatase 2 (PP2A), which subsequently activated 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the cholesterol synthesis pathway, to increase the levels of cellular cholesterol. By screening the PRRSV-encoded proteins, we showed that nsp4 dominated the upregulation of cellular cholesterol, independently of the 3C-like protease activity of nsp4. A mutation analysis showed that domain I (amino acids 1–80) of PRRSV nsp4 interacted with PR65 alpha (PR65α), the structural subunit, and PP2Ac, the catalytic subunit, of PP2A. Importantly, domain I of nsp4 inhibited Sendai virus-induced interferon β production, and this inhibitory effect was eliminated by Lovastatin, an HMGCR inhibitor, indicating that the upregulation of cellular cholesterol by nsp4 is a strategy used by PRRSV to suppress the antiviral innate immunity of its host. Collectively, we here demonstrated the mechanism by which PRRSV regulates cellular cholesterol synthesis and reported a novel strategy by which PRRSV evades its host's antiviral innate immune response. PRRSV nsp4 up-regulates cellular cholesterol via the PP2A-HMGCR pathway. Nsp4 domain I (amino acids 1–80) interacts with A and C subunits of PP2A. Nsp4 domain I inhibits IFN-I production by upregulating cellular cholesterol. The HMGCR inhibitor Lovastatin inhibits PRRSV proliferation.
Collapse
Affiliation(s)
- Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yinan Lai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
37
|
van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021; 12:2814-2838. [PMID: 34696709 PMCID: PMC8632085 DOI: 10.1080/21505594.2021.1996059] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
The Flavivirus genus consists of >70 members including several that are considered significant human pathogens. Flaviviruses display a broad spectrum of diseases that can be roughly categorised into two phenotypes - systemic disease involving haemorrhage exemplified by dengue and yellow Fever virus, and neurological complications associated with the likes of West Nile and Zika viruses. Attempts to develop vaccines have been variably successful against some. Besides, mosquito-borne flaviviruses can be vertically transmitted in the arthropods, enabling long term persistence and the possibility of re-emergence. Therefore, developing strategies to combat disease is imperative even if vaccines become available. The cellular interactions of flaviviruses with their human hosts are key to establishing the viral lifecycle on the one hand, and activation of host immunity on the other. The latter should ideally eradicate infection, but often leads to immunopathological and neurological consequences. In this review, we use Dengue and Zika viruses to discuss what we have learned about the cellular and molecular determinants of the viral lifecycle and the accompanying immunopathology, while highlighting current knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| |
Collapse
|
38
|
Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021; 12:750544. [PMID: 34858206 PMCID: PMC8632007 DOI: 10.3389/fphys.2021.750544] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
39
|
Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021; 12:749770. [PMID: 34690817 PMCID: PMC8529048 DOI: 10.3389/fphys.2021.749770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
Collapse
Affiliation(s)
- Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines," Instituto Mexicano del Seguro Social, Heroica Veracruz, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arely M González-González
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
40
|
Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021; 46:116356. [PMID: 34416512 PMCID: PMC8349405 DOI: 10.1016/j.bmc.2021.116356] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022]
Abstract
The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.
Collapse
Affiliation(s)
- Supreeti Mahajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
41
|
Soveg FW, Schwerk J, Gokhale NS, Cerosaletti K, Smith JR, Pairo-Castineira E, Kell AM, Forero A, Zaver SA, Esser-Nobis K, Roby JA, Hsiang TY, Ozarkar S, Clingan JM, McAnarney ET, Stone AEL, Malhotra U, Speake C, Perez J, Balu C, Allenspach EJ, Hyde JL, Menachery VD, Sarkar SN, Woodward JJ, Stetson DB, Baillie JK, Buckner JH, Gale M, Savan R. Endomembrane targeting of human OAS1 p46 augments antiviral activity. eLife 2021; 10:e71047. [PMID: 34342578 PMCID: PMC8357416 DOI: 10.7554/elife.71047] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Many host RNA sensors are positioned in the cytosol to detect viral RNA during infection. However, most positive-strand RNA viruses replicate within a modified organelle co-opted from intracellular membranes of the endomembrane system, which shields viral products from cellular innate immune sensors. Targeting innate RNA sensors to the endomembrane system may enhance their ability to sense RNA generated by viruses that use these compartments for replication. Here, we reveal that an isoform of oligoadenylate synthetase 1, OAS1 p46, is prenylated and targeted to the endomembrane system. Membrane localization of OAS1 p46 confers enhanced access to viral replication sites and results in increased antiviral activity against a subset of RNA viruses including flaviviruses, picornaviruses, and SARS-CoV-2. Finally, our human genetic analysis shows that the OAS1 splice-site SNP responsible for production of the OAS1 p46 isoform correlates with protection from severe COVID-19. This study highlights the importance of endomembrane targeting for the antiviral specificity of OAS1 and suggests that early control of SARS-CoV-2 replication through OAS1 p46 is an important determinant of COVID-19 severity.
Collapse
Affiliation(s)
- Frank W Soveg
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Johannes Schwerk
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Nandan S Gokhale
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | | | - Julian R Smith
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | | | - Alison M Kell
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New MexicoAlbuquerqueUnited States
| | - Adriana Forero
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Shivam A Zaver
- Department of Microbiology, School of Medicine, University of WashingtonSeattleUnited States
| | - Katharina Esser-Nobis
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Justin A Roby
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Tien-Ying Hsiang
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Snehal Ozarkar
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Jonathan M Clingan
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Eileen T McAnarney
- Department of Microbiology and Immunology, University of Texas Medical CenterGalvestonUnited States
| | - Amy EL Stone
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University NevadaHendersonUnited States
| | - Uma Malhotra
- Department of Infectious Disease, Virginia Mason Medical CenterSeattleUnited States
- Department of Medicine, Section of Infectious Diseases, University of WashingtonSeattleUnited States
| | - Cate Speake
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - Joseph Perez
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of PittsburghPittsburghUnited States
| | - Chiraag Balu
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Eric J Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research InstituteSeattleUnited States
| | - Jennifer L Hyde
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical CenterGalvestonUnited States
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of PittsburghPittsburghUnited States
| | - Joshua J Woodward
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Microbiology, School of Medicine, University of WashingtonSeattleUnited States
| | - Daniel B Stetson
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - John Kenneth Baillie
- Roslin Institute, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General HospitalEdinburghUnited Kingdom
| | - Jane H Buckner
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - Michael Gale
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Ram Savan
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| |
Collapse
|
42
|
Pang H, Jiang Y, Li J, Wang Y, Nie M, Xiao N, Wang S, Song Z, Ji F, Chang Y, Zheng Y, Yao K, Yao L, Li S, Li P, Song L, Lan X, Xu Z, Hu Z. Aberrant NAD + metabolism underlies Zika virus-induced microcephaly. Nat Metab 2021; 3:1109-1124. [PMID: 34385701 DOI: 10.1038/s42255-021-00437-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Zika virus (ZIKV) infection during pregnancy can cause microcephaly in newborns, yet the underlying mechanisms remain largely unexplored. Here, we reveal extensive and large-scale metabolic reprogramming events in ZIKV-infected mouse brains by performing a multi-omics study comprising transcriptomics, proteomics, phosphoproteomics and metabolomics approaches. Our proteomics and metabolomics analyses uncover dramatic alteration of nicotinamide adenine dinucleotide (NAD+)-related metabolic pathways, including oxidative phosphorylation, TCA cycle and tryptophan metabolism. Phosphoproteomics analysis indicates that MAPK and cyclic GMP-protein kinase G signaling may be associated with ZIKV-induced microcephaly. Notably, we demonstrate the utility of our rich multi-omics datasets with follow-up in vivo experiments, which confirm that boosting NAD+ by NAD+ or nicotinamide riboside supplementation alleviates cell death and increases cortex thickness in ZIKV-infected mouse brains. Nicotinamide riboside supplementation increases the brain and body weight as well as improves the survival in ZIKV-infected mice. Our study provides a comprehensive resource of biological data to support future investigations of ZIKV-induced microcephaly and demonstrates that metabolic alterations can be potentially exploited for developing therapeutic strategies.
Collapse
Affiliation(s)
- Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yisheng Jiang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yushen Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (the PHOENIX Center), Beijing, China
| | - Meng Nie
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Nan Xiao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Shuo Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhihong Song
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Fansen Ji
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yafei Chang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zheng
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - LiAng Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Shao Li
- Institute of TCM-X, MOE Key Laboratory of Bioinformatics / Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
| | - Peng Li
- School of Life Sciences, Tsinghua University, Beijing, China
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (the PHOENIX Center), Beijing, China.
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China.
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
43
|
Inhibition of Orbivirus Replication by Fluvastatin and Identification of the Key Elements of the Mevalonate Pathway Involved. Viruses 2021; 13:v13081437. [PMID: 34452303 PMCID: PMC8402872 DOI: 10.3390/v13081437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/21/2023] Open
Abstract
Statin derivatives can inhibit the replication of a range of viruses, including hepatitis C virus (HCV, Hepacivirus), dengue virus (Flavivirus), African swine fever virus (Asfarviridae) and poliovirus (Picornaviridae). We assess the antiviral effect of fluvastatin in cells infected with orbiviruses (bluetongue virus (BTV) and Great Island virus (GIV)). The synthesis of orbivirus outer-capsid protein VP2 (detected by confocal immunofluorescence imaging) was used to assess levels of virus replication, showing a reduction in fluvastatin-treated cells. A reduction in virus titres of ~1.7 log (98%) in fluvastatin-treated cells was detected by a plaque assay. We have previously identified a fourth non-structural protein (NS4) of BTV and GIV, showing that it interacts with lipid droplets in infected cells. Fluvastatin, which inhibits 3-hydroxy 3-methyl glutaryl CoA reductase in the mevalonic acid pathway, disrupts these NS4 interactions. These findings highlight the role of the lipid pathways in orbivirus replication and suggest a greater role for the membrane-enveloped orbivirus particles than previously recognised. Chemical intermediates of the mevalonic acid pathway were used to assess their potential to rescue orbivirus replication. Pre-treatment of IFNAR(−/−) mice with fluvastatin promoted their survival upon challenge with live BTV, although only limited protection was observed.
Collapse
|
44
|
Mlera L, Offerdahl DK, Dorward DW, Carmody A, Chiramel AI, Best SM, Bloom ME. The liver X receptor agonist LXR 623 restricts flavivirus replication. Emerg Microbes Infect 2021; 10:1378-1389. [PMID: 34162308 PMCID: PMC8259867 DOI: 10.1080/22221751.2021.1947749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The vector-borne flaviviruses (VBFVs) are well known for causing great misery and death in humans worldwide. The VBFVs include those transmitted by mosquitos, such as Zika virus (ZIKV), dengue virus; and those transmitted by ticks including the tick-borne flavivirus serocomplex and Powassan virus (POWV). Two of our recent reports showed that intracranial POWV infection in the reservoir host, Peromyscus leucopus, was restricted and caused no overt clinical disease. Several modes of analyses suggested activation of the LXR pathway. Activation of the LXR pathway leads to increased efflux of cholesterol from cells and consequent disturbances in membrane biogenesis. Because VBFV replication is dependent on membrane biogenesis, we evaluated the effect of an LXR agonist (LXR623) on POWV and ZIKV infection and observed that the compound impaired permissive replication of both viruses in a human neuroblastoma SK-N-SH cell line. The LXR agonist resulted in failure of the viruses to induce ER expansion and elaborate vesicle formation, suggesting that the efflux of cholesterol was part of the antiviral mechanism. We also observed that the LXR agonist contributed to the mechanism of virus suppression by increased expression of mRNAs encoding for the antiviral cytokines CXCL10, RANTES and IFN1β. In sharp contrast, a LXR antagonist (GSK2033) had no significant effect on VBFV replication. We conclude that LXR623 impairs flavivirus replication by stimulating cellular antiviral factors.
Collapse
Affiliation(s)
- Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, NIAID/NIH, Hamilton, MT, USA
| | - Danielle K Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, NIAID/NIH, Hamilton, MT, USA
| | - David W Dorward
- Microscopy Unit, Research Technologies Branch, NIAID/NIH, Hamilton, MT, USA
| | - Aaron Carmody
- Research Technologies Branch, NIAID/NIH, Hamilton, MT, USA
| | - Abhilash I Chiramel
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, NIAID/NIH, Hamilton, MT, USA
| | - Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, NIAID/NIH, Hamilton, MT, USA
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, NIAID/NIH, Hamilton, MT, USA
| |
Collapse
|
45
|
Rajendran KV, Neelakanta G, Sultana H. Sphingomyelinases in a journey to combat arthropod-borne pathogen transmission. FEBS Lett 2021; 595:1622-1638. [PMID: 33960414 DOI: 10.1002/1873-3468.14103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Ixodes scapularis ticks feed on humans and other vertebrate hosts and transmit several pathogens of public health concern. Tick saliva is a complex mixture of bioactive proteins, lipids and immunomodulators, such as I. scapularis sphingomyelinase (IsSMase)-like protein, an ortholog of dermonecrotoxin SMase D found in the venom of Loxosceles spp. of spiders. IsSMase modulates the host immune response towards Th2, which suppresses Th1-mediated cytokines to facilitate pathogen transmission. Arboviruses utilize exosomes for their transmission from tick to the vertebrate host, and exosomes derived from tick saliva/salivary glands suppress C-X-C motif chemokine ligand 12 and interleukin-8 immune response(s) in human skin to delay wound healing and repair processes. IsSMase affects also viral replication and exosome biogenesis, thereby inhibiting tick-to-vertebrate host transmission of pathogenic exosomes. In this review, we elaborate on exosomes and their biogenesis as potential candidates for developing novel control measure(s) to combat tick-borne diseases. Such targets could help with the development of an efficient anti-tick vaccine for preventing the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Kundave V Rajendran
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.,Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
46
|
Molecular Insights into the Flavivirus Replication Complex. Viruses 2021; 13:v13060956. [PMID: 34064113 PMCID: PMC8224304 DOI: 10.3390/v13060956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are vector-borne RNA viruses, many of which are clinically relevant human viral pathogens, such as dengue, Zika, Japanese encephalitis, West Nile and yellow fever viruses. Millions of people are infected with these viruses around the world each year. Vaccines are only available for some members of this large virus family, and there are no effective antiviral drugs to treat flavivirus infections. The unmet need for vaccines and therapies against these flaviviral infections drives research towards a better understanding of the epidemiology, biology and immunology of flaviviruses. In this review, we discuss the basic biology of the flavivirus replication process and focus on the molecular aspects of viral genome replication. Within the virus-induced intracellular membranous compartments, flaviviral RNA genome replication takes place, starting from viral poly protein expression and processing to the assembly of the virus RNA replication complex, followed by the delivery of the progeny viral RNA to the viral particle assembly sites. We attempt to update the latest understanding of the key molecular events during this process and highlight knowledge gaps for future studies.
Collapse
|
47
|
Mikulasova A, Gillespie LK, Ambrose RL, Aktepe TE, Trenerry AM, Liebscher S, Mackenzie JM. A Putative Lipid-Associating Motif in the West Nile Virus NS4A Protein Is Required for Efficient Virus Replication. Front Cell Dev Biol 2021; 9:655606. [PMID: 34055786 PMCID: PMC8149610 DOI: 10.3389/fcell.2021.655606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
Flavivirus replication is intimately associated with re-organized cellular membranes. These virus-induced changes in membrane architecture form three distinct membranous “organelles” that have specific functions during the flavivirus life cycle. One of these structures is the replication complex in which the flaviviral RNA is replicated to produce progeny genomes. We have previously observed that this process is strictly dependent on cellular cholesterol. In this study we have identified a putative cholesterol recognition/interaction amino acid consensus (CRAC) motif within the West Nile virus strain Kunjin virus (WNVKUN) NS4A protein. Site-directed mutagenesis of this motif within a WNVKUN infectious clone severely attenuated virus replication and the capacity of the mutant viruses to form the replication complex. Replication of the mutant viruses also displayed reduced co-localization with cellular markers recruited to replication sites during wild-type virus replication. In addition, we observed that the mutant viruses were significantly impaired in their ability to remodel cytoplasmic membranes. However, after extensive analysis we are unable to conclusively reveal a role for the CRAC motif in direct cholesterol binding to NS4A, suggesting additional complex lipid-protein and protein-protein interactions. We believe this study highlights the crucial role for this region within NS4A protein in recruitment of cellular and viral proteins to specialized subdomains on membrane platforms to promote efficient virus replication.
Collapse
Affiliation(s)
- Andrea Mikulasova
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Leah K Gillespie
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca L Ambrose
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Turgut E Aktepe
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Susann Liebscher
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
49
|
Nuclear localisation of West Nile virus NS5 protein modulates host gene expression. Virology 2021; 559:131-144. [PMID: 33866234 DOI: 10.1016/j.virol.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
The involvement of the nucleus during flavivirus infection has been observed in only a small number of cases and can be limited to primarily two viral proteins; the structural protein C and the RNA polymerase NS5. Previously we observed that by blocking nuclear transport, WNV strain Kunjin (WNVKUN) replication is severely affected and through mutation of the identified NLS in WNVKUN NS5 protein. In this study, we interrogated the potential nuclear functions of WNVKUN NS5 has on the host transcriptome, by means of RNA sequencing (RNAseq). In a direct comparison between wild type and mutant NS5, it can also be determined that the nuclear translocation of NS5 results in a significant down-regulation of host genes involved in the innate immune response. When compared to published RNAseq data from WNV infection, many of these genes were overlapping indicting the role of NS5 induced transcription during infection.
Collapse
|
50
|
Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting Lipid Rafts as a Strategy Against Coronavirus. Front Cell Dev Biol 2021; 8:618296. [PMID: 33614627 PMCID: PMC7890255 DOI: 10.3389/fcell.2020.618296] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are functional membrane microdomains containing sphingolipids, including gangliosides, and cholesterol. These regions are characterized by highly ordered and tightly packed lipid molecules. Several studies revealed that lipid rafts are involved in life cycle of different viruses, including coronaviruses. Among these recently emerged the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main receptor for SARS-CoV-2 is represented by the angiotensin-converting enzyme-2 (ACE-2), although it also binds to sialic acids linked to host cell surface gangliosides. A new type of ganglioside-binding domain within the N-terminal portion of the SARS-CoV-2 spike protein was identified. Lipid rafts provide a suitable platform able to concentrate ACE-2 receptor on host cell membranes where they may interact with the spike protein on viral envelope. This review is focused on selective targeting lipid rafts components as a strategy against coronavirus. Indeed, cholesterol-binding agents, including statins or methyl-β-cyclodextrin (MβCD), can affect cholesterol, causing disruption of lipid rafts, consequently impairing coronavirus adhesion and binding. Moreover, these compounds can block downstream key molecules in virus infectivity, reducing the levels of proinflammatory molecules [tumor necrosis factor alpha (TNF-α), interleukin (IL)-6], and/or affecting the autophagic process involved in both viral replication and clearance. Furthermore, cyclodextrins can assemble into complexes with various drugs to form host-guest inclusions and may be used as pharmaceutical excipients of antiviral compounds, such as lopinavir and remdesivir, by improving bioavailability and solubility. In conclusion, the role of lipid rafts-affecting drugs in the process of coronavirus entry into the host cells prompts to introduce a new potential task in the pharmacological approach against coronavirus.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | | | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Agostina Longo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| |
Collapse
|