1
|
Cruciani-Guglielmacci C, Le Stunff H, Magnan C. Brain lipid sensing and the neural control of energy balance. Biochimie 2024; 223:159-165. [PMID: 38825062 DOI: 10.1016/j.biochi.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
The central nervous system continuously detects circulating concentrations of lipids such as fatty acids and troglycerides. Once information has been detected, the central nervous system can in turn participate in the control of energy balance and blood sugar levels and in particular regulate the secretion and action of insulin. Neurons capable of detecting circulating lipid variations are located in the hypothalamus and in other regions such as the nucleus accumbens, the striatum or the hippocampus. An excess of lipids will have deleterious effects and may induce central lipotoxicity, in particular following local production of ceramides and the appearance of neuroinflammation which may lead to metabolic diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay, France
| | | |
Collapse
|
2
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Zhan H, Wang W, Ge Y, Liang Y, Wang J, Xu Y, Wu S, Peng L, He Z. trans-Palmitoleic acid promotes adipose thermogenesis to reduce obesity via hypothalamic FFAR1 signaling. Food Funct 2024; 15:4627-4641. [PMID: 38592736 DOI: 10.1039/d4fo00452c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Diet-induced thermogenesis (DIT) is crucial for maintaining body weight homeostasis, and the role of dietary fatty acids in modulating DIT is essential. However, the underlying mechanism of fatty acid regulated diet-induced thermogenesis remains elusive. Utilizing the diet- and genetic ablation-induced obese mice models, we found that the C16 unsaturated fatty acids, trans-palmitoleic acid (TPA) and cis-palmitoleic acid (CPA), significantly increased the energy expenditure by promoting the thermogenesis of brown adipose tissues and the production of beige cells in white adipose. As a result, there is a significant reduction in the occurrence of obesity, associated hepatic steatosis and hyperglycemia. Notably, TPA exhibited more potent effects on promoting DIT and alleviating obesity than CPA did. Using inhibitor and gene deletion mice models, we unveiled that TPA acted as a signaling molecule to play a biological function, which could be sensed by the hypothalamic FFAR1 to activate the sympathetic nervous system in promoting adipose tissue thermogenesis. Together, these results demonstrate the underlying mechanism of free fatty acids associated-DIT and will provide fresh insights into the roles of trans-fatty acids in the development of obesity.
Collapse
Affiliation(s)
- Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wanjing Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yixiao Liang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Peng
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
Zhang Y, Chen L, Xuan Y, Zhang L, Tian W, Zhu Y, Wang J, Wang X, Qiu J, Yu J, Tang M, He Z, Zhang H, Chen S, Shen Y, Wang S, Zhang R, Xu L, Ma X, Liao Y, Hu C. Iron overload in hypothalamic AgRP neurons contributes to obesity and related metabolic disorders. Cell Rep 2024; 43:113900. [PMID: 38460132 DOI: 10.1016/j.celrep.2024.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 02/15/2024] [Indexed: 03/11/2024] Open
Abstract
Iron overload is closely associated with metabolic dysfunction. However, the role of iron in the hypothalamus remains unclear. Here, we find that hypothalamic iron levels are increased, particularly in agouti-related peptide (AgRP)-expressing neurons in high-fat-diet-fed mice. Using pharmacological or genetic approaches, we reduce iron overload in AgRP neurons by central deferoxamine administration or transferrin receptor 1 (Tfrc) deletion, ameliorating diet-induced obesity and related metabolic dysfunction. Conversely, Tfrc-mediated iron overload in AgRP neurons leads to overeating and adiposity. Mechanistically, the reduction of iron overload in AgRP neurons inhibits AgRP neuron activity; improves insulin and leptin sensitivity; and inhibits iron-induced oxidative stress, endoplasmic reticulum stress, nuclear factor κB signaling, and suppression of cytokine signaling 3 expression. These results highlight the critical role of hypothalamic iron in obesity development and suggest targets for treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Liwei Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ye Xuan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lina Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Tian
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Endocrinology, Jinzhou Medical University, Jinzhou 121001, China
| | - Yangyang Zhu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China
| | - Jinghui Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Endocrinology, Xihua Xian People's Hospital, Zhoukou 466000, China
| | - Xinyu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mengyang Tang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China
| | - Zhen He
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Si Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yun Shen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Siyi Wang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Yunfei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 226001, China.
| |
Collapse
|
5
|
Konaklieva MI, Plotkin BJ. Targeting host-specific metabolic pathways-opportunities and challenges for anti-infective therapy. Front Mol Biosci 2024; 11:1338567. [PMID: 38455763 PMCID: PMC10918472 DOI: 10.3389/fmolb.2024.1338567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Microorganisms can takeover critical metabolic pathways in host cells to fuel their replication. This interaction provides an opportunity to target host metabolic pathways, in addition to the pathogen-specific ones, in the development of antimicrobials. Host-directed therapy (HDT) is an emerging strategy of anti-infective therapy, which targets host cell metabolism utilized by facultative and obligate intracellular pathogens for entry, replication, egress or persistence of infected host cells. This review provides an overview of the host lipid metabolism and links it to the challenges in the development of HDTs for viral and bacterial infections, where pathogens are using important for the host lipid enzymes, or producing their own analogous of lecithin-cholesterol acyltransferase (LCAT) and lipoprotein lipase (LPL) thus interfering with the human host's lipid metabolism.
Collapse
Affiliation(s)
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
6
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Yuan P, Sun T, Han Z, Chen Y, Meng Q. Uncovering the genetic links of diabetic erectile dysfunction and chronic prostatitis/chronic pelvic pain syndrome. Front Physiol 2023; 14:1096677. [PMID: 36846330 PMCID: PMC9946966 DOI: 10.3389/fphys.2023.1096677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Clinical associations between erectile dysfunction and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) have been noticed, but the common pathogenic mechanisms between them remain elusive. The aim of the study was to mine shared genetic alterations between ED and chronic prostatitis/chronic pelvic pain syndrome. Method: Transcriptome data of ED and chronic prostatitis/chronic pelvic pain syndrome-related genes (CPRGs) were retrieved from relevant databases and differentially expressed analysis was used to obtain significant CPRGs. Then function enrichment and interaction analyses were performed to show shared transcriptional signature, including gene ontology and pathway enrichment, the construction of protein-protein interaction (PPI) network, cluster analysis, and co-expression analysis. Hub CPRGs and key cross-link were selected by validating these genes in clinical samples, chronic prostatitis/chronic pelvic pain syndrome and ED-related datasets. Then the miRNA-OSRGs co-regulatory network was predicted and validated. Subpopulation distribution and disease association of hub CPRGs were further identified. Result: Differentially expressed analysis revealed 363 significant CPRGs between ED and chronic prostatitis/chronic pelvic pain syndrome, functioning in inflammatory reaction, oxidative stress, apoptosis, smooth muscle cell proliferation, and extracellular matrix organization. A PPI network containing 245 nodes and 504 interactions was constructed. Module analysis depicted that multicellular organismal process and immune metabolic process were enriched. 17 genes were screened in PPI via topological algorithms, and reactive oxygen species as well as interleukin-1 metabolism were regarded as the bridging interactive mechanism. After screening and validation, a hub-CPRG signature consisting of COL1A1, MAPK6, LPL, NFE2L2 and NQO1 were identified and associated miRNA were verified. These miRNAs played an important role in immune and inflammatory response likewise. Finally, NQO1 was identified as a key genetic link between ED and chronic prostatitis/chronic pelvic pain syndrome. It was predominately enriched in corpus cavernosum endothelial cell, and correlated with other male urogenital and immune system diseases tightly. Conclusion: We identified the genetic profiles as well as corresponding regulatory network underlying interaction between ED and chronic prostatitis/chronic pelvic pain syndrome via multi-omics analysis. These findings expanded a new understanding for the molecular mechanism of ED with chronic prostatitis/chronic pelvic pain syndrome.
Collapse
Affiliation(s)
- Penghui Yuan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Penghui Yuan, ; Yinwei Chen, ; Qingjun Meng,
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengyang Han
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yinwei Chen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Penghui Yuan, ; Yinwei Chen, ; Qingjun Meng,
| | - Qingjun Meng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Penghui Yuan, ; Yinwei Chen, ; Qingjun Meng,
| |
Collapse
|
8
|
Hu W, Liu J, Hu Y, Xu Q, Deng T, Wei M, Lu L, Mi J, Bergquist J, Xu F, Tian G. Transcriptome-wide association study reveals cholesterol metabolism gene Lpl is a key regulator of cognitive dysfunction. Front Mol Neurosci 2022; 15:1044022. [PMID: 36590920 PMCID: PMC9798092 DOI: 10.3389/fnmol.2022.1044022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cholesterol metabolism in the brain plays a crucial role in normal physiological function, and its aberrations are associated with cognitive dysfunction. The present study aimed to determine which cholesterol-related genes play a vital role in cognitive dysfunction and to dissect its underlying molecular mechanisms using a systems genetics approach in the BXD mice family. We first systematically analyzed the association of expression of 280 hippocampal genes related to cholesterol metabolism with cognition-related traits and identified lipoprotein lipase (Lpl) as a critical regulator. This was further confirmed by phenome-wide association studies that indicate Lpl associated with hippocampus volume residuals and anxiety-related traits. By performing expression quantitative trait locus mapping, we demonstrate that Lpl is strongly cis-regulated in the BXD hippocampus. We also identified ∼3,300 genes significantly (p < 0.05) correlated with the Lpl expression. Those genes are mainly involved in the regulation of neuron-related traits through the MAPK signaling pathway, axon guidance, synaptic vesicle cycle, and NF-kappa B signaling pathway. Furthermore, a protein-protein interaction network analysis identified several direct interactors of Lpl, including Rab3a, Akt1, Igf1, Crp, and Lrp1, which indicates that Lpl involves in the regulation of cognitive dysfunction through Rab3a-mediated synaptic vesicle cycle and Akt1/Igf1/Crp/Lrp1-mediated MAPK signaling pathway. Our findings demonstrate the importance of the Lpl, among the cholesterol-related genes, in regulating cognitive dysfunction and highlighting the potential signaling pathways, which may serve as novel therapeutic targets for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Wei Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China,Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, China
| | - Yaorui Hu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Qingling Xu
- Department of Ultrasound, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Tingzhi Deng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jonas Bergquist
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China,Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden,*Correspondence: Jonas Bergquist,
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China,Fuyi Xu,
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China,Geng Tian,
| |
Collapse
|
9
|
Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacol Rep 2022; 74:790-817. [PMID: 36149598 DOI: 10.1007/s43440-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.
Collapse
|
10
|
Takahashi M, Yamamuro D, Wakabayashi T, Takei A, Takei S, Nagashima S, Okazaki H, Ebihara K, Yagyu H, Takayanagi Y, Onaka T, Goldberg IJ, Ishibashi S. Loss of myeloid lipoprotein lipase exacerbates adipose tissue fibrosis with collagen VI deposition and hyperlipidemia in leptin-deficient obese mice. J Biol Chem 2022; 298:102322. [PMID: 35926714 PMCID: PMC9440390 DOI: 10.1016/j.jbc.2022.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
During obesity, tissue macrophages increase in number and become proinflammatory, thereby contributing to metabolic dysfunction. Lipoprotein lipase (LPL), which hydrolyzes triglyceride in lipoproteins, is secreted by macrophages. However, the role of macrophage-derived LPL in adipose tissue remodeling and lipoprotein metabolism is largely unknown. To clarify these issues, we crossed leptin-deficient Lepob/ob mice with mice lacking the Lpl gene in myeloid cells (Lplm−/m−) to generate Lplm−/m−;Lepob/ob mice. We found the weight of perigonadal white adipose tissue (WAT) was increased in Lplm−/m−;Lepob/ob mice compared with Lepob/ob mice due to substantial accumulation of both adipose tissue macrophages and collagen that surrounded necrotic adipocytes. In the fibrotic epidydimal WAT of Lplm−/m−;Lepob/ob mice, we observed an increase in collagen VI and high mobility group box 1, while α-smooth muscle cell actin, a marker of myofibroblasts, was almost undetectable, suggesting that the adipocytes were the major source of the collagens. Furthermore, the adipose tissue macrophages from Lplm−/m−;Lepob/ob mice showed increased expression of genes related to fibrosis and inflammation. In addition, we determined Lplm−/m−;Lepob/ob mice were more hypertriglyceridemic than Lepob/ob mice. Lplm−/m−;Lepob/ob mice also showed slower weight gain than Lepob/ob mice, which was primarily due to reduced food intake. In conclusion, we discovered that the loss of myeloid Lpl led to extensive fibrosis of perigonadal WAT and hypertriglyceridemia. In addition to illustrating an important role of macrophage LPL in regulation of circulating triglyceride levels, these data show that macrophage LPL protects against fibrosis in obese adipose tissues.
Collapse
Affiliation(s)
- Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan.
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Akihito Takei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Shoko Takei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Hiroaki Okazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Ira J Goldberg
- NYU-Langone Medical Center, 435 East 30(th) Street, SB617, New York, NY, 10016
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan.
| |
Collapse
|
11
|
Cai W, Zhang X, Batista TM, García-Martín R, Softic S, Wang G, Ramirez AK, Konishi M, O'Neill BT, Kim JH, Kim JK, Kahn CR. Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and Nucleus Accumbens. Diabetes 2021; 70:1857-1873. [PMID: 34031123 PMCID: PMC8385615 DOI: 10.2337/db20-1119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/09/2021] [Indexed: 11/13/2022]
Abstract
The brain is now recognized as an insulin-sensitive tissue; however, the role of changing insulin concentrations in the peripheral circulation in gene expression in the brain is largely unknown. Here, we performed a hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 h. We show that, in comparison with results in saline-infused controls, increases in peripheral insulin within the physiological range regulate expression of a broad network of genes in the brain. Insulin regulates distinct pathways in the hypothalamus (HTM), hippocampus, and nucleus accumbens. Insulin shows its most robust effect in the HTM and regulates multiple genes involved in neurotransmission, including upregulating expression of multiple subunits of GABA-A receptors, Na+ and K+ channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the HTM, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.
Collapse
Affiliation(s)
- Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY
| | - Xuemei Zhang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Rubén García-Martín
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Pediatrics, University of Kentucky, College of Medicine, Lexington, KY
| | - Guoxiao Wang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Alfred K Ramirez
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Masahiro Konishi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Brian T O'Neill
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jong Hun Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Department of Food Science and Biotechnology, Sungshin University, Seoul, South Korea
| | - Jason K Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Magnan C, Le Stunff H. Role of hypothalamic de novo ceramides synthesis in obesity and associated metabolic disorders. Mol Metab 2021; 53:101298. [PMID: 34273578 PMCID: PMC8353504 DOI: 10.1016/j.molmet.2021.101298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background Sphingolipid-mediated signalling pathways are described as important players in the normal functioning of neurons and nonneuronal cells in the central nervous system (CNS). Scope of review This review aims to show role of de novo ceramide synthesis in the CNS in controling key physiological processes, including food intake, energy expenditure, and thermogenesis. The corollary is a condition that leads to a dysfunction in ceramide metabolism in these central regions that can have major consequences on the physiological regulation of energy balance. Major conclusions Excessive hypothalamic de novo ceramide synthesis has been shown to result in the establishment of central insulin resistance, endoplasmic reticulum stress, and inflammation. Additionally, excessive hypothalamic de novo ceramide synthesis has also been associated with changes in the activity of the autonomic nervous system. Such dysregulation of hypothalamic de novo ceramide synthesis forms the key starting point for the initiation of pathophysiological conditions such as obesity – which may or may not be associated with type 2 diabetes.
Collapse
Affiliation(s)
| | - Hervé Le Stunff
- CNRS UMR 9198 Institut des Neurosciences Paris Saclay (Neuro-PSI), Université Paris-Saclay, Saclay, France.
| |
Collapse
|
13
|
Folick A, Koliwad SK, Valdearcos M. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:668396. [PMID: 34122343 PMCID: PMC8191416 DOI: 10.3389/fendo.2021.668396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Hundahl C, Kotzbeck P, Burm HB, Christiansen SH, Torz L, Helge AW, Madsen MP, Ratner C, Serup AK, Thompson JJ, Eichmann TO, Pers TH, Woldbye DPD, Piomelli D, Kiens B, Zechner R, Skov LJ, Holst B. Hypothalamic hormone-sensitive lipase regulates appetite and energy homeostasis. Mol Metab 2021; 47:101174. [PMID: 33549847 PMCID: PMC7903013 DOI: 10.1016/j.molmet.2021.101174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. Methods Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. Results We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. Conclusions Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet. HSL is expressed in appetite-regulating nuclei of the mouse hypothalamus. HSL in the hypothalamus is activated via β-adrenergic receptor signaling. The anorexic response to acute stress is blunted in mice without hypothalamic HSL. Central HSL deficiency results in obesity in mice on a high-fat diet. HSL in SF1-positive neurons contributes to the anorexigenic stress response.
Collapse
Affiliation(s)
- Cecilie Hundahl
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Petra Kotzbeck
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Hayley B Burm
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Søren H Christiansen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lola Torz
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Aske W Helge
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin P Madsen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Cecilia Ratner
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Annette K Serup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jonatan J Thompson
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - David P D Woldbye
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Daniele Piomelli
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria; Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Louise J Skov
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
15
|
Loving BA, Tang M, Neal MC, Gorkhali S, Murphy R, Eckel RH, Bruce KD. Lipoprotein Lipase Regulates Microglial Lipid Droplet Accumulation. Cells 2021; 10:cells10020198. [PMID: 33498265 PMCID: PMC7909280 DOI: 10.3390/cells10020198] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia become increasingly dysfunctional with aging and contribute to the onset of neurodegenerative disease (NDs) through defective phagocytosis, attenuated cholesterol efflux, and excessive secretion of pro-inflammatory cytokines. Dysfunctional microglia also accumulate lipid droplets (LDs); however, the mechanism underlying increased LD load is unknown. We have previously shown that microglia lacking lipoprotein lipase (LPL KD) are polarized to a pro-inflammatory state and have impaired lipid uptake and reduced fatty acid oxidation (FAO). Here, we also show that LPL KD microglia show excessive accumulation of LD-like structures. Moreover, LPL KD microglia display a pro-inflammatory lipidomic profile, increased cholesterol ester (CE) content, and reduced cholesterol efflux at baseline. We also show reduced expression of genes within the canonical cholesterol efflux pathway. Importantly, PPAR agonists (rosiglitazone and bezafibrate) rescued the LD-associated phenotype in LPL KD microglia. These data suggest that microglial-LPL is associated with lipid uptake, which may drive PPAR signaling and cholesterol efflux to prevent inflammatory lipid distribution and LD accumulation. Moreover, PPAR agonists can reverse LD accumulation, and therefore may be beneficial in aging and in the treatment of NDs.
Collapse
Affiliation(s)
- Bailey A. Loving
- Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, MI 48309, USA;
| | - Maoping Tang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Mikaela C. Neal
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Sachi Gorkhali
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Robert Murphy
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
- Correspondence:
| |
Collapse
|
16
|
On the Role of Central Type-1 Cannabinoid Receptor Gene Regulation in Food Intake and Eating Behaviors. Int J Mol Sci 2021; 22:ijms22010398. [PMID: 33401515 PMCID: PMC7796374 DOI: 10.3390/ijms22010398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.
Collapse
|
17
|
Aguilar-Recarte D, Palomer X, Vázquez-Carrera M. Uncovering the role of apolipoprotein C-III in insulin resistance. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 33:108-115. [PMID: 33303217 DOI: 10.1016/j.arteri.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 11/26/2022]
Abstract
Apolipoprotein C-III (apoC-III) is a small protein that is predominantly synthesized in the liver and mainly resides at the surface of triglyceride-rich lipoproteins. Its expression is upregulated by glucose and reduced by insulin, with enhanced apoC-III promoting hypertriglyceridemia and inflammation in vascular cells. The protein is also elevated in patients with diabetes, suggesting that enhanced apoC-III levels might contribute to the development of type 2 diabetes mellitus. The present review focuses on the key mechanisms by which apoC-III could promote type 2 diabetes mellitus, including exacerbation of insulin resistance in skeletal muscle, activation of β-cell apoptosis, promotion of weight gain through its effects on white adipose tissue and hypothalamus, and attenuation of the beneficial effects of high-density lipoproteins on glucose metabolism. Therapeutic strategies aimed at reducing apoC-III levels may not only reduce hypertriglyceridemia but also might improve insulin resistance, thus delaying the development of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Spain; Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Spain; Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Spain; Research Institute-Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
18
|
D. Bruce K, Tang M, Reigan P, H. Eckel R. Genetic Variants of Lipoprotein Lipase and Regulatory Factors Associated with Alzheimer's Disease Risk. Int J Mol Sci 2020; 21:ijms21218338. [PMID: 33172164 PMCID: PMC7664401 DOI: 10.3390/ijms21218338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipid and lipoprotein metabolism. The canonical role of LPL involves the hydrolysis of triglyceride-rich lipoproteins for the provision of FFAs to metabolic tissues. However, LPL may also contribute to lipoprotein uptake by acting as a molecular bridge between lipoproteins and cell surface receptors. Recent studies have shown that LPL is abundantly expressed in the brain and predominantly expressed in the macrophages and microglia of the human and murine brain. Moreover, recent findings suggest that LPL plays a direct role in microglial function, metabolism, and phagocytosis of extracellular factors such as amyloid- beta (Aβ). Although the precise function of LPL in the brain remains to be determined, several studies have implicated LPL variants in Alzheimer's disease (AD) risk. For example, while mutations shown to have a deleterious effect on LPL function and expression (e.g., N291S, HindIII, and PvuII) have been associated with increased AD risk, a mutation associated with increased bridging function (S447X) may be protective against AD. Recent studies have also shown that genetic variants in endogenous LPL activators (ApoC-II) and inhibitors (ApoC-III) can increase and decrease AD risk, respectively, consistent with the notion that LPL may play a protective role in AD pathogenesis. Here, we review recent advances in our understanding of LPL structure and function, which largely point to a protective role of functional LPL in AD neuropathogenesis.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (R.H.E.)
- Correspondence:
| | - Maoping Tang
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (R.H.E.)
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (R.H.E.)
| |
Collapse
|
19
|
Dragano NR, Monfort-Pires M, Velloso LA. Mechanisms Mediating the Actions of Fatty Acids in the Hypothalamus. Neuroscience 2020; 447:15-27. [PMID: 31689488 DOI: 10.1016/j.neuroscience.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
|
20
|
Bruce KD, Dobrinskikh E, Wang H, Rudenko I, Gao H, Libby AE, Gorkhali S, Yu T, Zsombok A, Eckel RH. Neuronal Lipoprotein Lipase Deficiency Alters Neuronal Function and Hepatic Metabolism. Metabolites 2020; 10:metabo10100385. [PMID: 32998280 PMCID: PMC7600143 DOI: 10.3390/metabo10100385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
The autonomic regulation of hepatic metabolism offers a novel target for the treatment of non-alcoholic fatty liver disease (NAFLD). However, the molecular characteristics of neurons that regulate the brain-liver axis remain unclear. Since mice lacking neuronal lipoprotein lipase (LPL) develop perturbations in neuronal lipid-sensing and systemic energy balance, we reasoned that LPL might be a component of pre-autonomic neurons involved in the regulation of hepatic metabolism. Here, we show that, despite obesity, mice with reduced neuronal LPL (NEXCreLPLflox (LPL KD)) show improved glucose tolerance and reduced hepatic lipid accumulation with aging compared to wilt type (WT) controls (LPLflox). To determine the effect of LPL deficiency on neuronal physiology, liver-related neurons were identified in the paraventricular nucleus (PVN) of the hypothalamus using the transsynaptic retrograde tracer PRV-152. Patch-clamp studies revealed reduced inhibitory post-synaptic currents in liver-related neurons of LPL KD mice. Fluorescence lifetime imaging microscopy (FLIM) was used to visualize metabolic changes in LPL-depleted neurons. Quantification of free vs. bound nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) revealed increased glucose utilization and TCA cycle flux in LPL-depleted neurons compared to controls. Global metabolomics from hypothalamic cell lines either deficient in or over-expressing LPL recapitulated these findings. Our data suggest that LPL is a novel feature of liver-related preautonomic neurons in the PVN. Moreover, LPL loss is sufficient to cause changes in neuronal substrate utilization and function, which may precede changes in hepatic metabolism.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
- Correspondence:
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Hong Wang
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Ivan Rudenko
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (H.G.); (A.Z.)
| | - Andrew E. Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Sachi Gorkhali
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Tian Yu
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (H.G.); (A.Z.)
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| |
Collapse
|
21
|
Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol 2020; 112:123-136. [PMID: 32773177 DOI: 10.1016/j.semcdb.2020.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system and are involved in multiple processes including metabolic homeostasis, blood brain barrier regulation and neuronal crosstalk. Astrocytes are the main storage point of glycogen in the brain and it is well established that astrocyte uptake of glutamate and release of lactate prevents neuronal excitability and supports neuronal metabolic function. However, the role of lipid metabolism in astrocytes in relation to neuronal support has been until recently, unclear. Lipids play a fundamental role in astrocyte function, including energy generation, membrane fluidity and cell to cell signaling. There is now emerging evidence that astrocyte storage of lipids in droplets has a crucial physiological and protective role in the central nervous system. This pathway links β-oxidation in astrocytes to inflammation, signalling, oxidative stress and mitochondrial energy generation in neurons. Disruption in lipid metabolism, structure and signalling in astrocytes can lead to pathogenic mechanisms associated with a range of neurological disorders.
Collapse
Affiliation(s)
- James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Jessica Allsop
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Razan Alqarni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
22
|
Hou X, Rong C, Wang F, Liu X, Sun Y, Zhang HT. GABAergic System in Stress: Implications of GABAergic Neuron Subpopulations and the Gut-Vagus-Brain Pathway. Neural Plast 2020; 2020:8858415. [PMID: 32802040 PMCID: PMC7416252 DOI: 10.1155/2020/8858415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Stress can cause a variety of central nervous system disorders, which are critically mediated by the γ-aminobutyric acid (GABA) system in various brain structures. GABAergic neurons have different subsets, some of which coexpress certain neuropeptides that can be found in the digestive system. Accumulating evidence demonstrates that the gut-brain axis, which is primarily regulated by the vagus nerve, is involved in stress, suggesting a communication between the "gut-vagus-brain" pathway and the GABAergic neuronal system. Here, we first summarize the evidence that the GABAergic system plays an essential role in stress responses. In addition, we review the effects of stress on different brain regions and GABAergic neuron subpopulations, including somatostatin, parvalbumin, ionotropic serotonin receptor 5-HT3a, cholecystokinin, neuropeptide Y, and vasoactive intestinal peptide, with regard to signaling events, behavioral changes, and pathobiology of neuropsychiatric diseases. Finally, we discuss the gut-brain bidirectional communications and the connection of the GABAergic system and the gut-vagus-brain pathway.
Collapse
Affiliation(s)
- Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Cuiping Rong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fugang Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xiaoqian Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Yi Sun
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
23
|
Nakamura A, Otani K, Shichita T. Lipid mediators and sterile inflammation in ischemic stroke. Int Immunol 2020; 32:719-725. [DOI: 10.1093/intimm/dxaa027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract
Stroke is one of the major causes of lethality and disability, yet few effective therapies have been established for ischemic stroke. Inflammation in the ischemic brain is induced by the infiltration and subsequent activation of immune cells. Loss of cerebral blood flow and ischemic brain-cell death trigger the activation of infiltrating immune cells and drastic changes in the lipid content of the ischemic brain. In particular, polyunsaturated fatty acids and their metabolites regulate cerebral post-ischemic inflammation and ischemic stroke pathologies. In this review, we discuss the relationships between the lipid mediators and cerebral post-ischemic inflammation and their relevance to possible future therapeutic strategies targeting lipid mediators for ischemic stroke.
Collapse
Affiliation(s)
- Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kento Otani
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
24
|
Berland C, Montalban E, Perrin E, Di Miceli M, Nakamura Y, Martinat M, Sullivan M, Davis XS, Shenasa MA, Martin C, Tolu S, Marti F, Caille S, Castel J, Perez S, Salinas CG, Morel C, Hecksher-Sørensen J, Cador M, Fioramonti X, Tschöp MH, Layé S, Venance L, Faure P, Hnasko TS, Small DM, Gangarossa G, Luquet SH. Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons. Cell Metab 2020; 31:773-790.e11. [PMID: 32142669 PMCID: PMC7250662 DOI: 10.1016/j.cmet.2020.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Energy-dense food alters dopaminergic (DA) transmission in the mesocorticolimbic (MCL) system and can promote reward dysfunctions, compulsive feeding, and weight gain. Yet the mechanisms by which nutrients influence the MCL circuitry remain elusive. Here, we show that nutritional triglycerides (TGs), a conserved post-prandial metabolic signature among mammals, can be metabolized within the MCL system and modulate DA-associated behaviors by gating the activity of dopamine receptor subtype 2 (DRD2)-expressing neurons through a mechanism that involves the action of the lipoprotein lipase (LPL). Further, we show that in humans, post-prandial TG excursions modulate brain responses to food cues in individuals carrying a genetic risk for reduced DRD2 signaling. Collectively, these findings unveil a novel mechanism by which dietary TGs directly alter signaling in the reward circuit to regulate behavior, thereby providing a new mechanistic basis by which energy-rich diets may lead to (mal)adaptations in DA signaling that underlie reward deficit and compulsive behavior.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France; Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Neuherberg, Germany
| | | | - Elodie Perrin
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, 75005 Paris, France
| | - Mathieu Di Miceli
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Yuko Nakamura
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Maud Martinat
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Mary Sullivan
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Xue S Davis
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mohammad Ali Shenasa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Claire Martin
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Stefania Tolu
- Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Fabio Marti
- Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Stephanie Caille
- Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, UMR5287, 33076 Bordeaux, France
| | - Julien Castel
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, 75005 Paris, France
| | | | - Chloé Morel
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Jacob Hecksher-Sørensen
- Global Research, Novo Nordisk A/S, Måløv, Denmark; Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | - Martine Cador
- Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, UMR5287, 33076 Bordeaux, France
| | - Xavier Fioramonti
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Matthias H Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Neuherberg, Germany; Division of Metabolic Diseases, TUM, Munich, Germany; Institute for Advanced Study, TUM, Munich, Germany
| | - Sophie Layé
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, 75005 Paris, France
| | - Philippe Faure
- Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Research Service VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Dana M Small
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Serge H Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France; The Modern Diet and Physiology Research Center, New Haven, CT, USA.
| |
Collapse
|
25
|
Fu S, Meng Y, Lin S, Zhang W, He Y, Huang L, Du H. Transcriptomic responses of hypothalamus to acute exercise in type 2 diabetic Goto-Kakizaki rats. PeerJ 2019; 7:e7743. [PMID: 31579613 PMCID: PMC6764357 DOI: 10.7717/peerj.7743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus has an integral role in energy homeostasis regulation, and its dysfunctions lead to the development of type 2 diabetes (T2D). Physical activity positively affects the prevention and treatment of T2D. However, there is not much information on the adaptive mechanisms of the hypothalamus. In this study, RNA sequencing was used to determine how acute exercise affects hypothalamic transcriptome from both type 2 diabetic Goto-Kakizaki (GK) and control Wistar rats with or without a single session of running (15 m/min for 60 min). Through pairwise comparisons, we identified 957 differentially expressed genes (DEGs), of which 726, 197, and 98 genes were found between GK and Wistar, exercised GK and GK, and exercised Wistar and Wistar, respectively. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that lipid metabolism-related terms and pathways were enriched in GK and exercised GK rats, and nervous system related terms and pathways were enriched in exercised GK and Wistar rats. Furthermore, 45 DEGs were associated with T2D and related phenotypes according to the annotations in the Rat Genome Database. Among these 45 DEGs, several genes (Plin2, Cd36, Lpl, Wfs1, Cck) related to lipid metabolism or the nervous system are associated with the exercise-induced benefits in the hypothalamus of GK rats. Our findings might assist in identifying potential therapeutic targets for T2D prevention and treatment.
Collapse
Affiliation(s)
- Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuhuan Meng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wenlu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuting He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
26
|
Le Foll C. Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 in the Regulation of Food Intake. Front Physiol 2019; 10:1036. [PMID: 31474875 PMCID: PMC6702519 DOI: 10.3389/fphys.2019.01036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
The obesity and type-2 diabetes epidemic is escalating and represents one of the costliest biomedical challenges confronting modern society. Moreover, the increasing consumption of high fat food is often correlated with an increase in body mass index. In people predisposed to be obese or already obese, the impaired ability of the brain to monitor and respond to alterations in fatty acid (FA) metabolism is increasingly recognized as playing a role in the pathophysiological development of these disorders. The brain senses and regulates metabolism using highly specialized nutrient-sensing neurons located mainly in the hypothalamus. The same neurons are able to detect variation in the extracellular levels of glucose, FA and ketone bodies as a way to monitor nutrient availability and to alter its own activity. In addition, glial cells such as astrocytes create major connections to neurons and form a tight relationship to closely regulate nutrient uptake and metabolism. This review will examine the different pathways by which neurons are able to detect free fatty acids (FFA) to alter its activity and how high fat diet (HFD)-astrocytes induced ketone bodies production interplays with neuronal FA sensing. The role of HFD-induced inflammation and how FA modulate the reward system will also be investigated here.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Huo W, Hou Y, Li Y, Li H. Downregulated lncRNA-MIAT confers protection against erectile dysfunction by downregulating lipoprotein lipase via activation of miR-328a-5p in diabetic rats. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1226-1240. [DOI: 10.1016/j.bbadis.2019.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
|
28
|
Effects of Angiopoietin-Like 3 on Triglyceride Regulation, Glucose Homeostasis, and Diabetes. DISEASE MARKERS 2019; 2019:6578327. [PMID: 30944669 PMCID: PMC6421734 DOI: 10.1155/2019/6578327] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Angiopoietin-like 3 (ANGPTL3) is a regulator of plasma triglyceride (TRG) levels due to its inhibitory action on the activity of lipoprotein lipase (LPL). ANGPTL3 is proteolytically cleaved by proprotein convertases to generate an active N-terminal domain, which forms a complex with ANGPTL8 orchestrating LPL inhibition. ANGPTL3-4-8 mouse model studies indicate that these three ANGPTL family members play a significant role in partitioning the circulating TRG to specific tissues according to nutritional states. Recent data indicate a positive correlation of ANGPTL3 with plasma glucose, insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) in insulin-resistant states. The aim of this review is to critically present the metabolic effects of ANGPTL3, focusing on the possible mechanisms involved in the dysregulation of carbohydrate homeostasis by this protein. Heterozygous and homozygous carriers of ANGPTL3 loss-of-function mutations have reduced risk for type 2 diabetes mellitus. Suggested mechanisms for the implication of ANGPTL3 in carbohydrate metabolism include the (i) increment of free fatty acids (FFAs) owing to the enhancement of lipolysis in adipose tissue, which can induce peripheral as well as hepatic insulin resistance; (ii) promotion of FFA flux to white adipose tissue during feeding, leading to the attenuation of de novo lipogenesis and decreased glucose uptake and insulin sensitivity; (iii) induction of hypothalamic LPL activity in mice, which is highly expressed throughout the brain and is associated with enhanced brain lipid sensing, reduction of food intake, and inhibition of glucose production (however, the effects of ANGPTL3 on hypothalamic LPL in humans need more clarification); and (iv) upregulation of ANGPTL4 expression (owing to the plasma FFA increase), which possibly enhances insulin resistance due to the selective inhibition of LPL in white adipose tissue leading to ectopic lipid accumulation and insulin resistance. Future trials will reveal if ANGPTL3 inhibition could be considered an alternative therapeutic target for dyslipidemia and dysglycemia.
Collapse
|
29
|
Christopoulou E, Tsimihodimos V, Filippatos T, Elisaf M. Apolipoprotein CIII and diabetes. Is there a link? Diabetes Metab Res Rev 2019; 35:e3118. [PMID: 30557902 DOI: 10.1002/dmrr.3118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022]
Abstract
Apolipoprotein CIII (ApoCIII), a small protein that resides on the surface of lipoprotein particles, is a key regulator of triglyceride metabolism. The inhibition of lipoprotein lipase (LPL), the increased assembly and secretion of very low-density lipoproteins (VLDL) and the decreased reuptake of triglyceride-rich lipoproteins (TRLs) by the liver are mechanisms associating elevated serum ApoCIII levels and hypertriglyceridemia. ApoCIII concentration is high in individuals with diabetes mellitus, indicating a possible positive correlation with impairment of glucose metabolism. The aim of this review (based on a Pubmed search until August 2018) is to present the possible mechanisms linking ApoCIII and deterioration of carbohydrate homeostasis. ApoCIII enhances pancreatic β-cells apoptosis via an increase of the cytoplasmic Ca2+ levels in the insulin-producing cells. In addition, overexpression of ApoCIII enhances non-alcoholic fatty liver disease and exacerbates inflammatory pathways in skeletal muscles, affecting insulin signalling and thereby inducing insulin resistance. Moreover, recent studies reveal a possible mechanism of body weight increase and glucose production through a potential ApoCIII-induced LPL inhibition in the hypothalamus. Also, the presence of ApoCIII on the surface of high-density lipoprotein particles is associated with impairment of their antiglycemic and atheroprotective properties. Modulating ApoCIII may be a potent therapeutic approach to manage hypertriglyceridemia and improve carbohydrate metabolism.
Collapse
Affiliation(s)
- Eliza Christopoulou
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Vasilios Tsimihodimos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Theodosios Filippatos
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Moses Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
30
|
Baldassano S, Gasbjerg LS, Kizilkaya HS, Rosenkilde MM, Holst JJ, Hartmann B. Increased Body Weight and Fat Mass After Subchronic GIP Receptor Antagonist, but Not GLP-2 Receptor Antagonist, Administration in Rats. Front Endocrinol (Lausanne) 2019; 10:492. [PMID: 31447774 PMCID: PMC6691063 DOI: 10.3389/fendo.2019.00492] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are hormones secreted from the enteroendocrine cells after a meal. They exert their actions through activation of G protein-coupled receptors (R), the GIPR and GLP-2R, respectively. Both have been reported to influence metabolism. The purpose of the study was to investigate the role of the hormones in the regulation of lipid and bone homeostasis by subchronic treatment with novel GIPR and GLP-2R antagonists. Rats were injected once daily with vehicle, GIPR, or GLP-2R antagonists for 3 weeks. Body weight, food intake, body composition, plasma lipoprotein lipase (LPL), adipokines, triglycerides and the marker of bone resorption carboxy-terminal collagen crosslinks (CTX), were examined. In rats, subchronic treatment with GIPR antagonist, rat GIP (3-30)NH2, did not modify food intake and bone resorption, but significantly increased body weight, body fat mass, triglycerides, LPL, and leptin levels compared with vehicle treated rats. Subchronic (Pro3)GIP (a partial GIPR agonist), GLP-2(11-33), and GLP-2(3-33) (GLP-2R antagonists) treatment did not affect any parameter. The present results would be consistent with a role for GIP, but not GLP-2, in the maintenance of lipid homeostasis in rats, while neither GIPR nor GLP-2R antagonism appeared to influence bone resorption in rats.
Collapse
Affiliation(s)
- Sara Baldassano
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Bolette Hartmann
| |
Collapse
|
31
|
Transcriptomic Changes in Broiler Chicken Hypothalamus during Growth and Development. Int J Genomics 2018; 2018:6049469. [PMID: 30406127 PMCID: PMC6204183 DOI: 10.1155/2018/6049469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 01/18/2023] Open
Abstract
The hypothalamus plays an overarching role that is reflected in the physiological processes observed in the entire organism. The hypothalamus regulates selected metabolic processes and activities of the autonomic nervous system. The avian hypothalamus due to the structural complexity is not well described and has a slightly different function than the mammalian hypothalamus that is the subject of numerous studies. The present study evaluated activities of hypothalamic genes in fast-growing chickens during development (at the 1st day and 3rd and 6th weeks after hatching). The hypothalamic transcriptomes for 3- and 6-week-old cockerels were analysed using an RNA sequencing method in next-generation sequencing (NGS) technology. The differentially expressed gene analysis was conducted using DESeq2 software. In younger 22-day-old cockerels, 389 genes showed higher expression (fold change > 1.5) than that in 45-day-old birds. These genes played a role in several biological processes because they encoded proteins involved in integrin signalling, regulation of hormone levels, camera-type eye development, and blood vessel development. Moreover, surprisingly in the hypothalamus of 3-week-old cockerels, transcripts were identified for proteins involved in both anorexigenic (POMC, NMU) and orexigenic (PMCH, ALDH1A1, LPL, and GHRH) pathways. The RNA-seq results were confirmed by qPCR methods. In summary, the intensive growth of 3-week-old chickens was reflected in hypothalamic activities because the genes associated with the somatotropin axis and regulation of satiety centre showed increased expression.
Collapse
|
32
|
Morselli E, Santos RDS, Gao S, Ávalos Y, Criollo A, Palmer BF, Clegg DJ. Impact of estrogens and estrogen receptor-α in brain lipid metabolism. Am J Physiol Endocrinol Metab 2018; 315:E7-E14. [PMID: 29509437 PMCID: PMC7717113 DOI: 10.1152/ajpendo.00473.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.
Collapse
Affiliation(s)
- Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Roberta de Souza Santos
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
| | - Su Gao
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
- Department of Medicine, Columbia University Medical Center , New York, New York
| | - Yenniffer Ávalos
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases and Center for Molecular Studies of the Cell , Santiago , Chile
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile , Santiago , Chile
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Deborah J Clegg
- Cedars-Sinai Diabetes and Obesity Research Institute, Department of Biomedical Research , Los Angeles, California
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Type 2 diabetes is associated with a characteristic dyslipidemia that may exacerbate cardiovascular risk. The causes of, and the effects of new antihyperglycemia medications on, this dyslipidemia, are under investigation. In an unexpected reciprocal manner, lowering LDL-cholesterol with statins slightly increases the risk of diabetes. Here we review the latest findings. RECENT FINDINGS The inverse relationship between LDL-cholesterol and diabetes has now been confirmed by multiple lines of evidence. This includes clinical trials, genetic instruments using aggregate single nucleotide polymorphisms, as well as at least eight individual genes - HMGCR, NPC1L1, HNF4A, GCKR, APOE, PCKS9, TM6SF2, and PNPLA3 - support this inverse association. Genetic and pharmacologic evidence suggest that HDL-cholesterol may also be inversely associated with diabetes risk. Regarding the effects of diabetes on lipoproteins, new evidence suggests that insulin resistance but not diabetes per se may explain impaired secretion and clearance of VLDL-triglycerides. Weight loss, bariatric surgery, and incretin-based therapies all lower triglycerides, whereas SGLT2 inhibitors may slightly increase HDL-cholesterol and LDL-cholesterol. SUMMARY Diabetes and lipoproteins are highly interregulated. Further research is expected to uncover new mechanisms governing the metabolism of glucose, fat, and cholesterol. This topic has important implications for treating type 2 diabetes and cardiovascular disease.
Collapse
MESH Headings
- Animals
- Cholesterol, HDL/genetics
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/genetics
- Cholesterol, LDL/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Dyslipidemias/genetics
- Dyslipidemias/metabolism
- Dyslipidemias/therapy
- Humans
- Lipoproteins, VLDL/genetics
- Lipoproteins, VLDL/metabolism
- Polymorphism, Single Nucleotide
- Triglycerides/genetics
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Sei Higuchi
- Columbia University College of Physicians & Surgeons, Naomi Berrie Diabetes Center
- Department of Pathology and Cell Biology, New York, NY
| | - M Concepción Izquierdo
- Columbia University College of Physicians & Surgeons, Naomi Berrie Diabetes Center
- Department of Pathology and Cell Biology, New York, NY
| | - Rebecca A Haeusler
- Columbia University College of Physicians & Surgeons, Naomi Berrie Diabetes Center
- Department of Pathology and Cell Biology, New York, NY
| |
Collapse
|
34
|
He PP, Jiang T, OuYang XP, Liang YQ, Zou JQ, Wang Y, Shen QQ, Liao L, Zheng XL. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta 2018; 480:126-137. [PMID: 29453968 DOI: 10.1016/j.cca.2018.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/20/2023]
|
35
|
Liu C, Han T, Stachura DL, Wang H, Vaisman BL, Kim J, Klemke RL, Remaley AT, Rana TM, Traver D, Miller YI. Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nat Commun 2018; 9:1310. [PMID: 29615667 PMCID: PMC5882990 DOI: 10.1038/s41467-018-03775-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/07/2018] [Indexed: 01/15/2023] Open
Abstract
Lipoprotein lipase (LPL) mediates hydrolysis of triglycerides (TGs) to supply free fatty acids (FFAs) to tissues. Here, we show that LPL activity is also required for hematopoietic stem progenitor cell (HSPC) maintenance. Knockout of Lpl or its obligatory cofactor Apoc2 results in significantly reduced HSPC expansion during definitive hematopoiesis in zebrafish. A human APOC2 mimetic peptide or the human very low-density lipoprotein, which carries APOC2, rescues the phenotype in apoc2 but not in lpl mutant zebrafish. Creating parabiotic apoc2 and lpl mutant zebrafish rescues the hematopoietic defect in both. Docosahexaenoic acid (DHA) is identified as an important factor in HSPC expansion. FFA-DHA, but not TG-DHA, rescues the HSPC defects in apoc2 and lpl mutant zebrafish. Reduced blood cell counts are also observed in Apoc2 mutant mice at the time of weaning. These results indicate that LPL-mediated release of the essential fatty acid DHA regulates HSPC expansion and definitive hematopoiesis.
Collapse
Affiliation(s)
- Chao Liu
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tianxu Han
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David L Stachura
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Huawei Wang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Boris L Vaisman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Richard L Klemke
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, 31 Center St, Bethesda, MD, 20892, USA
| | - Tariq M Rana
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
36
|
Abstract
Obesity represents the single most important risk factor for early disability and death in developed societies, and the incidence of obesity remains at staggering levels. CNS systems that modulate energy intake and expenditure in response to changes in body energy stores serve to maintain constant body adiposity; the adipocyte-derived hormone leptin and its receptor (LEPR) represent crucial regulators of these systems. As in the case of insulin resistance, a variety of mechanisms (including feedback inhibition, inflammation, gliosis and endoplasmic reticulum stress) have been proposed to interfere with leptin action and impede the systems that control body energy homeostasis to promote or maintain obesity, although the relative importance and contribution of each of these remain unclear. However, LEPR signalling may be increased (rather than impaired) in common obesity, suggesting that any obesity-associated defects in leptin action must result from lesions somewhere other than the initial LEPR signal. It is also possible that increased LEPR signalling could mediate some of the obesity-associated changes in hypothalamic function.
Collapse
|
37
|
Laperrousaz E, Denis RG, Kassis N, Contreras C, López M, Luquet S, Cruciani-Guglielmacci C, Magnan C. Lipoprotein Lipase Expression in Hypothalamus Is Involved in the Central Regulation of Thermogenesis and the Response to Cold Exposure. Front Endocrinol (Lausanne) 2018; 9:103. [PMID: 29593657 PMCID: PMC5861133 DOI: 10.3389/fendo.2018.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 11/15/2022] Open
Abstract
Lipoprotein lipase (LPL) is expressed in different areas of the brain, including the hypothalamus and plays an important role in neural control of the energy balance, including feeding behavior and metabolic fluxes. This study tested the hypothesis that hypothalamic LPL participates in the control of body temperature. We first showed that cold exposure induces decreased activity and expression of LPL in the mouse hypothalamus. We then selectively deleted LPL in the mediobasal hypothalamus (MBH) through an adeno-associated virus approach in LPL-floxed mice and generated MBHΔ Lpl mice with 30-35% decrease in hypothalamic LPL activity. Results showed a decrease in body temperature in MBHΔ Lpl mice when compared with controls at 22°C. Exposure to cold (4°C for 4 h) decreased the body temperature of the control mice while that of the MBHΔ Lpl mice remained similar to that observed at 22°C. MBHΔ Lpl mice also showed increased energy expenditure during cold exposure, when compared to controls. Finally, the selective MBH deletion of LPL also increased the expression of the thermogenic PRMD16 and Dio2 in subcutaneous and perigonadal adipose tissues. Thus, the MBH LPL deletion seems to favor thermogenesis. These data demonstrate that for the first time hypothalamic LPL appears to function as a regulator of body temperature and cold-induced thermogenesis.
Collapse
Affiliation(s)
- Elise Laperrousaz
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Raphaël G Denis
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Nadim Kassis
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Cristina Contreras
- NeurObesity Group, Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Céline Cruciani-Guglielmacci
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| |
Collapse
|
38
|
Flees J, Rajaei-Sharifabadi H, Greene E, Beer L, Hargis BM, Ellestad L, Porter T, Donoghue A, Bottje WG, Dridi S. Effect of Morinda citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens. Front Physiol 2017; 8:919. [PMID: 29230177 PMCID: PMC5711822 DOI: 10.3389/fphys.2017.00919] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signatures involved in hepatic lipogenic and lipolytic programs, and (2) to assess if diet supplementation with dried Noni medicinal plant (0.2% of the diet) modulates these effects. Broilers (480 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to two environmental conditions (heat stress, HS, 35°C vs. thermoneutral condition, TN, 24°C) and fed two diets (control vs. Noni) in a 2 × 2 factorial design. Feed intake and body weights were recorded, and blood and liver samples were collected at 2 h and 3 weeks post-heat exposure. HS depressed feed intake, reduced body weight, and up regulated the hepatic expression of heat shock protein HSP60, HSP70, HSP90 as well as key lipogenic proteins (fatty acid synthase, FASN; acetyl co-A carboxylase alpha, ACCα and ATP citrate lyase, ACLY). HS down regulated the hepatic expression of lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (LIPC), but up-regulated ATGL. Although it did not affect growth performance, Noni supplementation regulated the hepatic expression of lipogenic proteins in a time- and gene-specific manner. Prior to HS, Noni increased ACLY and FASN in the acute and chronic experimental conditions, respectively. During acute HS, Noni increased ACCα, but reduced FASN and ACLY expression. Under chronic HS, Noni up regulated ACCα and FASN but it down regulated ACLY. In vitro studies, using chicken hepatocyte cell lines, showed that HS down-regulated the expression of ACCα, FASN, and ACLY. Treatment with quercetin, one bioactive ingredient in Noni, up-regulated the expression of ACCα, FASN, and ACLY under TN conditions, but it appeared to down-regulate ACCα and increase ACLY levels under HS exposure. In conclusion, our findings indicate that HS induces hepatic lipogenesis in chickens and this effect is probably mediated via HSPs. The modulation of hepatic HSP expression suggest also that Noni might be involved in modulating the stress response in chicken liver.
Collapse
Affiliation(s)
- Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Billy M Hargis
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Laura Ellestad
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Tom Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Annie Donoghue
- USDA, Agricultural Research Service, Fayetteville, AR, United States
| | - Walter G Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
39
|
Gao Y, Layritz C, Legutko B, Eichmann TO, Laperrousaz E, Moullé VS, Cruciani-Guglielmacci C, Magnan C, Luquet S, Woods SC, Eckel RH, Yi CX, Garcia-Caceres C, Tschöp MH. Disruption of Lipid Uptake in Astroglia Exacerbates Diet-Induced Obesity. Diabetes 2017; 66:2555-2563. [PMID: 28710138 PMCID: PMC6463752 DOI: 10.2337/db16-1278] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Neuronal circuits in the brain help to control feeding behavior and systemic metabolism in response to afferent nutrient and hormonal signals. Although astrocytes have historically been assumed to have little relevance for such neuroendocrine control, we investigated whether lipid uptake via lipoprotein lipase (LPL) in astrocytes is required to centrally regulate energy homeostasis. Ex vivo studies with hypothalamus-derived astrocytes showed that LPL expression is upregulated by oleic acid, whereas it is decreased in response to palmitic acid or triglycerides. Likewise, astrocytic LPL deletion reduced the accumulation of lipid droplets in those glial cells. Consecutive in vivo studies showed that postnatal ablation of LPL in glial fibrillary acidic protein-expressing astrocytes induced exaggerated body weight gain and glucose intolerance in mice exposed to a high-fat diet. Intriguingly, astrocytic LPL deficiency also triggered increased ceramide content in the hypothalamus, which may contribute to hypothalamic insulin resistance. We conclude that hypothalamic LPL functions in astrocytes to ensure appropriately balanced nutrient sensing, ceramide distribution, body weight regulation, and glucose metabolism.
Collapse
Affiliation(s)
- Yuanqing Gao
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Clarita Layritz
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Beata Legutko
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Elise Laperrousaz
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, University of Paris Diderot, Paris, France
| | - Valentine S Moullé
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, University of Paris Diderot, Paris, France
| | - Celine Cruciani-Guglielmacci
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, University of Paris Diderot, Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, University of Paris Diderot, Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, University of Paris Diderot, Paris, France
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado at Denver, Denver, CO
| | - Chun-Xia Yi
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cristina Garcia-Caceres
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Matthias H Tschöp
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum München and Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
40
|
Candidate Gene Identification of Feed Efficiency and Coat Color Traits in a C57BL/6J × Kunming F2 Mice Population Using Genome-Wide Association Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7132941. [PMID: 28828387 PMCID: PMC5554547 DOI: 10.1155/2017/7132941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022]
Abstract
Feed efficiency (FE) is a very important trait in livestock industry. Identification of the candidate genes could be of benefit for the improvement of FE trait. Mouse is used as the model for many studies in mammals. In this study, the candidate genes related to FE and coat color were identified using C57BL/6J (C57) × Kunming (KM) F2 mouse population. GWAS results showed that 61 and 2 SNPs were genome-wise suggestive significantly associated with feed conversion ratio (FCR) and feed intake (FI) traits, respectively. Moreover, the Erbin, Msrb2, Ptf1a, and Fgf10 were considered as the candidate genes of FE. The Lpl was considered as the candidate gene of FI. Further, the coat color trait was studied. KM mice are white and C57 ones are black. The GWAS results showed that the most significant SNP was located at chromosome 7, and the closely linked gene was Tyr. Therefore, our study offered useful target genes related to FE in mice; these genes may play similar roles in FE of livestock. Also, we identified the major gene of coat color in mice, which would be useful for better understanding of natural mutation of the coat color in mice.
Collapse
|
41
|
Cruciani-Guglielmacci C, Magnan C. Brain lipoprotein lipase as a regulator of energy balance. Biochimie 2017; 143:51-55. [PMID: 28751218 DOI: 10.1016/j.biochi.2017.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023]
Abstract
The central nervous system is an essential actor in the control of the energy balance. Indeed, many signals of nervous (vagal afferent for example) or circulating (hormone, nutrients) origin converge towards the brain to inform it permanently of the energetic status of the organism. In turn, the brain sends information to the periphery (sympathetic vagal balance, thyroid or corticotropic axis) which allows a fine regulation of the energy fluxes by acting on the hepatic glucose production, the secretion of the pancreatic hormones (glucagon, insulin) or food behavior. Among the nutrients, increasing amount of data assigns a signal molecule role to lipids such as fatty acids. These fatty acids may originate from the bloodstream but may also be the product of the hydrolysis of lipoproteins such as chylomicrons or VLDLs. Indeed, the identification of lipoprotein lipase (LPL) in the brain has led to the hypothesis that the LPL-dependent degradation of TG-enriched particles, and the addition of fatty acids, as informative molecules, to sensitive cells (neurons and/or astrocytes), plays a key role in maintaining the energy balance at equilibrium. Other lipases could also participate in these regulatory mechanisms. This review will summarize the state of the art and open up perspectives.
Collapse
Affiliation(s)
- Céline Cruciani-Guglielmacci
- Sorbonne Paris Cité, Université Denis Diderot, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France.
| | - Christophe Magnan
- Sorbonne Paris Cité, Université Denis Diderot, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| |
Collapse
|
42
|
Laperrousaz E, Moullé VS, Denis RG, Kassis N, Berland C, Colsch B, Fioramonti X, Philippe E, Lacombe A, Vanacker C, Butin N, Bruce KD, Wang H, Wang Y, Gao Y, Garcia-Caceres C, Prévot V, Tschöp MH, Eckel RH, Le Stunff H, Luquet S, Magnan C, Cruciani-Guglielmacci C. Lipoprotein lipase in hypothalamus is a key regulator of body weight gain and glucose homeostasis in mice. Diabetologia 2017; 60:1314-1324. [PMID: 28456865 DOI: 10.1007/s00125-017-4282-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/16/2017] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Regulation of energy balance involves the participation of many factors, including nutrients, among which are circulating lipids, acting as peripheral signals informing the central nervous system of the energy status of the organism. It has been shown that neuronal lipoprotein lipase (LPL) participates in the control of energy balance by hydrolysing lipid particles enriched in triacylglycerols. Here, we tested the hypothesis that LPL in the mediobasal hypothalamus (MBH), a well-known nucleus implicated in the regulation of metabolic homeostasis, could also contribute to the regulation of body weight and glucose homeostasis. METHODS We injected an adeno-associated virus (AAV) expressing Cre-green fluorescent protein into the MBH of Lpl-floxed mice (and wild-type mice) to specifically decrease LPL activity in the MBH. In parallel, we injected an AAV overexpressing Lpl into the MBH of wild-type mice. We then studied energy homeostasis and hypothalamic ceramide content. RESULTS The partial deletion of Lpl in the MBH in mice led to an increase in body weight compared with controls (37.72 ± 0.7 g vs 28.46 ± 0.12, p < 0.001) associated with a decrease in locomotor activity. These mice developed hyperinsulinaemia and glucose intolerance. This phenotype also displayed reduced expression of Cers1 in the hypothalamus as well as decreased concentration of several C18 species of ceramides and a 3-fold decrease in total ceramide intensity. Conversely, overexpression of Lpl specifically in the MBH induced a decrease in body weight. CONCLUSIONS/INTERPRETATION Our study shows that LPL in the MBH is an important regulator of body weight and glucose homeostasis.
Collapse
Affiliation(s)
- Elise Laperrousaz
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| | - Valentine S Moullé
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| | - Raphaël G Denis
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| | - Nadim Kassis
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| | - Chloé Berland
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Benoit Colsch
- CEA-Centre d'Etude de Saclay, Laboratoire d'étude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation, Unité Mixte de Recherche CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Erwann Philippe
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| | - Amélie Lacombe
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| | - Charlotte Vanacker
- Development and Plasticity of the Neuroendocrine Brain, Neurobese International Associated Laboratory, Jean-Pierre Aubert Research Center, Inserm U1172, University of Lille, Lille, France
| | - Noémie Butin
- CEA-Centre d'Etude de Saclay, Laboratoire d'étude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Kimberley D Bruce
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Hong Wang
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Yongping Wang
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Yuanqing Gao
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Cristina Garcia-Caceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Vincent Prévot
- Centre des Sciences du Goût et de l'Alimentation, Unité Mixte de Recherche CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum, Munich, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Hervé Le Stunff
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France.
| | - Céline Cruciani-Guglielmacci
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, Bâtiment Buffon, P. O. box 7126, 4, rue Marie-Andrée Lagroua Weill-Halle, 75205, Paris Cedex 13, France.
| |
Collapse
|
43
|
Perakakis N, Farr OM, Tuccinardi D, Upadhyay J, Mantzoros CS. Research advances in metabolism 2016. Metabolism 2017; 67:41-53. [PMID: 28081777 PMCID: PMC5871911 DOI: 10.1016/j.metabol.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Olivia M Farr
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dario Tuccinardi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jagriti Upadhyay
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02130, USA
| |
Collapse
|
44
|
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability and lead to early death. The total amount of dietary fat consumption may be the most potent food-related risk factor for weight gain. In this respect, dietary intake of high-caloric, high-fat diets due to chronic over-eating and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues . Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance in an inflammation-independent manner. Even in the absence of metabolic disorders, mismatch between fatty acid uptake and utilization leads to the accumulation of toxic lipid species resulting in organ dysfunction. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction may play role in the pathogenesis of lipotoxicity. The hypothalamus senses availability of circulating levels of glucose, lipids and amino acids, thereby modifies feeding according to the levels of those molecules. However, the hypothalamus is also similarly vulnerable to lipotoxicity as the other ectopic lipid accumulated tissues. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B kinase beta subunit/nuclear factor kappa B (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, the mechanisms by which high-fat diet induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown. In this chapter, besides lipids and leptin, the role of glucose and insulin on specialized fuel-sensing neurons of hypothalamic neuronal circuits has been debated.
Collapse
|
45
|
Bruce KD, Zsombok A, Eckel RH. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front Endocrinol (Lausanne) 2017; 8:60. [PMID: 28421037 PMCID: PMC5378716 DOI: 10.3389/fendo.2017.00060] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism. In particular, lipid metabolism within the brain is tightly regulated to maintain neuronal structure and function and may signal nutrient status to modulate metabolism in key peripheral tissues such as the liver. There is now a growing body of evidence to suggest that fatty acid (FA) sensing in hypothalamic neurons via accumulation of FAs or FA metabolites may signal nutritional sufficiency and may decrease hepatic glucose production, lipogenesis, and VLDL-TG secretion. In addition, recent studies have highlighted the existence of liver-related neurons that have the potential to direct such signals through parasympathetic and sympathetic nervous system activity. However, to date whether these liver-related neurons are FA sensitive remain to be determined. The findings discussed in this review underscore the importance of the autonomic nervous system in the regulation of systemic metabolism and highlight the need for further research to determine the key features of FA neurons, which may serve as novel therapeutic targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
- *Correspondence: Kimberley D. Bruce,
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert H. Eckel
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
| |
Collapse
|
46
|
Geldenhuys WJ, Lin L, Darvesh AS, Sadana P. Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases. Drug Discov Today 2016; 22:352-365. [PMID: 27771332 DOI: 10.1016/j.drudis.2016.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/17/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
Although statins and other pharmacological approaches have improved the management of lipid abnormalities, there exists a need for newer treatment modalities especially for the management of hypertriglyceridemia. Lipoprotein lipase (LPL), by promoting hydrolytic cleavage of the triglyceride core of lipoproteins, is a crucial node in the management of plasma lipid levels. Although LPL expression and activity modulation is observed as a pleiotropic action of some the commonly used lipid lowering drugs, the deliberate development of drugs targeting LPL has not occurred yet. In this review, we present the biology of LPL, highlight the LPL modulation property of currently used drugs and review the novel emerging approaches to target LPL.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Altaf S Darvesh
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Prabodh Sadana
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
47
|
Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, Al-Amoudi A, Kuerschner L. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia 2016; 65:231-249. [PMID: 27726181 DOI: 10.1002/glia.23088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 11/12/2022]
Abstract
Although the brain controls all main metabolic pathways in the whole organism, its lipid metabolism is partially separated from the rest of the body. Circulating lipids and other metabolites are taken up into brain areas like the hypothalamus and are locally metabolized and sensed involving several hypothalamic cell types. In this study we show that saturated and unsaturated fatty acids are differentially processed in the murine hypothalamus. The observed differences involve both lipid distribution and metabolism. Key findings were: (i) hypothalamic astrocytes are targeted by unsaturated, but not saturated lipids in lean mice; (ii) in obese mice labeling of these astrocytes by unsaturated oleic acid cannot be detected unless β-oxidation or ketogenesis is inhibited; (iii) the hypothalamus of obese animals increases ketone body and neutral lipid synthesis while tanycytes, hypothalamic cells facing the ventricle, increase their lipid droplet content; and (iv) tanycytes show different labeling for saturated or unsaturated lipids. Our data support a metabolic connection between tanycytes and astrocytes likely to impact hypothalamic lipid sensing. GLIA 2017;65:231-249.
Collapse
Affiliation(s)
- Kristina Hofmann
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Christian Lamberz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, D-53175, Germany
| | - Kira Piotrowitz
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Nina Offermann
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Diana But
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, D-66421, Germany
| | - Ashraf Al-Amoudi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, D-53175, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| |
Collapse
|
48
|
Astragaloside IV improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network. Sci Rep 2016; 6:30190. [PMID: 27444146 PMCID: PMC4957129 DOI: 10.1038/srep30190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity is a worldwide threat to public health in modern society, which may result from leptin resistance and disorder of thermogenesis. The present study investigated whether astragaloside IV (ASI) could prevent obesity in high-fat diet (HFD)-fed and db/db mice. In HFD-fed mice, ASI prevented body weight gain, lowered serum triglyceride and total cholesterol levels, mitigated liver lipid accumulation, reduced fat tissues and decreased the enlargement of adipose cells. In metabolic chambers, ASI lessened appetite of the mice, decreased their respiratory exchange ratio and elevated VCO2 and VO2 without altering circadian motor activity. Moreover, ASI modulated thermogenesis associated gene expressions in liver and brawn fat tissues, as well as leptin resistance evidenced by altered expressions of leptin, leptin receptor (ObR) or appetite associated genes. In SH-SY5Y cells, ASI enhanced leptin signaling transduction. However, in db/db mice, ASI did not change body weight gain and appetite associated genes. But it decreased serum triglyceride and total cholesterol levels as well as liver triglyceride. Meanwhile, it significantly modulated gene expressions of PPARα, PGC1-α, UCP2, ACC, SCD1, LPL, AP2, CD36 and SREBP-1c. Collectively, our study suggested that ASI could efficiently improve lipid metabolism in obese mice probably through enhancing leptin sensitivity and modulating thermogenic network.
Collapse
|
49
|
Wang H, Taussig MD, DiPatrizio NV, Bruce K, Piomelli D, Eckel RH. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition. Metabolism 2016; 65:987-97. [PMID: 27282869 DOI: 10.1016/j.metabol.2016.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
Abstract
We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Matthew D Taussig
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas V DiPatrizio
- Department of Pharmacology, University of California, Irvine, Irvine, CA 92617, USA; School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Kimberley Bruce
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniele Piomelli
- Department of Pharmacology, University of California, Irvine, Irvine, CA 92617, USA; Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Wang H, Wang Y, Taussig MD, Eckel RH. Sex differences in obesity development in pair-fed neuronal lipoprotein lipase deficient mice. Mol Metab 2016; 5:1025-1032. [PMID: 27689015 PMCID: PMC5034494 DOI: 10.1016/j.molmet.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023] Open
Abstract
Objective Compared to men, postmenopausal women suffer from a disproportionate burden of many co-morbidities associated with obesity, e.g. cardiovascular disease, cancer, and dementia. The underlying mechanism for this sex difference is not well understood but is believed to relate to absence of the protective effect of estrogen through the action of estrogen receptor alpha (ERα) in the central nervous system. With the recently developed neuron-specific lipoprotein lipase deficient mice (NEXLPL−/−) (Wang et al., Cell Metabolism, 2011 [15]), we set to explore the possible role of lipid sensing in sex differences in obesity development. Methods Both male and female NEXLPL−/− mice and littermate WT controls were subjected to pair feeding (pf) where daily food amount given was adjusted according to body weight to match the food intake of ad libitum (ad) fed control WT mice. Food intake and body weight were measured daily, and pair feeding was maintained to 42 wk in male mice and to 38 wk in female mice. Various brain regions of the mice were harvested, and ERα gene expression was examined in both male and female NEXLPL−/− and WT control mice under both ad- and pf-fed conditions. Results Although both male and female NEXLPL−/− mice developed obesity similarly on standard chow, male NEXLPL−/− mice still developed obesity under with pair feeding, but on a much delayed time course, while female NEXLPL−/− mice were protected from extra body weight and fat mass gain compared to pair-fed WT control mice. Pair feeding alone induced extra fat mass gain in both male and female WT mice, and this was mostly driven by the reduction in physical activity. LPL deficiency resulted in an increase in ERα mRNA in the hypothalamus of ad-fed female mice, while pair feeding alone also resulted in an increase of ERα in both female WT control and NEXLPL−/− mice. The effect on increasing ERα by pair feeding and LPL deficiency was additive in pair-fed female NEXLPL−/− mice. ERα mRNA levels were not significantly modified in other brain regions examined, nor in the hypothalamus of male NEXLPL−/− mice compared to control mice. Conclusions These results suggest that the mechanism underlying ERα regulation of body weight interacts with the LPL-dependent lipid processing in the hypothalamus in a sex specific way. ERα could provide the link between brain lipid sensing and sex differences in obesity development. This study has the potential important clinical implication to provide better management for women who suffer from obesity and obesity-related co-morbidities. Male neuronal lipoprotein lipase deficient mice are still obese with pair feeding. Female neuronal lipoprotein lipase deficient mice are not obese with pair feeding. Neuronal LPL deficiency results in an increase in ERa expression in female mice. Pair feeding alone also results in an increase in ERa in both male and female mice. ERa provides the link between brain lipid sensing and sex differences in obesity.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Yongping Wang
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D Taussig
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|