1
|
Franco Acevedo A, Mack JJ, Valenzuela NM. The transcriptional repressor B cell lymphoma 6 regulates CXCR3 chemokine and human leukocyte antigen II expression in endothelial cells. Am J Transplant 2024:S1600-6135(24)00449-0. [PMID: 39074669 DOI: 10.1016/j.ajt.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Interferon gamma (IFN-γ) induces an endothelial proimmunogenic phenotype through the JAK/STAT1 pathway, which can shape the activation of alloreactive leukocytes in transplant rejection. In immune cells, the DNA-binding protein B cell lymphoma 6 (BCL6) controls the transcription of inflammatory genes. This study tested if BCL6 modulates IFN-γ-induced gene expression in endothelial cells. In vitro, BCL6 was IFN-γ-inducible in primary human endothelium, along with CXCR3 chemokines and human leukocyte antigen (HLA). BCL6, HLA II, and CXCL9 were also increased in human cardiac transplants during acute rejection. Knockdown of BCL6 augmented, whereas overexpression and BTB domain inhibitors (BCL6-BTBi) suppressed, HLA II and CXCR3 chemokine expression but not HLA I. Further, BCL6 had a greater effect on HLA-DR and DP but was less involved in regulating HLA-DQ expression. The effect correlated with BCL6 binding motifs in or near affected genes. The BCL6 DNA recognition sequence was highly similar to that of STAT1, and BTBi reduced STAT1's transcriptional activity in vitro. Our results show for the first time that BCL6 selectively controls IFN-γ-induced endothelial gene expression, advancing our understanding of the endogenous mechanisms regulating donor immunogenicity.
Collapse
Affiliation(s)
- Adriana Franco Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA
| | - Julia J Mack
- Department of Cardiology, University of California, Los Angeles, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
2
|
Jones PW, Mallat Z, Nus M. T-Cell/B-Cell Interactions in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1502-1511. [PMID: 38813700 PMCID: PMC11208060 DOI: 10.1161/atvbaha.124.319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.
Collapse
Affiliation(s)
- Peter William Jones
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| | - Ziad Mallat
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
- INSERM U970, Paris Cardiovascular Research Centre, France (Z.M.)
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| |
Collapse
|
3
|
Liu C, Pan F, Sun Z, Chen Z, Wang J. Exploring the pathogenesis and key genes associated of acute myocardial infarction complicated with Alzheimer's disease. Sci Rep 2024; 14:1449. [PMID: 38228864 PMCID: PMC10791667 DOI: 10.1038/s41598-024-52094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024] Open
Abstract
Despite mounting evidence linking Acute Myocardial Infarction (AMI) to Alzheimer's disease (AD), the shared mechanism of these two conditions' occurrence remains unclear. This research aims to delve deeper into the molecular process of the occurrence of the two diseases. We retrieved the gene expression profiles of AD (GSE5281) and AMI (GSE66360) from the Gene Expression Omnibus database. Then, a total of 22 common differentially expressed genes (DEGs) including one downregulated gene and 21 upregulated genes were chosen for further analysis. Following the discovery of the common DEGs between AMI and AD, we performed protein-protein interaction analysis and hub gene identification analysis. Next, ten important hub genes were identified. Additionally, the key genes were identified by the least absolute shrinkage and selection operator and support vector machine-recursive feature elimination and multivariable logistic regression analysis. The BCL6 was identified to be the most connected with AMI and AD. Finally, the BCL6 gene was validated in the GSE40680 (AMI) and GSE122063 (AD) datasets. Our research indicates that AMI and AD share a comparable pathophysiology. The Hub genes, especially BCL6, were essential in developing AMI and AD. In addition, these hub genes and shared pathways can offer fresh perspectives for additional mechanism investigation.
Collapse
Affiliation(s)
- Chaosheng Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fuzhi Pan
- Department of Medical Image Science, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Zhiyu Sun
- Department of Cardiology, Dalian Friendship Hospital, Dalian, Liaoning, China
| | - Ziyu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Junjie Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
4
|
Liu F, Chen S, Ming X, Li H, Zeng Z, Lv Y. Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of Polygonatum odoratum. J Zhejiang Univ Sci B 2023; 24:998-1013. [PMID: 37961802 PMCID: PMC10646395 DOI: 10.1631/jzus.b2200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/17/2023] [Indexed: 11/15/2023]
Abstract
This study aims to investigate the impact of hepatocyte nuclear factor 1β (HNF1b) on macrophage sortilin-mediated lipid metabolism and aortic atherosclerosis and explore the role of the flavone of Polygonatum odoratum (PAOA-flavone)-promoted small ubiquitin-related modifier (SUMO) modification in the atheroprotective efficacy of HNF1b. HNF1b was predicted to be a transcriptional regulator of sortilin expression via bioinformatics, dual-luciferase reporter gene assay, and chromatin immunoprecipitation. HNF1b overexpression decreased sortilin expression and cellular lipid contents in THP-1 macrophages, leading to a depression in atherosclerotic plaque formation in low-density lipoprotein (LDL) receptor-deficient (LDLR-/-) mice. Multiple SUMO1-modified sites were identified on the HNF1b protein and co-immunoprecipitation confirmed its SUMO1 modification. The SUMOylation of HNF1b protein enhanced the HNF1b-inhibited effect on sortilin expression and reduced lipid contents in macrophages. PAOA-flavone treatment promoted SUMO-activating enzyme subunit 1 (SAE1) expression and SAE1-catalyzed SUMOylation of the HNF1b protein, which prevented sortilin-mediated lipid accumulation in macrophages and the formation of atherosclerotic plaques in apolipoprotein E-deficient (ApoE-/-) mice. Interference with SAE1 abrogated the improvement in lipid metabolism in macrophage cells and atheroprotective efficacy in vivo upon PAOA-flavone administration. In summary, HNF1b transcriptionally suppressed sortilin expression and macrophage lipid accumulation to inhibit aortic lipid deposition and the development of atherosclerosis. This anti-atherosclerotic effect was enhanced by PAOA-flavone-facilitated, SAE1-catalyzed SUMOylation of the HNF1b protein.
Collapse
Affiliation(s)
- Fang Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Shirui Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Xinyue Ming
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Huijuan Li
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Zhaoming Zeng
- Hunan Mingshun Pharmaceutical Co., Ltd., Shaodong 422800, China. ,
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
5
|
Zafar A, Ng HP, Chan ER, Dunwoodie SL, Mahabeleshwar GH. Myeloid-CITED2 Deficiency Exacerbates Diet-Induced Obesity and Pro-Inflammatory Macrophage Response. Cells 2023; 12:2136. [PMID: 37681868 PMCID: PMC10486650 DOI: 10.3390/cells12172136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023] Open
Abstract
Macrophages are the principal component of the innate immune system that are found in all tissues and play an essential role in development, homeostasis, tissue repair, and immunity. Clinical and experimental studies have shown that transcriptionally dynamic pro-inflammatory macrophages are involved in the pathogenesis of diet-induced obesity and insulin resistance. However, cell-intrinsic mechanisms must exist that bridle uncontrolled pro-inflammatory macrophage activation in metabolic organs and disease pathogenesis. In this study, we show that CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) is an essential negative regulator of pro-inflammatory macrophage activation and inflammatory disease pathogenesis. Our in vivo studies show that myeloid-CITED2 deficiency significantly elevates high-fat diet (HFD)-induced expansion of adipose tissue volume, obesity, glucose intolerance, and insulin resistance. Moreover, myeloid-CITED2 deficiency also substantially augments HFD-induced adipose tissue inflammation and adverse remodeling of adipocytes. Our integrated transcriptomics and gene set enrichment analyses show that CITED2 deficiency curtails BCL6 signaling and broadly elevates BCL6-repressive gene target expression in macrophages. Using complementary gain- and loss-of-function studies, we found that CITED2 deficiency attenuates, and CITED2 overexpression elevates, inducible BCL6 expression in macrophages. At the molecular level, our analyses show that CITED2 promotes BCL6 expression by restraining STAT5 activation in macrophages. Interestingly, siRNA-mediated knockdown of STAT5 fully reversed elevated pro-inflammatory gene target expression in CITED2-deficient macrophages. Overall, our findings highlight that CITED2 restrains inflammation by promoting BCL6 expression in macrophages, and limits diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - E. Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sally L. Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, NSW 2052, Australia
| | - Ganapati H. Mahabeleshwar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Haftorn KL, Romanowska J, Lee Y, Page CM, Magnus PM, Håberg SE, Bohlin J, Jugessur A, Denault WRP. Stability selection enhances feature selection and enables accurate prediction of gestational age using only five DNA methylation sites. Clin Epigenetics 2023; 15:114. [PMID: 37443060 PMCID: PMC10339624 DOI: 10.1186/s13148-023-01528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) is robustly associated with chronological age in children and adults, and gestational age (GA) in newborns. This property has enabled the development of several epigenetic clocks that can accurately predict chronological age and GA. However, the lack of overlap in predictive CpGs across different epigenetic clocks remains elusive. Our main aim was therefore to identify and characterize CpGs that are stably predictive of GA. RESULTS We applied a statistical approach called 'stability selection' to DNAm data from 2138 newborns in the Norwegian Mother, Father, and Child Cohort study. Stability selection combines subsampling with variable selection to restrict the number of false discoveries in the set of selected variables. Twenty-four CpGs were identified as being stably predictive of GA. Intriguingly, only up to 10% of the CpGs in previous GA clocks were found to be stably selected. Based on these results, we used generalized additive model regression to develop a new GA clock consisting of only five CpGs, which showed a similar predictive performance as previous GA clocks (R2 = 0.674, median absolute deviation = 4.4 days). These CpGs were in or near genes and regulatory regions involved in immune responses, metabolism, and developmental processes. Furthermore, accounting for nonlinear associations improved prediction performance in preterm newborns. CONCLUSION We present a methodological framework for feature selection that is broadly applicable to any trait that can be predicted from DNAm data. We demonstrate its utility by identifying CpGs that are highly predictive of GA and present a new and highly performant GA clock based on only five CpGs that is more amenable to a clinical setting.
Collapse
Affiliation(s)
- Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Institute of Health and Society, University of Oslo, Oslo, Norway.
| | - Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5020, Bergen, Norway
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Division for Mental and Physical Health, Department of Physical Health and Aging, Norwegian Institute of Public Health, Oslo, Norway
| | - Per M Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Division for Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, 5020, Bergen, Norway
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Lu XR, Liu XW, Li SH, Qin Z, Bai LX, Ge WB, Li JY, Yang YJ. Untargeted lipidomics and metagenomics reveal the mechanism of aspirin eugenol ester relieving hyperlipidemia in ApoE-/- mice. Front Nutr 2022; 9:1030528. [PMID: 36618709 PMCID: PMC9815714 DOI: 10.3389/fnut.2022.1030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperlipidemia is induced by abnormal lipid metabolism, which can cause the occurrence of cardiovascular diseases and lead to grievous injury to health. Studies showed that AEE had a significant therapeutic effect on hyperlipidemia and is likely to be associated with the up-regulation of cholesterol 7-alpha hydroxylase (CYP7A1), the key enzyme for cholesterol conversion to bile acids, but no research confirmed whether the effect of AEE on hyperlipidemia was related to the gut microbiota and liver lipids. At the same time, more and more studies have shown that gut microbiota and lipids are closely related to hyperlipidemia. Hence, in this study, we investigated the effects of AEE on liver lipids through LC-MS-based untargeted lipidomics and the effects of AEE on gut microbiota based on cecal contents metagenomics by Illumina sequencing in HFD-induced hyperlipidemia ApoE-/- mice at the overall level. The results of lipidomics showed that AEE relieved hyperlipidemia by decreasing the concentration of 10 PEs and 12 SMs in the liver and regulating the pathways of glycerophospholipid metabolic pathway, sphingolipid signaling pathway, and NF-kB signaling pathway. The results of metagenomics concluded that AEE treatment changed the composition of gut microbiota and regulated the functions of lipid transport and metabolism, as well as the metabolism of bile acids and secondary bile acids. The results of the joint analysis between lipidomics and metagenomics showed that the abundance of Verrucomicrobia, Verrucomicrobiales, Candidatus_Gastranaerophilales, and Candidatus_Melainabacteria was significantly positively correlated with the concentration of SM (d18:1/18:0) and PE (16:0/18:1) in the process of AEE alleviating hyperlipidemia in mice. In conclusion, these results suggested that the effect of AEE on hyperlipidemia was closely related to the gut microbiota by the change of bile acids and liver lipids.
Collapse
|
8
|
Xiang J, Shen J, Zhang L, Tang B. Identification and validation of senescence-related genes in circulating endothelial cells of patients with acute myocardial infarction. Front Cardiovasc Med 2022; 9:1057985. [PMID: 36582740 PMCID: PMC9792765 DOI: 10.3389/fcvm.2022.1057985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is the main clinical cause of death and cardiovascular disease and thus has high rates of morbidity and mortality. The increase in cardiovascular disease with aging is partly the result of vascular endothelial cell senescence and associated vascular dysfunction. This study was performed to identify potential key cellular senescence-related genes (SRGs) as biomarkers for the diagnosis of AMI using bioinformatics. Methods Using the CellAge database, we identified cellular SRGs. GSE66360 and GSE48060 for AMI patients and healthy controls and GSE19322 for mice were downloaded from the Gene Expression Omnibus (GEO) database. The GSE66360 dataset was divided into a training set and a validation set. The GSE48060 dataset was used as another validation set. The GSE19322 dataset was used to explore the evolution of the screened diagnostic markers in the dynamic process of AMI. Differentially expressed genes (DEGs) of AMI were identified from the GSE66360 training set. Differentially expressed senescence-related genes (DESRGs) selected from SRGs and DEGs were analyzed using Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in DESRGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed and targeted drug prediction was performed. Results A total of 520 DEGs were screened from the GSE66360 training set, and 279 SRGs were identified from the CellAge database. The overlapping DEGs and SRGs constituted 14 DESRGs, including 4 senescence suppressor genes and 10 senescence inducible genes. The top 10 hub genes, including FOS, MMP9, CEBPB, CDKN1A, CXCL1, ETS2, BCL6, SGK1, ZFP36, and IGFBP3, were screened. Furthermore, three diagnostic genes were identified: MMP9, ETS2, and BCL6. The ROC analysis showed that the respective area under the curves (AUCs) of MMP9, ETS2, and BCL6 were 0.786, 0.848, and 0.852 in the GSE66360 validation set and 0.708, 0.791, and 0.727 in the GSE48060 dataset. In the GSE19322 dataset, MMP9 (AUC, 0.888) and ETS2 (AUC, 0.929) had very high diagnostic values in the early stage of AMI. Finally, based on these three diagnostic genes, we found that drugs such as acetylcysteine and genistein may be targeted for the treatment of age-related AMI. Conclusion The results of this study suggest that cellular SRGs might play an important role in AMI. MMP9, ETS2, and BCL6 have potential as specific biomarkers for the early diagnosis of AMI.
Collapse
Affiliation(s)
- Jie Xiang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jun Shen
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Ling Zhang,
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,*Correspondence: Baopeng Tang,
| |
Collapse
|
9
|
Mishra GP, Jha A, Ahad A, Sen K, Sen A, Podder S, Prusty S, Biswas VK, Gupta B, Raghav SK. Epigenomics of conventional type-I dendritic cells depicted preferential control of TLR9 versus TLR3 response by NCoR1 through differential IRF3 activation. Cell Mol Life Sci 2022; 79:429. [PMID: 35849243 PMCID: PMC9293861 DOI: 10.1007/s00018-022-04424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Tight control of gene regulation in dendritic cells (DCs) is important to mount pathogen specific immune responses. Apart from transcription factor binding, dynamic regulation of enhancer activity through global transcriptional repressors like Nuclear Receptor Co-repressor 1 (NCoR1) plays a major role in fine-tuning of DC responses. However, how NCoR1 regulates enhancer activity and gene expression in individual or multiple Toll-like receptor (TLR) activation in DCs is largely unknown. In this study, we did a comprehensive epigenomic analysis of murine conventional type-I DCs (cDC1) across different TLR ligation conditions. We profiled gene expression changes along with H3K27ac active enhancers and NCoR1 binding in the TLR9, TLR3 and combined TLR9 + TLR3 activated cDC1. We observed spatio-temporal activity of TLR9 and TLR3 specific enhancers regulating signal specific target genes. Interestingly, we found that NCoR1 differentially controls the TLR9 and TLR3-specific responses. NCoR1 depletion specifically enhanced TLR9 responses as evident from increased enhancer activity as well as TLR9-specific gene expression, whereas TLR3-mediated antiviral response genes were negatively regulated. We validated that NCoR1 KD cDC1 showed significantly decreased TLR3 specific antiviral responses through decreased IRF3 activation. In addition, decreased IRF3 binding was observed at selected ISGs leading to their decreased expression upon NCoR1 depletion. Consequently, the NCoR1 depleted cDC1 showed reduced Sendai Virus (SeV) clearance and cytotoxic potential of CD8+ T cells upon TLR3 activation. NCoR1 directly controls the majority of these TLR specific enhancer activity and the gene expression. Overall, for the first time, we revealed NCoR1 mediates transcriptional control towards TLR9 as compared to TLR3 in cDC1.
Collapse
Affiliation(s)
- Gyan Prakash Mishra
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Atimukta Jha
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abdul Ahad
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
| | - Kaushik Sen
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Aishwarya Sen
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Sreeparna Podder
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Subhasish Prusty
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Viplov Kumar Biswas
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Bhawna Gupta
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Sunil Kumar Raghav
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, 751023, India.
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India.
| |
Collapse
|
10
|
Erdos E, Divoux A, Sandor K, Halasz L, Smith SR, Osborne TF. Unique role for lncRNA HOTAIR in defining depot-specific gene expression patterns in human adipose-derived stem cells. Genes Dev 2022; 36:566-581. [PMID: 35618313 PMCID: PMC9186385 DOI: 10.1101/gad.349393.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023]
Abstract
In this study, Erdos et al. investigated the role of HOX transcript antisense intergenic RNA (HOTAIR) in adipose tissue biology. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, they found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis, and demonstrate a unique function for HOTAIR in hASC depot-specific regulation of gene expression. Accumulation of fat above the waist is an important risk factor in developing obesity-related comorbidities independently of BMI or total fat mass. Deciphering the gene regulatory programs of the adipose tissue precursor cells within upper body or abdominal (ABD) and lower body or gluteofemoral (GF) depots is important to understand their differential capacity for lipid accumulation, maturation, and disease risk. Previous studies identified the HOX transcript antisense intergenic RNA (HOTAIR) as a GF-specific lncRNA; however, its role in adipose tissue biology is still unclear. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, we found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis. We further demonstrate a direct interaction between HOTAIR and genes with high RNAPII binding in their gene bodies, especially at their 3′ ends or transcription end sites. Computational analysis suggests HOTAIR binds preferentially to the 3′ ends of genes containing predicted strong RNA–RNA interactions with HOTAIR. Together, these results reveal a unique function for HOTAIR in hASC depot-specific regulation of gene expression.
Collapse
Affiliation(s)
- Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Timothy F Osborne
- Division of Diabetes Endocrinology and Metabolism, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Medicine, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida 33701, USA
| |
Collapse
|
11
|
Construction of genetic classification model for coronary atherosclerosis heart disease using three machine learning methods. BMC Cardiovasc Disord 2022; 22:42. [PMID: 35151267 PMCID: PMC8840658 DOI: 10.1186/s12872-022-02481-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
Background Although the diagnostic method for coronary atherosclerosis heart disease (CAD) is constantly innovated, CAD in the early stage is still missed diagnosis for the absence of any symptoms. The gene expression levels varied during disease development; therefore, a classifier based on gene expression might contribute to CAD diagnosis. This study aimed to construct genetic classification models for CAD using gene expression data, which may provide new insight into the understanding of its pathogenesis. Methods All statistical analysis was completed by R 3.4.4 software. Three raw gene expression datasets (GSE12288, GSE7638 and GSE66360) related to CAD were downloaded from the Gene Expression Omnibus database and included for analysis. Limma package was performed to identify differentially expressed genes (DEGs) between CAD samples and healthy controls. The WGCNA package was conducted to recognize CAD-related gene modules and hub genes, followed by recursive feature elimination analysis to select the optimal features genes (OFGs). The genetic classification models were established using support vector machine (SVM), random forest (RF) and logistic regression (LR), respectively. Further validation and receiver operating characteristic (ROC) curve analysis were conducted to evaluate the classification performance. Results In total, 374 DEGs, eight gene modules, 33 hub genes and 12 OFGs (HTR4, KISS1, CA12, CAMK2B, KLK2, DDC, CNGB1, DERL1, BCL6, LILRA2, HCK, MTF2) were identified. ROC curve analysis showed that the accuracy of SVM, RF and LR were 75.58%, 63.57% and 63.95% in validation; with area under the curve of 0.813 (95% confidence interval, 95% CI 0.761–0.866, P < 0.0001), 0.727 (95% CI 0.665–0.788, P < 0.0001) and 0.783 (95% CI 0.725–0.841, P < 0.0001), respectively. Conclusions In conclusion, this study found 12 gene signatures involved in the pathogenic mechanism of CAD. Among the CAD classifiers constructed by three machine learning methods, the SVM model has the best performance. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02481-4.
Collapse
|
12
|
Van der Vorst EPC, Biessen EAL. Unwrapped and uNCORked: PPAR-γ repression in atherosclerosis. Eur Heart J 2022; 43:e32-e34. [PMID: 31754688 DOI: 10.1093/eurheartj/ehz770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Emiel P C Van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Erik A L Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
13
|
Fang SG, Xia TL, Fu JC, Li T, Zhong Q, Han F. BCL6-SPECC1L: A Novel Fusion Gene in Nasopharyngeal Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221139981. [PMID: 36412101 PMCID: PMC9706053 DOI: 10.1177/15330338221139981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Background: Nasopharyngeal carcinomas (NPCs) are malignant tumors originating from the lining epithelium of the nasopharynx. Fusion genes have been confirmed to play important roles in the occurrence and development of various malignant tumors, but the role of fusion genes in NPC is poorly understood. We aimed to explore new fusion genes that promote the occurrence and development of NPC. Methods: RNA-seq was used to search for interchromosomal translocations in 18 NPC tissues. Polymerase chain reaction (PCR) and Sanger sequencing were applied to verify the presence of BCL6-SPECC1L (BS); quantitative PCR (qPCR) and Western blotting were used to measure the expression level of BCL-6 in NPC cells; MTT and in vivo tumorigenesis assays were applied to evaluate the cell proliferation ability; immunofluorescence assays were used to determine the cellular localization of BCL6 and BS; and a luciferase reporter assay was performed to evaluate the ability of BCL6 and BS to inhibit transcription. Results: BS was present in 5.34% (11/206) of primary NPC biopsies and 2.13% (1/47) of head and neck cancer biopsies. The expression of BCL6 was downregulated in NPC, and silencing of endogenous BCL6 promoted NPC cell proliferation in vitro. Overexpression of BCL6 but not BS inhibited the growth of NPC cells in vivo and in vitro. Mechanistically, BCL6 localized in the nucleus can inhibit the G1/S transition to suppress the growth of NPC cells. However, after the fusion of BCL6 and SPECC1L, the product cannot localize to the nucleus, and the transcriptional inhibitory function of BCL6 is abolished, eventually abolishing its tumor suppressor effect and leading to the development of NPC. Conclusion: BS is a novel fusion gene in NPC that may play an important role in the occurrence and development of this cancer. The clinical significance of the BS fusion gene needs further elucidation.
Collapse
Affiliation(s)
- Shuo-Gui Fang
- Department of Radiation Oncology, Sun Yat-sen University Cancer
Center, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer
Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou,
China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Guangzhou,
China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
| | - Jian-Chang Fu
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
- Department of Pathology, Sun Yat-Sen University Cancer
Center, Guangzhou, China
| | - Tong Li
- Department of Cancer Prevention, Sun Yat-sen University Cancer
Center, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangzhou,
China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer
Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou,
China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou,
China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and
Therapy, Guangzhou, China
| |
Collapse
|
14
|
Canaria DA, Clare MG, Yan B, Campbell CB, Ismaio ZA, Anderson NL, Park S, Dent AL, Kazemian M, Olson MR. IL-1β promotes IL-9-producing Th cell differentiation in IL-2-limiting conditions through the inhibition of BCL6. Front Immunol 2022; 13:1032618. [PMID: 36389679 PMCID: PMC9663844 DOI: 10.3389/fimmu.2022.1032618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
IL-9-producing CD4+ T helper cells, termed Th9 cells, differentiate from naïve precursor cells in response to a combination of cytokine and cell surface receptor signals that are elevated in inflamed tissues. After differentiation, Th9 cells accumulate in these tissues where they exacerbate allergic and intestinal disease or enhance anti-parasite and anti-tumor immunity. Previous work indicates that the differentiation of Th9 cells requires the inflammatory cytokines IL-4 and TGF-β and is also dependent of the T cell growth factor IL-2. While the roles of IL-4 and TGF-β-mediated signaling are relatively well understood, how IL-2 signaling contributes to Th9 cell differentiation outside of directly inducing the Il9 locus remains less clear. We show here that murine Th9 cells that differentiate in IL-2-limiting conditions exhibit reduced IL-9 production, diminished NF-kB activation and a reduced NF-kB-associated transcriptional signature, suggesting that IL-2 signaling is required for optimal NF-kB activation in Th9 cells. Interestingly, both IL-9 production and the NF-kB transcriptional signature could be rescued by addition of the NF-kB-activating cytokine IL-1β to IL-2-limiting cultures. IL-1β was unique among NF-kB-activating factors in its ability to rescue Th9 differentiation as IL-2 deprived Th9 cells selectively induced IL-1R expression and IL-1β/IL-1R1 signaling enhanced the sensitivity of Th9 cells to limiting amounts of IL-2 by suppressing expression of the Th9 inhibitory factor BCL6. These data shed new light on the intertwined nature of IL-2 and NF-kB signaling pathways in differentiating Th cells and elucidate the potential mechanisms that promote Th9 inflammatory function in IL-2-limiting conditions.
Collapse
Affiliation(s)
- D Alejandro Canaria
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Maia G Clare
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Charlotte B Campbell
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zachariah A Ismaio
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Nicole L Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
Guo J, Liu Y, Lv J, Zou B, Chen Z, Li K, Feng J, Cai Z, Wei L, Liu M, Pang X. BCL6 confers KRAS-mutant non-small-cell lung cancer resistance to BET inhibitors. J Clin Invest 2021; 131:133090. [PMID: 33393503 DOI: 10.1172/jci133090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
The bromodomain and extra-terminal domain (BET) proteins are promising therapeutic targets to treat refractory solid tumors; however, inherent resistance remains a major challenge in the clinic. Recently, the emerging role of the oncoprotein B cell lymphoma 6 (BCL6) in tumorigenesis and stress response has been unveiled. Here, we demonstrate that BCL6 was upregulated upon BET inhibition in KRAS-mutant cancers, including non-small-cell lung cancer (NSCLC). We further found that BRD3, not BRD2 or BRD4, directly interacted with BCL6 and maintained the negative autoregulatory circuit of BCL6. Disrupting this negative autoregulation by BET inhibitors (BETi) resulted in a striking increase in BCL6 transcription, which further activated the mTOR signaling pathway through repression of the tumor suppressor death-associated protein kinase 2. Importantly, pharmacological inhibition of either BCL6 or mTOR improved the tumor response and enhanced the sensitivity of KRAS-mutant NSCLC to BETi in both in vitro and in vivo settings. Overall, our findings identify a mechanism of BRD3-mediated BCL6 autoregulation and further develop an effective combinatorial strategy to circumvent BETi resistance in KRAS-driven NSCLC.
Collapse
Affiliation(s)
- Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yanan Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Medical Research Institute, Wuhan University, Wuhan, China
| | - Kun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Juanjuan Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
16
|
NCOR1 Sustains Colorectal Cancer Cell Growth and Protects against Cellular Senescence. Cancers (Basel) 2021; 13:cancers13174414. [PMID: 34503224 PMCID: PMC8430780 DOI: 10.3390/cancers13174414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary NCOR1 is a scaffold protein that interacts with multiple partners to repress gene transcription. NCOR1 controls immunometabolic functions in several tissues and has been recently shown to protect against experimental colitis in mice. Our laboratory has observed a pro-proliferative role of NCOR1 in normal intestinal epithelial cells. However, it is unclear whether NCOR1 is functionally involved in colon cancer. This study demonstrated that NCOR1 is required for colorectal cancer cell growth. Depletion of NCOR1 caused these cells to become senescent. Transcriptomic signatures confirmed these observations but also predicted the potential for these cells to become pro-invasive. Thus, NCOR1 plays a novel role in preventing cancer-associated senescence and could represent a target for controlling colon cancer progression. Abstract NCOR1 is a corepressor that mediates transcriptional repression through its association with nuclear receptors and specific transcription factors. Some evidence supports a role for NCOR1 in neonatal intestinal epithelium maturation and the maintenance of epithelial integrity during experimental colitis in mice. We hypothesized that NCOR1 could control colorectal cancer cell proliferation and tumorigenicity. Conditional intestinal epithelial deletion of Ncor1 in ApcMin/+ mice resulted in a significant reduction in polyposis. RNAi targeting of NCOR1 in Caco-2/15 and HT-29 cell lines led to a reduction in cell growth, characterized by cellular senescence associated with a secretory phenotype. Tumor growth of HT-29 cells was reduced in the absence of NCOR1 in the mouse xenografts. RNA-seq transcriptome profiling of colon cancer cells confirmed the senescence phenotype in the absence of NCOR1 and predicted the occurrence of a pro-migration cellular signature in this context. SOX2, a transcription factor essential for pluripotency of embryonic stem cells, was induced under these conditions. In conclusion, depletion of NCOR1 reduced intestinal polyposis in mice and caused growth arrest, leading to senescence in human colorectal cell lines. The acquisition of a pro-metastasis signature in the absence of NCOR1 could indicate long-term potential adverse consequences of colon-cancer-induced senescence.
Collapse
|
17
|
Bene K, Halasz L, Nagy L. Transcriptional repression shapes the identity and function of tissue macrophages. FEBS Open Bio 2021; 11:3218-3229. [PMID: 34358410 PMCID: PMC8634859 DOI: 10.1002/2211-5463.13269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
The changing extra‐ and intracellular microenvironment calls for rapid cell fate decisions that are precisely and primarily regulated at the transcriptional level. The cellular components of the immune system are excellent examples of how cells respond and adapt to different environmental stimuli. Innate immune cells such as macrophages are able to modulate their transcriptional programs and epigenetic regulatory networks through activation and repression of particular genes, allowing them to quickly respond to a rapidly changing environment. Tissue macrophages are essential components of different immune‐ and nonimmune cell‐mediated physiological mechanisms in mammals and are widely used models for investigating transcriptional regulatory mechanisms. Therefore, it is critical to unravel the distinct sets of transcription activators, repressors, and coregulators that play roles in determining tissue macrophage identity and functions during homeostasis, as well as in diseases affecting large human populations, such as metabolic syndromes, immune‐deficiencies, and tumor development. In this review, we will focus on transcriptional repressors that play roles in tissue macrophage development and function under physiological conditions.
Collapse
Affiliation(s)
- Krisztian Bene
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| |
Collapse
|
18
|
Manjur ABMK, Lempiäinen JK, Malinen M, Varjosalo M, Palvimo JJ, Niskanen EA. BCOR modulates transcriptional activity of a subset of glucocorticoid receptor target genes involved in cell growth and mobility. J Steroid Biochem Mol Biol 2021; 210:105873. [PMID: 33722704 DOI: 10.1016/j.jsbmb.2021.105873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
Glucocorticoid (GC) receptor (GR) is a key transcription factor (TF) that regulates vital metabolic and anti-inflammatory processes. We have identified BCL6 corepressor (BCOR) as a dexamethasone-stimulated interaction partner of GR. BCOR is a component of non-canonical polycomb repressor complex 1.1 (ncPCR1.1) and linked to different developmental disorders and cancers, but the role of BCOR in GC signaling is poorly characterized. Here, using ChIP-seq we show that, GC induces genome-wide redistribution of BCOR chromatin binding towards GR-occupied enhancers in HEK293 cells. As assessed by RNA-seq, depletion of BCOR altered the expression of hundreds of GC-regulated genes, especially the ones linked to TNF signaling, GR signaling and cell migration pathways. Biotinylation-based proximity mapping revealed that GR and BCOR share several interacting partners, including nuclear receptor corepressor NCOR1. ChIP-seq showed that the NCOR1 co-occurs with both BCOR and GR on a subset of enhancers upon GC treatment. Simultaneous depletion of BCOR and NCOR1 influenced GR target gene expression in a combinatorial and gene-specific manner. Finally, we show using live cell imaging that the depletion of BCOR together with NCOR1 markedly enhances cell migration. Collectively, our data suggest BCOR as an important gene and pathway selective coregulator of GR transcriptional activity.
Collapse
Affiliation(s)
| | | | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
19
|
Additive contribution of microRNA-34a/b/c to human arterial ageing and atherosclerosis. Atherosclerosis 2021; 327:49-58. [PMID: 34038763 DOI: 10.1016/j.atherosclerosis.2021.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Preclinical data suggest that the ageing-induced miR-34a regulates vascular senescence. Herein we sought to assess whether the miR-34 family members miR-34a, miR-34b and miR-34c are involved in human arterial disease. METHODS Expression levels of miR-34a/b/c were quantified by TaqMan assay in peripheral blood mononuclear cells (PBMCs) derived from a consecutive cohort of 221 subjects who underwent cardiovascular risk assessment and thorough vascular examination for aortic stiffness and extent of arterial atherosclerosis. RESULTS High miR-34a was independently associated with the presence of CAD [OR (95%C.I.): 3.87 (1.56-9.56); p = 0.003] and high miR-34c with the number of diseased arterial beds [OR (95%C.I.): 1.88 (1.034-3.41); p = 0.038], while concurrent high expression of miR-34-a/c or all three miR-34a/b/c was associated with aortic stiffening (miR-34a/c: p = 0.022; miR-34a/b/c: p = 0.041) and with the extent of atherosclerosis [OR (95%C.I.) for number of coronary arteries [miR-34a/c: 3.29 (1.085-9.95); miR-34a/b/c: 6.06 (1.74-21.2)] and number of diseased arterial beds [miR-34a/c: 3.51 (1.45-8.52); miR-34a/b/c: 2.89 (1.05-7.92)] after controlling for possible confounders (p < 0.05 for all). Mechanistically, the increased levels of miR-34a or miR-34c were inversely associated with expression of SIRT1 or JAG1, NOTCH2, CTNNB1 and ATF1, respectively. The association of miR-34a/c or miR-34a/b/c with CAD was mainly mediated through SIRT1 and to a lesser extent through JAG1 as revealed by generalized structural equation modeling. Leukocyte-specific ablation of miR-34a/b/c ameliorates atherosclerotic plaque development and increases Sirt1 and Jag1 expression in an atherosclerosis mouse model confirming the human findings. CONCLUSIONS The present study reveals the clinical significance of the additive role of miR-34a/b/c in vascular ageing and atherosclerotic vascular disease.
Collapse
|
20
|
Repression of transcription by the glucocorticoid receptor: A parsimonious model for the genomics era. J Biol Chem 2021; 296:100687. [PMID: 33891947 PMCID: PMC8141881 DOI: 10.1016/j.jbc.2021.100687] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are potent anti-inflammatory drugs that are used to treat an extraordinary range of human disease, including COVID-19, underscoring the ongoing importance of understanding their molecular mechanisms. Early studies of GR signaling led to broad acceptance of models in which glucocorticoid receptor (GR) monomers tether repressively to inflammatory transcription factors, thus abrogating inflammatory gene expression. However, newer data challenge this core concept and present an exciting opportunity to reframe our understanding of GR signaling. Here, we present an alternate, two-part model for transcriptional repression by glucocorticoids. First, widespread GR-mediated induction of transcription results in rapid, primary repression of inflammatory gene transcription and associated enhancers through competition-based mechanisms. Second, a subset of GR-induced genes, including targets that are regulated in coordination with inflammatory transcription factors such as NF-κB, exerts secondary repressive effects on inflammatory gene expression. Within this framework, emerging data indicate that the gene set regulated through the cooperative convergence of GR and NF-κB signaling is central to the broad clinical effectiveness of glucocorticoids in terminating inflammation and promoting tissue repair.
Collapse
|
21
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
22
|
The corepressors GPS2 and SMRT control enhancer and silencer remodeling via eRNA transcription during inflammatory activation of macrophages. Mol Cell 2021; 81:953-968.e9. [PMID: 33503407 DOI: 10.1016/j.molcel.2020.12.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
While the role of transcription factors and coactivators in controlling enhancer activity and chromatin structure linked to gene expression is well established, the involvement of corepressors is not. Using inflammatory macrophage activation as a model, we investigate here a corepressor complex containing GPS2 and SMRT both genome-wide and at the Ccl2 locus, encoding the chemokine CCL2 (MCP-1). We report that corepressors co-occupy candidate enhancers along with the coactivators CBP (H3K27 acetylase) and MED1 (mediator) but act antagonistically by repressing eRNA transcription-coupled H3K27 acetylation. Genome editing, transcriptional interference, and cistrome analysis reveals that apparently related enhancer and silencer elements control Ccl2 transcription in opposite ways. 4C-seq indicates that corepressor depletion or inflammatory signaling functions mechanistically similarly to trigger enhancer activation. In ob/ob mice, adipose tissue macrophage-selective depletion of the Ccl2 enhancer-transcribed eRNA reduces metaflammation. Thus, the identified corepressor-eRNA-chemokine pathway operates in vivo and suggests therapeutic opportunities by targeting eRNAs in immuno-metabolic diseases.
Collapse
|
23
|
Jahejo AR, Tian WX. Cellular, molecular and genetical overview of avian tibial dyschondroplasia. Res Vet Sci 2020; 135:569-579. [PMID: 33066991 DOI: 10.1016/j.rvsc.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
Tibial dyschondroplasia (TD) is an intractable avian bone disease that causes severe poultry economic losses. The pathogenicity of TD is unknown. Therefore, TD disease has not been evacuated yet. Based on continuous research findings, we have gone through the molecular and cellular insight into the TD and proposed possible pathogenicity for future studies. Immunity and angiogenesis-related genes expressed in the erythrocytes of chicken, influenced the apoptosis of chicken chondrocytes to cause TD. TD could be defined as the irregular, unmineralized and un-vascularized mass of cartilage, which is caused by apoptosis, degeneration and insufficient blood supply at the site of the chicken growth plate. The failure of angiogenesis attributed improper nutrients supply to the chondrocytes; ultimately, bone development stopped, poor calcification of cartilage matrix, and apoptosis of chondrocytes occurred. Recent studies explore potential signaling pathways that regulated TD in broiler chickens, including parathyroid hormone-related peptide (PTHrP), transforming growth factor β (TGF- β)/bone morphogenic proteins (BMPs), and hypoxia-inducible factor (HIF). Several studies have reported many medicines to treat TD. However, recently, rGSTA3 protein (50 μg·kg-1) is considered the most proper TD treatment. The present review has summarized the molecular and cellular insight into the TD, which will help researchers in medicine development to evacuate TD completely.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wen Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
24
|
Geiger MA, Guillaumon AT, Paneni F, Matter CM, Stein S. Role of the Nuclear Receptor Corepressor 1 (NCOR1) in Atherosclerosis and Associated Immunometabolic Diseases. Front Immunol 2020; 11:569358. [PMID: 33117357 PMCID: PMC7578257 DOI: 10.3389/fimmu.2020.569358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is part of chronic immunometabolic disorders such as type 2 diabetes and nonalcoholic fatty liver disease. Their common risk factors comprise hypertension, insulin resistance, visceral obesity, and dyslipidemias, such as hypercholesterolemia and hypertriglyceridemia, which are part of the metabolic syndrome. Immunometabolic diseases include chronic pathologies that are affected by both metabolic and inflammatory triggers and mediators. Important and challenging questions in this context are to reveal how metabolic triggers and their downstream signaling affect inflammatory processes and vice-versa. Along these lines, specific nuclear receptors sense changes in lipid metabolism and in turn induce downstream inflammatory and metabolic processes. The transcriptional activity of these nuclear receptors is regulated by the nuclear receptor corepressors (NCORs), including NCOR1. In this review we describe the function of NCOR1 as a central immunometabolic regulator and focus on its role in atherosclerosis and associated immunometabolic diseases.
Collapse
Affiliation(s)
- Martin A Geiger
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, Campinas, Brazil
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, Campinas, Brazil
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Du L, Sun J, Zhang W, Wang Y, Zhu H, Liu T, Gao M, Zheng C, Zhang Y, Liu Y, Liu Y, Shao S, Zhang X, Leng Q, Auwerx J, Duan S. Macrophage NCOR1 Deficiency Ameliorates Myocardial Infarction and Neointimal Hyperplasia in Mice. J Am Heart Assoc 2020; 9:e015862. [PMID: 32720575 PMCID: PMC7792266 DOI: 10.1161/jaha.120.015862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background NCOR1 (nuclear receptor corepressor 1) is an essential coregulator of gene transcription. It has been shown that NCOR1 in macrophages plays important roles in metabolic regulation. However, the function of macrophage NCOR1 in response to myocardial infarction (MI) or vascular wire injury has not been elucidated. Methods and Results Here, using macrophage Ncor1 knockout mouse in combination with a mouse model of MI, we demonstrated that macrophage NCOR1 deficiency significantly reduced infarct size and improved cardiac function after MI. In addition, macrophage NCOR1 deficiency markedly inhibited neointimal hyperplasia and vascular remodeling in a mouse model of arterial wire injury. Inflammation and macrophage proliferation were substantially attenuated in hearts and arteries of macrophage Ncor1 knockout mice after MI and arterial wire injury, respectively. Cultured primary macrophages from macrophage Ncor1 knockout mice manifested lower expression of inflammatory genes upon stimulation by interleukin‐1β, interleukin‐6, or lipopolysaccharide, together with much less activation of inflammatory signaling cascades including signal transducer and activator of transcription 1 and nuclear factor‐κB. Furthermore, macrophage Ncor1 knockout macrophages were much less proliferative in culture, with inhibited cell cycle progression compared with control cells. Conclusions Collectively, our data have demonstrated that NCOR1 is a critical regulator of macrophage inflammation and proliferation and that deficiency of NCOR1 in macrophages attenuates MI and neointimal hyperplasia. Therefore, macrophage NCOR1 may serve as a potential therapeutic target for MI and restenosis.
Collapse
Affiliation(s)
- Lin‐Juan Du
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Jian‐Yong Sun
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Wu‐Chang Zhang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Yong‐Li Wang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Ming‐Zhu Gao
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Education, and School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Chen Zheng
- Department of StomatologyThe Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Yu‐Yao Zhang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Shuai Shao
- Department of NeurosurgeryRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Education, and School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Qibin Leng
- Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiShanghai Institutes for Biological SciencesChinese Academy of SciencesUniversity of the Chinese Academy of SciencesShanghaiChina
| | - Johan Auwerx
- Laboratory of Integrative and Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sheng‐Zhong Duan
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| |
Collapse
|
26
|
Jahejo AR, Rajput N, Kashif J, Kalhoro DH, Niu S, Qiao ML, Zhang D, Qadir MF, Mangi RA, Khan A, Ahsan A, Khan A, Tian WX. Recombinant glutathione-S-transferase A3 protein regulates the angiogenesis-related genes of erythrocytes in thiram induced tibial lesions. Res Vet Sci 2020; 131:244-253. [PMID: 32438067 DOI: 10.1016/j.rvsc.2020.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
Tibial dyschondroplasia (TD) is a skeletal deformity disease in broilers that occurs when vascularization in the growth plate (GP) is below normal. Although, blood vessels have been reported to contribute significantly in bone formation. Therefore, in the current study, we have examined the mRNA expression of angiogenesis-related genes in erythrocytes of thiram induced TD chickens by qRT-PCR and performed histopathological analysis to determine regulatory effect of recombinant Glutathione-S-Transferase A3 (rGSTA3) protein in response to the destructive effect of thiram following the injection of rGSTA3 protein. Histopathology results suggested that, blood vessels of GPs were damaged in thiram induced TD chicken group (D), it also affected the area and density of blood vessels. In the 20 and 50 μg·kg-1 of rGSTA3 protein-administered groups, E and F vessels appeared to be normal and improved on day 6 and 15. Furthermore, qRT-PCR results showed that rGSTA3 protein significantly (P < .05) up-regulated the expression of the most important angiogenesis-related integrin family genes ITGA2, ITGA5, ITGB2, ITGB3, ITGAV. The expression level of other genes including TBXA2R, FYN, IQGAP2, IL1R1, GIT1, RAP1B, RPL17, RAC2, MAML3, PTPN11, VAV1, PTCH1, NCOR2, CLU and ITGB3 up-regulated on dosage of rGSTA3 protein. In conclusion, angiogenesis is destroyed in thiram induced TD broilers, and rGSTA3 protein injection improved the vascularization of GPs by upregulating the angiogenesis related genes most importantly integrin family genes ITGAV, ITGA2, ITGB2, ITGB3, ITGA5.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Nasir Rajput
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh 70060, Pakistan
| | - Jam Kashif
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh 70060, Pakistan
| | - Dildar Hussain Kalhoro
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh 70060, Pakistan
| | - Sheng Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Meng-Li Qiao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Muhammad Farhan Qadir
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Raza Ali Mangi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Afrasyab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Anam Ahsan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
27
|
The oncogene BCL6 is up-regulated in glioblastoma in response to DNA damage, and drives survival after therapy. PLoS One 2020; 15:e0231470. [PMID: 32320427 PMCID: PMC7176076 DOI: 10.1371/journal.pone.0231470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
The prognosis for people with the high-grade brain tumor glioblastoma is very poor, due largely to low cell death in response to genotoxic therapy. The transcription factor BCL6, a protein that normally suppresses the DNA damage response during immune cell maturation, and a known driver of B-cell lymphoma, was shown to mediate the survival of glioblastoma cells. Expression was observed in glioblastoma tumor specimens and cell lines. When BCL6 expression or activity was reduced in these lines, increased apoptosis and a profound loss of proliferation was observed, consistent with gene expression signatures suggestive of anti-apoptotic and pro-survival signaling role for BCL6 in glioblastoma. Further, treatment with the standard therapies for glioblastoma—ionizing radiation and temozolomide—both induced BCL6 expression in vitro, and an in vivo orthotopic animal model of glioblastoma. Importantly, inhibition of BCL6 in combination with genotoxic therapies enhanced the therapeutic effect. Together these data demonstrate that BCL6 is an active transcription factor in glioblastoma, that it drives survival of cells, and that it increased with DNA damage, which increased the survival rate of therapy-treated cells. This makes BCL6 an excellent therapeutic target in glioblastoma—by increasing sensitivity to standard DNA damaging therapy, BCL6 inhibitors have real potential to improve the outcome for people with this disease.
Collapse
|
28
|
Oppi S, Nusser-Stein S, Blyszczuk P, Wang X, Jomard A, Marzolla V, Yang K, Velagapudi S, Ward LJ, Yuan XM, Geiger MA, Guillaumon AT, Othman A, Hornemann T, Rancic Z, Ryu D, Oosterveer MH, Osto E, Lüscher TF, Stein S. Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPARγ signature. Eur Heart J 2020; 41:995-1005. [PMID: 31529020 DOI: 10.1093/eurheartj/ehz667] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/28/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Nuclear receptors and their cofactors regulate key pathophysiological processes in atherosclerosis development. The transcriptional activity of these nuclear receptors is controlled by the nuclear receptor corepressors (NCOR), scaffolding proteins that form the basis of large corepressor complexes. Studies with primary macrophages demonstrated that the deletion of Ncor1 increases the expression of atherosclerotic molecules. However, the role of nuclear receptor corepressors in atherogenesis is unknown. METHODS AND RESULTS We generated myeloid cell-specific Ncor1 knockout mice and crossbred them with low-density lipoprotein receptor (Ldlr) knockouts to study the role of macrophage NCOR1 in atherosclerosis. We demonstrate that myeloid cell-specific deletion of nuclear receptor corepressor 1 (NCOR1) aggravates atherosclerosis development in mice. Macrophage Ncor1-deficiency leads to increased foam cell formation, enhanced expression of pro-inflammatory cytokines, and atherosclerotic lesions characterized by larger necrotic cores and thinner fibrous caps. The immunometabolic effects of NCOR1 are mediated via suppression of peroxisome proliferator-activated receptor gamma (PPARγ) target genes in mouse and human macrophages, which lead to an enhanced expression of the CD36 scavenger receptor and subsequent increase in oxidized low-density lipoprotein uptake in the absence of NCOR1. Interestingly, in human atherosclerotic plaques, the expression of NCOR1 is reduced whereas the PPARγ signature is increased, and this signature is more pronounced in ruptured compared with non-ruptured carotid plaques. CONCLUSIONS Our findings show that macrophage NCOR1 blocks the pro-atherogenic functions of PPARγ in atherosclerosis and suggest that stabilizing the NCOR1-PPARγ binding could be a promising strategy to block the pro-atherogenic functions of plaque macrophages and lesion progression in atherosclerotic patients.
Collapse
Affiliation(s)
- Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Stefanie Nusser-Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Przemyslaw Blyszczuk
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Clinical Immunology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Xu Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Anne Jomard
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Vincenzo Marzolla
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Kangmin Yang
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Srividya Velagapudi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Liam J Ward
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Xi-Ming Yuan
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Martin A Geiger
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, 13083-970 Campinas, Brazil
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, 13083-970 Campinas, Brazil
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zoran Rancic
- Clinic for Vascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419 Suwon, Republic of Korea
| | - Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Elena Osto
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, Royal Brompton & Harefield Hospital Trust, London, SW3 6NP, UK
- Imperial College London, London, SW7 2AZ, UK
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
29
|
Mennillo E, Yang X, Paszek M, Auwerx J, Benner C, Chen S. NCoR1 Protects Mice From Dextran Sodium Sulfate-Induced Colitis by Guarding Colonic Crypt Cells From Luminal Insult. Cell Mol Gastroenterol Hepatol 2020; 10:133-147. [PMID: 32044398 PMCID: PMC7229481 DOI: 10.1016/j.jcmgh.2020.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Colonic stem cells are essential for producing the mucosal lining, which in turn protects stem cells from insult by luminal factors. Discovery of genetic and biochemical events that control stem cell proliferation and differentiation can be leveraged to decipher the causal factors of ulcerative colitis and aid the development of more effective therapy. METHODS We performed in vivo and in vitro studies from control (nuclear receptor corepressor 1 [NCoR1F/F]) and intestinal epithelial cell-specific NCoR1-deficient mice (NCoR1ΔIEC). Mice were challenged with dextran sodium sulfate to induce experimental ulcerative colitis, followed by colitis examination, barrier permeability analysis, cell proliferation immunostaining assays, and RNA sequencing analysis. By using crypt cultures, the organoid-forming efficiency, cell proliferation, apoptosis, and histone acetylation were analyzed after butyrate and/or tumor necrosis factor α treatments. RESULTS NCoR1ΔIEC mice showed a dramatic increase in disease severity in this colitis model, with suppression of proliferative cells at the crypt base as an early event and a concomitant increase in barrier permeability. Genome expression patterns showed an important role for NCoR1 in colonic stem cell proliferation and secretory cell differentiation. Colonic organoids cultured from NCoR1ΔIEC mice were more sensitive to butyrate-induced cell growth inhibition and apoptosis, which were exaggerated further by tumor necrosis factor α co-treatment, which was accompanied by increased histone acetylation. CONCLUSIONS NCoR1 regulates colonic stem cell proliferation and secretory cell differentiation. When NCoR1 is disrupted, barrier protection is weakened, allowing luminal products such as butyrate to penetrate and synergistically damage the colonic crypt cells. Transcript profiling: RNA sequencing data have been deposited in the GEO database, accession number: GSE136153.
Collapse
Affiliation(s)
- Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Xiaojing Yang
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Miles Paszek
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, California.
| |
Collapse
|
30
|
Jahejo AR, Zhang D, Niu S, Mangi RA, Khan A, Qadir MF, Khan A, Chen HC, Tian WX. Transcriptome-based screening of intracellular pathways and angiogenesis related genes at different stages of thiram induced tibial lesions in broiler chickens. BMC Genomics 2020; 21:50. [PMID: 31941444 PMCID: PMC6964038 DOI: 10.1186/s12864-020-6456-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023] Open
Abstract
Background The Tibial dyschondroplasia (TD) in fast-growing chickens is mainly caused by improper blood circulation. The exact mechanism underlying angiogenesis and vascularization in tibial growth plate of broiler chickens remains unclear. Therefore, this research attempts to study genes involved in the regulation of angiogenesis in chicken red blood cells. Twenty-four broiler chickens were allotted into a control and thiram (Tetramethyl thiuram disulfide) group. Blood samples were collected on day 2, 6 (8- and 14-days old chickens) and 15 (23 days old chickens). Results Histopathology and hematoxylin and eosin (H&E) results showed that angiogenesis decreased on the 6th day of the experiment but started to recover on the 15th day of the experiment. Immunohistochemistry (IHC) results confirmed the expressions of integrin alpha-v precursor (ITGAV) and clusterin precursor (CLU). Transcriptome sequencing analysis evaluated 293 differentially expressed genes (DEGs), of which 103 up-regulated genes and 190 down-regulated genes were enriched in the pathways of neuroactive ligand receptor interaction, mitogen-activated protein kinase (MAPK), ribosome, regulation of actin cytoskeleton, focal adhesion, natural killer cell mediated cytotoxicity and the notch signalling pathways. DEGs (n = 20) related to angiogenesis of chicken erythrocytes in the enriched pathways were thromboxane A2 receptor (TBXA2R), interleukin-1 receptor type 1 precursor (IL1R1), ribosomal protein L17 (RPL17), integrin beta-3 precursor (ITGB3), ITGAV, integrin beta-2 precursor (ITGB2), ras-related C3 botulinum toxin substrate 2 (RAC2), integrin alpha-2 (ITGA2), IQ motif containing GTPase activating protein 2 (IQGAP2), ARF GTPase-activating protein (GIT1), proto-oncogene vav (VAV1), integrin alpha-IIb-like (ITGA5), ras-related protein Rap-1b precursor (RAP1B), tyrosine protein kinase Fyn-like (FYN), tyrosine-protein phosphatase non-receptor type 11 (PTPN11), protein patched homolog 1 (PTCH1), nuclear receptor corepressor 2 (NCOR2) and mastermind like protein 3 (MAML3) selected for further confirmation with qPCR. However, commonly DEGs were sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (ATP2A3), ubiquitin-conjugating enzyme E2 R2 (UBE2R2), centriole cilia and spindle-associated protein (CCSAP), coagulation factor XIII A chain protein (F13A1), shroom 2 isoform X6 (SHROOM2), ras GTPase-activating protein 3 (RASA3) and CLU. Conclusion We have found potential therapeutic genes concerned to erythrocytes and blood regulation, which regulated the angiogenesis in thiram induced TD chickens. This study also revealed the potential functions of erythrocytes. Graphical abstract 1. Tibial dyschondroplasia (TD) in chickens were more on day 6, which started recovering on day 15. 2. The enriched pathway observed in TD chickens on day 6 was ribosome pathway, on day 15 were regulation of actin cytoskeleton and focal adhesion pathway. 3. The genes involved in the ribosome pathways was ribosomal protein L17 (RPL17). regulation of actin cytoskeleton pathway were Ras-related C3 botulinum toxin substrate 2 (RAC2), Ras-related protein Rap-1b precursor (RAP1B), ARF GTPase-activating protein (GIT1), IQ motif containing GTPase activating protein 2 (IQGAP2), Integrin alpha-v precursor (ITGAV), Integrin alpha-2 (ITGA2), Integrin beta-2 precursor (ITGB2), Integrin beta-3 precursor (ITGB3), Integrin alpha-IIb-like (ITGA5). Focal adhesion Proto-oncogene vav (Vav-like), Tyrosine-protein kinase Fyn-like (FYN).
![]()
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Sheng Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Raza Ali Mangi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Afrasyab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Muhammad Farhan Qadir
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Huan-Chun Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
31
|
Dehnavi S, Sadeghi M, Penson PE, Banach M, Jamialahmadi T, Sahebkar A. The Role of Protein SUMOylation in the Pathogenesis of Atherosclerosis. J Clin Med 2019; 8:E1856. [PMID: 31684100 PMCID: PMC6912227 DOI: 10.3390/jcm8111856] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a progressive, inflammatory cardiovascular disorder characterized by the development of lipid-filled plaques within arteries. Endothelial cell dysfunction in the walls of blood vessels results in an increase in vascular permeability, alteration of the components of the extracellular matrix, and retention of LDL in the sub-endothelial space, thereby accelerating plaque formation. Epigenetic modification by SUMOylation can influence the surface interactions of target proteins and affect cellular functionality, thereby regulating multiple cellular processes. Small ubiquitin-like modifier (SUMO) can modulate NFκB and other proteins such as p53, KLF, and ERK5, which have critical roles in atherogenesis. Furthermore, SUMO regulates leukocyte recruitment and cytokine release and the expression of adherence molecules. In this review, we discuss the regulation by SUMO and SUMOylation modifications of proteins and pathways involved in atherosclerosis.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran.
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz 93-338, Poland.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz 93-338, Poland.
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9188617871, Iran.
| |
Collapse
|
32
|
Ye J, Wu Y, Guo R, Zeng W, Duan Y, Yang Z, Yang L. miR-221 Alleviates the Ox-LDL-Induced Macrophage Inflammatory Response via the Inhibition of DNMT3b-Mediated NCoR Promoter Methylation. Mediators Inflamm 2019; 2019:4530534. [PMID: 31565033 PMCID: PMC6745124 DOI: 10.1155/2019/4530534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, and macrophages play a key role in all phases of AS. Recent studies have shown that miR-221 is a biomarker for AS and stroke; however, the role and mechanism of miR-221 in AS are unclear. Herein, we found that miR-221 and NCoR levels were decreased in ox-LDL-treated THP-1-derived macrophages. In contrast, DNMT3b, IL-6, and TNF-α expression levels were increased under these conditions. Upregulation of miR-221 or NCoR could partially inhibit ox-LDL-induced IL-6 and TNF-α expression. Further studies showed that DNMT3b was a target of miR-221. DNMT3b inhibition also suppressed IL-6 and TNF-α expression and increased NCoR expression in the presence of ox-LDL. Moreover, DNMT3b was involved in ox-LDL-induced DNA methylation in the promoter region of NCoR. These findings suggest that miR-221 suppresses ox-LDL-induced inflammatory responses via suppressing DNMT3b-mediated DNA methylation in the promoter region of NCoR. These results provide a rationale for using intracellular miR-211 as a possible antiatherosclerotic target.
Collapse
Affiliation(s)
- Jinshan Ye
- Department of Cardiology, 920 Hospital of PLA Joint Logistic Support Force, Yunnan 650032, China
- Department of Cardiology, Tongren Hospital, Yunnan 650032, China
| | - Yaxi Wu
- Institution of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ruiwei Guo
- Department of Cardiology, 920 Hospital of PLA Joint Logistic Support Force, Yunnan 650032, China
| | - Wenjun Zeng
- Department of Cardiology, Tongren Hospital, Yunnan 650032, China
| | - Yanan Duan
- Department of Cardiology, Tongren Hospital, Yunnan 650032, China
| | - Zhihua Yang
- Department of Cardiology, Tongren Hospital, Yunnan 650032, China
| | - Lixia Yang
- Department of Cardiology, 920 Hospital of PLA Joint Logistic Support Force, Yunnan 650032, China
| |
Collapse
|
33
|
Tajbakhsh A, Bianconi V, Pirro M, Gheibi Hayat SM, Johnston TP, Sahebkar A. Efferocytosis and Atherosclerosis: Regulation of Phagocyte Function by MicroRNAs. Trends Endocrinol Metab 2019; 30:672-683. [PMID: 31383556 DOI: 10.1016/j.tem.2019.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
There is evidence of the critical role of efferocytosis, the clearance of apoptotic cells (ACs) by phagocytes, in vascular cell homeostasis and protection against atherosclerosis. Specific microRNAs (miRs) can regulate atherogenesis by controlling the accumulation of professional phagocytes (e.g., macrophages) and nonprofessional phagocytes (i.e., neighboring tissue cells with the ability to acquire a macrophage-like phenotype) within the arterial wall, the differentiation of phagocytes into foam cells, the efferocytosis of apoptotic foam cells by phagocytes, and the phagocyte-mediated inflammatory response. A better understanding of the mechanisms involved in miR-regulated phagocyte function might lead to novel therapeutic antiatherosclerotic strategies. In this review, we try to shed light on the relationship between miRs and cellular players in the process of efferocytosis in the context of atherosclerotic plaque and their potential as molecular targets for novel antiatherosclerotic therapies.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Modern Sciences and Technologies, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Ahad A, Stevanin M, Smita S, Mishra GP, Gupta D, Waszak S, Sarkar UA, Basak S, Gupta B, Acha-Orbea H, Raghav SK. NCoR1: Putting the Brakes on the Dendritic Cell Immune Tolerance. iScience 2019; 19:996-1011. [PMID: 31522122 PMCID: PMC6744395 DOI: 10.1016/j.isci.2019.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/19/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Understanding the mechanisms fine-tuning immunogenic versus tolerogenic balance in dendritic cells (DCs) is of high importance for therapeutic approaches. We found that NCoR1-mediated direct repression of the tolerogenic program in conventional DCs is essential for induction of an optimal immunogenic response. NCoR1 depletion upregulated a wide variety of tolerogenic genes in activated DCs, which consequently resulted in increased frequency of FoxP3+ regulatory T cells. Mechanistically, NCoR1 masks the PU.1-bound super-enhancers on major tolerogenic genes after DC activation that are subsequently bound by nuclear factor-κB. NCoR1 knockdown (KD) reduced RelA nuclear translocation and activity, whereas RelB was unaffected, providing activated DCs a tolerogenic advantage. Moreover, NCoR1DC−/- mice depicted enhanced Tregs in draining lymph nodes with increased disease burden upon bacterial and parasitic infections. Besides, adoptive transfer of activated NCoR1 KD DCs in infected animals showed a similar phenotype. Collectively, our results demonstrated NCoR1 as a promising target to control DC-mediated immune tolerance. NCoR1 directly represses tolerogenic program in mouse cDCs Depletion of NCoR1 in cDCs enhanced Treg development ex vivo and in vivo NCoR1 masks PU.1-bound super-enhancers on tolerogenic genes in cDCs NCoR1DC−/− animals depicted enhanced Treg frequency and infection load
Collapse
Affiliation(s)
- Abdul Ahad
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Mathias Stevanin
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges CH-1066, Switzerland
| | - Shuchi Smita
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Gyan Prakash Mishra
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India
| | - Dheerendra Gupta
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India
| | - Sebastian Waszak
- European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology (NII), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology (NII), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhawna Gupta
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges CH-1066, Switzerland.
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
35
|
BCL6 inhibitor FX1 attenuates inflammatory responses in murine sepsis through strengthening BCL6 binding affinity to downstream target gene promoters. Int Immunopharmacol 2019; 75:105789. [PMID: 31401377 DOI: 10.1016/j.intimp.2019.105789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Sepsis occurs when an infection triggers deranged inflammatory responses. There exists no efficacious treatment for this condition. The transcriptional repressor B-cell Lymphoma 6 (BCL6) is known to act as an inhibitor of macrophage-mediated inflammatory responses. FX1, a novel specific BCL6 BTB inhibitor, is able to attenuate activity of B cell-like diffuse large B cell lymphoma (ABC-DLBCL). Nevertheless, the effect of FX1 in inflammatory responses and sepsis remains unknown. OBJECTIVES Here, we explored the effect and potential mechanisms of FX1 on the regulation of LPS-induced inflammatory responses in murine sepsis. METHOD Mice models of LPS-induced sepsis were monitored for survival rate following FX1 administration. ELISA was used to assess how FX1 administration affected pro-inflammatory cytokines present in macrophages exposed to LPS and in the serum of mice sepsis models. Flow cytometric analysis, Western blot and qRT-PCR were performed to evaluate differences in macrophages immune responses after FX1 pre-treatment. Finally, the affinity of BCL6 binding to downstream target genes was checked by ChIP. RESULTS The survival rate of mice models of LPS-induced sepsis was improved in following FX1 administration. FX1 decreased the production of inflammatory cytokines, attenuated macrophage infiltration activities and reduced monocytes chemotaxis activities, all of which suggest that FX1 exert anti-inflammatory effects. Mechanistically, FX1 may enhance the affinity of BCL6 binding to downstream target pro-inflammatory genes. CONCLUSIONS These findings illustrated the anti-inflammatory properties and potential mechanisms of FX1 in sepsis caused by LPS. FX1 could potentially become a new immunosuppressive and anti-inflammatory drug candidate in sepsis therapy.
Collapse
|
36
|
Ferri F, Petit V, Barroca V, Romeo PH. Interplay between FACT subunit SPT16 and TRIM33 can remodel chromatin at macrophage distal regulatory elements. Epigenetics Chromatin 2019; 12:46. [PMID: 31331374 PMCID: PMC6647326 DOI: 10.1186/s13072-019-0288-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell type-specific use of cis-acting regulatory elements is mediated by the combinatorial activity of transcription factors involved in lineage determination and maintenance of cell identity. In macrophages, specific transcriptional programs are dictated by the transcription factor PU.1 that primes distal regulatory elements for macrophage identities and makes chromatin competent for activity of stimuli-dependent transcription factors. Although the advances in genome-wide approaches have elucidated the functions of these macrophage-specific distal regulatory elements in transcriptional responses, chromatin structures associated with PU.1 priming and the underlying mechanisms of action of these cis-acting sequences are not characterized. RESULTS Here, we show that, in macrophages, FACT subunit SPT16 can bind to positioned nucleosomes directly flanking PU.1-bound sites at previously uncharacterized distal regulatory elements located near genes essential for macrophage development and functions. SPT16 can interact with the transcriptional co-regulator TRIM33 and binds to half of these sites in a TRIM33-dependent manner. Using the Atp1b3 locus as a model, we show that FACT binds to two positioned nucleosomes surrounding a TRIM33/PU.1-bound site in a region, located 35 kb upstream the Atp1b3 TSS, that interact with the Atp1b3 promoter. At this - 35 kb region, TRIM33 deficiency leads to FACT release, loss of the two positioned nucleosomes, RNA Pol II recruitment and bidirectional transcription. These modifications are associated with higher levels of FACT binding at the Atp1b3 promoter, an increase of RNA Pol II recruitment and an increased expression of Atp1b3 in Trim33-/- macrophages. CONCLUSIONS Thus, sequestering of SPT16/FACT by TRIM33 at PU.1-bound distal regions might represent a new regulatory mechanism for RNA Pol II recruitment and transcription output in macrophages.
Collapse
Affiliation(s)
- Federica Ferri
- CEA/DRF/IBFJ/iRCM/LRTS, 92265, Fontenay-aux-Roses Cedex, France. .,Inserm U967, 92265, Fontenay-aux-Roses Cedex, France. .,Université Paris-Diderot, Paris 7, France. .,Université Paris-Sud, Paris 11, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Vanessa Petit
- CEA/DRF/IBFJ/iRCM/LRTS, 92265, Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265, Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Paris 7, France.,Université Paris-Sud, Paris 11, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Vilma Barroca
- CEA/DRF/IBFJ/iRCM/LRTS, 92265, Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265, Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Paris 7, France.,Université Paris-Sud, Paris 11, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Paul-Henri Romeo
- CEA/DRF/IBFJ/iRCM/LRTS, 92265, Fontenay-aux-Roses Cedex, France. .,Inserm U967, 92265, Fontenay-aux-Roses Cedex, France. .,Université Paris-Diderot, Paris 7, France. .,Université Paris-Sud, Paris 11, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
37
|
Abstract
Recent reports describe how genome-wide transcriptional analysis of cancer tissues can be exploited to identify molecular signatures of immune infiltration in cancer. We hypothesize that immune infiltration in cancer may also be defined by changes in certain epigenetic signatures. In this context, a primary objective is to identify site-specific CpG markers whose levels of methylation may be highly indicative of known transcriptional markers of immune infiltration such as GZMA, PRF1, T cell receptor genes, PDCD1, and CTLA4. This has been accomplished by integrating genome-wide transcriptional expression and methylation data for different types of cancer (melanoma, kidney cancers, lung cancers, gliomas, head and neck cancer). Our findings establish that cancers of related histology also have a high degree of similarity in immune-infiltration CpG markers. For example, the epigenetic immune infiltration signatures in lung adenocarcinoma (LUAD), mesothelioma (MESO), lung squamous cell carcinoma (LUSC), and head and neck squamous cell carcinoma (HNSC) are distinctly similar. So are glioblastoma multiforme (GBM) and brain lower grade glioma (LGG); and kidney renal papillary cell carcinoma (KIRP) and kidney renal clear cell carcinoma (KIRC). Kidney chromophobe (KICH), on the other hand has markers that are unique to this cohort. The strong relationships between immune infiltration and CpG methylation (for certain sites) in cancer tissues were not observed upon integrated analysis of publicly available cancer cell line datasets. Results from comparative pathways analyses offer further justification to methylation at certain CpG sites as being indicators of cancer immune infiltration, and possibly of predicting patient response to immunotherapeutic drugs. Achieving this target objective would significantly enhance therapeutic outcomes employing immunotherapy through focused patient-centric personalized medicine.
Collapse
|
38
|
Sommars MA, Ramachandran K, Senagolage MD, Futtner CR, Germain DM, Allred AL, Omura Y, Bederman IR, Barish GD. Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis. eLife 2019; 8:e43922. [PMID: 30983568 PMCID: PMC6464608 DOI: 10.7554/elife.43922] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Transcription is tightly regulated to maintain energy homeostasis during periods of feeding or fasting, but the molecular factors that control these alternating gene programs are incompletely understood. Here, we find that the B cell lymphoma 6 (BCL6) repressor is enriched in the fed state and converges genome-wide with PPARα to potently suppress the induction of fasting transcription. Deletion of hepatocyte Bcl6 enhances lipid catabolism and ameliorates high-fat-diet-induced steatosis. In Ppara-null mice, hepatocyte Bcl6 ablation restores enhancer activity at PPARα-dependent genes and overcomes defective fasting-induced fatty acid oxidation and lipid accumulation. Together, these findings identify BCL6 as a negative regulator of oxidative metabolism and reveal that alternating recruitment of repressive and activating transcription factors to shared cis-regulatory regions dictates hepatic lipid handling.
Collapse
Affiliation(s)
- Meredith A Sommars
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Krithika Ramachandran
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Madhavi D Senagolage
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Christopher R Futtner
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Derrik M Germain
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Amanda L Allred
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Yasuhiro Omura
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Ilya R Bederman
- Department of PediatricsCase Western Reserve UniversityClevelandUnited States
| | - Grant D Barish
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoUnited States
- Jesse Brown VA Medical CenterChicagoUnited States
| |
Collapse
|
39
|
Riffo-Campos AL, Fuentes-Trillo A, Tang WY, Soriano Z, De Marco G, Rentero-Garrido P, Adam-Felici V, Lendinez-Tortajada V, Francesconi K, Goessler W, Ladd-Acosta C, Leon-Latre M, Casasnovas JA, Chaves FJ, Navas-Acien A, Guallar E, Tellez-Plaza M. In silico epigenetics of metal exposure and subclinical atherosclerosis in middle aged men: pilot results from the Aragon Workers Health Study. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0084. [PMID: 29685964 DOI: 10.1098/rstb.2017.0084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
We explored the association of metal levels with subclinical atherosclerosis and epigenetic changes in relevant biological pathways. Whole blood DNA Infinium Methylation 450 K data were obtained from 23 of 73 middle age men without clinically evident cardiovascular disease (CVD) who participated in the Aragon Workers Health Study in 2009 (baseline visit) and had available baseline urinary metals and subclinical atherosclerosis measures obtained in 2010-2013 (follow-up visit). The median metal levels were 7.36 µg g-1, 0.33 µg g-1, 0.11 µg g-1 and 0.07 µg g-1, for arsenic (sum of inorganic and methylated species), cadmium, antimony and tungsten, respectively. Urine cadmium and tungsten were associated with femoral and carotid intima-media thickness, respectively (Pearson's r = 0.27; p = 0.03 in both cases). Among nearest genes to identified differentially methylated regions (DMRs), 46% of metal-DMR genes overlapped with atherosclerosis-DMR genes (p < 0.001). Pathway enrichment analysis of atherosclerosis-DMR genes showed a role in inflammatory, metabolic and transport pathways. In in silico protein-to-protein interaction networks among proteins encoded by 162 and 108 genes attributed to atherosclerosis- and metal-DMRs, respectively, with proteins known to have a role in atherosclerosis pathways, we observed hub proteins in the network associated with both atherosclerosis and metal-DMRs (e.g. SMAD3 and NOP56), and also hub proteins associated with metal-DMRs only but with relevant connections with atherosclerosis effectors (e.g. SSTR5, HDAC4, AP2A2, CXCL12 and SSTR4). Our integrative in silico analysis demonstrates the feasibility of identifying epigenomic regions linked to environmental exposures and potentially involved in relevant pathways for human diseases. While our results support the hypothesis that metal exposures can influence health due to epigenetic changes, larger studies are needed to confirm our pilot results.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Angela L Riffo-Campos
- Area of Cardiometabolic Risk, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Azahara Fuentes-Trillo
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Wan Y Tang
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zoraida Soriano
- Instituto de Investigación Sanitaria de Aragon, 50009 Zaragoza, Spain
| | - Griselda De Marco
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Pilar Rentero-Garrido
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Victoria Adam-Felici
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Veronica Lendinez-Tortajada
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | | | - Walter Goessler
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | | | - Montse Leon-Latre
- Instituto de Investigación Sanitaria de Aragon, 50009 Zaragoza, Spain.,Servicio Aragones de Salud, 50071 Zaragoza, Spain
| | - Jose A Casasnovas
- Instituto de Investigación Sanitaria de Aragon, 50009 Zaragoza, Spain.,Instituto Aragonés de Ciencias de Salud, 50009 Zaragoza, Spain.,Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - F Javier Chaves
- Genomics and Genetic Diagnostic Unit, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maria Tellez-Plaza
- Area of Cardiometabolic Risk, Institute for Biomedical Research Hospital Clinic of Valencia, Menendez Pelayo 4 Accesorio, 46010 Valencia, Spain .,Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Hu S, Zuo H, Qi J, Hu Y, Yu B. Analysis of Effect of Schisandra in the Treatment of Myocardial Infarction Based on Three-Mode Gene Ontology Network. Front Pharmacol 2019; 10:232. [PMID: 30949047 PMCID: PMC6435518 DOI: 10.3389/fphar.2019.00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
Schisandra chinensis is a commonly used traditional Chinese medicine, which has been widely used in the treatment of acute myocardial infarction in China. However, it has been difficult to systematically clarify the major pharmacological effect of Schisandra, due to its multi-component complex mechanism. In order to solve this problem, a comprehensive network analysis method was established based-on “component–gene ontology–effect” interactions. Through the network analysis, reduction of cardiac preload and myocardial contractility was shown to be the major effect of Schisandra components, which was further experimentally validated. In addition, the expression of NCOR2 and NFAT in myocyte were experimentally confirmed to be associated with Schisandra in the treatment of AMI, which may be responsible for the preservation effect of myocardial contractility. In conclusion, the three-mode gene ontology network can be an effective network analysis workflow to evaluate the pharmacological effects of a multi-drug complex system.
Collapse
Affiliation(s)
- Siyao Hu
- Jiangsu Key Laboratory of Traditional Medicine and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Huali Zuo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Jin Qi
- Jiangsu Key Laboratory of Traditional Medicine and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Boyang Yu
- Jiangsu Key Laboratory of Traditional Medicine and Translational Research, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
41
|
Gu Y, Luo M, Li Y, Su Z, Wang Y, Chen X, Zhang S, Sun W, Kong X. Bcl6
knockdown aggravates hypoxia injury in cardiomyocytes via the P38 pathway. Cell Biol Int 2019; 43:108-116. [PMID: 29972264 DOI: 10.1002/cbin.11028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Yang Gu
- Department of Cardiology; the First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 Jiangsu P.R. China
- Department of Cardiology; the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; Huai'an Jiangsu P.R. China
| | - Man Luo
- Department of Cardiology; the First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 Jiangsu P.R. China
- Department of Cardiology; the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University; Huai'an Jiangsu P.R. China
| | - Yong Li
- Department of Cardiology; the First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 Jiangsu P.R. China
| | - Zhongping Su
- Department of Cardiology; the First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 Jiangsu P.R. China
| | - Yaqing Wang
- Department of Cardiology; the First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 Jiangsu P.R. China
| | - Xiru Chen
- Department of Cardiology; the First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 Jiangsu P.R. China
| | - Siqi Zhang
- Department of Cardiology; the First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 Jiangsu P.R. China
| | - Wei Sun
- Department of Cardiology; the First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 Jiangsu P.R. China
| | - Xiangqing Kong
- Department of Cardiology; the First Affiliated Hospital of Nanjing Medical University; 300 Guangzhou Road Nanjing 210029 Jiangsu P.R. China
| |
Collapse
|
42
|
Divoux A, Sandor K, Bojcsuk D, Talukder A, Li X, Balint BL, Osborne TF, Smith SR. Differential open chromatin profile and transcriptomic signature define depot-specific human subcutaneous preadipocytes: primary outcomes. Clin Epigenetics 2018; 10:148. [PMID: 30477572 PMCID: PMC6258289 DOI: 10.1186/s13148-018-0582-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Background Increased lower body fat is associated with reduced cardiometabolic risk. The molecular basis for depot-specific differences in gluteofemoral (GF) compared with abdominal (A) subcutaneous adipocyte function is poorly understood. In the current report, we used a combination of Assay for Transposase-Accessible Chromatin followed by sequencing (ATAC-seq), RNA-seq, and chromatin immunoprecipitation (ChIP)-qPCR analyses that provide evidence that depot-specific gene expression patterns are associated with differential epigenetic chromatin signatures. Methods Preadipocytes cultured from A and GF adipose tissue obtained from premenopausal apple-shaped women were used to perform transcriptome analysis by RNA-seq and assess accessible chromatin regions by ATAC-seq. We measured mRNA expression and performed ChIP-qPCR experiments for histone modifications of active (H3K4me3) and repressed chromatin (H3K27me3) regions respectively on the promoter regions of differentially expressed genes. Results RNA-seq experiments revealed an A-fat and GF-fat selective gene expression signature, with 126 genes upregulated in abdominal preadipocytes and 90 genes upregulated in GF cells. ATAC-seq identified almost 10-times more A-specific chromatin-accessible regions. Using a combined analysis of ATAC-seq and global gene expression data, we identified 74 of the 126 abdominal-specific genes (59%) with A-specific accessible chromatin sites within 200 kb of the transcription start site (TSS), including HOXA3, HOXA5, IL8, IL1b, and IL6. Interestingly, only 14 of the 90 GF-specific genes (15%) had GF-specific accessible chromatin sites within 200 kb of the corresponding TSS, including HOXC13 and HOTAIR, whereas 25 of them (28%) had abdominal-specific accessible chromatin sites. ChIP-qPCR experiments confirmed that the active H3K4me3 chromatin mark was significantly enriched at the promoter regions of HOXA5 and HOXA3 genes in abdominal preadipocytes, while H3K27me3 was less abundant relative to chromatin from GF. This is consistent with their A-fat specific gene expression pattern. Conversely, analysis of the promoter regions of the GF specific HOTAIR and HOXC13 genes exhibited high H3K4me3 and low H3K27me3 levels in GF chromatin compared to A chromatin. Conclusions Global transcriptome and open chromatin analyses of depot-specific preadipocytes identified their gene expression signature and differential open chromatin profile. Interestingly, A-fat-specific open chromatin regions can be observed in the proximity of GF-fat genes, but not vice versa. Trial registration Clinicaltrials.gov, NCT01745471. Registered 5 December 2012. Electronic supplementary material The online version of this article (10.1186/s13148-018-0582-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E. Princeton Street, Orlando, FL, 32804, USA. .,Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.
| | - Katalin Sandor
- Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.,Present address: Department of Medicine, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, FL, 33701, USA
| | - Dora Bojcsuk
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4032, Hungary
| | - Amlan Talukder
- Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, USA
| | - Balint L Balint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4032, Hungary
| | - Timothy F Osborne
- Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.,Present address: Department of Medicine, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, FL, 33701, USA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E. Princeton Street, Orlando, FL, 32804, USA.,Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| |
Collapse
|
43
|
Erbilgin A, Seldin MM, Wu X, Mehrabian M, Zhou Z, Qi H, Dabirian KS, Sevag Packard RR, Hsieh W, Bensinger SJ, Sinha S, Lusis AJ. Transcription Factor Zhx2 Deficiency Reduces Atherosclerosis and Promotes Macrophage Apoptosis in Mice. Arterioscler Thromb Vasc Biol 2018; 38:2016-2027. [PMID: 30026271 PMCID: PMC6202168 DOI: 10.1161/atvbaha.118.311266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
Objective- The objective of this study was to determine the basis of resistance to atherosclerosis of inbred mouse strain BALB/cJ. Approach and Results- BALB/cJ mice carry a naturally occurring null mutation of the gene encoding the transcription factor Zhx2, and genetic analyses suggested that this may confer resistance to atherosclerosis. On a hyperlipidemic low-density lipoprotein receptor null background, BALB/cJ mice carrying the mutant allele for Zhx2 exhibited up to a 10-fold reduction in lesion size as compared with an isogenic strain carrying the wild-type allele. Several lines of evidence, including bone marrow transplantation studies, indicate that this effect of Zhx2 is mediated, in part, by monocytes/macrophages although nonbone marrow-derived pathways are clearly involved as well. Both in culture and in atherosclerotic lesions, macrophages from Zhx2 null mice exhibited substantially increased apoptosis. Zhx2 null macrophages were also enriched for M2 markers. Effects of Zhx2 on proliferation and other bone marrow-derived cells, such as lymphocytes, were at most modest. Expression microarray analyses identified >1000 differentially expressed transcripts between Zhx2 wild-type and null macrophages. To identify the global targets of Zhx2, we performed ChIP-seq (chromatin immunoprecipitation sequencing) studies with the macrophage cell line RAW264.7. The ChIP-seq peaks overlapped significantly with gene expression and together suggested roles for transcriptional repression and apoptosis. Conclusions- A mutation of Zhx2 carried in BALB/cJ mice is responsible in large part for its relative resistance to atherosclerosis. Our results indicate that Zhx2 promotes macrophage survival and proinflammatory functions in atherosclerotic lesions, thereby contributing to lesion growth.
Collapse
Affiliation(s)
- Ayca Erbilgin
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Marcus M. Seldin
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xiuju Wu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Margarete Mehrabian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Zhiqiang Zhou
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Hongxiu Qi
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Keeyon S. Dabirian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - René R. Sevag Packard
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Wei Hsieh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Steven J. Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Satyesh Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Aldons J. Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Simandi Z, Pajer K, Karolyi K, Sieler T, Jiang LL, Kolostyak Z, Sari Z, Fekecs Z, Pap A, Patsalos A, Contreras GA, Reho B, Papp Z, Guo X, Horvath A, Kiss G, Keresztessy Z, Vámosi G, Hickman J, Xu H, Dormann D, Hortobagyi T, Antal M, Nógrádi A, Nagy L. Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. J Neurosci 2018; 38:7683-7700. [PMID: 30054395 PMCID: PMC6113905 DOI: 10.1523/jneurosci.3389-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Krisztian Pajer
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Katalin Karolyi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| | - Tatiana Sieler
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| | - Lu-Lin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Zsuzsanna Kolostyak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zsanett Sari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zoltan Fekecs
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Andreas Patsalos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Gerardo Alvarado Contreras
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Balint Reho
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zoltan Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Greta Kiss
- Department of Anatomy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zsolt Keresztessy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Dorothee Dormann
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany 80539
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 80539
| | - Tibor Hortobagyi
- HAS-UD Cerebrovascular and Neurodegenerative Research Group, Department of Neurology and Neuropathology, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Miklos Antal
- Department of Anatomy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
- HAS-UD Neuroscience Research Group, University of Debrecen, Debrecen, Hungary, HU 4032, and
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Laszlo Nagy
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827,
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
- HAS-UD Momentum Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary, HU 4032
| |
Collapse
|
45
|
Czimmerer Z, Daniel B, Horvath A, Rückerl D, Nagy G, Kiss M, Peloquin M, Budai MM, Cuaranta-Monroy I, Simandi Z, Steiner L, Nagy B, Poliska S, Banko C, Bacso Z, Schulman IG, Sauer S, Deleuze JF, Allen JE, Benko S, Nagy L. The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages. Immunity 2018; 48:75-90.e6. [PMID: 29343442 PMCID: PMC5772169 DOI: 10.1016/j.immuni.2017.12.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
Abstract
The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli. IL-4-activated STAT6 acts as a transcriptional repressor in macrophages IL-4-STAT6-repressed enhancers associate with reduced LDTF and p300 binding Inflammatory responsiveness of the IL-4-repressed enhancers is attenuated IL-4 limits the LPS-induced inflammasome activation, IL-1β production, and pyroptosis
Collapse
Affiliation(s)
- Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bence Daniel
- Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dominik Rückerl
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE "Lendület" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Mate Kiss
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Matthew Peloquin
- Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Marietta M Budai
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Simandi
- Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Laszlo Steiner
- UD-Genomed Medical Genomic Technologies Ltd., Debrecen, Hungary
| | - Bela Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilard Poliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Banko
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ira G Schulman
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany; CU Systems Medicine, University of Würzburg, Würzburg, Germany; Max Delbrück Center for Molecular Medicine (BIMSB and BIH), Berlin, Germany
| | | | - Judith E Allen
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Szilvia Benko
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Sanford-Burnham-Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA; MTA-DE "Lendület" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
46
|
Huang Z, Liang N, Damdimopoulos A, Fan R, Treuter E. G protein pathway suppressor 2 (GPS2) links inflammation and cholesterol efflux by controlling lipopolysaccharide‐induced ATP‐binding cassette transporter A1 expression in macrophages. FASEB J 2018; 33:1631-1643. [DOI: 10.1096/fj.201801123r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiqiang Huang
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| | - Ning Liang
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| | - Anastasius Damdimopoulos
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| | - Rongrong Fan
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| | - Eckardt Treuter
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| |
Collapse
|
47
|
Müller L, Hainberger D, Stolz V, Ellmeier W. NCOR1-a new player on the field of T cell development. J Leukoc Biol 2018; 104:1061-1068. [PMID: 30117609 DOI: 10.1002/jlb.1ri0418-168r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional corepressor that links chromatin-modifying enzymes with gene-specific transcription factors. Although identified more than 20 years ago as a corepressor of nuclear receptors, the role of NCOR1 in T cells remained only poorly understood. However, recent studies indicate that the survival of developing thymocytes is regulated by NCOR1, revealing an essential role for NCOR1 in the T cell lineage. In this review, we will briefly summarize basic facts about NCOR1 structure and functions. We will further summarize studies demonstrating an essential role for NCOR1 in controlling positive and negative selection of thymocytes during T cell development. Finally, we will discuss similarities and differences between the phenotypes of mice with a T cell-specific deletion of NCOR1 or histone deacetylase 3 (HDAC3), because HDAC3 is the predominant member of the HDAC family that interacts with NCOR1 corepressor complexes. With this review we aim to introduce NCOR1 as a new player in the team of transcriptional coregulators that control T cell development and thus the generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Simandi Z, Horvath A, Cuaranta-Monroy I, Sauer S, Deleuze JF, Nagy L. RXR heterodimers orchestrate transcriptional control of neurogenesis and cell fate specification. Mol Cell Endocrinol 2018; 471:51-62. [PMID: 28778663 DOI: 10.1016/j.mce.2017.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 12/27/2022]
Abstract
Retinoid X Receptors (RXRs) are unique and enigmatic members of the nuclear receptor (NR) family with extensive and complex biological functions in cellular differentiation. On the one hand, RXRs through permissive heterodimerization with other NRs are able to integrate multiple lipid signaling pathways and are believed to play a central role to coordinate the development of the central nervous system. On the other hand, RXRs may have heterodimer-independent functions as well. Therefore, a more RXR-centric analysis is warranted to identify its genomic binding sites and regulated gene networks, which are orchestrating the earliest events in neuronal differentiation. Recently developed genome-wide approaches allow systematic analyses of the RXR-driven neural differentiation. Here we applied next generation sequencing-based methodology to track the dynamic redistribution of the RXR cistrome along the path of embryonic stem cell to glutamatergic neuron differentiation. We identified Retinoic Acid Receptor (RAR) and Liver X Receptor (LXR) as dominant heterodimeric partners of RXR in these cellular stages. Our data presented here characterize the RAR:RXR and LXR:RXR-mediated transcriptional program in embryonic stem cells, neural progenitors and terminally differentiated neurons. Considering the growing evidence for dysregulated RXR-mediated signaling in neurodegenerative disorders, such as Alzheimer's Disease or Amyotrophic Lateral Sclerosis, the data presented here will be also a valuable resource for the field of neuro(patho)biology.
Collapse
Affiliation(s)
- Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sascha Sauer
- Max Delbruck Center for Molecular Medicine (BISMB and BIH), Germany
| | - Jean-Francois Deleuze
- Centre National de Recherche en Genomique Humaine, Institute de Biologie Francois Jacob, CEA, Evry, France
| | - Laszlo Nagy
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE "Lendulet" Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
49
|
NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming. Nat Cell Biol 2018. [PMID: 29531310 DOI: 10.1038/s41556-018-0047-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatic cell reprogramming by exogenous factors requires cooperation with transcriptional co-activators and co-repressors to effectively remodel the epigenetic environment. How this interplay is regulated remains poorly understood. Here, we demonstrate that NCoR/SMRT co-repressors bind to pluripotency loci to create a barrier to reprogramming with the four Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC), and consequently, suppressing NCoR/SMRT significantly enhances reprogramming efficiency and kinetics. The core epigenetic subunit of the NCoR/SMRT complex, histone deacetylase 3 (HDAC3), contributes to the effects of NCoR/SMRT by inducing histone deacetylation at pluripotency loci. Among the Yamanaka factors, recruitment of NCoR/SMRT-HDAC3 to genomic loci is mostly facilitated by c-MYC. Hence, we describe how c-MYC is beneficial for the early phase of reprogramming but deleterious later. Overall, we uncover a role for NCoR/SMRT co-repressors in reprogramming and propose a dual function for c-MYC in this process.
Collapse
|
50
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|